

Lecture 6 Spatial Modulation & Wireless Examples April 19, 2023

JOHN M. CIOFFI

Hitachi Professor Emeritus of Engineering

Instructor EE392AA – Spring 2023

Announcements & Agenda

- Announcements
 - Problem Set #3 is due Wed April 26 at 17:00
 - Readings 4.4, 4.6, 4.7
 - Midterm is 2 weeks from today, in class May 3 (open book, notes, laptop, internet)
 - PS1 Solutions at web site (link to canvas) PS2 when we get all turned in.
 - Chap4r0 is at canvas no changes since class start. Current Chapter 4 (web site) has edits in Section 4.4 loading example and in Section 4.6 (some mislabeled figure text)

Agenda

- Spatial Modulation
- Wireless Examples
 - Wi-Fi
 - Digital Video Broadcast
 - Cellular

Spatial Modulation "Space-Time Block Codes (STBC)"

Spatial Vector Coding is Optimal

- The symbols have crosstalk or inter-spatial-dimension interference
- However, symbols otherwise have no intersymbol interference, $\nu = 0$ (or ISI is separately handled)
 - With DMT/OFDM on all crosstalking channels
- Spatial Vector-Code channel partitioning remains for each tone n

April 19, 2023

L6: 4

Spatial Modulator (Matrix)

- Best matrix modulator is *M* for any energy distribution
- For this choice of M, it follows easily that the unbiased MMSE receiver matrix is F^*
- In practice, it may be difficult for the transmitter to know *M*, since only the receiver can measure it.
 - Need reverse control channel
 - May change by the time it is reversed communicated
- This leads to a variety of spatial approximations, among them Space-Time Block Codes (STBC)

Alamouti's Code (1998)

(8 real dimensions) some symbol values repeated no repeats

Stanford University

- The trivial 1 x 2 "repeat" channel is the ONLY channel for which Alamouti's code is Vector Coding
 - It obviously does better by 3 dB than a single channel use $2 \cdot [h]^2$ instead of $[h]^2$
- Basically, two line-of-sight paths to the same single-antenna receiver that must have the same gain

Section 4.6.2.1

L6:6

2x2 H ?? Some matrix basics

• Symmetric matrices
$$J_2 \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 $J_1 \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $R \triangleq \begin{bmatrix} a & c \\ c & b \end{bmatrix}$

• Identity
$$J_2 \cdot R \cdot J_2 + J_1 \cdot R \cdot J_1 = \begin{bmatrix} a+b & 0 \\ 0 & a+b \end{bmatrix}$$

• Fixed modulator
$$\underbrace{\boldsymbol{x}}_{4\times 1} = \underbrace{\begin{bmatrix} J_2 \\ J_1 \end{bmatrix}}_{4\times 2} \cdot \underbrace{\begin{bmatrix} v_2 \\ v_1 \end{bmatrix}}_{\boldsymbol{v}, 2\times 1} \quad \boldsymbol{y} = \underbrace{\begin{bmatrix} H & 0 \\ 0 & H \end{bmatrix}}_{\boldsymbol{H}} \cdot \boldsymbol{x} + \boldsymbol{n} = \begin{bmatrix} H \cdot J_2 \\ H \cdot J_1 \end{bmatrix} \cdot \boldsymbol{v} + \boldsymbol{n}$$

- Forward channel autocorrelation is the block diagonal
- $\boldsymbol{R}_f = \boldsymbol{H}^* \cdot \boldsymbol{H} = \begin{bmatrix} R_f & 0\\ 0 & R_f \end{bmatrix}$ Each 2×2 sub-block diagonal is $R_f = J_2^* \cdot H^* \cdot H \cdot J_2 + J_1 \cdot H^* \cdot H \cdot J_1$

=

$$\begin{bmatrix} H_{22}^2 + H_{21}^2 + H_{12}^2 + H_{11}^2 & 0\\ 0 & H_{22}^2 + H_{21}^2 + H_{12}^2 + H_{11}^2 \end{bmatrix}$$

SUBOPTIMAL Alamouti's Code Use, 2 x 2 channel

4 complex input dimensions (8 real dimensions) some symbol values repeated

- The transmitter remains channel independent, and the receiver remains simple matched matrix
 - The SNR is higher, BUT the data rate is halved. Vector coding is better.

