Lecture 3
 MMSE Estimation: \& Information Measures

April 12, 2023
John M. Cioffi
Hitachi Professor Emeritus of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements
- Problem Set 1 due today at 17:00
- Grader volunteer? (Ex 10\% / assignment plus pay)
- Most Relevant Reading - 1.5, 2.3, D.1, D.2, 4.1
- Problem Set 2 due April 19 at 17:00
- Class on April 14 , 3pm in STLC111

- Problem Set 2 = PS2 due 4/19 at 17:00
 1. 4.29 biases and error probability
 2. 4.36 MMSE spatial equalizer
 3. 2.10 Entropy and Dimensionality
 4. 2.14 Bandwidth vs Power
 5. 2.20 MMSE and Entropy

- Agenda
- Vector DMT
- General MMSE \& Gaussian
- Autocorrelation/Cross-Correlation
- Linear MMSE \& The Orthogonality Principle
- Biases and SNRs
- Examples
- Information Measures - generalizing Gaussian to all distributions
- Mutual Information and MMSE

Vector DMT

Section 4.7

Vector DMT/OFDM Transmitter

Vector DMT/OFDM Receiver

$$
\widetilde{H}_{n}=F_{n} \cdot \Lambda_{n} \cdot M_{n}^{*}
$$

$$
N L_{y}^{2}+L_{y} N \log _{2}(N) \ll\left(L_{y} N\right)^{2}
$$

- Just much larger number of dimensions, each a scalar AWGN, $L=\min \left(L_{x}, L_{y}\right)$
- $L \cdot N$ dimensions
- Can water-fill over them all (if total energy constraint, which is common)

General MMSE and Gaussian

Section D. 1

The Estimation Problem

- Given random \boldsymbol{x} and \boldsymbol{y}, want to estimate $\boldsymbol{x}, \widehat{\boldsymbol{x}}=f(\boldsymbol{y})$
- Know both $p_{x, \boldsymbol{y}}$ and specific observed $\boldsymbol{y}=\boldsymbol{v}$
- Continuous distributions \boldsymbol{x} and \boldsymbol{y}
- The error:
- $\boldsymbol{e}=\boldsymbol{x}-f(\boldsymbol{y})$

- Its mean-square
- $\mathbb{E}_{x, y}\left[\|e\|^{2}\right]=\mathbb{E}\left[\|x-f(y)\|^{2}\right]$
- Its minimum

$$
M M S E=\min _{f} \mathbb{E}\left[\|\boldsymbol{x}-f(\boldsymbol{y})\|^{2}\right]
$$

- Solution:
- Conditional mean of \boldsymbol{x} given $\boldsymbol{y} ; \widehat{\boldsymbol{x}}=\mathbb{E}[\boldsymbol{x} / \boldsymbol{y}]$
- $p_{x / y}$ the à posteriori distribution (used for MAP detector)
$\widehat{x}=\mathbb{E}[x / y]$
- Proof: see Appendix D. 1
- Its linear: $\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\widehat{x}_{1}+\widehat{x}_{2}$

Auto- \& Cross- correlation

- Autocorrelation generalizes mean-square
- Samples of $R_{x x}(\tau)=\mathbb{E}\left[\boldsymbol{x}(t) \cdot \boldsymbol{x}^{*}(t-\tau)\right]$ when time

$$
R_{x x}=\mathbb{E}\left[\boldsymbol{x} \cdot \boldsymbol{x}^{*}\right] \quad R_{y y}=\mathbb{E}\left[\boldsymbol{y} \cdot \boldsymbol{y}^{*}\right]
$$ is dimension

- If correspond to samples of vector
- Frequency-time and/or space-time
- suppressed τ here if space time, but usually $\tau=0$

$$
\text { - Energy } \tau=0 \quad \mathcal{E}_{x}=\operatorname{trace}\left\{R_{x x}\right\}=\mathbb{E}\left[\boldsymbol{x}^{*} \cdot \boldsymbol{x}\right]=\mathbb{E}\left[\|\boldsymbol{x}\|^{2}\right]
$$

- Cross correlation "generalizes" inner product
- Samples of $R_{x x}(\tau)=\mathbb{E}\left[x(t) \cdot y^{*}(t-\tau)\right]$

$$
R_{x y}=\mathbb{E}\left[\boldsymbol{x} \cdot \boldsymbol{y}^{*}\right] \quad R_{\boldsymbol{y} \boldsymbol{x}}=\mathbb{E}\left[\boldsymbol{y} \cdot \boldsymbol{x}^{*}\right]
$$

- Vectors can be different lengths L_{x} and L_{y}
- "uncorrelated" $(=0) \rightarrow$ orthogonal
- Pythagorus IF uncorrelated $R_{\boldsymbol{u} \boldsymbol{v}}=0$
- Generalizes "variances of uncorrelated random variables add"

