Lecture 8
 Multiple Access Channels

April 26, 2023
John M. Cioffi

Hitachi Professor Emeritus of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements
- Problem Set \#4 is due Tuesday (no late)
- PS1-2 solutions are at the site, PS4 at 17:05 Tuesday
- PS3 as soon as last homework in
- Midterm is $5 / 3$ in class
- May 19; 3pm make-up class (replaces May 15) location changed to 200-003
- Office hours today 4:30-5:00, then probably 5:30-6:00
- Agenda
- MAC $\mathcal{C}(b)$ via partial rate sums
- Scalar Gaussian MAC
- Vector Gaussian MAC
- mu_mac.m software
- Capacity Region for frequency-indexed channels

MAC $\mathcal{C}(b)$ via partial rate sums

PS4.3-2.23

The MAC's partial rate sums

$p_{x}=\prod_{u=1}^{U} p_{x_{u}}$ independent user inputs

- User u has maximum bit rate, when all other users are given (cancelled):

$$
b_{u} \leq I\left(\boldsymbol{x}_{u} ; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \backslash u}\right)
$$

- The single receiver can process user subset $\boldsymbol{u} \subseteq \boldsymbol{U}$
- has single-macro-user interpretation with summed bits/subsymbol:
- $b_{\boldsymbol{u}}=\sum_{u \in \boldsymbol{u}} b_{u} \leq I\left(\boldsymbol{x}_{\boldsymbol{u}} ; \boldsymbol{y} / \boldsymbol{x}_{U \backslash u}\right)$
- this is a hyperplane with $|\boldsymbol{u}|-1$ dimensions ($\in \mathbb{C}^{|\boldsymbol{u}|}$)
- Order simplifies (receiver) to $\boldsymbol{\Pi}=\boldsymbol{\pi}_{1}$; The user order within \boldsymbol{u} does not change the sum $I\left(\boldsymbol{x}_{\boldsymbol{u}} ; \boldsymbol{y} / \boldsymbol{x}_{U \backslash u}\right)$, nor does the order within $\boldsymbol{U} \backslash \boldsymbol{u}$.
- The number of planes (lines ... hyperplanes) to search decreases substantially to $2^{U}-1$ (null set excluded) << $(U \text { ! })^{U}($ large $U)$.

Section 2.6.1
April 26, 2023
L8: 4
Stanford University

$$
I(x ; y)=I\left(x_{u} ; y / x_{U \backslash u}\right)+I\left(x_{U \backslash u} ; y\right)
$$

User (set) \boldsymbol{u} detected with Other-user (set) $\boldsymbol{U} \backslash \boldsymbol{u}$ detected with
all other users $\boldsymbol{x}_{\boldsymbol{U} \backslash \boldsymbol{u}}$ given (cancelled) users $\boldsymbol{x}_{\boldsymbol{u}}$ as noise
2^{U} possible choices of \boldsymbol{u}

- $b \leq I(\boldsymbol{x} ; \boldsymbol{y})$ - the rate sum (corresponds to choice $\boldsymbol{u}=\boldsymbol{U}$)
- A (hyperplane) face: $b_{1}+b_{2}+\cdots+b_{|\boldsymbol{u}|} \leq I\left(\boldsymbol{x}_{\boldsymbol{u}} ; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \backslash \boldsymbol{u}}\right)$ - partial rate sums $\left(2^{|\boldsymbol{u}|}-1\right)$
- There are also U trivial faces for positive bits/subsymbol $b_{u} \geq 0$, so really $2^{u}-1+U$ faces that bound $\mathcal{A}\left(\boldsymbol{b}, p_{x}\right)$.
- A vertex corresponds to a specific $\boldsymbol{b}=I$ for a specific order $\boldsymbol{\pi}$.

