

Lecture 18 LIC and Future/ML Topics June 7, 2023

JOHN M. CIOFFI

Hitachi Professor Emeritus of Engineering

Instructor EE392AA – Spring 2023

Announcements & Agenda

Announcements

- PS7 extended to June 12
- Project due Tuesday, June 13 if you need to graduate on June 18
- Will finish quarterly grades June 14 (if you want "I" let me know)

Agenda

- Recall CIC (OSB and minPIC)
- The LIC and Iterative Water-Filling Methods
- Research & Machine-Learning/AI Challenges

EE379 A , B (=C, 392AA) 2023-4 Winter, Spring

Student RA/TA interest? (see JC)

Recall OSB & minPIC

OSB Refresher

• OSB

- All xtalk is noise
- NP-hard solution, but converges for min-energy-sum
- Potential project
- Probably not usable, but provides some guidance for LIC

$$\begin{array}{ll} \max_{\{R_{\boldsymbol{x}\boldsymbol{x}}(u,n)\}} & \sum_{u=1}^{U} w_u \cdot \mathcal{E}_u \\ ST: & 0 \leq \sum_n \operatorname{trace} \{R_{\boldsymbol{x}\boldsymbol{x}}(u,n)\} \leq \mathcal{E}_{u,max} \ u = 1, ..., U \end{array}$$

- Relate **b** to $R_{xx}(u, n)$.
 - No crosstalk cancellation
 - Non convexity enters here

$$b_u = \sum_n \log_2 \frac{\mid H_{uu,n} \cdot R_{\boldsymbol{x}\boldsymbol{x}}(u,n) \cdot H^*_{uu,n} + \mathcal{R}_{noise}(u,n) \mid}{\mid \mathcal{R}_{noise}(u,n) \mid}$$

$$L_n(R_{\boldsymbol{xx}}(u,n), \boldsymbol{b}_n, \boldsymbol{w}, \boldsymbol{ heta}) = \sum_{u=1}^U w_u \cdot \mathcal{E}_{u,n} - heta_u \cdot b_{u,n}$$

Quantize to M energy levels M^U cacluations (per tone)

June 7, 2023

L18: 4

minPIC = more "optimum"

- minPIC concept allows for each receiver u to cancel $i \in \mathcal{D}_u(\Pi, p_{xy}, b)$; the decodable set
- Order has been restored
- The optimization is

$$\begin{array}{ll}
\min_{\{R_{\boldsymbol{x}\boldsymbol{x}}(u)\}} & \sum_{u=1}^{U} w_u \cdot \operatorname{trace} \underbrace{\{R_{\boldsymbol{x}\boldsymbol{x}}(u)\}}_{\mathcal{E}_u} \\
ST: \quad b_{i,u} \geq \begin{cases} b_{min,i} & \pi_u(i) \leq \pi_u(u) \\ 0 & \pi_u(i) > \pi_u(u) \end{cases} & \triangleq b_{min(\pi_u),u,i} \\
R_{\boldsymbol{x}\boldsymbol{x}}(u) \succeq \mathbf{0} & .
\end{array}$$

- $\theta \rightarrow \Theta$, which now has U^2 terms, U for each receiver \rightarrow determines the Π
- This is actually convex already (like minPMAC)
- Implement GDFE at each receiver for final order ($\Theta \rightarrow \Pi$)

LIC Design

June 7, 2023

Iterative WF borrows MAC's SWF for the IC

IW Illustrated for the IC

Repeat until converged

L18: 8

Wireless Potential Use (Resource Blocks)

June 7, 2023

L17:9

Near-Far Example

Downlink has another transmitter for another IC user closer (the "near" user)

Uplink has another transmitter for another IC user closer (the "near" user)

Example IC with IWF

$$\begin{bmatrix} y_{1A} \\ y_{1B} \end{bmatrix} = .5 \cdot \begin{bmatrix} x_{1A} \\ x_{1B} \end{bmatrix} + .9 \cdot \begin{bmatrix} x_{2A} \\ x_{2B} \end{bmatrix} + \begin{bmatrix} n_{1A} \\ n_{1B} \end{bmatrix}$$
$$\begin{bmatrix} y_{2A} \\ y_{2B} \end{bmatrix} = \begin{bmatrix} x_{2A} \\ x_{2B} \end{bmatrix} + \begin{bmatrix} .9 & .1 \end{bmatrix} \cdot \begin{bmatrix} x_{1A} \\ x_{1B} \end{bmatrix} + \begin{bmatrix} n_{1A} \\ n_{1B} \end{bmatrix}$$