Section 4.6.2.1

S1C: 8

STBC Codebooks

- Variety of different sizes, but rate loss $\gamma_{repeat} \geq \frac{1}{2}$ (with more than one receive antenna)
- They perform a lot worse than vector-coding in practice

Example:
$$\bar{\mathcal{E}}_{\chi} = 1$$
; $\sigma^2 = 1$
>> H
H =
1.0000 0.9000
0.8000 1.0000
>> [F,L,M]=svd(H)
F =
-0.7245 -0.6892
-0.6892 0.7245
L =
1.8512 0
0 0.1512
M =
-0.6892 -0.7245
-0.7245 0.6892
bvc=log2(det(L^2+eye(2))) = 2.1790
bstbc=log2(sqrt(norm(H, 'fro')^2+1)) = 1.0769
10*log10((2^bvc-1)/(2^bstbc - 1)) = 5.0245 dB

At higher data rates, the VC advantage grows; Wireless Raleigh fading $\langle P_e \rangle \propto (SNR)^{d_{free}}$ But still large VC advantage

Sqrt same as ½ in front, must double data rate

Section 4.6.2.1

April 19, 2023

PS3.3 (4.22)

S1C: 9

Wireless field use has STBC as "option"

- STBC will essentially repeat symbols, so if the channel is very poor and the codes (nonideal) are fixed, then it can increase SNR and create a reliable link at significant data-rate loss
- This may be acceptable if no connection is otherwise reliably possible
- For ideal outer codes ($\Gamma = 0$ dB), there is no such repeat-energy advantage theoretically
- Most wireless systems (Cellular and Wi-Fi) allow use of STBC as an option, but also permit use of vector-coding approximations to avoid the STBC losses.

Cellular: Type 1 Precoders

 $Q_{L_{x,1} \cdot O_1} \otimes Q_{L_{x,2} \cdot O_2}$ = precoder factor is cartesian product of horizontal and vertical DFTs $Q_{L_{x,i} \cdot O_i}$ is a DFT of size in subscript

• The precoder matrix A stacks the columns of $Q_{L_{x,1}} \otimes Q_{L_{x,2}} \otimes Q_{L_{x,2}}$ so each is $L_x \ge 1$

• These columns can be multiplied by 1, j, -1, -j for different streams to form an L_x x ss matrix Section 4.6.2.1 April 19, 2023 S1C: 11 Stanford University

Cellular: Type 2 Precoders

- Use the columns of Type 1, call them w_{l,ss} and weight them (not necessarily unity gain)
- Weights $a_{l,ss}$ can have amplitudes $2^{-i/2}$ for $i \in \{0, ..., 6\}$ and phases $\frac{2\pi}{i} j \in \{0, ..., L_{\chi} 1\}$

$$W_{ss} = \sum_{\ell=1}^{L_x} oldsymbol{w}_{\ell,ss} \cdot a_{\ell,ss}$$
 ,

- Receiver will also send back indices i and j along with indices for the Type 1 $w_{l,ss}$
- Factors a_{l,ss} are often split into wideband slower-varying factor and narrow band (frequencydependent) faster-varying factor.

Wi-Fi Spatial Modulators

- Much simplier than cellular
 - Allows Alamouti on 2x2 antenna mix channels ٠
 - And will repeat them for several 2x2 groupings •
- Specifies a series of 2x2 rotations (complex, 2 angles) and the spatial antenna indices to which they apply to attempt to approximate M (or exactly realize it if there are enough sent).

