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Announcements & Agenda

= Announcements

PS7 extended to June 12

Project due Tuesday, June 13 if you need to graduate on June 18

Will finish quarterly grades June 14 (if you want

= Agenda

Recall CIC (OSB and minPIC)
The LIC and Iterative Water-Filling Methods
Research & Machine-Learning/Al Challenges

June 7,2023

Ill”

let me know)

EE379 A, B (=C, 392AA)
2023-4 Winter, Spring

Student RA/TA interest?
(see JC)
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Recall OSB & minPIC




OSB

All xtalk is noise

NP-hard solution, but converges for min-energy-sum
Potential project

Probably not usable, but provides some guidance for LIC

= Relate b to R, (u,n).

* No crosstalk cancellation
* Non convexity enters here

OSB Refresher

max
{me (u,n)}

ST :

U
>,
u=1

0< Ztrace {Rzx(u,n)} < Eumaz u=1,..,U

H,.. R u,n) - H . 4+ Rnoise(t,n
o = 3 log, | o Raz(ion) - i, (wn) |

| 7-\)fno'ise (ua n) |

U
Ln(wa(u7n)7 bna w, 0) - Z Wy - gu,n - eu “bun
u=1

)

!

June 7,2023

|

Quantize to M energy levels
MV cacluations (per tone)
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minPIC = more “optimum”

= minPIC concept allows for each receiver u to cancel i € Du(H, Pxy» b) : the decodable set
= QOrder has been restored &

= The optimization is

U
min W, - trace{ R Uu
{Rpgp (W) P Wz ()}
Eu
. bmin,i Ty (7') S Ty (’U,) é
ST : bi,'u, Z { 0 7ru(7:) > ﬂ_u(u) - bmin(rtu),u,i
Ryax (u) ~0

= @ - @, which now has U? terms, U for each receiver = determines the IT
= This is actually convex already (like minPMAC)
= Implement GDFE at each receiver for final order (@ - II)

P
[@ June 5,2023 L17:5 Stanford University



LIC Design

June 7,2023 6



Iterative WF borrows MAC’s SWF for the IC

i=0;j=0
R,,(u,n)=0vVun

= Rate-sum partial derivatives

Mo = a4 0T D Hul? & «
u — Cu,n |Huu,n|2 v

. . FM Waterfill
= Converges in practice

Mild channel conditions (Leshem u=1I - ;
| ) ‘ w Rnoise(i +1,n) = Ry (i + 1,n) +

N Uj=1 Hivy,j(0) - Rex (1) - Hiyy (1)
R, (i,n) is result j#i+l

Ifi=U
j=0,j=j+1

No

June 7,2023 L18:7 Stanford University



cL]

IW lllustrated for the IC

Each user “reacts” to others

Others sense the new xtalk

Eventually converges

June 7,2023

User 1 User 2
Normalized
background noise power
User l’s. . Signal Power
water—filling
Normalized

crosstalk noise power

1 2 3 4 5 n 1 2 3 4 5 n

User 1 User 2

“Nash Equilibrium”

User 2’s
water—filling

1 2 3 4 5 n 1 2 3 4 5 n

User 1 User 2

User I's
water—filling

|

Repeat until converged
L18:8
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Wireless Potential Use (Resource Blocks)

1 1 Ng
Channel A Channel B

energy distribution energy distribution

Channel C
energy distribution

SNR SNR . =SNR
geo,B B

geo, A

SNR

geo,C

= SNR

Equivalent
Single Channel B

Equivalent
Single Channel C

Equivalent
Single Channel A

& g5 . %

I
1 N¢

r'e
= Space and/or Frequency *
= C-OFDM within resource blocks
8A gB 0 SD
= Vector-Coding outside resource blocks

E,=N,-E, forX=4,B,C,D

June 7,2023

Channel D
energy distribution

SNR

geo,D

Equivalent
Single Channel D

&

Nested loading
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Near-Far Example

= Downlink has another transmitter for another IC user closer (the “near” user)

IC Near/Far Near k--
(downlink) | T | TTTe--ll
Hnear— far o @ Sce--_.
~» NEAR
Hfar—> near
FAR ------c-mmmmmm e » FAR
Hfar—> far
= Uplink has another transmitter for another IC user closer (the “near” user)
MAC or IC Near/Far
-~ (uplink)
NEAR Hnear—>far NEAR
&
FAR
< FAR
Hfar near Hear S far
June 7,2023 L17:10
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Example IC with IWF

Rcvr 2

= Which receiver has near-far issue?
* RCVR 1 in both bands

= Who is near user?
e User?2

June 7,2023

o) =5 Lol +9 [l
ool = Lol #1910 [+l

612 = of = 0.1 (noises independent)

Energy 1A = Energy 2B =
2.0 2.0
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Tabular Trackin

User 2 reacts to user 1 crosstalk
User 1 then counter acts

Further reduction of energy on user 2
band B

Converges in 2 cycles
* Solution looks FDM

This is better than equal energy on both
users in both bands, try yourself.