 $\sigma_1^2 = \sigma_2^2 = 0.1$ (noises independent)

•		
	Energy 1A = 2.0	Energy 2B = 2.0

- Which receiver has near-far issue?
 - RCVR 1 in both bands
- Who is near user?
 - User 2

Tabular Tracking of IW

- User 2 reacts to user 1 crosstalk
- User 1 then counter acts
- Further reduction of energy on user 2 band B
- Converges in 2 cycles
 - Solution looks FDM ٠
- This is better than equal energy on both users in both bands, try yourself.

	SIMPLE IW EXA	MPLE	
	Band A	Band B	
User 1	$\mathcal{E}_{1A} = 1$	$\mathcal{E}_{1B} = 1$	
User 2	$\frac{1}{g_{2A}} = .1 + (.9)^2 = .91$	$\frac{1}{g_{2B}} = .1 + (.1)^2 = .11$	
	\mathcal{E}_{24} + .91	$= \mathcal{E}_{2B} + .11$	
	$\mathcal{E}_{_{2A}}+$	$\mathcal{E}_{2B} = 2$	
	$\mathcal{E}_{_{2A}}=.6$	$\mathcal{E}_{2B} = 1.4$	
User 1	$\frac{1}{g_{1,4}} = \frac{.1 + .6 \cdot (.9)^2}{(.5)^2} = 2.344$	$\frac{1}{g_{1B}} = \frac{.1 + 1.4 \cdot (.9)^2}{(.5)^2} = 4.93$	6
	$\mathcal{E}_{14} + 2.344$	$= \mathcal{E}_{1B} + 4.936$	
	$\mathcal{E}_{1,4}$ +	$\mathcal{E}_{1R} = 2$	
	$\mathcal{E}_{14} = 2$	$\mathcal{E}_{2B} = 0$	
User 2	$\frac{1}{g_{2,4}} = .1 + 2 \cdot (.9)^2 = 1.72$	$\frac{1}{g_{2B}} = .1 + 0 \cdot (.1)^2 = .1$	
	$\mathcal{E}_{24} + 1.72$	$2 = \mathcal{E}_{2B} + .1$	
	\mathcal{E}_{24} +	$\mathcal{E}_{2B} = 2$	
	$\mathcal{E}_{2,4} = .19$	$\mathcal{E}_{2P} = 1.81$	
User 1	Remains $\mathcal{E}_{i,j} = 2$ $\mathcal{E}_{a,b} = 0 \rightarrow IW$ has converged		
Data rates User 1	$\log_2(1+2/2.344) = .89$	0	
Total User 1	.89 bits	1	
Data rates User 2	$\log_2(1+.19/1.72) = .15$	$\log_2(1+1.81/.1) = 4.26$	
Total User 2	4.4		
Rate Sum	5.29 bits		
		L17: 12	Stanford Universi

More sophisticated situation

- 25 bi-directional users (so really 50 users if they all share same band)
- Turn on MA WF for them all and let them run versus fixed spectrum with b=6 bits/Hz
 - Which was state of art prior to IW

L17: 13

Multi-Level Water-fill

Near-Far Example

Wi-Fi's "pods" – if on same/overlapping channels

- Problem with RIS (reflective intelligent surfaces) for adjacent bands of RIS
- Can occur in wireline also "remote terminals" or "distribution units"

Achievable Region Comparison

- IW better than fixed, but not so good
- 25 users with ML IW and with OSB
 - See upper right
 - Ignore the other curves
- ML IW is pretty close to optimum
- Open question could we use it for the Rxx step in minPIC, with only uncancelled users instead of Hessians or CVX?

Projects: Need MLIW.m and IW.m

June 7, 2023

L17: 16

ML & Challenges

Nesting

Use minPmac/bc on node channels

- Use ML Water-Fill between nodes
- Efficient Algorithms?
 - How/where to update?

June 7, 2023

L18: 18

AI ("machine learned") Approximations?

- Each of these "boxes" (subnetworks) can be intense calculation
- The overall recursive cycling is actually then more intense

Sec 2.10

Machine learned "minPxx"

- minPMAC (and minPIC) optimize, but may have long run-times and numerical issues
 - They accept channel+noise and data rates (and maybe energy in admxx)

Extended to nesting, complex networks

Where, and from what, to compute precoders?

