Lecture 1
 Introduction \& Dimensionality

April 3, 2023
John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements

- People Introductions
- Web site https://cioffi-group.stanford.edu/ee392aa/
- Chapters 1-5 are used, on-line at class web site (Course Reader)
- Review/scan Section 1.3.4-7 ; read 2.1-5 ; 4.1-3
- Chapter 3 (not necessary, equalization and ISI)
- Supplementary files at canvas for your interest/review (contact Yun if

John M. Cioffi Room 363, David Packard

Welcome Course Info Course Reader Lecture Notes Handouts Homework Matlab Code
Spring Quarter 2023
EE 392AA - Multiuser Data Transmission

Instructor : Prof. John Cioffi
Teaching Assistant: Yun Liao
Course Secretary : Helen Niu
Lectures : Monday and Wednesday, 15:30-16:45, in class interested in special section)

Today

- Course introduction
- The scalar AWGN channel (a foundation)
- The matrix AWGN channel
- Water-filling energy distribution
- Projecting forward

- Problem Set $1=$ PS1 due Wednesday April 12 at 17:00		
1.	2.15	capacity refresher (read "subsymbol" $=$ "symbol" here)
2.	4.3	builds intuition on gap-based 1-dimensional channel analysis
3. 4.18\quad DMT water-fill loading		
4.	4.7	Simple Water-fill Loading
5.	4.25	Matrix AWGN \& vector coding with water-fill

Why Communications?

Next Generation Connectivity

Rural, less-developed connect

Digital Twins used to forecast/emulate each

Defense ("5/6G.mil")
Samsung: 6G "hyper connected"

Broadband Internet Access (\$1.5T/year)

- Messages
- Internet
- Email
- Text
- video, audio
- Sensor/camera images

OSI Model

this class
April 3, 2023

VR/AR focus and Bandwidth

VR and AR require efficient increase in wireless capacity

Constant up/download on an all-day wearable

Richer visual content

- Higher resolution, higher frame rate

Latency:

Edge $\sim 1 \mathrm{~ms}$
ISP Cloud 20-50 ms

Public Cloud 100 ms

Popular Com Standards Summaries

Course Introduction

Communications Depth Sequence

Sig./Syst. II EE 102B

- Modulation and Coding compliment one another
- Modulation = energy assignment to time/frequency/space, is separate from:
- Coding = distinct message mapping
- If both done well, they separate

Basic Communication (digital)

- The symbol \boldsymbol{x} and messages are in some 1-to-1 relationship
- Finding the best $\widehat{\boldsymbol{x}}$ and designing \boldsymbol{x} well \rightarrow this class (good 1-to-1 assumed)
- Most general channel is represented by the conditional probability $p_{y / x}$.
- Most general source description is p_{x} - together, $p_{x y}$.
- Optimum detector (minimizes ave error probability) is Maximum a Posteriori (MAP), $\max p_{x / y}$
- When input distribution is uniform $\rightarrow \mathrm{ML}$ (maximum likelihood), $\max p_{y / x}$

3 Basic Problems to Solve

- CHANNEL IDENTIFICATION - what is $p_{y / x}$?
- CODING \& MODULATION - What are good (best) \boldsymbol{x} and p_{x} for a given channel?
- DETECTION - What is a good (best) receiver for deciding which \boldsymbol{x} ?

Especially with more than 1 user (so expanding on 379A)

Dimensionality

- Input \boldsymbol{x} and channel \boldsymbol{y} are vectors
- Simple dimensions
- time (samples, slots, packets)
- frequency (carriers, tones/subcarriers, bands)
- space ("antennas")

- Exotic Extensions from Physics
- higher-order modes (TM(m,n))
- orbital angular momentum
- quantum communication

Communication Dimensionality

- Time-Frequency (any fixed location)

10

- $2 \times$ bandwidth = \# of dimensions/sec (wireless or wired, including "optical" - all are EM waves)

2G(2 dim/ $3.7 \mu \mathrm{~s})$
$3 \mathrm{G}(128 \mathrm{dim} / 533 \mu \mathrm{~s})$

4G/Wi-Fi (160 dim/4 $\mu \mathrm{s}$)

- ー ー
- Space-Time
- 2D-3D (at least)
- Spacing of half wavelength or more
- $10 \mathrm{k}-1 \mathrm{M}$ dimensions per few microseconds
- Number of channels can be up to \# of antennas "spatial streams"
- Also can be crosstalk between wires (e.g., ethernet, telco lines)
- Optical xtalk is between "modes" at same frequency (a spatial effect)

Same 2-path channel over 320 MHz

Matrix
channel
antennas

Even More Dimensions (smaller wavelengths)

- How do we design these systems for best rates (per energy) use?
- How adaptive do they need to be?