The Joint Gaussian Distribution

- Completely specified by autocorrelation (and cross correlation)

$$
R \triangleq R_{\left[\begin{array}{ll}
x \\
y
\end{array}\right]\left[\begin{array}{ll}
x^{*} & \left.y^{*}\right]
\end{array}=\left[\begin{array}{ll}
R_{x x} & R_{x y} \\
R_{y x} & R_{y y}
\end{array}\right],\right. \text {. }} \text {. }
$$

- Its marginal distributions for \boldsymbol{x} and \boldsymbol{y}
- are also Gaussian
- Its conditional distributions are Gaussian
- In particular, with non-zero mean $\mathbb{E}[\boldsymbol{x} / \boldsymbol{y}]$
- Singularity?
- $\left|R_{y y}\right|>0$
- $\left|R_{x x}\right|$? $|R|$? - use pseudoinverse and determinant as product of nonzero eigenvalues

$$
\underbrace{\mathbb{E}[\boldsymbol{x} / \boldsymbol{y}]=R_{x y}^{R_{\boldsymbol{x}} \cdot R_{\boldsymbol{y} y}^{-1} \cdot \boldsymbol{y}} \quad \begin{array}{c}
\text { It's linear } \\
\text { (for Gaussian) }
\end{array}}_{W=R_{x y} \cdot R_{y y}^{+} \text {if singular }}
$$

MMSE and AWGN Best Transmission are fundamentally connected

Linear MMSE \& The Orthogonality Principle

 Section D. 2
Linear MMSE: any joint distribution of x and y

- Given random \boldsymbol{x} and \boldsymbol{y}, want to estimate $\boldsymbol{x}, \widehat{\boldsymbol{x}}=W \cdot \boldsymbol{y}$
- Know both $p_{x, y}$ and specific observed $\boldsymbol{y}=\boldsymbol{v}$
- The error:

$$
e=x-\sum_{n=1}^{N} w_{n} \cdot y_{n}=x-W \cdot y
$$

- Its mean-square
- $\mathbb{E}_{x, y}\left[\|\boldsymbol{e}\|^{2}\right]=\mathbb{E}\left[\|x-W \cdot \boldsymbol{y}\|^{2}\right]$
- Its minimum occurs when $\mathbb{E}\left[\boldsymbol{e} \cdot \boldsymbol{y}_{n}^{*}\right]=0$ for all n

Orthogonality Principle

- Proof in Appendix D. 2
- That is, the error and the estimator's input are uncorrelated
- Minimum $\widehat{\boldsymbol{x}}=R_{x y} \cdot R_{y y}^{-1} \cdot \boldsymbol{y}$, linear in \boldsymbol{y}, so true MMSE if Gaussian

- The true MMSE estimator may not be linear if non-Gaussian

$$
\text { MMSE Matrix } R_{e e}=R_{x x}-R_{x y} \cdot R_{y y}^{-1} \cdot R_{y x}=R_{x / y}^{\perp}
$$

- Also again: $\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\widehat{x}_{1}+\widehat{x}_{2}$ or $\widehat{A \cdot x}=A \cdot \widehat{x}$

Vector and Matrix Norms

- The trace of an autocorrelation matrix is its norm (and also equal to mean-squared length of random vector)
- MMSE $=\mathbb{E}\left[\|\boldsymbol{e}\|^{2}\right]=$ trace $\left\{R_{e e}\right\}$
- The trace of a square autocorrelation matrix is also equal to the sum of its eigenvalues

$$
\begin{gathered}
\boldsymbol{e}^{\prime}=Q \cdot \boldsymbol{e} \quad \text { diagonal: } R_{\boldsymbol{e r e} \boldsymbol{e}}=Q \cdot R_{\boldsymbol{e} \boldsymbol{e}} \cdot Q^{*} \\
\|\boldsymbol{e}\|^{2}=\left\|\boldsymbol{e}^{\prime}\right\|^{2} \text { because } Q Q^{*}=Q^{*} Q=I
\end{gathered}
$$

- The determinant of an autocorrelation matrix is the product of its eigenvalues
- MMSE $=\mathbb{E}\left[\|\boldsymbol{e}\|^{2}\right]$ and $\ln \left|R_{e e}\right|=\sum_{n} \ln \varepsilon_{e^{\prime}, n}$
- The minimization of each component of \boldsymbol{e} is variables separable (has its own row of W), so then the sum is minimized, but this means each of the \boldsymbol{e}^{\prime} also $(W \rightarrow Q \cdot W)$ minimized, so then $\left|R_{\boldsymbol{e} \boldsymbol{e}}\right|=\left|R_{\boldsymbol{e} \boldsymbol{\prime}, \boldsymbol{e}}\right|$ is also minimized \rightarrow Minimizing sum (trace) here is same as minimizing product (determinant).
$\mathcal{E}_{x} \rightarrow$ trace $\left\{R_{x x}\right\}$