Wireless Use-Case Examples Section 4.7

Wi-Fi Channel Variability/Range

- W-Fi Channels are 20 MHz wide (T' = 50 ns)
- Example Channel: 1 extra path with delay = 200 ns = 60 m @ speed of light
- Sometimes higher gain, but
- Roughly ¼ ⅓ of tones' gains are below the previous single path threshold (red line)
- Code roughly needs at least ¼ parity
 - To recover ¼ lost information
- Thus ¾, ⅔, and ½ code rates of interest

April 19, 2023

L6: 15

Wi-Fi's 20-320 MHz Channels

Base Wi-Fi OFDM for 20 MHz

- Complex sampling rate
- Number of carriers
- Carrier Spacing
- Cyclic Extension, Symbol Period T = (N+v)T'
- Bits/tone

Section 4.7.4.3

- Used Carriers = 48
 - Tone 32 at edge is not used, nor are -27...-31, 27 ... 31
 - Pilots are at -21, -7, 7, 21 and 0 is not user data

802.11a, g Table

	"М"				
R (Mbps)	constellation	code rate	b_n	\overline{b}_n	b
6	BPSK	1/2	1/2	1/4	24
9	BPSK	3/4	3/4	3/8	3 6
12	4QAM	1/2	1	1/2	48
18	4QAM	3/4	3/2	3/4	72
24	$16 \mathrm{QAM}$	1/2	2	1	<mark>96</mark>
36	$16 \mathrm{QAM}$	3/4	3/2	3/4	144
48	64QAM	1/2	3	$\overline{3/2}$	192
54	$64 \mathrm{QAM}$	3/4	9/2	9/4	216

Statistical loaded On a single SNR_{ofdm}

 $R = \log_2(M) \cdot (\text{code rate}) \cdot (48 \text{ tones}) \cdot 250 \text{ kHz} = [0.5, 1, 2, \text{ or } 3] \cdot (12 \text{ or } 18) \text{ Mbps.}$

- Equal energy on all used tones: Power is 16 dBm, 20 dBm, or 29 dBm
- Receiver (effectively) chooses 1 of these 8 loadings or "profiles" by reverse-channel indications to transmitter

Section 4.7.4.3 April 19, 2023

ß

L6: 18

Example Computations & Codes

- 48 tones x 4 bits/tone (16QAM) x ¾ (code rate) x 250 kHz = 36 Mbps
- 48 tones x 6 bits/tone (64 QAM) x ½ (code rate) x 250 kHZ = 48 Mbps
- RSSI (received-signal-strength indication) is returned by rcvr to xmit via control/reverse channel
 - RSSI essentially is an SNR_{geo} that determines one of the 8 modulation parameter sets
 - This is a form of loading with all tones are equally excited $b_n = b_{ave}$ and $\mathcal{E}_n = \mathcal{E}_{ave}$.
- Codes are convolutional
 - 64-state rate-1/2 code (organized 6 of 12)
 - Punctured (2/3 delete 4 bits from 12)
 - Punctured (3/4 delete 3 bits from 12)

Gap formula is for stationary channel, so coding gains with fading may have less performance impact

Code rate	Free distance	(gross) coding gain 10 log (d _{free})
1/2	10	10 dB
2/3	6	7.7 dB
3⁄4	5	7 dB

Section 4.7.4.3

L6: 19

802.11 n, ac , ax

code rate

constellation

- n,ac,ax allow a shorter cyclic extension & up to 256 QAM.
- N, ac, ax allow 1/T' = 40 MHz (N=128). The number of datacarrying tones is 108.
 - So 20 are used for pilots, or silenced at edges.

40 loading choices

For 20 MHz,

• Carriers -28,-27,27 and 28 are used, so data rates increase by 52/48 = 13/12 x (12 or 18) Mbps – so thus 13 or 19.5 Mbps

 $R = \log_2{(M)} \cdot (\text{code rate}) \cdot (48 \text{ tones}) \cdot 250 \text{ kHz} = [0.5, 1, 2, \text{ or } 3] \cdot (13 \text{ or } 19.5) \text{ Mbps.}$

For 40 MHz:

 $R = \log_2(M) \cdot (\text{code rate}) \cdot (108 \text{ tones}) \cdot 250 \text{ kHz} = [0.5, 1, 2, \text{ or } 3] \cdot (27 \text{ or } 40.5) \text{ Mbps}$

