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Announcements & Agenda

= Announcements
* Problem Set #2 due Wednesday April 19 at 17:00
* Sections 2.3-2.5

= Agenda
* Capacity Examples
e Chain Rule
* Relation to MMSE SNR’s and Decision Feedback (Successive Decoding)

* MAP = MMSE on AWGN with good code
* Separation Theorem
* Coded MultiTone



Capacity Examples

Sections 2.4 - 2.5

See PS2.3 (Prob 2.10)




The AWGN Capacity

= Simple formula says a lot n-~g* (= %) _ 1 Ex
noise C:—'lO 1+_
2 82 02
Py/x =Pn(y — X) ——
> SNR
X y
llnl|2

Often “gain” ||h||? is absorbed into energy, really g = —~s0a “channel gain” C = % log,(1+ g - SNR)

* Note g here is per real dimension, but if complex noise Ny were used, it would be €, = log,(1 + g - SNR)
* Know context and be consistent with numerator/denominator dimensionality

SNR=4.7 dB (3 and g=1), then C = 1 bit/dimension

SNR=20 dB (100 and g=1), then 3.33 bits/dimension —and thus 6.67 bits/complex subsymbol

What SNR gives 7 bits per dimension? 10 - log;,(21*—1) = 14 -3 = 42 dB
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BSC and BEC

= BSChasC=1—-H({p)=1—p-log,p— (1 —p) -log,(1 —p)
* p =1/2 - 0 bits possible (makes sense)
* p = 0 - 1 bit/dimension reliably (makes sense)
- 0<C<1

= BEChasC=1-p 0 I-p @ O
 p=1/2 > 1/2 bits/dim reliable (no errors only erasures)
* p = 0 -> 1 bit/dimension reliably (makes sense)

5 P
e 0<C<«1 » e (for erase)
= BEC is better than BSC (higher capacity) — decoders can use
erasures with N > 1 to improve (reduce) P, 1 @ 1
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Symmetric DMC

= Generally just a discrete probability transition matrix (Appendix A)

= g-ary (example 0,...,255 for a byte = subsymbol)

b

C=b—ps-log, + (1 — ps) - logs, (1 — ps) < b bits.

S

e ps=.01
* C = 7.88 bits/subsymbol

Section 2.4.2 April 14,2023
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Chain Rule

Subsection 2.3.2




Chain Rule

N
Tx6Y) = ) TGy /s~ %D
n=1

= |f the subsymbols are independent, then parallel channels (we know this by now!)

= But suppose not: each term is itself a coding (MMSE-related if Gaussian) problem with SNR, capacity, etc.

Matrix AWGN: GDFE (sometimes also called “successive decoding”)

» Estimate (MMSE) and decode [X,,_1 - X;] first, then simpler single component problem
* So not just linear MMSE, linear MMSE + subtract “earlier” subsymbols’ effect

= |t’s parallel channels, but with a twist to make them independent step by step (“decision-feedback”)

C_J
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CDEF

ISI Unbiased .
Channel >  MMSE-DFE > Z

Xk u,k

equivalent to
€

SNR = SNRpmse—afen = 22TE — 1

xk + > Zu,k

= This one gets highest rate (withI' = 0 dB) also
* | = (C if waterfilling spectrum is at transmitter
* But, this is spectra is hard to do with DFE, so can be several parallel DFES (see Section 3.12)

[3
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Forward and its Backward Canonical Models

[3
Wi ] Section 3.12

’47 Forward channel ;i:

N(D)

Backward canonical channel 4,‘

E(D)

Y(D)

X(D) HDD) —(+ )——

\ 4

w(D) —»é—» X(D)

Same mutual information

r(t) = h(t) * hi(=t) = |[h]l* - q(t)
he(-0) > 1—> Y (D)

y()

Y(D) =R(D)-X(D) + TN(D)

X(D) = W) -Y(D)+ ED)