$$
\left[\begin{array}{c}
I\left(\boldsymbol{x}_{2} ; \boldsymbol{y} / \boldsymbol{x}_{1}\right) \\
I\left(\boldsymbol{x}_{1} ; \boldsymbol{y}\right)
\end{array}\right] \quad\left[\begin{array}{c}
I\left(\boldsymbol{x}_{1} ; \boldsymbol{y} / \boldsymbol{x}_{2}\right) \\
I\left(\boldsymbol{x}_{2} ; \boldsymbol{y}\right)
\end{array}\right] \quad \text { When } U=2 \text {; in general, } U \text { ! vertices for a specific } p_{\boldsymbol{x}}
$$

Chain-Rule Decoder

Successive Decoding or ... Generalized Decision Feedback Eq

- For the given order, decode all the lower-indexed users first and then current user
- Since there is only one order, relabel users and avoid all the $\pi^{-1}(\cdot)$ notation
- No loss of generality

A 2-user MAC rate region

Specific to a $p_{x y}$

- Pentagon - 5 vertices and 5 faces
- $2^{U}-1+U$ Faces are the $I\left(\boldsymbol{x}_{\boldsymbol{u}} ; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \backslash \boldsymbol{u}}\right) \& b_{u} \geq 0$
- $U!=2$ vertices are the both-user order points π
- 2 more are single-user points, one for each user
- 1 more is the origin
- 5 total
- b_{2} vertex (and short blue line) decodes 1 first (given), then 2 as if 1 is "cancelled."
- Similar statement for b_{1} vertex (and short green) line
- Line with slope -1 is time-share or really vertex-share; it also is constant maximum rate sum (for this $p_{x y}$)
- There are two codes for each user (4 codes); example of user components (or subusers, sometimes called "rate splitting")

A 3-user rate region

- Decahedron - 10 faces
- $2^{U}-1+U$ Faces are the $I\left(\boldsymbol{x}_{\boldsymbol{u}} ; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \backslash \boldsymbol{u}}\right)$
- $U!=6$ vertices (rose) are the 3 -user order points π

$$
\begin{aligned}
& =\text { vertex for } 3 \text { users } U!(=6) \\
& =\text { vertex for } 2 \text { users } U!(=6) \\
& =\text { vertex for } 1 \text { user } U(=3) \\
& \text { = vertex for } 0 \text { users }(=1)
\end{aligned}
$$

$$
\sum_{k=0}^{U}\binom{U}{k} \cdot k!=16 \text { vertices }
$$

- b_{2} horizontal plane (pentagon) decodes 1 and 3 first (given), then 2 as if 1 and/or 3 are "cancelled."
- 1 and 3 form a two-user horizontal pentagon region
- Similar statements for b_{1} vertical-plane pentagon and b_{3} facial-plane pentagon
- Rose plane normal to $\mathbf{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{*}$ is dimension-share of rose vertices; it has constant maximum rate sum (for this $p_{x y}$)
- Could be as many as 3 codes/components for each user on a time-share of vertices
- The blue and green planes may also dimension-share vertices
- $\mathcal{A}\left(\boldsymbol{b}, p_{x}\right)$ is the entire interior plus faces and vertices. Any point outside violates at least one single-user mutual-information bound.

MAC Capacity Region

- More formally, the MAC's achievable region is bounded by hyperplanar regions

$$
\mathcal{A}\left(\boldsymbol{b}, p_{x}\right)=\bigcap_{\boldsymbol{u} \subseteq \boldsymbol{U}}\left\{\boldsymbol{b} \mid 0 \leq \sum_{i \in\{\boldsymbol{u}\}} b_{i} \leq I\left(\boldsymbol{x}_{i} ; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{u} \backslash i}\right)\right\}
$$

- The vertices are where hyperplanes intersect at a point
- So lines (smaller dimensional hyperplanes) also bound ...
- Convex hull over all multi-user input probability distributions $p_{\boldsymbol{x}}$

$$
\mathcal{C}_{M A C}(\boldsymbol{b})=\bigcup_{\boldsymbol{u} \subseteq p_{x}}^{\operatorname{conv}} \mathcal{A}\left(\boldsymbol{b}, p_{x}\right)
$$