Or 10/9 x these numbers for v=8

		-/		-/	
		$\nu = 16$	$\nu = 8$	$\nu = 16$	$\nu = 8$
		Mbps	Mbps	Mbps	Mbps
BPSK	1/2	6.5	7.2	13.5	15
4QAM	1/2	13	14.4	27	30
$4 \mathrm{QAM}$	3/4	19.5	21.7	40.5	45
16QAM	1/2	26	28.9	54	60
$16 \mathrm{QAM}$	3/4	39	43.3	81	90
64QAM	2/3	52	57.8	108	120
$64 \mathrm{QAM}$	3/4	58.5	65	121.5	135
64QAM	5/6	65	72.2	135	150
$256 \mathrm{QAM}$	3/4	78	86.6	162	180
$256 \mathrm{QAM}$	5/6	86.7	96.3	180	200
				*	

1/T' = 20 1/T' = 20 MHz 1/T' = 40

802.11n Table with 4 x 4 MIMO

constellation	code rate	1/T' = 20	1/T' = 20 MHz	1/T' = 40	1/T' = 40 MHz		
		$\nu = 16$	u = 8	$\nu = 16$	$\nu = 8$		40 MHz
		Mbps	Mbps	Mbps	Mbps		2 adjacent
BPSK	1/2	6.5	7.2	13.5	15		Channels
4QAM	1/2	13	14.4	27	30		Channets
4QAM	3/4	19.5	21.7	40.5	45		as one
16QAM	1/2	26	28.9	54	60		
16QAM	3/4	39	43.3	81	90		
64QAM	2/3	52	57.8	108	120		•
64QAM	3/4	58.5	65	121.5	135		Makes collisions
64QAM	5/6	65	72.2	135	150		I WICE as likely,
256QAM	3/4		86,6		180	F	Reducing # of channels
256QAM	5/6	NLISEOR 8	UZ.II.a.g. gx (VVI-	180	200		by 2

- 802.11n allows 4 x 4 Vector OFDM, so data rates in any column can be multiplied by 4
 - Which means 600 Mbps on the 64 QAM (would be 800 Mbps if 256 QAM were used) ٠
- While there is SVD on each tone, all 802.11n spatial dimensions use the same coding line chosen above Stanford University

L6:21

Wi-Fi 6 = 802.11ax – up to 4 channels bonded

Modulation and coding schemes for single spatial stream

		lation Coding		Data rate (in Mb/s) ^[b]									
MCS	Modulation		20 MHz channels		40 MHz channels		80 MHz channels		160 MHz channels				
macx	type	Tuto	1600 ns GI ^[c]	800 ns Gl	1600 ns GI	800 ns Gl	1600 ns Gl	800 ns Gl	1600 ns Gl	800 ns GI			
0	BPSK	1/2	4(?)	4(?)	8(?)	9(?)	17(?)	18(?)	34(?)	36(?)			
1	QPSK	1/2	16	17	33	34	68	72	136	144			
2	QPSK	3/4	24	26	49	52	102	108	204	216			
3	16-QAM	1/2	33	34	65	69	136	144	272	282			
4	16-QAM	3/4	49	52	98	103	204	216	408	432			
5	64-QAM	2/3	65	69	130	138	272	288	544	576			
6	64-QAM	3/4	73	77	146	155	306	324	613	649			
7	64-QAM	5/6	81	86	163	172	340	360	681	721			
8	256-QAM	3/4	98	103	195	207	408	432	817	865			
9	256-QAM	5/6	108	115	217	229	453	480	907	961			
10	1024-QAM	3/4	122	129	244	258	510	540	1021	1081			
11	1024-QAM	5/6	135	143	271	287	567	600	1134	1201			

160 MHz

Back to only 3 non-overlapping channels, So Wi-Fi 6E (expands 5-7 GHz)

- 4 channels use N=256 with 234 carrying user data
- 8 channels use N=512 with 484 carrying user data
- Up to 8x8 MIMO on 11ax → 10 Gbits (almost)

Wi-Gig is Wi-Fi, 802.11ad ~ 60 GHz

Carrier frequencies (Six 2.16 GHz channels)

