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April 14, 2023

Announcements & Agenda

§ Announcements
• Problem Set #2 due Wednesday April 19 at 17:00
• Sections 2.3-2.5
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§ Agenda
• Capacity Examples
• Chain Rule
• Relation to MMSE SNR’s and Decision Feedback (Successive Decoding)

• MAP = MMSE on AWGN with good code
• Separation Theorem
• Coded MultiTone



Capacity Examples
Sections 2.4 – 2.5

See PS2.3 (Prob 2.10)
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The AWGN Capacity
§ Simple formula says a lot

L4: 4

+
𝑝𝒚/𝒙 = 𝑝𝒏 𝒚 − 𝒙

𝒏 ~𝜎! = 𝒩"
#

𝒚

noise

𝒙

𝒞̅ =
1
2 * log! 1 +

/

̅ℰ𝒙
𝜎!

#$%

§ Often “gain” ℎ % is absorbed into energy, really 𝑔 = & !

'! so a “channel gain” 𝒞̅ = (
% * log% 1 + 𝑔 * 𝑆𝑁𝑅

• Note 𝑔 here is per real dimension, but if complex noise 𝒩" were used, it would be #𝒞𝒙 = log$ 1 + 𝑔 + 𝑆𝑁𝑅
• Know context and be consistent with numerator/denominator dimensionality

§ SNR=4.7 dB (3 and 𝑔=1 ), then 𝒞̅ = 1 bit/dimension

§ SNR=20 dB (100 and 𝑔=1), then 3.33 bits/dimension – and thus 6.67 bits/complex subsymbol

§ What SNR gives 7 bits per dimension?  10 * log()(2(*−1) = 14 * 3 = 42 dB

Section  2.4.1 
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BSC and BEC
§ BSC has 𝒞̅ = 1 −ℋ 𝑝 = 1 − 𝑝 * log% 𝑝 − 1 − 𝑝 * log% 1 − 𝑝

• 𝑝 = 1/2à 0 bits possible (makes sense)
• 𝑝 = 0à 1 bit/dimension reliably (makes sense)
• 0 ≤ 𝒞̅ ≤ 1
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§ BEC has 𝒞̅ = 1 − 𝑝
• 𝑝 = 1/2à 1/2 bits/dim reliable (no errors only erasures)
• 𝑝 = 0à 1 bit/dimension reliably (makes sense)
• 0 ≤ 𝒞̅ ≤1

§ BEC is better than BSC (higher capacity) – decoders can use 
erasures with 𝑁 > 1 to improve (reduce) 𝑃-

Section  2.4.2 
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Symmetric DMC

§ Generally just a discrete probability transition matrix (Appendix A)
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§ q-ary (example 0,…,255 for a byte = subsymbol)
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Section 2.4.2

• 𝑝( = .01
• 𝒞 = 7.88 bits/subsymbol



Chain Rule
Subsection 2.3.2
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Chain Rule

§ If the subsymbols are independent, then parallel channels (we know this by now!)

§ But suppose not:  each term is itself a coding (MMSE-related if Gaussian) problem with SNR, capacity, etc.
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Matrix AWGN: GDFE  (sometimes also called “successive decoding”)

§ Estimate (MMSE) and decode !𝒙!"# ⋯ !𝒙# first, then simpler single component problem
• So not just linear MMSE, linear MMSE + subtract “earlier” subsymbols’ effect

§ It’s parallel channels, but with a twist to make them independent step by step (“decision-feedback”)

Section 2.3.2
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CDEF

§ This one gets highest rate (with Γ = 0 dB) also
• 𝐼 = 𝐶 if water-filling spectrum is at transmitter
• But, this is spectra is hard to do with DFE, so can be several parallel DFES (see Section 3.12)
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Section 3.12.3

chain rule here
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Forward and its Backward Canonical Models

L4: 10Section 3.12
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𝑋 𝐷
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Backward canonical channel

𝐸 𝐷

𝑋 𝐷

Same mutual information

𝑟 𝑡 = ℎ6 𝑡 ∗ ℎ6∗ −𝑡 = ℎ ! * 𝑞 𝑡
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! 9> :

Backward Canonical Model
chain rule helps more here



MAP = MMSE on AWGN
(asymptotically, Subsection 2.3.6)

See PS2.5 (Prob 2.20)
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For the filtered/matrix AWGN
§ The MAP and MMSE determine the performance, and also the chain rule suggests a simpler decoder
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Still MAP if “previous”
decisions are correct
sequentially decodes