The scalar AWGN channel

(a foundation: Section 1.3, Section 2.1-3
direct: 2.4.1, 2.4.3)

See PS1.1 (Prob 2.15 - capacity) and PS1. 2 (Prob 4.3 gap)

Simple Additive White Gaussian Noise Channel

Detection Problem First, every T seconds (symbol period)

SNR, QAM, PAM reminders

$$
S N R \triangleq \frac{\bar{\varepsilon}_{x}}{\sigma^{2}}=\frac{\text { single }- \text { sided psd }}{\text { single }- \text { sided psd }}=\frac{\text { two }- \text { sided psd }}{\text { two }- \text { sided psd }}
$$

- SNR must have the same number of dimensions in numerator (signal) and denominator (noise)
- Thus, also $S N R \triangleq \frac{\bar{\varepsilon}_{x}}{\sigma^{2}}=\frac{2 \cdot \bar{\varepsilon}_{x}}{\mathcal{N}_{0}}=\frac{\varepsilon_{x}}{N \cdot \sigma^{2}} \quad$ where $\bar{\varepsilon}_{x}$ is energy/real-dimension.
- Energy/dimension essentially generalizes the term power/ Hz (= energy) so that is why these quantities are related to powerspectral densities (psd's)
- 1 -sided \rightarrow power is integral over positive frequencies of psd
- 2 -sided \rightarrow power is integral over all frequencies of psd
- These two powers are the same
- So - $40 \mathrm{dBm} / \mathrm{Hz}$ (one-sided) psd over 1 MHz is 20 dBm , or 100 mWatts of power, practice PS1.1 (Prob 2.15) and Homework Helper 1's first part
- PAM is always real baseband. QAM is always complex baseband (2 real dimensions)
- When QAM has only 1 bit (2 points) in constellation, it is called BPSK (not binary PAM).
- PAM's positive-frequency bandwidth is $[0,1 / 2 \mathrm{~T}) \quad \ldots$... \quad (
- QAM's positive-frequency bandwidth is $\left[-1 / 2 T+f_{c}, 1 / 2 T+f_{c}\right)$
- The PAM system looks like it uses only $1 / 2$ the bandwidth, but the QAM system is really transmitting two dimensions per symbol (so really like 2 PAM systems in parallel with symbol rate 1/T each), so no wonder it takes twice the bandwidth of a single PAM to do so

Codes and Gaps

Shannon's maximum reliable data rate "capacity"

$$
\mathcal{C}=\log _{2}(1+S N R) \text { bits/complex-subsymbol } \quad \text { AWGN Max bits/sub-sym for } P_{e} \rightarrow 0 \text { (reliably decodable) }
$$

$$
\text { bits } / \operatorname{dim}=\bar{b}=b /{ }_{N} ; \text { bits/subsym }=\tilde{b}={ }^{b} /{ }_{N}=\widetilde{N} \cdot \bar{b}
$$

- QAM/PAM operates with given low $P_{e}\left(10^{-6}\right)$ and at a "SNR gap" ($\Gamma=8.8 \mathrm{~dB} @ 10^{-6}$) below capacity
- See basics in Section 1.3.4 - for practice, see Section 2.4; also PS1.2 (Prob 4.3)

$$
\tilde{b}=\log _{2}\left(1+\frac{S N R}{\Gamma}\right) \text { bits/complex-subsymbol } \leq \mathcal{C}
$$

- For all $\tilde{b}>1$, simple square QAM constellations have constant gap ($=8.8 \mathrm{~dB}$ at $P_{e}=10^{-6}$)

$$
\frac{3}{2^{\bar{b}}-1} \cdot S N R=13.5 d B \text { (from } P_{e}=10^{-6} \text { formula) }
$$

Margin

$$
\tilde{b}=\log _{2}\left(1+\frac{S N R}{\Gamma \cdot \gamma_{m}}\right) \text { bits/complex-subsymbol } \leq \mathcal{C}
$$