Channel	Center (GHz)	Min. (GHz)	Max. (GHz)	BW (GHz)
1	58.32	57.24	59.4	
2	60.48	59.4	61.56	
3	62.64	61.56	63.72	0.16
4	64.8	63.72	65.88	2.10
5	66.96	65.88	68.04	
6	69.12	68.04	70.2	

Parameters:

$$\frac{1}{T'} = 2.64 \text{ GHz} \qquad \Delta f = \frac{2640}{512} = 5.15625 \text{ MHz}$$

 $N = 512 \text{ with } 336 \text{ used}$
 $v = 128$
 $\frac{1}{T} = \left(\frac{N}{N+v}\right) \cdot \Delta f = 4.125 \text{ MHz}$

OFDM data rates [edit]

MCS index	Modulation type	Coding rate	Phy rate (Mbit/s)	Sensitivity (dBm)	EVM (dB)
13	SODEK	1/2	693	-66	-7
14	SUPSK	5/8	866.25	-64	-9
15		1/2	1386	-63	-10
16	QPSK	5/8	1732.5	-62	-11
17		3/4	2079	-60	-13
18		1/2	2772	-58	-15
19	16 0014	5/8	3465	-56	-17
20	TO-QAIVI	3/4	4158	-54	-19
21		13/16	4504.5	-53	-20
22		5/8	5197.5	-51	-22
23	64-QAM	3/4	6237	-49	-24
24		13/16	6756.75	-47	-26

EVM is same as MSE

Section 4.7.4.3

April 19, 2023

L6: 23

Digital Video Broadcast

Single-Frequency Network (SFN)

se

DVB Standard uses Coded OFDM

Parameters

Carrier frequencies are same as analog TV spacing 6 MHz, 7.61 MHz, 8 MHz

52 MHz = channel 2

sampling
$$T'=10.9375 \text{ ns}$$
 $\frac{1}{T'} \cong 9.14 \text{ MHz}$

symbol size N=2048 or 8192

tone width

carrier(s)

$$\Delta f = 44.64 \text{ kHz} \qquad \text{Or 11.16 kHz}$$
$$v = \left(\frac{1}{2^{i}}\right) \cdot N \quad i = 2, 3, 4, 5$$

prefix (es)

symbol rate

Symbol rates vary ~ 10 kHz

1

LTE Examples 4G & 5G

4G and 5G wireless = LTE (licensed bands)

- Mobile/cellular connectivity also uses OFDM (and vector OFDM).
- 4G uses up to 4 xmit/rcvr antennas.
- 5G allows use of much larger number of antennas (Massive MIMO).
 - Best 32 of 128
- LTE uses 500 μs time "slots" (20 of them in a "frame" of 10 ms)
- Each time slot uses an integer tone-width index *m*=1,2,4,8, 12, and 16 to multply

$\Delta f = 15 \text{ kHz}$

$$\frac{1}{T'} = (1.92 \text{ MHz}) \cdot m$$
 $N = 128 \cdot m$, $m = 1,2,4,8,12,16$

 $m \cdot 960$ samples/slot , m = 1, 2, 4, 8, 12, 16

Short and Long Cyclic Prefixes

Each symbol decomposes into "resource elements" and "resource blocks"

LTE Resource Blocks

0			Sh	ort Prefix Time S	lot		
1	User 1	User 2	User 3	User 4	User 5	User 6	User 7
2							
3							
4						Decource	
5						Resource	
6						ВІОСК	
7							
8							
1							
0							
1							
12							
1			Resource Element				
2							
8							

- Smallest unit that can be assigned to a user vector loading can apply to these blocks (but not to individual tones) 12 tones within a single symbol
- There can be pilots, synch symbols, and other overhead scattered throughout a slot so total number of tones need not be a multiple of 12 Stanford University