$$
R_{x x}=\mathbb{E}\left[\boldsymbol{x} x^{*}\right]
$$

$$
\text { AWGN } \boldsymbol{n} \sim\left[R_{n \boldsymbol{n}}=\mathbb{E}\left[\boldsymbol{n} \boldsymbol{n}^{*}\right]\right]
$$

$$
\boldsymbol{S N R}_{\text {out }}=R_{\boldsymbol{y y}} \cdot R_{\boldsymbol{n} \boldsymbol{n}}^{-1}
$$

$$
R_{y y}=H \cdot R_{x x} \cdot H^{*}+R_{n n}
$$

$$
\widetilde{H} \triangleq R_{n n}^{-1 / 2} \cdot H \cdot R_{x x}^{1 / 2}=F \cdot \Lambda \cdot M^{*}
$$

- It's like the parallel channels (take determinants) $S N R_{o u t}=\left|R_{y y}\right| \cdot\left|R_{n n}^{-1}\right|=\frac{\left|R_{y y}\right|}{\left|R_{n n}\right|}$
- "Automatic" vector code
- Bit rate: $b=\log _{2}\left(S N R_{\text {out }}\right)$
$S N R_{\text {out }}=\frac{\left|R_{y y}\right|}{\left|R_{n n}\right|}=\frac{\left|H \cdot R_{x x} \cdot H^{*}+R_{n n}\right|}{\left|R_{n n}\right|}=\left|\tilde{H} \cdot \tilde{H}^{*}+I\right|=\left|\Lambda^{2}+I\right|=\prod_{n=1}^{N}\left(S N R_{n}+1\right)$
- This set depends on $R_{x x}$ choice, while earlier only trace $\left\{R_{x x}\right\}$ was fixed
- Water-fill $R_{x x}=M \cdot \operatorname{diag}\left\{\boldsymbol{\varepsilon}_{\text {water-fill }}\right\} \cdot M^{*}$ maximizes

Backward Channel and Matrix SNR

- How about "backward channel" (MMSE) SNR?

$$
\begin{aligned}
S N R_{m m s e} & =\frac{\left|R_{x x}\right|}{\left|R_{e e}\right|}=\left|W \cdot R_{y y} \cdot W^{*}+R_{e e}\right| /\left|R_{e e}\right|=\left|\Lambda^{2}+I\right|=\prod_{n=1}^{N}\left(1+S N R_{n}\right) \\
& =S N R_{\text {out }} \\
\text { - Bit rate: } b=\log _{2}\left(S N R_{m m s e}\right) & \\
\text { - } M^{*} \cdot W \text { will estimate } x^{\prime} \text { (linearity of MMSE estimates) } & \begin{array}{l}
\text { Forward and backward have } \\
\text { same SNR and "bit rate" } \\
\text { (continuous } x \text { distribution) }
\end{array}
\end{aligned}
$$

- Optimizing determinants is same as optimizing MSE/traces

MMSE is always a Biased Estimate

- Biased-Estimate Definition: $\mathbb{E}[\hat{x} / x] \neq \boldsymbol{x}$
- MMSE estimates always have bias (if noise is nonzero), See Appendix D. 2
- $\mathbb{E}[\hat{x} / x]=\left(I-R_{e e} \cdot R_{x x}^{-1}\right) \cdot \boldsymbol{x}=\left(I-S N R^{-1}\right) \cdot \boldsymbol{x}$

decision regions same

decision regions change

MMSE trades a little
signal reduction for simultaneous noise reduction when minimizing the error

- For scalar case above, removal is scale up (by $\frac{S N R_{m m s e}}{S N R_{m m s e}-1}$)
- MIMO case, same per dimension, scale up (by $\frac{S N R_{m m s e, n}}{S N R_{m m s e, n}-1}$) IF MMSE $R_{e e}$ is diagonal (vector coding)
- IF not diagonal? (we'll learn what to do in later lectures)

Linear Matrix MMSE Examples

See PS2.2 (Prob 4.36)
2×2 Antenna System

>> H=[1.9
-. 8 1];
>> Rxx=eye(2);
>> Rnn=.01*eye(2)
\gg Ryy $=\mathrm{H}^{\star} \mathrm{Rxx} \mathrm{K}^{\star} \mathrm{H}^{\prime}+\mathrm{Rnn}$;
>> Ryx=H;
>> W=(Ryx')*inv(Ryy) = $0.5780-0.5199$ $0.4627 \quad 0.5780$
>> W* $\mathrm{H}=$
0.99390 .0003
0.00030 .9945
>> Ree=Rxx-W*Ryx =
0.0061 -0.0003
$-0.00030 .0055$
>> snr=det(Rxx)/det(Ree);
>> $\log 2$ (snr) $=14.8693$