Section 2.3.6
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ML Detector for the Good Code
§ ML = MAP since all good code’s 𝒙 are equally likely (uniform, AEP)
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§ The smallest sum will reduce =𝒙2 magnitude slightly because it also shrinks noise (trade-off in sum)

Same as max
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§ By LLN, this sum is MMSE and has solution >𝒙 = 𝐸 =𝒙/=𝒚 …… on average over the random code set
§ But this is the conditional (a posteriori) mean that also uses the 𝑎̀ posteriori (MAP) probability dist’n

• Any single specific code’s optimum receiver begins with an MMSE estimate of the channel input, but then does 
need to find the closest codeword to the MMSE estimate

Section 2.3.6

min over entire sum



Separation of Coding and 
Modulation

Subsection 4.4
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The best (MAP) receiver

§ Each parallel channel has I 𝑥3; 𝑦3 = log% 𝑆𝑁𝑅445-,3 , since they are independent

§ Suppose each dimension is a dimension within the same code?
• The dimensional signals will remain uncorrelated (but not independent because of the same code)

• On average over all (Gaussian) codes these dimensions are independent, not for specific code.

§ 𝑊 is a scalar multiply for each such uncorrelated dimension (so does not change signal to noise)
• Does use of MMSE matter?  (not for VC or DMT)
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𝑊 = 𝑅𝒙𝒚 + 𝑅𝒚𝒚+,𝒚
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§ YES, IT DOES MATTER – IF, a constant bits/subsymbol 𝑏3 ≡ I𝑏 (and/or 𝑆𝑁𝑅7-8) – Coded OFDM
• because it impacts the weight of different dimensions before the final ML decoding;  this (it turns out) is the same 

as the earlier bit-loading, in effect
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⋮
(diagonal)

Section 4.4 Intro See PS2.5 (Prob 2.20)
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Dimensional Normalizer is MMSE

§ MAP Decoder is 
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Section 4.4 Intro
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Separation Theorem

§ Critical are: 
• the independent parallel dimensions (not code, the partitioned matrix/filtered AWGN)
• the good code for which the input to the parallel dimensions comes from large constellation with subsymbol

distribution approaching Gaussian

L4: 17Section 4.4 Intro
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Widely applicable
§ This works for partitioning with

• SVD
• Eigenvectors
• DFT/FFT (becomes Coded-OFDM here)
• Other bases

§ The transmitter does not need to know individual $𝑏! , just the sum for any symbol/subsymbol

§ It works for any ℰ! and leads to highest rate for those energies I '𝑥; '𝑦 .
• Water-fill set gives highest data rate (highest mutual information)

§ We’ve seen in our examples that water-fill is pretty close to on/off
• So if the designer guesses well the on/off, ALMOST no feedback of bit distribution to transmitter
• In practice, the constellation size and redundancy need specification, and thus on some indication of the value of I 9𝑥; 9𝑦 for the 

channel.

§ Example:  Wireless “MCS” (modulation coding scheme) specifies code rate and constellation size only in 
feedback to transmitter.  The on/off distribution?
• They ignore this for time-frequency and just use flat over the entire band
• They do excite spatial ”streams” that can carry data and zero others. 

L4: 18Section 4.4
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Caution on Water-filling and on/off

§ Most water-fill will satisfy 1 + <=>!∗

? ≅ <=>!∗

?
• IF dimension carries nonzero energy
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§ The energy closely approximates ;lat
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§ This is true on water − ;ill(s ENERGIZED “𝑜𝑛” dimensions, NOT for zeroed dimensions (“off”)

So it is NOT true that wireless’ C-OFDM is the same as DMT, UNLESS the used 
dimensions are close to the same!

Sections 4.3, 4.4

ON OFFOFF
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Half-Band Example

§ The geometric SNR for water-fill is 3 dB higher if capacity-achieving codes are used
• Or could run the water-fill system at same data rate at 3 dB less energy

§ This amount is amplified below capacity by non-unity (not 0 dB) gap-margin product
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Section 4.3.7 See PS2.4 (Prob 2.14)
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margin difference for half-band optimum versus full band

margin difference for half-band optimum versus full band

• Capacity of AWGN with WF is 8 bits/subsymbol (4 bits/dimension)

April 14, 2023 L4: 21

2003 VDSL Olympics - Bellcore

1993 ADSL Olympics – Bellcore
Margin differences at 1.6 Mbps, 4 miles, 11+dB

DMT 4x faster (6 Mbps) at 2 miles

Section 3.12



Coding Gain and Constellation/Code
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(b)  6 HEX