Scalar Gaussian MAC

PS4.3-2.25 Time-Division Multiplexing region
Section 2.7.2

General Gaussian MAC

More generally, variable-dim inputs

$$
\mathfrak{I}_{x}=\sum_{u=1}^{U} L_{x, u} \sim U \cdot L_{x}
$$

- Inputs are independent
- $R_{x x}$ is block diagonal
- Only 1 output and 1 noise
- One Receiver will estimate all inputs
- Can do so in any order
- "Given an input" $\boldsymbol{x}_{\boldsymbol{u}}$ means cancel it from \boldsymbol{y}
- This does not necessary mean subtract $H_{u} \cdot \boldsymbol{x}_{u}$ from \boldsymbol{y}
- Unless $L_{y}=L_{x, u}=1$; or H_{u} is diagonal and noise is white
\mathcal{p}_{H} is the matrix H's rank number of linearly independent rows (or columns)
= \# of non-zero singular values

Example

$$
\begin{aligned}
& \overline{\mathcal{E}}_{x_{2}}=1 \quad x_{2} \quad \mathcal{I}\left(x_{1} ; y\right)=\frac{1}{2} \log _{2}\left(1+\frac{.36 \cdot 1}{.0001+.64}\right)=.32 \text { bits } / \text { dimension } \\
& \mathcal{I}\left(x_{2} ; y\right)=\frac{1}{2} \log _{2}\left(1+\frac{.64 \cdot 1}{.0001+.36}\right)=.74 \text { bits/dimension } \\
& \text { total }=1.06 \mathrm{bits} / \text { dimension }
\end{aligned}
$$

$\mathcal{I}\left(x_{2} ; y / x_{1}\right)=\frac{1}{2} \log _{2}\left(1+\mathrm{SNR}_{2}\right)=\frac{1}{2} \log _{2}\left(1+\frac{.64 \cdot 1}{.0001}\right)=6.32 \mathrm{bits} /$ dimensior
$\mathcal{I}\left(x_{1} ; y / x_{2}\right)=\frac{1}{2} \log _{2}\left(1+\mathrm{SNR}_{1}\right)=\frac{1}{2} \log _{2}\left(1+\frac{.36 \cdot 1}{.0001}\right)=5.90$ bits $/$ dimension

- Point C is $1 / 4$ share B and $3 / 4$ share A

Successive decoding for scalar example

Successive decoder (order favors user 2)

- Only 2 orders possible for 2 users
- U! in general (corresponding to each possible order)
- The last user is "favored" in decoding (first accepts other as noise)

2 - User Scalar $L_{x}=L_{y}=1$

General formula
Scalar MAC

$$
\bar{I}\left(x_{\boldsymbol{u}} ; y / \boldsymbol{x}_{\boldsymbol{U} \backslash \boldsymbol{u}}\right)=\frac{1}{2} \log _{2}\left(1+\frac{\sum_{i \in \boldsymbol{u}} \overline{\mathcal{E}}_{i} \cdot\left|H_{i}\right|^{2}}{\sigma^{2}}\right)
$$

2 users

$$
\begin{aligned}
\mathrm{SNR}_{1} & =\frac{\mathcal{E}_{1} \cdot\left|h_{1}\right|^{2}}{\sigma^{2}} & \bar{b}_{1} & \leq \frac{1}{2} \log _{2}\left(1+\mathrm{SNR}_{1}\right) \\
\mathrm{SNR}_{2} & =\frac{\mathcal{E}_{2} \cdot\left|h_{2}\right|^{2}}{\sigma^{2}} & \bar{b}_{2} & \leq \frac{1}{2} \log _{2}\left(1+\mathrm{SNR}_{2}\right) \\
\mathrm{SNR} & =\frac{\mathcal{E}_{1} \cdot\left|h_{1}\right|^{2}+\mathcal{E}_{2} \cdot\left|h_{2}\right|^{2}}{\sigma^{2}} & \bar{b}_{1}+\bar{b}_{2} & \leq \frac{1}{2} \log _{2}(1+\mathrm{SNR})
\end{aligned}
$$