- The designer wants a little "margin" protection against possible noise-power increase
- MARGIN γ_{m} is this protection (usually in dB), $\quad \gamma_{m}=\frac{(S N R / \Gamma)}{2^{\tilde{b}}-1}$

Positive margin - means performing well ; Negative margin - means not meeting design goals

- AWGN with SNR $=20.5 \mathrm{~dB}$, then $\tilde{\mathcal{C}}=\log _{2}\left(1+10^{2.05}\right)=7 \mathrm{bits} /$ subsymbol
- Suppose that 16-QAM $(\tilde{b}=4)$ is transmitted $@ P_{e}=10^{-6}(\Gamma=8.8 \mathrm{~dB})$, then $\gamma_{m}=\frac{10^{2.05-.88}}{2^{4}-1}=0 \mathrm{~dB}$
- Suppose instead QAM with $\tilde{b}=5 \mathrm{bits} / c o m p l e x-s u b s y m b o l$ with a code and gain 7 dB of gain $(\Gamma \rightarrow 8.8-7=1.8 \mathrm{~dB})$
- $\gamma_{m}=\frac{10^{2.05-.18}}{2^{5}-1}=3.8 \mathrm{~dB}$
- 6 bits/subsymbol with same code? $\rightarrow 0.7 \mathrm{~dB}$ margin - just barely below the desired $P_{e} ; \bar{P}_{e}={ }^{P_{e}} /{ }_{N}$

EE 392AA (379C)

- The simple single-dimension AWGN is fundamental to most all designs
- All subsequent designs will depend on good codes (small or 0 dB gap) re-use on those single dimension AWGNs
- Designs can be optimized to get highest possible data rates for Gaussian noise
- Single user (of course)
- All multiuser
- Channels with crosstalk between dimensions
- Intersymbol interference
- Crosstalk
- Spatial reflections, multi-paths
- Many users with many antennas, high/low data rates, crosstalking wires and different locations
- This is where the big gains occur

Gap Plot \& Example

- The gap is constant, independent of the bits/dimension - greatly simplifies "loading" (adapting transmission codes to the channel)

The Matrix AWGN Channel

Section 2.3.5

also supplementary lectures S1A and S1B also 379 Help files at Canvas site

Generating Parallel AWGNs

- Methods from EE379?
- An "equalizer" is one choice
- Parallel channels in time
- $z_{k}=x_{k}-e_{k}$

Section 3.6

- Another?
- Multicarrier is another choice
- Parallel channels in frequency

$$
Y_{n} \cong H_{n} \cdot X_{n} \quad\left(+N_{n}\right)
$$

Sections 1.3.8 and 4.2.1
L1: 23
Stanford University

In general, a matrix AWGN channel

$$
\varepsilon_{x}=\varepsilon_{x^{\prime}}=\sum_{l=1}^{L_{x}} \varepsilon_{l}
$$

$$
2^{\tilde{b}} \text { possible }
$$ messages

L_{x} dimensions

detected message
L_{y} dimensions

Vector Coding (MIMO)

$$
\begin{array}{ll}
x_{1}^{\prime} \longrightarrow y_{1} & n_{1} \sim \sigma^{2} \\
x_{L}^{\prime} \longrightarrow y_{1}^{\prime} \\
\lambda_{L} & n_{L} \sim \sigma^{2} \\
&
\end{array}
$$

$L \leq \min \left(L_{x}, L_{y}\right)$ independent dimensions

$$
R_{n \boldsymbol{n}} \neq I \rightarrow\left(H \rightarrow R_{n \boldsymbol{n}}^{-1 / 2} \cdot H\right)
$$

$$
\begin{aligned}
& H=F \cdot \Lambda \cdot M^{*} \ldots \begin{array}{c}
\text { singular value decomposition (svd in matlab) } \\
F \cdot F^{*}=F^{*} \cdot F=I_{L_{y}} ; M \cdot M^{*}=M^{*} \cdot M=I_{L_{x}}
\end{array} \\
& \Lambda \text {. }\left(L_{y} \times L_{x}\right) \text { is "diagonal" (real) }
\end{aligned}
$$

Geometric Equivalent Channel

Use it L times like single constant AWGN

- Vector Coding - uses SVD to translate matrix AWGN to set of equivalent parallel AWGN's
- Each can be individually encoded like AWGN (they are independent)
- Geometric-equivalent channel use L times
- Any H and $R_{n n}$
- Any set of input energies (that sum to allowed energy)