- Strong Crosstalk case from Chapter 1

Basically the same Lecture 1 result, even without the " M " discrete modulator but why with no M on transmit?
>> Mstar $=$
$0.4197 \quad 0.9076$ 0.9076 -0.4197
$R_{x x}=I$ is close to water-fill (equal energy this channel);
$R_{x x}=M \cdot I \cdot M^{*}$; so "lucky" that its already close to best

2×2 Antenna System

- This channel water-filled nonzero energy only on 1 dimension in L1.
>> Rxx=eye(2);
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H;
>> W=(Ryx')*inv(Ryy)=
0.9524 -0.4762
0.9524 -0.4762
>> W*H=0.8571 0.3333
0.3333 0.1667
>> Ree=Rxx-W*Ryx =
0.1429 -0.3333
-0.3333 0.8333
>> snr=\operatorname{det}(Rxx)/det(Ree) = 126.0000

```
```

```
>>H=1.0000 0.4000
```

```
>>H=1.0000 0.4000
    0.2000 0.1000
```

 0.2000 0.1000
    ```
```

 not
 Diagonal;
 ML detect is
 NOT parallel
    ```

Previously in L1 was \(\log _{2}\left(1+2 \cdot g_{2}\right)=6.93\) bits/subsymbol
But this time, two dimensions are used, and the ML detectors are interdependent
```