Energy-Sum MAC

- Single energy constraint $\varepsilon_{1}+\varepsilon_{2} \leq \varepsilon_{x}$ (instead of 2 constraints)
- Capacity region becomes union of pentagons (and 1 triangle),
- one for each combination of energies that add to total.

- Or view Energy-Capacity Region
- one for each bit vector \boldsymbol{b}

Time-Sharing Conundrum

- What is meaning of time-sharing? ("convex hull")
- The different codes correspond to user components, each used for its respective fraction of "time" (dimensions).
- With time-sharing, what does \mathcal{E}_{u} mean?
- Energy constant at \mathcal{E}_{u} : Is this then for every symbol/subsymbol in the sharing?
- Or the average over the "time-shared" subsymbols?
- The second instance of averaging often enlarges the capacity region
- So "time-sharing" is somewhat ill-defined
- Despite most info/com texts on MAC using it
- Lecture 4's Separation Theorem actually allows different mutual information I_{A} and I_{B} to be represented by their average information - for the same user
- $I=\alpha \cdot I_{A}+(1-\alpha) \cdot I_{B}$
- ST uses same constellation with average \boldsymbol{b} for each symbol, possible very large $|C|$).
- If the shared same-user codes correspond to vertices with different orders, this creates issues for Separation Thm application.
- But it is still possible, although the successive decoding needs to become "iterative-user" successive decoding.
- Of course each user can use subusers; each user has subcode for A and for B, but constellation varies.

Primary-user component: has nonzero energy for E-sum MAC's maximum rate.

Secondary-user component: has zero energy for E-sum MAC's maximum rate.

- Primary components dominate with largest pass-space gains (dimensions used for component).
- Secondary users "free load" on these primary-component dimensions.

Previous example (. 8 and .6):
The pass-space is just one dimension ($L_{y}=1$).
user 2 is all primary (.8) ; user 1 is all secondary (.6). max sum is 6.82 (all energy on user 2).

Rate-sum decreases if secondary user components energize (see slide 15).

How Many Primary Components (E-sum MAC)?

- The MAC has no more than $U^{o} \leq p_{H}$ primary components, to find them first do U SVD's:

$$
\widetilde{H}_{u}=R_{n o i s e}^{-1 / 2}(u) \cdot H_{u}=F_{u} \cdot \Lambda_{u} \cdot M_{u}^{*} \text { with }\left|\widetilde{H}_{u}\right| \triangleq \prod_{l=1}^{p_{H}} \lambda_{u, l}>0 .
$$

- Each user can excite up to $\mathcal{p}_{H_{u}}$ possible independent dimensions per subsymbol
- The $R_{\text {noise }}(u)$ includes all other user components' crosstalk for whatever energies they use (knows all $R_{x x}(u$)'s).
- Each user can have vector-coding modulator without loss, or some linear combination of the pass-space dimensions.
- For the channel gains in the VC,

$$
g_{u}=\left|\widetilde{H}_{u}\right|^{2}=\prod_{l=1}^{p_{H}} \lambda_{u, l}
$$

- The primary-user components correspond to those energized in achieving max rate sum on the E-sum MAC. All others are secondary-user components.
- The "components" idea is helpful when individual users' transmitters have >1 dimension (MIMO), via - time-sharing, DMT, and/or multiple antennas

Conundrum: double-sampling-rate Example

[80 60] channel again at twice sampling rate

- The vector \boldsymbol{b} is now in the interior of the region, although is it the same channel?
- The time-sharing needs to occur at the same sampling rate, meaning the symbol period increases, for the original $\mathcal{C}(b)$ to remain correct