The Detection/Communication Issue

- MAP/ML receiver/detector implementation can be very complex
- An entire body of theory/practice has been devoted to reducing this complexity as well as projecting nearly attainable bounds
$>$ Communication Theory and Information Theory
- Decomposing into multiple channels can simplify design!
> Multiple dimensions are the key to this simplification
$>$ And today, used throughout digital communication (wires, wireless, soon fiber)

The Water-Filling Energy Distribution

Sections 2.3.5, 4.1-4.3

also supplementary lecture S1A

See PS1.3 (Prob 4.18), PS1.4 (Prob 4.7), and PS1.5 (Prob 4.25)

Rate Maximization and Dual

- Choose energy and bit allocation to maximize sum data rate over the dimensions

$$
\begin{aligned}
& \max _{\varepsilon_{l}} \sum_{l=1}^{L} \log _{2}\left(1+\frac{\varepsilon_{l} \cdot g_{l}}{\Gamma}\right)=\sum_{l=1}^{L} b_{l} \\
& S T: \varepsilon_{x}= \sum_{l=1}^{L_{x}} \varepsilon_{l} \\
& \quad \text { Rate Adaptive (RA) }
\end{aligned}
$$

$$
\begin{array}{lr}
\min _{b_{l}} \sum_{l=1}^{L} \varepsilon_{l} & \text { DUAL } \\
S T: b=\sum_{l=1}^{L_{x}} b_{l} & \\
& \text { Margin Adaptive (MA) }
\end{array}
$$

- Solution (basic calculus - see Section 4.2) ; see also matlab "waterfill.m" at web site to save hand calcs

$$
\varepsilon_{l}+\frac{\Gamma}{g_{l}}=\text { constant } \quad \underset{(\text { Whannon 1948) }}{\text { WATER-FILLING }}
$$

Neither energies allocated nor bits allocated can be negative

Water-filling Illustrated

- Energy available in a pitcher
- Note re-indexed 0 (DC) to 5

RA: until all energy used
MA: until total bit rate attained

$$
\tilde{b}_{l}=\log _{2}\left(1+\frac{S N R_{l}}{\Gamma}\right)
$$

- Write and sum energy constraints

$$
g_{1} \geq g_{2} \geq \ldots \geq g_{L}
$$

$$
\begin{gathered}
\varepsilon_{1}+\Gamma / g_{1}=K \\
\varepsilon_{2}+\Gamma / g_{2}=K \\
\vdots \\
\varepsilon_{L}+\Gamma / g_{L}=K \\
\sum_{l=1}^{L} \varepsilon_{l}+\Gamma \cdot \sum_{l=1}^{L} 1 / g_{l}=L \cdot K
\end{gathered}
$$

- Solve for Water-Fill Constant

$$
K=\frac{\varepsilon_{x}}{L^{*}}+\frac{\Gamma}{L^{*}} \cdot \sum_{l=1}^{L^{*}} 1 / g_{l}
$$

L^{*} is largest L such that $\varepsilon_{l}>0$ for all $l=1, \ldots, L^{*}$

2 x 2 Antenna System with 0 dB gap

- There is crosstalk between dimensions and $\varepsilon_{x}=2$
- Kind of sounds like a problem then, right?
>> H=[10 4
$21]$;
>> [F , Lambda , Mstar]=svd(H);
>> Lambda =
10.99850
$0 \quad 0.1818$
\gg g2=Lambda $(1,1)^{\wedge} 2=120.9669$
\gg g1=Lambda(2,2)^2 $=0.0331$
$\gg \mathrm{K}=1+0.5^{*}(1 / \mathrm{g} 1+1 / \mathrm{g} 2)=16.1250$
$\gg E 2=K-1 / \mathrm{g} 2=16.1167$
$>$ E1=K-1/g1 = -14.1167<0 (whoops)

Just use dimension $2 \rightarrow \tilde{b}=\log _{2}\left(1+2 * g_{2}\right)=6.93$ bits/subsymbol

In this case water-fill simply puts all energy on the best dimension (returns to scalar/SISO if that is best)