ß

L6: 30

Low Bandwidth (small devices) LTE

bwdth	m	1/T'	$N + \nu_s$	N^*	samples	Δf	RBs	b_{min}	L	R_{min}
MHz		MHz	$(1/T_s = 14 \text{ kHz})$	usad	slot	kHz		b_{mid}	1	R_{mid}
			$N + \nu_l $ (*)	tones			Resource	b_{max}	1	R_{max}
			$(1/T_l = 12 \text{ kHz})$				DIOCKS			Mbps *
1.25	1	1.92	128 + 6.17	76	960	15	6	2	1	2.016
			128 + 32		960			4	1	4.032
								6	1	6.048
								6	2	12.096
								6	4	24.192
3	2	3.84	256 + 12.33	181	1920	15	15	2	1	5.04
			256 + 64		1920			4	1	10.08
								6	1	15.12
								6	2	30.24
								6	4	60.48

 Individual users
 12 x 12 =144 kbps for RB=1, lcp

 12 x 14 = 168 kbps for RB=1, scp

Stanford University

Example (6 RBs x 12 tones/RB x 2 bits/tone x 14 KHz = 2.016 Mbps

Code overhead included

- LTE attempts to address low-bandwidth uses where power may be very limited
 - MIMO can reduce power to get same data rate or can also permit more narrow bandwidth use for same rate

L6: 31

Wider Bands need more (licensed) spectra

- Wider bandwidths for higher speeds
 - MIMO helps that also
- LTE-U / LAA
 - 20 MHz option can use a Wi-Fi channel
 - "Look before talk"

bwdth	m	1/T'	$N + \nu_s$	N^*	samples	Δf	RBs	b_{min}		R _{min}
MHz		MHz	$(1/T_s = 14 \text{ kHz})$		slot	kHz		b_{mid}	1	R_{mid}
			$N + \nu_1$ (*)	used				bman	1	Rman
			$(1/T_{1} - 19) k U_{7}$	tones				•max		1 max
			$(1/I_l = 12 \text{ kmz})$							Mbps *
5	4	7.68	512 + 24.67	301	3840	15	25	2	1	8.40
			512 + 128		3840			4	1	16.80
								6	1	25.20
								6	2	50.40
								6	4	100.8
10	8	15.36	1024 + 49.33	601	7680	15	50	2	1	16.80
			$1024 {+} 256$		7680			4	1	33.60
								6	1	50.4
								6	2	100.8
								6	4	200.16
15	12	23.04	1536 + 74	901	11520	15	75	2	1	25.20
			1536 + 384		11520			4	1	50.40
								6	1	75.6
								6	2	151.2
								6	4	302.4
20	16	30.72	2048 + 98.67	1201	15360	15	100	2	1	33.6
			2048 + 384		15360			4	1	67.20
								6	1	100.8
								6	2	201.60
								6	4	403.20

LTE Coding and Loading

- Previous data rates were encoder-output data rates
- A rate 1/3 "turbo code" (8 states in each constituent code, see Chapter 11)
 - Can be punctured from 1/3 up to 95%
- MIMO systems do not return M from SVD on each tone in Vector OFDM (unlike Wi-Fi)
 - Instead one of 16 pre-defined M's is selected during training/adaptation (called a "codebook"
- Loading will select code-puncturing, power level for RB, and the constellation size.

The LTE Turbo Code

IET Engineering Community

The scheme of the Turbo encoder for LTE is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one Turbo code internal interleaver. The theoretical structure of a Turbo encoder is represented in the next figure:

Coding, see Chaps 10 & 11

The tail bits are independently appended at the end of each information bit stream to clean up the memory of all registers, for example, by terminating the encoder trellis to a zero state. Generally, the length of the tail bits is equal to the number of registers in one constituent encoder (3 registers are used in one constituent encoder in LTE). The sequence of tail bits is rearranged and 4 tail bits are attached after each information bit stream. Hence, the length of each bit stream becomes 4+K.