Vector Gaussian MAC

Section 2.7.2.2

MAC ~ single channel with white input

Gaussian Code

Gaussian Noise $R_{n n}$
$\mathfrak{L}_{x}=\sum_{u=1}^{U} L_{x, u}$

Gaussian Code

Gaussian Code

$$
R_{v v}=I
$$

\boldsymbol{v} Shape to \boldsymbol{x} $R_{x x}$ remains the same

$$
\mathcal{p}_{H_{u}} \leq \mathcal{P}_{H}
$$

whitens noise $R_{\boldsymbol{n}^{\prime} \boldsymbol{n}^{\prime}}=I$

- Normalizes (redefines, not $R_{n o i s e}(u)$ here) individual user MAC channels to $\widetilde{H}_{u} \triangleq R_{n n}^{-1 / 2} \cdot H_{u} \cdot R_{x x}^{1 / 2}(u)$
- Normalized MAC is now $\boldsymbol{y}^{\prime}=\widetilde{H} \cdot \boldsymbol{v}+\boldsymbol{n}^{\prime}$ where
- New input(s) is (are) "white", $R_{v v}=I$.
- New noise is "white" , $R_{n^{\prime} \boldsymbol{n}^{\prime}}=I$
- Drop the primes going forward $\boldsymbol{y}=\widetilde{H} \cdot \boldsymbol{v}+\boldsymbol{n} \rightarrow \widetilde{H}^{\prime}$ s dimensions carry the information (secondary may freeload)

Cholesky Factorization

- Related to MMSE linear-prediction (see Appendix D)
- Positive definite Hermitian symmetric $R=G^{*} \cdot S \cdot G$
- G is upper triangular monic (1's on diagonal)
- S is positive real diagonal matrix (even if R is complex)
- Matlab command is "chol" for lower \times upper (lower is upper*) - produces upper
- The matlab default command produces also upper, but is lower x upper (which is not the one above)
- Gtemp=chol (R)
- $\mathrm{G}=\operatorname{inv}(\operatorname{diag}(\operatorname{diag}(\text { Gtemp })))^{*}$ Gtemp
- $\quad \mathrm{S}=\operatorname{diag}(\operatorname{diag}($ Gtemp)) *diag(diag(Gtemp))
- The following will use this factorization
- Forward Canonical Channel
- Output of matched-filter matrix

$$
\boldsymbol{y}^{\prime}=\underbrace{\widetilde{H}^{*} \cdot \tilde{H}}_{R_{f}} \cdot \boldsymbol{\nu}+\underbrace{\widetilde{H}^{*} \cdot \boldsymbol{n}}_{\boldsymbol{n}^{\prime}}
$$

- MMSE Estimator for backward channel

$$
R_{\boldsymbol{\nu} \boldsymbol{y}^{\prime}} \cdot R_{\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime}}^{-1}=R_{f} \cdot\left[R_{f} \cdot R_{f}+R_{f}\right]^{-1}=\left[R_{f}+I\right]^{-1}=R_{b}
$$

- Backward Canonical Channel

$$
\boldsymbol{\nu}=R_{b} \cdot \boldsymbol{y}^{\prime}+\boldsymbol{e}
$$

- Use Cholesky on backward-channel inverse $\quad R_{b}^{-1} \triangleq R_{f}+I=G^{*} \cdot S_{0} \cdot G$

$$
\boldsymbol{y}^{\prime \prime}=S_{0}^{-1} \cdot G^{-*} \boldsymbol{y}^{\prime} \quad \text { (algebra) }
$$

$$
\boldsymbol{y}^{\prime \prime}=G \cdot \boldsymbol{\nu}-\boldsymbol{e}^{\prime} \quad \text { where } \quad R_{\boldsymbol{e}^{\prime} \boldsymbol{e}^{\prime}}=S_{0}^{-1}
$$