N—— N——
— MMSE—-LE N
N -0 -W(D)
20 -R(D) 2
2 Backward Canonical Model
Forward Canonical Model chain rule helps more here
April 14, 2023 L4: 10 Stanford University




MAP = MMSE on AWGN

(asymptotically, Subsection 2.3.6)

See PS2.5 (Prob 2.20)




For the filtered/matrix AWGN

= The MAP and MMSE determine the performance, and also the chain rule suggests a simpler decoder
L(x;y) = Hy— Ayz

= log, (‘Ry?{ ) bits/subsymbol

[Rin |
= Mz~ Hay
B =log,(SNR
= log, (|Rmm|) bits/subsymbol 82 ( mmse)
|Reel
Xmmse d ML Decode on =
2 Xmap
A mmse E
: | Still MAP if “previous”
S remeve decisions are correct
Decisions’ effect Xpq v X Sequentia“y decodes

[3
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ML Detector for the Good Code

= ML= MAP since all good code’s x are equally likely (uniform, AEP)

MAP  ~ - -
——omin Y [Fe—H-%l? = ) [Il?|  Sameasmaxp,,
X
k_

= The smallest sum will reduce {X; } magnitude slightly because it also shrinks noise (trade-off in sum)

X} (K—oo

K
1
MMSE 3 min{ lim ——— z X, — W -y,.]% min over entire sum
min 4 I1im 2K+1K_ K”xk Yell

= By LLN, this sum is MMSE and has solution X = E[X/7] ...... on average over the random code set

= But this is the conditional (a posteriori) mean that also uses the a posteriori (MAP) probability dist’n

* Any single specific code’s optimum receiver begins with an MMSE estimate of the channel input, but then does
Cﬁ need to find the closest codeword to the MMSE estimate
M ooiiono3e April 14, 2023 L4:13 Stanford University



Separation of Coding and

Modulation

Subsection 4.4




The best (MAP) receiver
%’é_’ x\mmse ~
: {SNR,} y M e ML Decode C, Xmap

(diagonal)

= Each parallel channel has T(xy,; ) = logy SNRyymsen » Since they are independent

= Suppose each dimension is a dimension within the same code?

* The dimensional signals will remain uncorrelated (but not independent because of the same code)
On average over all (Gaussian) codes these dimensions are independent, not for specific code.

= W is a scalar multiply for each such uncorrelated dimension (so does not change signal to noise)
* Does use of MMSE matter? (not for VC or DMT)

= YES, IT DOES MATTER - IF, a constant bits/subsymbol b,, = b (and/or SNRgye0) — Coded OFDM

* because it impacts the weight of different dimensions before the final ML decoding; this (it turns out) is the same
as the earlier bit-loading, in effect

[3
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Dimensional Normalizer is MMSE

d . H,
B . MAP sequence
H, [ MMSE=ZF for a ‘L . decoder
: g9,= o Qmens'on (only) [
Must have each dimensign"s’é’alar for ZF=MMSE 3 R e
Zero-Forcing Algorithm S z X,
o —> W, »| Dec
w. =W +ul-X . see also L5
/ _,@‘7 $18, 519
U, :
00 -1
. dimensions with low gains have greater
= MAP Decoder is ; X - W . Y 2 contribution to minimization and decoder
min n,k n ‘k
{Xn k} ’ must apply more code redundancy there
’ k=0n=0

[3
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Separation Theorem

Theorem 4.4.1 [Separation of Coding and Modulation| Given a set of indepen-
dent partitioned AWGN-channel dimensions with energies/dimension &, and gains gn
with equivalent

SNRyeo = [Hu +&n - gn)

n=1

=1 ,

N repeated uses of a single good code with I' — 0 dB and
R |
b<ZI= 3" logy (1 + SN Rgeo)

and corresponding constant constellation |C| = 2b+P qchieves the same performance as
using N instances of that same good code with I' — 0 dB each with variable constellation
|Cr| and bits per tone

s i K
bl T = Eologz(l-{—é'n-gn) .