Uplink LTE

- Aggregates RB's into a single carrier (with same cyclic prefix)
 - Presumably saves upstream energy (although not clear that is really true peak/average with filters See 4.10) ٠
- The receiver is what is known as a "Cyclic DFE" (see Chapter 5)
 - This was miss-named "SC-OFDM" (single carrier– OFDM long after cyclic DFE name introduced) •
- Same data rates, FFT sizes, etc just computation executed for minimum number of RB's)

5G New Radio (NR)

- LTE Rev 15: 5G NR adds some capabilities that extend 4G
 - Lower band (FR1): 450 MHz -- 6 GHz (FDD/TDD)
 Millimeter Wave Band: (FR2): 24.25 GHz 52.6 GHz (TDD only)
 - Δf now increased to
 - 15 (same), 30 and 60 kHz in FR1
 - 60 and 120 kHz in FR2
 - Also allows 256 QAM
 - Channel Bandwidths now extend to as much as 400 MHz (depends on band)
 - Number of antennas is unlimited (Massive MIMO), but ...
 - Maximum layers (so significant singular values or used dimensions) remains at 8 for a SINGLE user (4 for Uplink)
 - Maximum number of virtual antenna ports for which "SVD-like" info can be supplied is 32 (4 for Uplink)
- See Tables to Follow and also Lecture 12 (Section 7.3)

3GPP TS38.101-1 Table 5.2-1: NR operating bands in FR1/2

Band N	lame	Uplinl	<		Dov	vnlin	k	Duplex
n	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD
n	2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz	FDD
n	3	1710 MHz	_	1785 MHz	1805 MHz	-	1880 MHz	FDD
n	5	824 MHz	_	849 MHz	869 MHz	-	894MHz	FDD
n	7	2500 MHz	_	2570 MHz	2620 MHz	-	2690 MHz	FDD
n	8	880 MHz	-	915 MHz	925 MHz	-	960 MHz	FDD
n	20	832 MHz	-	862 MHz	791 MHz	-	821 MHz	FDD
n	28	703 MHz	_	748 MHz	758 MHz	-	803 MHz	FDD
n	38	2570 MHz	-	2620 MHz	2570 MHz	-	2620 MHz	TDD
n	41	2496 MHz	_	2690 MHz	2496 MHz	-	2690 MHz	TDD
n	50	1432 MHz	_	1517 MHz	1432 MHz	-	1517 MHz	TDD
n	51	1427 MHz	-	1432 MHz	1427 MHz	-	1432 MHz	TDD
n	66	1710 MHz	_	1780 MHz	2110 MHz	-	2200 MHz	FDD
n	70	1695 MHz	_	1710 MHz	1995 MHz	-	2020 MHz	FDD
n	71	663 MHz	_	698 MHz	617 MHz	-	652 MHz	FDD
n	74	1427 MHz	_	1470 MHz	1475 MHz	-	1518 MHz	FDD
n	75	N/A			1432 MHz	-	1517 MHz	SDL
n	76	N/A			1427 MHz	_	1432 MHz	SDL
n	78	3300 MHz	_	3800 MHz	3300 MHz	-	3800 MHz	TDD
n	77	3300 MHz	_	4200 MHz	3300 MHz	_	4200 MHz	TDD
n	79	4400 MHz	_	5000 MHz	4400 MHz	_	5000 MHz	TDD
n	80	1710 MHz	-	1785 MHz	N/A			SUL
n	81	880 MHz	_	915 MHz	N/A			SUL
n	82	832 MHz	_	862 MHz	N/A			SUL
n	83	703 MHz	_	748 MHz	N/A			SUL
	84	1920 MHz	_	1980 MHz	N/A			SUL

Band Name		Uplink			D	Duplex			
	n257	26500 MHz	_	29500 MHz	26500 MHz	_	29500 MHz	TDD]
	n258	24250 MHz	_	27500 MHz	24250 MHz	_	27500 MHz	TDD]
	n260	37000 MHz	_	40000 MHz	37000 MHz	-	40000 MHz	TDD	

Downlink Powers

	BS class	P _{rated,c,AC}		
	Wide Area BS	(Note)		
	Medium Range BS	< 38 dBm		
	Local Area BS	< 24 dBm		
NOTE:	There is no upper limit for the Prated,c,AC rated output	It power of the Wide Area Base Station.		