Back Substitution

- Not ML/MAP, but successive decoding
- And canonical - achieves capacity reliably, each user
- if decisions are correct
- If $\Gamma>0 \mathrm{~dB}$, then iterative decoding that approx. ML may be needed
- Each of these is MMSE based,

$$
G=\left[\begin{array}{ccccc}
1 & g_{U, U-1} & \ldots & g_{U, 2} & g_{U, 1} \\
0 & 1 & \ldots & g_{U-1,2} & g_{U-1,1} \\
\vdots & \ddots & \ldots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & g_{2,1} \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

- which we know is related to conditional I.
- Much simpler decoder ("GDFE")

$$
\begin{aligned}
& \hat{\boldsymbol{\nu}}_{1}=\operatorname{decision}\left(\boldsymbol{y}_{1}^{\prime \prime}\right) \\
& \hat{\boldsymbol{\nu}}_{2}=\operatorname{decision}\left(\boldsymbol{y}_{2}^{\prime \prime}-g_{2,1} \cdot \hat{\boldsymbol{\nu}}_{1}\right)
\end{aligned}
$$

- SNR (biased) for each decision/dimension is $S_{0, u, l}$.
- But also

$$
\hat{\boldsymbol{\nu}}_{U^{\prime}}=\operatorname{decision}\left(\boldsymbol{y}_{U}^{\prime \prime}-\sum_{i=1}^{U-1} g_{U, i} \cdot \hat{\boldsymbol{\nu}}_{i}\right)
$$

$$
\mathcal{I}(\boldsymbol{x} ; \boldsymbol{y})=\log _{2}(|\underbrace{\widetilde{H}^{*} \widetilde{H}+I}_{R_{b}^{-1}}|)=\log _{2}\left|S_{0}\right|=\log _{2}\left\{\prod_{u=1}^{U,} \prod_{\ell=1}^{L_{x, u}} S N R_{m m s e, u, \ell}\right\} \text { bits / complex symbol } .
$$

Vector MAC Receiver

- Each user/decoder achieves $I\left(\boldsymbol{v}_{u} ; \boldsymbol{y} /\left[\boldsymbol{v}_{u-1}\right.\right.$
$\left.\left.\cdots \quad \boldsymbol{v}_{1}\right]\right)$

Example 1

$$
\begin{aligned}
& \widetilde{H}=\left[\begin{array}{ll}
5 & 2 \\
3 & 1
\end{array}\right] \\
& \text { >> Rf=H'* } \mathrm{H}= \\
& \begin{array}{lr}
34 & 13 \\
13 & 5
\end{array} \\
& \text { >> Rbinv=Rf+eye(2) = } \\
& 35 \quad 13 \\
& 136 \\
& \text { >> Gbar=chol(Rbinv) = } \\
& 5.9161 \quad 2.1974 \\
& 0 \quad 1.0823 \\
& \text { >> S0=diag(diag(Gbar))*diag(diag(Gbar)) = } \\
& 35.0000 \quad 0 \\
& 0 \quad 1.1714 \\
& \gg G=\operatorname{inv}(\operatorname{diag}(\operatorname{diag}(G b a r)))^{*} G b a r= \\
& 1.0000 \quad 0.3714 \\
& 01.0000 \\
& \text { >\gg> b=0.5* } \log 2(\operatorname{diag}(\mathrm{SO}))= \\
& 2.5646 \\
& 0.1141 \\
& \text { >> sum }(b)=2.6788
\end{aligned}
$$

```
REVERSE ORDER - same commands -other vertex
>> H=[ 2 5
    1 3];
Rbinv=
    6 13
    13 35
Gbar =
2.4495 5.3072
    0.6141
S0 =
    6.0000 0
        0.8333
G =
1.0000 2.1667
    0}1.000
b=
1.2925
1.3863
sum(b)=2.6788
```