Thus, data rate loss can occur
with independent detectors and MMSE

```
(All this loss can be recovered with Chapter 5's MMSE GDFE, in addition to using vector coding, so more than 1 solution)

\section*{Time-Frequency Block \(1+.9 \cdot D^{-1}\)}
>> H=toeplitz([1 zeros(1,7)]',[1 . 9 zeros(1,7)]);
>> Rxx=eye(9);
>> Rnn=.181*eye(8);
>> Ryy=H*Rxx*H'+Rnn;
\(\gg\) Ryx=H;
>> W=(Ryx')*inv(Ryy);
\(\gg P=W * H ;\)
>> size \((\mathrm{P}) \%=99\)
>> Ree=Rxx-W*Ryx;
>> snr=det(Rxx)/det(Ree) \(=2.4089 \mathrm{e}+07\)
>> SNR=inv(diag(diag(Ree)));
\(\gg\) bn \(=0.5^{*} \log 2(\operatorname{diag}(S N R))^{\prime}=\)
\(\begin{array}{lllllllll}0.8769 & 1.0096 & 1.0691 & 1.0907 & 1.0902 & 1.0673 & 1.0054 & 0.8681 & 0.6085\end{array}\)
>> sum(bn/9) = 0.9651
>> 10* \(\log 10\left(2^{\wedge}\left(2^{*}\right.\right.\) ans \(\left.)-1\right)=4.4885 \mathrm{~dB}\)

Repeat for \(8 \rightarrow 32\)
>> sum(bn/33) \(=1.0753\)
>> \(10^{*} \log 10\left(2^{\wedge}\left(2^{*}\right.\right.\) ans \(\left.)-1\right)=5.3654 \mathrm{~dB}\)

Best infinite length is 5.7 dB
(with dimension-by-dimension linear)
- See Chapter 3, MMSE-LE

Best with full ML is 8.8 dB , but requires Input WF energy distribution

\title{
Information Measures: generalizing MMSE to all distributions
}

\section*{Information Measures}
\begin{tabular}{|l|l|}
\hline Gaussian Distribution & Any Distribution \\
\hline Mean-square energy \(\varepsilon_{\boldsymbol{x}}=\mathbb{E}\left[|\boldsymbol{x}|^{2}\right]\) & Entropy \(\mathcal{H}_{\boldsymbol{x}}\) Section 2.3.1 \\
\hline Mean-square error \(\sigma_{e}^{2}=\mathbb{E}\left[|\boldsymbol{e}|^{2}\right]\) & Conditional Entropy \(\mathcal{H}_{\boldsymbol{x} / \boldsymbol{y}}\) Section 2.3.2 \\
\hline Signal-to-Noise \(\varepsilon_{x} / \sigma_{e}^{2}\) & \begin{tabular}{l} 
Mutual Information \(\mathrm{I}(\boldsymbol{x} ; \boldsymbol{y})=\mathcal{H}_{\boldsymbol{x}}-\mathcal{H}_{\boldsymbol{x} / \boldsymbol{y}}\) \\
Section 2.3.2
\end{tabular} \\
\hline
\end{tabular}

The information-carried by random variable/process generalizes the energy concepts from MMSE/Gaussian analysis to the spread/randomness of their distribution

These information measures correspond to bits/symbol quantities, and for the Gaussian case are basically the \(\log _{2}\) of the corresponding energy measure

\section*{Example leading to Entropy understanding}

\section*{16 SQ QAM - UNCODED}

\(N=\widetilde{N}=2 ; \bar{N}=1(\) or swap \(\widetilde{N}\) and \(\bar{N})\)
- The subsymbol can have extra points, which means its coded
- More redundant points, more dimensions \(\rightarrow\) better codes

32 CR QAM - UNCODED
\(|C|=32 ; b=5 ; \bar{b}=2.5\)
\(N=\widetilde{N}=2 ; \bar{N}=1\)


6 PAM x 6 PAM CODED
\[
\begin{gathered}
N=\bar{N}=2 ; \widetilde{N}=1 ;|C|=6=2^{2.59} \\
\text { If } \bar{b}=2, \bar{\rho}=0.59
\end{gathered}
\]
(extra constellation points \(\sim\) redundancy)

\section*{Information Theory Basics - Generalizes MMSE}
- Entropy
\[
\mathcal{H}_{\widetilde{x}}=\mathbb{E}\left[\log _{2}\left(\frac{1}{p_{\tilde{x}}}\right)\right]=\sum_{i=0}^{|C|-1} p_{\widetilde{x}}(i) \cdot \log _{2}\left(\frac{1}{p_{\tilde{x}}(i)}\right)
\]

\section*{Discrete \(p_{\tilde{x}}(i)\)}
- Measures a distribution's, information's, many values, by probability (think subsymbols)
- generalizes bits/subsymbol where the constellation size \(|C| \geq M^{1 / \bar{N}}=2^{\tilde{b}}\) the bits/subsymbol
\[
\begin{aligned}
& \text { example: } p_{\widetilde{x}}(i)=\frac{1}{M} \text { (uniform) } \rightarrow|C|=2^{\tilde{b}} \\
& \text { Uniform } \rightarrow \mathcal{H}_{\tilde{x}}=\log _{2}\left(M^{1 / \bar{N}}\right)=\tilde{b} \quad\left(|C|=2^{\tilde{b}+\widetilde{\rho}}\right) \tilde{\rho}=0 \text {; uncoded) }
\end{aligned}
\]
- Uniform distribution has maximum entropy
\[
\begin{aligned}
& \mathcal{H}_{\tilde{x}} \leq \log _{2}|C| \\
& \text { Binary example: } p_{\tilde{x}}(0)=\frac{1}{128} \text { and } p_{\widetilde{x}}(1)=\frac{127}{128} \\