Critical are:
the independent parallel dimensions (not code, the partitioned matrix/filtered AWGN)

the good code for which the input to the parallel dimensions comes from large constellation with subsymbol

distribution approaching Gaussian

Section4.4Intro  April 14,2023 L4: 17 Stanford University



Widely applicable

= This works for partitioning with

e SVD
* Eigenvectors

* DFT/FFT (becomes Coded-OFDM here)
e Other bases

The transmitter does not need to know individual b,, , just the sum for any symbol/subsymbol

It works for any £,, and leads to highest rate for those energies I(X; 7).
* Waterfill set gives highest data rate (highest mutual information)

We’ve seen in our examples that water-fill is pretty close to on/off

* Soif the designer guesses well the on/off, ALMOST no feedback of bit distribution to transmitter

* In practice, the constellation size and redundancy need specification, and thus on some indication of the value of T(X; ¥) for the
channel.

Example: Wireless “MCS” (modulation coding scheme) specifies code rate and constellation size only in
feedback to transmitter. The on/off distribution?

* They ignore this for time-frequency and just use flat over the entire band
* They do excite spatial "streams” that can carry data and zero others.

Section 4.4 April 14,2023 L4: 18 Stanford University



g : NR;, NR},
= Most water-fill will satisfy (1 +2 ”) ~ SNRn

The energy closely approximates flat OFF

Caution on Water-filling and on/off

T T steep

IF dimension carries nonzero energy

ON OFF

|

|

|

|

|

|

|

|

|

|

|

|

|
< <
< <

v

T & , T * . . : :
RA: K — = L—f to L 1%n g, is roughly the same (no one dimension dominates)
N ,

1 1

b /L* SNR /L*
MA: K-~ =r- (Li—) SRLISI (%) — 1¢is roughly the same (again no one dim dominates)
In [T7=1 91 dn 9n 17121120 91

» This is true on water — fill's ENERGIZED (“on”) dimensions, NOT for zeroed dimensions (“off”)

So it is NOT true that wireless’ C-OFDM is the same as DMT, UNLESS the used
dimensions are close to the same!

Sections 4.3, 4.4 April 14,2023
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Half-Band Example

H, &, En

Correct water-fill

Uses all dimensions

Wasted

energy

v N v N rN

2 2

= The geometric SNR for water-fill is 3 dB higher if capacity-achieving codes are used
* Or could run the water-fill system at same data rate at 3 dB less energy

= This amount is amplified below capacity by non-unity (not O dB) gap-margin product

8 Correct water-fill 8 Uses all dimensions
n “Nn
Twice WF oo i WE
energy ax
energy energy !
Wasted
energy
N N
£ 2
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margin difference for half-band optimum versus full band

1993 ADSL Olympics - Bellcore
1 Margin differences at 1.6 Mbps, 4 miles, 11+dB
DMT 4x faster (6 Mbps) at 2 miles

| 2003 VDSL Olympics - Bellcore

Variable f, and 1/T single-carrier QAM results

SNR efficiency difference (dB)

(7 dB for 7=8 or 9dB)

3r i
2| (3dBfor 7=1) e e
DMT" results — exact same channels as QAM
4
1 Il Il Il Il 1
1 2 3 4 5 6 7 8 o
normalized bits to T=2
margin difference for half-band optimum versus full band
¢ Capacity of AWGN with WF is 8 bits/subsymbol (4 bits/dimension) ““ ‘

[3
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(d2 s (@) )
min
V2/N(A)

Coding Gain and Constellation/Code

A =coding lattice for d,,in,
Ag=shaping lattice for &,

Basic principle extends N — oo
Hexagon—> hypersphere (Gaussian marginals)

d2 = (@)
min
V2 ()
| ———
Yy
fundamental
gain

good codes can follow
from s A =ICl

L4: 22 Stanford University




SQ constellations vs “Gaussian”