- These are the two vertices for time-share

Example 1 continued

- Receiver filters and bias
- Not really triangular, why?

```
Vertex 1
>> W=inv(SO)*inv(G') =
    0.0286 0
    -0.3171 0.8537
>> Wunb=S0*inv(S0-eye(2))*W =
    0.0294 0
    -2.1667 5.8333
>> MSWMFu=Wunb*H' =
    0.1471 0.0882
    0.8333-0.6667
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-
eye(2)) =
    1.0000 0.3824
        0 1.0000
>> MSWMFu*H =
    1.0000 0.3824
    2.1667 1.0000
```

Vertex 2
\gg W=inv(SO)*inv(G') =
$0.1667 \quad 0$
-0.3171 0.1463
>> Wunb=S0*inv(S0-eye(2))*W =
$0.2000 \quad 0$
-0.3714 0.1714
>> MSWMFu=Wunb*H' =
0.40000 .2000
0.11430 .1429
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) =
1.00002 .6000
$0 \quad 1.0000$
>> MSWMFu*H=
1.00002 .6000
0.37141 .0000

Easier with mu_mac.m

```
function [b, GU, WU, S0, MSWMFU] = mu_mac(H, A, Lxu, cb)
%
[~ , U] = size(Lxu);
b=zeros (1,U);
    channel Rxx1/2 1 cplx 2 real
% Computing Ht: Ht = H*A
Ht = H*A;
%--------------------------------------------------------------------------------------
---
% Computing Rf, Rbinv, Gbar
Rf = Ht' * Ht;
Rbinv = Rf + eye(size(Rf));
Gbar = chol(Rbinv);
% Computing the matrices of interest
G = inv(diag(diag(Gbar)))*Gbar;
S0 = diag(diag(Gbar))*diag(diag(Gbar));
W = inv(S0)*inv(G');
GU = eye(size(G)) + S0*pinv(S0-eye(size(G)))*(G-eye(size(G)));
WU = pinv(S0-eye(size(G)))*inv(G');
MSWMFU = WU*Ht';
index=0;
for u=1:U
    for l=1:Lxu(u)
    b(u) = b(u) + (1/cb)*log2(S0(index+l,index+l));
    end
    index=index+Lxu(u);
end
```

```
H=[5 2; 3 1];
[b,GU,WU, SO, MSWMFU] = mu_mac(H, eye(2), [1 1] , 2);
b= 2.5646 0.1141
GU=
    1.0000 0.3824
        0 1.0000
WU=
    0.0294 0
    -2.1667 5.8333
S0 =
    35.0000 0
        0 1.1714
MSWMFU =
    0.1471 0.0882
    0.8333-0.6667
>> MSWMFU*H =
    1.0000 0.3824
    2.1667 1.0000
>> SNR = 10* log10(diag(S0)) =
    15.4407
    0.6872
>> sum(b) = 2.6788
```


Example 2: 2 x 3 MAC (secondary users)

```
H=[521
311]; basically added a 3rd user
[b, GU, WU, SO, MSWMFU] = mu_mac(H, eye(3), [1 11] , 2)
```

```
b=2.5646 0.1141 0.1137
```

b=2.5646 0.1141 0.1137
GU= 1.0000 0.3824 0.2353
GU= 1.0000 0.3824 0.2353
0}1.00000.166
0}1.00000.166
0 0 1.0000
0 0 1.0000
WU=
WU=
0.0294 0 0
0.0294 0 0
-2.1667 5.8333 0
-2.1667 5.8333 0
-1.2857 -0.1429 5.8571
-1.2857 -0.1429 5.8571
S0=
S0=
35.0000 0 0
35.0000 0 0
0 1.1714 0
0 1.1714 0
0 0 1.1707
0 0 1.1707
MSWMFU =
MSWMFU =
0.1471 0.0882
0.1471 0.0882
0.8333-0.6667
0.8333-0.6667
-0.8571 1.8571
-0.8571 1.8571
>>sum(b) = 2.7925
>>sum(b) = 2.7925
>>MSWMFU*H=
>>MSWMFU*H=
1.0000 0.3824 0.2353
1.0000 0.3824 0.2353
2.1667 1.0000 0.1667
2.1667 1.0000 0.1667
1.2857 0.1429 1.0000
1.2857 0.1429 1.0000
>> SNR10* *og10(diag(SO))=
>> SNR10* *og10(diag(SO))=
15.4407
15.4407
0.6872
0.6872
0.6846

```
    0.6846
```