Decision or
Voronoi Region

(a)  16 SQ
Decision or

Voronoi Region

𝑚𝑜𝑑 Λ+
𝑚𝑜𝑑 Λ+

Λ = coding lattice for 𝑑,-.
Λ/= shaping lattice for ℰ0

good codes can follow
from YX) X = 𝐶

Basic principle extends H𝑁 → ∞
Hexagonà hypersphere (Gaussian marginals)

Y)
𝐬𝐡𝐚𝐩𝐢𝐧𝐠
𝐠𝐚𝐢𝐧

Y*
abcdefgchei

𝐠𝐚𝐢𝐧



SQ constellations vs “Gaussian”

• There is always a loss for a non-hyper-spherical constellation boundary on the (any 
matrix/filtered) AWGN
Ø The max shaping gain, 𝛾6,78#=1.53 dB (when k𝑏 ≥ 1), relative to hypercube
Ø Hypercube is often the assumed reference system (so Λ for fundamental and scaled Λ6 for shaping)

• All of random coding/AEP can repeat with the input distribution being uniform in any dimension 
(instead of Gaussian) – hypercube-energy constraint

• The MMSE Estimator can still be used with decoder, and it’s basically

April 14, 2023 L4: 23

[𝐶 = log! 1 + 𝑆𝑁𝑅**+,,0/𝛾+,*~3

• Loss of 0.5 bit/complex dimension

Sections 2.4.6.1 & 2.4.6.2



+𝒳

dither 𝜹

mod Λ5 +
𝑋

𝑁

𝑌
𝑓 𝑌 +

−𝜹

mod Λ5 𝑍

error 𝐸% ≜ 𝑋 − 𝑓 𝑌

MMSE best

+𝒳

𝐸9

mod Λ5
𝑍 = [𝒳 +𝐸9 ]:;< =𝒳+𝐸9

Forney's Crypto MMSE equivalence

• See also Section 2.8 – there is a shaping loss with any Λ+ that is not a hypersphere (SQ is worst in 
practice) so various shaping methods can apply;  however the separation theorem still applies to 
them all, with random coding used on uniform over Λ+’s Voronoi region
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shape

Section 2.4.6.2
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Coded OFDM/MT
Subsection 4.4.1



SQ constellations vs “Gaussian” - REPEAT S23
• Matrix/filtered-AWGN loss for “square” constellations 
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[𝐶 = log! 1 + 𝑆𝑁𝑅�,�/𝛾+,*~3

Sections 2.4.6.1 & 2.4.6.2

𝜸𝒔 ≤ 𝟏. 𝟓𝟑 dB 

• When !𝐶 ≤ 1, 𝜸𝒔=0 dB 
Ø there is no low-SNR shaping loss for binary codes

• AEP applies to hypercube (with shaping loss) boundary and random codes
• MMSE estimator precedes MAP decoder for original code

Ø ISI/crosstalk optimally handled linearly with parallel ind subchannels
Ø slight nonlinear decision feedback when NOT parallel independent channels

𝐬𝐡𝐚𝐩𝐢𝐧𝐠 𝐠𝐚𝐢𝐧
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Coded-MT/OFDM

§ Treats a pre-agreed known set of dimensions as repeated constant SNRgeo dimensions
• No transmitter bit loading, and energy is on/off on the pre-agreed set

§ The MT could be replaced by space-time MIMO, “Coded-Vector-Coding” – same basic principle
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Section 4.4 intro



Encoder
Good code

Approximates
Gaussian

data
bits

“innovations”

ave 𝜀 = at-data-rate points

= redundant points

b1,DMT = 5 b2,DMT = 1

C-DMT

C-OFDM

!n,OFDM ≡	3

$n,OFDM ≡ 3 $n,OFDM ≡ 3

!n,OFDM ≡	3

!n,DMT ≡ 1 !n,DMT ≡ 1

!!
"

!!
" ! "#

!
"

!
" ! "

!!
"

!!
" ! "#

!"
"

!"
" ! ""

""

"#

C-DMT

C-OFDM

Comparison of variable and fixed constellation

• These types of system are heavily used in practice
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´yn
x̂n

Wn =
1

κ ⋅ gn

Decoder
(Coded MT)Erase v

…
From all other tones’, the same

Erasej≠i = 1/0 X̂m≠n LLR v̂ j≠i( )
Erasen = 1/0

g<g0
s2>s20

LLR v̂i( )!σ n
2
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~
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2

Full MAP Decoder

April 14, 2023 L4: 29Section 4.4

LLR = log likelihood ratio
Computed from Gaussian noise dist’n
& from input code constraints, each
subsymbol and/or bit



End Lecture 4