Source: 3GPP TS38.104 Table 6.2.1-1: BS type 1-C rated output power limits for BS classes

Uplink Power limit is 23 dBm, except n41, which is 26 dBm

L6: 37

Section 4.7.4.3

3GPP TS38.101-1 Table 5.3.5-1: Channel Bandwidths for Each NR FR1 band

	NR band / SCS / UE Channel bandwidth											
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25 ² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
	15	Yes	Yes	Yes	Yes							
n1	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
	15	Yes	Yes	Yes	Yes							
n2	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
n3	15	Yes	Yes	Yes	Yes	Yes	Yes					
	30		Yes	Yes	Yes	Yes	Yes					
	60		Yes	Yes	Yes	Yes	Yes					
n5	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60											
n7	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
n8	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60											
n20	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60											
n28	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60											
n38	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
n41	15		Yes	Yes	Yes			Yes	Yes			
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes
n50	15	Yes	Yes	Yes	Yes			Yes	Yes			
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	
	60		Yes	Yes	Yes							
n51	15	Yes										
	30											
	60											
n66	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes			Yes				
	60		Yes	Yes	Yes			Yes				

Continued from previous slide

NR band / SCS / UE Channel bandwidth												
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25 ² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
n70	15	Yes	Yes	Yes	Yes	Yes						
	30		Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes						
n71	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60											
n74	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
n75	15	Yes	Yes	Yes	Yes							
	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							
n76	15	Yes										
	30											
	60											
	15		Yes		Yes			Yes	Yes			
n77	30		Yes		Yes			Yes	Yes	Yes	Yes	Yes
	60		Yes		Yes			Yes	Yes	Yes	Yes	Yes
	15		Yes		Yes			Yes	Yes			
n78	30		Yes		Yes			Yes	Yes	Yes	Yes	Yes
	60		Yes		Yes			Yes	Yes	Yes	Yes	Yes
	15							Yes	Yes			
n79	30							Yes	Yes	Yes	Yes	Yes
	60							Yes	Yes	Yes	Yes	Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes					
n80	30		Yes	Yes	Yes	Yes	Yes					
	60		Yes	Yes	Yes	Yes	Yes					
	15	Yes	Yes	Yes	Yes							
n81	30		Yes	Yes	Yes							
	60											
	15	Yes	Yes	Yes	Yes							
n82	30		Yes	Yes	Yes							
	60											
	15	Yes	Yes	Yes	Yes							
n83	30		Yes	Yes	Yes							
	60											
	15	Yes	Yes	Yes	Yes							
n84	30		Yes	Yes	Yes							
	60		Yes	Yes	Yes							

FR2 band: 3GPP TS38.101-2 Table 5.3.5-1: Channel bandwidths

NR band / SCS / UE Channel bandwidth									
NR Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz				
p267	60	Yes	Yes	Yes	Yes				
1257	120	Yes	Yes	Yes	Yes				
n258	60	Yes	Yes	Yes	Yes				
	120	Yes	Yes	Yes	Yes				
n260	60	Yes	Yes	Yes	Yes				
	120	Yes	Yes	Yes	Yes				

• At mmW frequencies of FR2, these wider-bandwidth channels are only a small fraction of total bandwidth in this range.

L6: 40

Resource Blocks

SCS	5MHz	10MHz	15MHz	20 MHz	25 MHz	30 MHz	40 MHz	50MHz	60 MHz	80 MHz	100 MHz
(KHZ)	N _{RB}										
15	25	52	79	106	133	[TBD]	216	270	N/A	N/A	N/A
30	11	24	38	51	65	[TBD]	106	133	162	217	273
60	N/A	11	18	24	31	[TBD]	51	65	79	107	135

SCS (kHz)	50MHz	100MHz	200MHz	400 MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	NA
120	32	66	132	264

$$R = 168 \text{ kHz} \times N_{RB} \times b \times L \times \frac{\Delta f}{15 \text{ kHz}}$$

Example $R = 168 \times 133 \times 4 \times 4 \times 2 = 715.008$ Mbps

• Little more efficient in more RB's allocated at lower frequencies too (than 4G)

L6: 41

End Lecture 6