- There is stronger crosstalk between dimensions
- Maybe worse, right? ???
>> H=[10 9
-8 10];
\gg [F, Lambda , Mstar]=svd(H);
>> Lambda =
13.62440
012.6244
\gg g2 $2=\operatorname{Lambda}(1,1)^{\wedge} 2=185.6244$
>> g1=Lambda(2,2)^2 $=159.3756$
$\gg \mathrm{K}=1+0.5^{*}(1 / \mathrm{g} 1+1 / \mathrm{g} 2)=1.0058$
> $\mathrm{E} 2=\mathrm{K}-1 / \mathrm{g} 2=1.0004$
>>E1=K-1/g1 = 0.9996
>> btilde $=\log 2\left(1+E 2^{*} \mathrm{~g} 2\right)+\log 2(1+E 1 * \mathrm{~g} 1)=14.8693$

Actually this is close to $2 x$ the data rate for the previous case
Clearly, the use of both dimensions, and somewhat stronger crosstalk and signal.

In general, the increase is roughly a factor of L in data rate.

Energy-minimizing Margin-Adaptive Solution

- Energy and sum-bit constraints

$$
g_{1} \geq g_{2} \geq \ldots \geq g_{L}
$$

$$
\begin{aligned}
& \varepsilon_{l}=K-\Gamma / g_{l} \\
& \begin{array}{c}
\tilde{b}=\sum_{l=1}^{L} \tilde{b}_{l}=\sum_{l=1}^{L} \log _{2}\left(1+\frac{\varepsilon_{l} \cdot g_{l}}{\Gamma}\right) \\
=\sum_{l=1}^{L} \log _{2}\left(\frac{K \cdot g_{l}}{\Gamma}\right) \\
=\log _{2}\left(\prod_{l=1}^{L} \frac{K \cdot g_{l}}{\Gamma}\right)
\end{array}
\end{aligned}
$$

- Solve for Water-Fill Constant

$$
K=\Gamma \cdot\left(\frac{2^{\tilde{b}}}{\prod_{l=1}^{L} g_{l}}\right)^{1 / L^{*}}
$$

L^{*} is largest L such that $\varepsilon_{l}>0$ for all $l=1, \ldots, L^{*}$

2 x 2 Antenna System with MA

- Attempt $\tilde{b}=14 \frac{\mathrm{bits}}{\mathrm{Hz}}$; The use of 2 antennas exploited channel's crosstalk,
- Without the crosstalk, this channel supports only 7 bits/Hz (either channel has then SNR = 10)

>> H=[10 9

-8 10];
>> K=sqrt((2^14)/(g1*g2)) $=0.7442$
> E2=K-1/g2 = 0.7388
> E1=K-1/g1 = 0.7379
\gg margin $=10^{*} \log 10(2 /(E 1+E 2))=1.3 \mathrm{~dB}$

This effect magnifies as long as most of the singular values are "decent"

RA Water-Fill Flow Chart

- Can start with all channels energized
- Compute K, test lowest energy
- Reduce number of dimensions incrementally
- Can also start with 1 channel energized
- Compute K, test lowest energy
- Increase number of dimensions incrementally
- The sort is most complex part
- Can use pivots and bi-section
- Avoids sort

Sort subchannels $g_{1} \geq g_{2} \geq \cdots \geq g_{L}$

$$
j=L ; \widetilde{K}=\varepsilon_{x}+\sum_{l=1}^{L} \Gamma / g_{l}
$$

$$
\text { Compute WF Energies } \varepsilon_{l}=K-\Gamma / g_{l} l=1, \ldots, j=L^{*}
$$

Unsort subchannels $\tilde{b}_{l}=\log _{2}\left(1+\frac{\varepsilon_{l} \cdot g_{l}}{\Gamma}\right) \quad l=1, \ldots, j=L^{*}$

Margin Adaptive Flowchart

$$
\gamma_{\max }=\frac{\varepsilon_{x}}{\sum_{l=1}^{L^{*}} \varepsilon_{l}}
$$

Projecting Forward

Water-filling from 100k feet

- How do we learn and adjust either or both of energy/bits per dimension?
> Dynamically
- \quad Some of very first Al methods in communication (from Stanford)
$>$ "bit-swapping"
> \#3 Stanford patent on value/royalty in Engineering

Multiple directions in Space

Best energies will also be water-fill over the channel's spatial singular vectors

Essentially matrix form of machine learning From earlier

End Lecture 1