Algorithms (ML/AI) based on digital twin of this to update precoders?

June 7, 2023

L18: 21

O-RAN/Xhaul split 7.2 (over) simplified

Correlate Design choices with User Reaction

Thumbs down
Exit score
(2) (2) (2) (2) (2)

Calls to IT/ISP

Group success rate

 Repair/Intervention counts

Diagnostics & Analytics Learn the reward function V **employee feedback and link data**

Optimize QoE (value)

Optimization (management) Objective is to improve service to "green"

- Use analytics to derive
 - Priorities (orders, weights)
- Optimize accordingly

gly V_k or \hat{V}_k Link Adjust Profile QoE Calculation (est LLR) State component of current profile

A Network State Machine: Reinforcement Learning

- Network user/link may be in a state or profile
 - Some are ok (user happy or green) ; amber on the edge ;
 - Red very likely unhappy
- Markov (state-machine) models
- Learn the profile, apply appropriate design for each state
 - Objective is move to green state with profile change

$$P_a = \begin{bmatrix} p_{3/3} & p_{3/2} & 0 & 0\\ 0 & 0 & p_{2/1} & 0\\ 0 & p_{1/2} & 0 & p_{1/0}\\ p_{0/3} & 0 & 0 & p_{0/0} \end{bmatrix}$$

 $\pi = P_a \cdot \pi$ Markov (stationary) distribution

Feb 1, 2023

A Network State Machine: Reinforcement Learning

- Determines Next Action (State)
 - Profile $\{R_{xx}(u), b_u, [G_u \ W_u]\}$, u = 1, ..., U'
- GYR
 - Try to get to better states
 - But this depends on cost of doing so
- Markov (state-machine) models

Can include, MCS, number of spatial streams, channel, spectrum, priority (weights $[w \ \theta]$), etc

September 21, 2021

Estimating the probabilities and States

- Better on-line/real-time "fading" distributions
- While all the "Raleigh, Ricean, log-normal, angle-spread, delay-spread " models create simulation environments that range through many situations, they're not specific to situation
- Each channel/user may need to estimate probability distributions for "fading/xtalk"
 - How do do this well
 - Ergodic state machines (Markov models) or slowing varying
 - Digital Twins?
 - Know the settings for each in advance?
- Then identify which state and associated pre-computed design?
 - Would this save a lot of computing energy?
- Are Pe and data-rates the right measures? \rightarrow Quality of Experience (QoE)
 - Learned from user "feedback" dor +
- Reinforcement Learning? (Recurrent Neural Net as base?)

MMSE for SVD, QR, Cholesky

- The matrix factorizations our designs use are SVD, QR, and Cholesky
 - Each can be modeled by a MMSE program (or collections thereof)
- Better ways to compute them online efficiently see (Section 7.2 at right) - not tested yet.
- Similar MMSE problems set up with G and W for MMSEbased QR

June 7, 2023

Reflective Intelligent Surfaces (RIS)

- The RIS matrix Q_H satisfies $||Q_H||_F^2 \leq G_H$, the RIS gain it may also satisfy
 - *Q_H* is unitary matrix (preserves energy)
 - Q_H is diagonal, and usually also unitary, to be phase/gain-only adjustment on each antenna port (in-to-out)
 - *Q_H* has individual elements restricted
- For a given $R_{m{x}m{x}}$, maximize over Q_H $\mathcal{I}(m{y};m{x}) = \log_2 |R_{n,RIS} + H_{RIS} \cdot R_{m{x}m{x}} \cdot H_{RIS}^*|$
- For a given Q_H, maximize the same over R_{xx}

$$R_{\boldsymbol{n}\boldsymbol{n},RIS} = \left[\begin{array}{cc} R_{\boldsymbol{n}\boldsymbol{n}} & 0 \\ 0 & R_{\boldsymbol{n}\boldsymbol{n},out} + Q_H \cdot R_{\boldsymbol{n}\boldsymbol{n}in} \cdot Q_H^* \end{array} \right]$$

Iterate

Sec 2.11.4 Ma

May 10, 2023

L11: 29 Stanford University

End Lecture 18 & EE 392 AA - 2023

THANK YOU !!