& \text { April } 12,2023 \quad \mathcal{H}_{\tilde{x}}=\frac{\log _{2}(128)}{128}+\frac{127}{128} \cdot \log _{2}\left(\frac{128}{127}\right)=.06<1
\end{aligned}
\]

\section*{Continuous Distribution - DIFFERENTIAL Entropy}
- Differential Entropy
\[
\not \mathcal{F}_{\widetilde{x}}=\mathbb{E}\left[\log _{2}\left(\frac{1}{p_{\widetilde{x}}}\right)\right]=-\int_{-\infty}^{\infty} p_{\widetilde{x}}(u) \cdot \log _{2}\left(\frac{1}{p_{\widetilde{x}}(u)}\right) \cdot d u
\]
- Differential Entropy \(\mathscr{F}_{\widetilde{x}}\) is not same as approximating integral using discrete approx of \(p_{\widetilde{x}}(u)\)
- They differ by a constant that depends on the approximation-interval size
- Differential Entropy \(\mathcal{F}_{\widehat{x}}\) does still however measure information content when subsymbols in codewords are chosen (usually at random) from \(p_{\widetilde{x}}(u)\).
- Maximum \(\mathscr{F}_{\widetilde{x}}\) occurs when \(p_{\widetilde{x}}(u)\) is Gaussian (any mean), with constant average energy
\[
\int_{-\infty}^{\infty} p_{\widetilde{x}}(u) \cdot\|u\|^{2} \cdot d u=\varepsilon_{\widetilde{x}}
\]

Complex \(\quad \mathscr{F}_{\tilde{x}}=\log _{2}\left(\pi e \varepsilon_{\tilde{x}}\right)\) bits/subsymbol
Real
\[
\mathscr{F}_{x}=\frac{1}{2} \log _{2}\left(2 \pi e \overline{\mathcal{E}}_{x}\right) \text { bits/dimension }
\]
- More generally, trace \(\left\{R_{\widetilde{x} \tilde{x}}\right\}=\mathcal{E}_{\widetilde{x}}\)
\[
\mathscr{H}_{\widetilde{x}}=\log _{2}\left|\pi e R_{\widetilde{x} \widetilde{x}}\right| \text { bits/complex-subsymbol }
\]

\section*{Information left after given another random vector}
- Conditional entropy
\[
\mathcal{H}_{\tilde{x} / \widetilde{\boldsymbol{y}}}=\mathbb{E}\left[\log _{2}\left(\frac{1}{p_{\tilde{x} / \widetilde{y}}}\right)\right]=\sum_{j=0}^{|Y|-1} \sum_{i=0}^{|C|-1} p_{\tilde{x} \widetilde{y}}(i, j) \cdot \log _{2}\left(\frac{1}{p_{\tilde{x} / \tilde{\mathfrak{y}}}(i, j)}\right)
\]
\[
\mathcal{H}_{\tilde{x} / \tilde{y}}=\mathcal{H}_{\tilde{x} \tilde{y}}-\mathcal{H}_{\tilde{y}}
\]
- Measures \(\widetilde{\boldsymbol{x}}\) 's residual randomness/info when \(\widetilde{\boldsymbol{y}}\) is known/given
\begin{tabular}{|c|c|c|c|}
\hline\(\widetilde{x} ; \widetilde{y}\) & 0 & 1 & \(p_{\widetilde{x}}\) \\
\hline 0 & \(3 / 8\) & \(1 / 8\) & \(1 / 2\) \\
\hline 1 & \(1 / 8\) & \(3 / 8\) & \(1 / 2\) \\
\hline\(p_{\widetilde{y}}\) & \(1 / 2\) & \(1 / 2\) & \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathcal{H}_{\tilde{x} \tilde{y}} & =\frac{6}{8} \cdot \log _{2} \frac{8}{3}+\frac{2}{8} \cdot \log _{2} 8=1.811 \\
\mathcal{H}_{\tilde{x}} & =1=\mathcal{H}_{\tilde{y}} \\
\mathcal{H}_{\tilde{x} / \tilde{y}} & =1.811-1=.811 \text { bits } / \text { subsymbol }
\end{aligned}
\]
- If \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are independent, then \(\mathcal{H}_{\tilde{\boldsymbol{x}} / \tilde{\boldsymbol{y}}}=\mathcal{H}_{\tilde{\boldsymbol{x}}}\)

\section*{Relation to MMSE Estimation}
- If \(\widetilde{\boldsymbol{x}}\) and \(\widetilde{\boldsymbol{y}}\) are jointly Gaussian, then \(p_{\tilde{x} / \widetilde{\boldsymbol{y}}}\) is also Gaussian and has mean as MMSE estimate \(\mathbb{E}[\widetilde{\boldsymbol{x}} / \widetilde{\boldsymbol{y}}]\) and autocorrelation \(R_{e e}=R_{\widetilde{x} \widetilde{x}}-R_{\widetilde{x} \tilde{y}} \cdot R_{\widetilde{y} \tilde{y}}^{-1} \cdot R_{\widetilde{y} \tilde{x}}\).
- \(\mathscr{F}_{\tilde{x} / \tilde{y}}=\log _{2}\left|\pi e R_{e e}\right|\) - that is, the entropy is essentially just the log of the MMSE (Gaussian)
- Entropy generalizes MMSE to any probability distribution
- Measures the information content of the "miss" in estimating \(\widetilde{\boldsymbol{x}}\) from \(\widetilde{\boldsymbol{y}}\) for any \(p_{\tilde{x} \tilde{y}}\)

\section*{Continuous distributions and entropy}
- Complex Gaussian \(x\)
\[
p_{x}(u)=\frac{1}{\pi \sigma_{x}^{2}} e^{-\frac{|x|^{2}}{\sigma_{x}^{2}}}
\]
\[
\not \mathscr{F}_{x}=\log _{2}\left\{\pi \cdot e \cdot \sigma_{x}^{2}\right\}
\]
- Conditional \(x / y\) ?
\[