* There is always a loss for a non-hyper-spherical constellation boundary on the (any
matrix/filtered) AWGN

»  The max shaping gain, ¥s mqx=1.53 dB (when b > 1), relative to hypercube
»  Hypercube is often the assumed reference system (so A for fundamental and scaled A for shaping)

* All of random coding/AEP can repeat with the input distribution being uniform in any dimension
(instead of Gaussia % hypercube-energy constraint

«  The MMSE Estimator can still be used with decoder, and it’s basically

C = 1082(1 + SNRmmse,u/Vs,max)

* Loss of 0.5 bit/complex dimension

C_J
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Forney's Crypto MMSE equivalence

L. € o?
1.53 dB (max) loss | 72¢-log: (e 75) ~log: <G£> e
0
uniform ~V (A)
dither N -5
MMSE best
X—» mod Ag fY) [— odAg—>2Z
A shape error Er = X — f(Y)
— _/

Ey
E Z=[X +E
x_’é X + Ef mod A, [ 7 Imod A

e See also Section 2.8 — there is a shaping loss with any A, that is not a hypersphere (SQ is worst in
practice) so various shaping methods can apply; however the separation theorem still applies to
them all, with random coding used on uniform over A;’s Voronoi region

[3
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Coded OFDM/MT

Subsection 4.4.1




SQ constellations vs “Gaussian” - REPEAT S23

Matrix/filtered-AWGN loss for “square” constellations

Y, < 1.53dB shaping gain

C = lng(l + SNRgeo/Vs,max)

When C <1, y4=0dB
» there is no low-SNR shaping loss for binary codes

AEP applies to hypercube (with shaping loss) boundary and random codes

MMSE estimator precedes MAP decoder for original code
» ISl/crosstalk optimally handled linearly with parallel ind subchannels
» slight nonlinear decision feedback when NOT parallel independent channels

Cﬁ
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Coded-MT/OFDM

[3

wl

Bit-
to

27bits| s
ym

V |

2lcl

values Go(v) = X,
»

>

Thes G =X
v) =
values 1 1>

Gn-1(V) =Xy
»

Ll
2lcl
values

MT
Mod

MT
Demod

Yn-1

ML
Decode

N-1
min )" ¥, = Hy - Gu(®)1
v n=0

¢e>

* No transmitter bit loading, and energy is on/off on the pre-agreed set

geo

= Treats a pre-agreed known set of dimensions as repeated constant SNVR,., dimensions

= The MT could be replaced by space-time MIMO, “Coded-Vector-Coding” — same basic principle

Section 4.4 intro
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Comparison of variable and fixed constellation

ce e bes e EHe g
! [ ). g,
©e0o 000000 C-DMT | I[ s
eeod 00000 : [ a—— I
e ql" e o @ o‘\.lo ® b1 DMT=5 i Y i bz,DMT=1
©e o000 000 ’ ! ! !
0000 s o0 LN S
oo o v @ oo Pnowr=1 ! O ® I p 1
. : ! | Pn,omT =
Encoder Approximates® © ® ® ® ¢ ¢ o I I
Good code Gaussian" ————————Jm ®« cofpM |
SR P R W
) o::. o o Dnorom =3 ©0 0000 0 o nOOM™T
“innovations” RN co0s600m 0o
! ", ©o0000i0o0
: :: : : ;: : ©ec oo o0eo0ooe
eoowoé e e o Proom=3 st e L e epnomm=3
TEREEEXEKXK, © 606060660
A = at-data-rate points
‘ave € | * P
p— @® = redundant points

* These types of system are heavily used in practice

[3
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Full MAP Decoder

LLR = log likelihood ratio

Computed from Gaussian noise dist’n
& from input code constraints, each
subsymbol and/or bit

Erasej¢

Erase,=1/0

i=1/0

From all other tones’, the same
X LLR(\? )
J#i

m#n

Decoder
A\

(Coded MT)

Wl

Section 4.4 April 14,2023
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STANFORD

End Lecture 4