- The channel rank is 2 so at least 1 secondary comp $=3-2$
- But secondary applies to energy-sum MAC (which this is not, yet)
- Original 2 units of energy spread over 3 users?

```
>> [b, GU, WU, S0, MSWMFU] = mu_mac(H, (2/3)*eye(3), [1 1 1 1] , 2)
b= 2.0050}00.1009 0.0696
GU =
    1.0000}00.3824 0.235
        0}1.0000\quad0.387
0 1.0000
WU =
0.0662 0 0
-2.3878 6.6582 0
-2.0000 -0.5000 9.8750
S0 =
16.1111 0
0 1.1013
MSWMFU =
0.2206 0.1324
0.9184-0.3367
-0.7500 2.2500
>> sum(b) = 2.1755 (lower than 2x2 value of 2.6788)
```

- Relatively more energy on secondary-user comp(s), bsum \downarrow

Non-Zero Gap Achievable Region

- Construct $\mathcal{C}(\boldsymbol{b})$ with $\Gamma=0 \mathrm{~dB}$
- Reduce all rates by γ_{b} relative to boundary points
- Inscribes smaller region $\mathcal{C}(\boldsymbol{b})-\left(\gamma_{b} \odot 1\right)$
- Square constellations instead of spheres (AWGN) loss 1.53 dB in gap above (0.25 bit/dimension)

Capacity Region for frequency-indexed channels

Sections 2.7.4.1-2

$\mathcal{C}(b)$ is Union of $S_{x}(f)$-indexed Pentagons

- Each pentagon corresponds to an $S_{x}(f)$ choice.
- The pentagons become triangles for the sum-energy MAC.

$$
\bar{b}=\sum_{u=1}^{U} \bar{b}_{u} \leq \overline{\mathcal{I}}(\boldsymbol{x} ; \boldsymbol{y})=\int_{-\infty}^{\infty} \frac{1}{2} \cdot \log _{2}\left[1+\frac{\sum_{u=1}^{U} S_{x, u}(f) \cdot\left|H_{u}(f)\right|^{2}}{S_{n}(f)}\right] d f
$$

both 45° lines
$\max _{S_{x}(f)}^{\operatorname{maximum}}$ rate - sum point $\mathcal{C}_{1}<\mathcal{C}_{2}$

$$
S_{x, u}(f)+\frac{\sigma^{2}+\sum_{i \neq u} S_{x, i}(f)+\left|H_{i}(f)\right|^{2}}{\left|H_{u}(f)\right|^{2}}=K_{u}
$$

Simultaneous water-filling
\rightarrow Maximum rate sum

- The union (convex hull is union when inputs are Gaussian) can dimension-share in frequency as $N \rightarrow \infty$.

- The users have continuous-time/frequency channels \rightarrow use MT on each, theoretically
- This really means dimensionality is infinite (or very large) so "dimension-sharing" may be inherent
- SWF applies, but with some interpretation (like power instead of energy, etc and power per dimension instead of power-spectral density, etc.)

Decoders and SWF

a). both flat

b). $F D M$

c). mixed

- FDM is clearly simplest decoder for max rate sum case

Symmetric 2-user channel and SWF

- Symmetric means $H_{1}(f)=H_{2}(f)$ (noise is one-dimensional and added to sum)
- Each of points A, B, and C have different SWF spectra - all have same (max) rate sum

End Lecture 8