\mathscr{F} f_{x / y}=\log _{2}\left\{\pi \cdot e \cdot \sigma_{x / y}^{2}\right\}
\]
\[
\sigma_{x / y}^{2}=\sigma_{x}^{2}-r_{x y}^{2} /_{\sigma_{y}^{2}}=\mathrm{MMSE}
\]
- Vector \(\boldsymbol{x}\) ?
\[
\begin{aligned}
& \mathscr{F}_{x}=\log _{2}\left\{(\pi e)^{\bar{N}} \cdot\left|R_{x x}\right|\right\} \\
& \mathscr{F}_{x / y}=\log _{2}\left\{(\pi e)^{\bar{N}} \cdot\left|R_{x / y}^{\perp}\right|\right\}
\end{aligned}
\]
\[
R_{x / y}^{\perp}=R_{x x}^{2}-R_{x / y} \cdot R_{y y}^{-1} \cdot R_{x / y}=\mathrm{MMSE}
\]
(Appendix D on MMSE)
\(\bar{N}\) is the number of complex dimensions \(=N / 2\)

\title{
Mutual Information and MMSE
} Subsection 2.3.2

See PS2.5 (Prob 2.20)

\section*{Mutual Information ~ SNR}
- Mutual Information
\[
I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})=\mathbb{E}\left[\log _{2}\left(\frac{p_{\widetilde{x} \widetilde{y}}}{p_{\widetilde{x}} \cdot p_{\widetilde{y}}}\right)\right]=\mathscr{F}_{\tilde{x}}-\mathscr{F}_{\tilde{x} / \widetilde{\boldsymbol{y}}}=\mathscr{F}_{\widetilde{y}}-\mathscr{F}_{\widetilde{y} / \tilde{x}}
\]
- For discrete example \(=1-.811=.189 \mathrm{bits} /\) subsymbol
\[
=\mathcal{H}_{\widetilde{x}}-\mathcal{H}_{\widetilde{x} / \widetilde{y}}=\mathcal{H}_{\widetilde{y}}-\mathcal{H}_{\widetilde{y} / \widetilde{x}}
\]
- Symmetric in \(\widetilde{\boldsymbol{x}}\) and \(\widetilde{\boldsymbol{y}}\) (MMSE forward and backward channel)
- Amount of information common to \(\widetilde{\boldsymbol{x}}\) and \(\widetilde{\boldsymbol{y}}, \mathbb{E}\left[\log _{2}\left(\frac{\left.\left.p_{\widetilde{\boldsymbol{x} /} \widetilde{\boldsymbol{y}}}^{p_{\widetilde{\boldsymbol{y}}}}\right)\right]}{}\right.\right.\)
- On average, how much bigger is conditional versus uncond, in bits
- \(I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})=\log _{2} \frac{\left|R_{\widetilde{x} \tilde{x}}\right|}{\left|R_{e e}\right|}=\log _{2} \frac{\left|R_{\widetilde{y} \tilde{y}}\right|}{\left|R_{n n}\right|}=\log _{2}\left(\left(1+S N R_{\text {geo }}\right)^{\bar{N}}\right)\) for the AWGN
- OR as earlier for vector coding \(I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})=\sum_{n=1}^{\bar{N}} \log _{2} S N R_{m m s e, n}\) for the AWGN

\section*{Law of Large Numbers}

Theorem 2.1.1 (Law of Large Numbers (LLN)) The LLN observes that a stationary random variable \(z\) 's sample average over its observations \(\left\{z_{n}\right\}_{n=1, \ldots, N}\) converges to its mean with large \(N\) such that
\[
\begin{array}{ll}
\lim _{N \rightarrow \infty} & \operatorname{Pr}\left\{\left|\left(\frac{1}{N} \sum_{n=1}^{N} z_{n}\right)-\mathbb{E}[z]\right|>\epsilon\right\} \rightarrow 0 \text { weak form } \\
\lim _{N \rightarrow \infty} & \operatorname{Pr}\left\{\frac{1}{N} \sum_{n=1}^{N} z_{n}=\mathbb{E}[z]\right\}=1 \text { strong form } \tag{2.14}
\end{array}
\]
- Distribution of \(z\) must be the same (stationary) for all random selections
- The random \(z\) can be function of random variable \((z=f(x)\) ) and the sample mean converges to \(\mathbb{E}[f(x)]\).
- E.g., \(z_{n}=\left\|x_{n}\right\|^{2}\) where the vector \(\boldsymbol{x}_{n}\) might also have (a growing) \(N\) components (energy sample or length of the vector)
- LLN then states that all the energy (really points in selection from any distribution withE \(\left[\|x\|^{2}\right] \leq \mathcal{E}_{x}\) ) of a hypersphere are are at its surface with probability 1. Points on the interior have probability zero. It is also a sum of independent terms, and thus Gaussian (central limit theorem)
- The marginal distributions for the vector \(\boldsymbol{x}_{n}\) 's element selections, and thus for \(\boldsymbol{x}_{n}\) also, would be Gaussian if this \(N\)-sequence has max entropy (uniform)
- The function of most interest in coding is \(-\log _{2}\left[p_{x}(x)\right]\) - that is the function itself is probability distribution's log
- The sample average of this function converges to the entropy
- Suggests choosing codewords (this means each subsymbol in the codeword) at random from stationary distribution
- Repeat at higher level for several codes chosen at random
- These are discrete codes, even when \(\boldsymbol{x}\) is continuous, but their average follows the entropy (and mutual information)

\section*{Random Coding}
- Pick subsymbols \(\boldsymbol{x}_{n}\) randomly (independently) from (stationary) distribution \(p_{\tilde{\boldsymbol{x}}}\) for each of \(M=2^{b} c^{\prime}\) words
- This is one "random" code
- Repeat the exercise for another code, and .... many more
- Compute the average performance of all these random selected codes
- As \(\bar{N} \rightarrow \infty\), this average performance is outstanding (as we'll see), as long as \(\tilde{b}<I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})\)
- So at least one good one must exist
- Entropy per subsymbol is
- LLN with function \(p_{\widetilde{x}}\) ? (sample-average estimate of entropy)
\[
\begin{aligned}
\widetilde{\mathcal{H}} \boldsymbol{x} & =\frac{-1}{\bar{N}} \cdot E\left[\log _{2}(p \boldsymbol{x})\right] \\
& =\frac{-1}{\bar{N}} \sum_{n=1}^{\bar{N}} E\left[\log _{2}\left(p_{\tilde{\boldsymbol{x}}_{n}}\right)\right]
\end{aligned}
\]
\[
\hat{\tilde{\mathcal{H}}}_{\tilde{\boldsymbol{x}}}=\frac{-1}{\bar{N}} \cdot \sum_{n=1}^{\bar{N}} \log _{2}\left[p\left(\tilde{\boldsymbol{x}}_{n}\right)\right]=\frac{-1}{\bar{N}} \cdot \log _{2}[p(\boldsymbol{x})] . \text { LLN converges to (constant) } \widetilde{\mathcal{H}}_{\boldsymbol{x}}
\]
- The constant means the ave code has uniform distribution of codewords (asymptotically), \(2^{\bar{N} \cdot \widetilde{\mathcal{H}}_{x}}\) of them

\section*{AEP Typical Sets}
- The set is
\[
A \bar{N}(\boldsymbol{x}) \triangleq\left\{\boldsymbol{x}=\left[\tilde{\boldsymbol{x}}_{1}, \tilde{\boldsymbol{x}}_{2}, \ldots, \tilde{\boldsymbol{x}}_{\bar{N}}\right] \mid 2^{-\bar{N} \cdot \mathcal{H}_{\tilde{\boldsymbol{x}}}-\epsilon} \leq p\left(\tilde{\boldsymbol{x}}_{1}, \tilde{\boldsymbol{x}}_{2}, \ldots, \tilde{\boldsymbol{x}}_{\bar{N}}\right) \leq 2^{-\bar{N} \cdot \mathcal{H}_{\tilde{\boldsymbol{x}}}+\epsilon}\right\}
\]

Lemma 2.3.6 [AEP Lemma] For a typical set with \(\bar{N} \rightarrow \infty\), the following are true:
- \(\operatorname{Pr}\left\{A_{\bar{N}}^{\epsilon}(\boldsymbol{x})\right\} \rightarrow 1\)
- for any codeword \(\boldsymbol{x} \in A_{\bar{N}}^{\epsilon}, \operatorname{Pr}\{\boldsymbol{x}\} \rightarrow 2^{-\bar{N} \cdot \mathcal{H}_{\tilde{\boldsymbol{x}}}}\)

Decoder works well if only one codeword in conditional set for each \(\boldsymbol{y}\) value, so good code spreads them uniformly



There are \(2^{N \cdot H_{\tilde{x}}} \cdot 2^{-N \cdot H_{\tilde{x}} \tilde{y}}=2^{N \cdot I(\tilde{x} ; \tilde{y})}\) little sets In the big set if "equally partitioned" L3: 32

Stanford University
\[
\frac{\left|A_{N}^{\epsilon}(\boldsymbol{x})\right|}{\left|A_{N}^{\epsilon}(\boldsymbol{x} / \boldsymbol{y})\right|} \rightarrow 2^{\mathcal{I}(\boldsymbol{x} ; \boldsymbol{y})} \quad \text { since } \mathcal{I}(\boldsymbol{x} ; \boldsymbol{y})=\mathcal{H}_{\boldsymbol{x}}-\mathcal{H}_{\boldsymbol{x} / \boldsymbol{y}}
\]
- Good codes will have only 1 codeword per conditional entropy subset
- MAP detector decision region is then \(\sim A_{\bar{N}}^{\epsilon}(\boldsymbol{x} / \boldsymbol{y})\) - on average, but can find for one good code
- If \(A_{\bar{N}}^{\epsilon}(\boldsymbol{x})\) were any larger, all codes (good or bad) will have at least one \(A_{\bar{N}}^{\epsilon}(\boldsymbol{x} / \boldsymbol{y})\) that contains 2+ codewords, which mean the MAP has to "flip a coin" - not good (high error prob)
- SHANNON's CAPACITY THEOREM
- Number of codewords is limited by mutual info \(b \leq I(\boldsymbol{x} ; \boldsymbol{y})\)
- Which is per-subsymbol equivalent with random code \(\tilde{b} \leq I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})\)
- If maximized over input distributions \(\tilde{b}<\tilde{\mathcal{C}} \leq \max _{p_{\tilde{x}}} I(\widetilde{\boldsymbol{x}} ; \widetilde{\boldsymbol{y}})\) bits/subsymbol

\section*{End Lecture 3}```