June 7,2023

of IW

SIMPLE IW EXAMPLE

Band A Band B
User 1 81/4 =1 ng =1
User 2 1 5 1 )
—=.14+(9)" =91 —=1+(1)"=.11
24 2B
£, +91=E,,+.11
&, tE,=2
E,=6 E,=14
User 1 1 .1+.6<(.9)2 1 .1+1.4'(.9)2
—=—"=2344 —=——7—"—=4936
&4 (5) 815 (9)
E,+2344=E ,+4.936
E,+E,=2
£,72 £,=0
User 2 1 ) 1 )
—=.1+2-(9)" =172 —=.14+0-(1)"=.1
gZA gZB
E,,+112=E,,+.1
€2A+€ZB =2
E,=19 §£,=181
User 1 Remains £ ,=2 &,;=0 > IW has converged
Datarates | log, (1+2/2.344)=.89 0
User 1
Total User 1 | .89 bits
Datarates | log, (1+.19/1.72)=.15 log, (1+1.81/.1)=4.26
User 2
Total User2 | 4.4
Rate Sum 5.29 bits

L17:12
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More sophisticated situation

= 25 bi-directional users (so really 50 users if they all share same band)

= Turn on MA WF for them all and let them run versus fixed spectrum with b=6 bits/Hz
*  Which was state of art prior to IW

25 MDSL loops with the same loop length
50 ! T T T T T

T
1 1 1 = oo
45 PN frosessbess bl e B4PAM [T

35

te (Mbps)

Data rate
[

10
5 LT : — b
ol Ty
1000 2000 3000 4000 5000 6000 7000 8000 9000
Loop length (ft)
[3
piS June7,2023
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Multi-Level Water-fill

DSM
Regulator
(cut-offs &

PSDs)

A

Channel

v v SlOW,U |
User 1 User 2 User U
H H H
R . Y [ .
= Runs IW, but with different water-levels (a bit like SWF) — must find cut-off frequency(ies)
Cj = Very low complexity (same as IW), but central control distributes (learns) cut-off frequency
b June T 2093 L17: 14 Stanford University



Near-Far Example

Wi-Fi’s “pods” - if on same/overlapping channels

» User1
FAR Users /\ User 2
Transmitter| 2-5
User 3
NEAR
Transmitters
User4
User 5

= Problem with RIS (reflective intelligent surfaces) for adjacent bands of RIS
= Can occur in wireline also — “remote terminals” or “distribution units”

June 7,2023
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Achievable Region Comparison

= |W better than fixed, but not so good

= 25 users with ML IW and with OSB
* See upper right
* Ignore the other curves

= ML IW is pretty close to optimum

= Open question — could we use it for the
Rxx step in minPIC, with only uncancelled
users instead of Hessians or CVX?

Projects: Need MLIW.m and IW.m

[3

piS June7,2023

OO0 Lo~e "o ~0 ~ZTT O

1.6

1.2

0.8

0.6

0.4

0.2

—

—F

-

AN

N

AN

N\

R

—&— Multi-level IWF
0SB (PSDM ASK imposition with no tderance)

—e— PSDMASK impostion with 6dB tderance

—pt— P SDMASK imposttion with 12¢B tolerence
—— P SDMASK imposttion with 15cB tolerance
—— P SDMASK imposttion with 24cB tolerence
—@— P SDMASK imposttion with 30cB tolerence
G terative Water-iling

N

2 4

6 g

RT data rate (Mbps)
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ML & Challenges




= Use minPmac/bc on node channels

Use ML Water-Fill between nodes

= Efficient Algorithms?

How/where to update?

June 7,2023

(()(())) BC .
‘ ~ DR

a) radio node edge
(base station or
Access point)

b) two subnetworks
Down (BC) and up (MAC)
IC network between them

¥
\. MAC

Intelligent

controller Ny /v
“d

c) three nested IC: (BC, MAC)
' Like those in b), nested into

3x3 IC network

Stanford University



Al (“machine learned”) Approximations?

Specify b =[b, - b, - byl wo=[w, " Wuo ot owy] Weight user
desired rates { i energies
Min Energy crosstalk
i_ ______________________________________________________ » Sum <_"""_""_"""_""_"""_""""""""""""i
‘ . £ ‘
I
0=1[0; 0., 0y] E=[& Eu €yl
0;—» MaxRate | —* b, 0, > MaxRate |[—> b, 0y, —> MaxRate [ by
Sum Sum Sum
E,— 06,-by [—w, E, " Oy-by |—wy, Ey—* Oy-by 7wy

= Each of these “boxes” (subnetworks) can be intense calculation

= The overall recursive cycling is actually then more intense
[3
M seco.10 May 10, 2023 L11:19 Stanford University



Machine learned “minPxx”

= minPMAC (and minPIC) optimize, but may have long run-times and numerical issues
* They accept channel+noise and data rates (and maybe energy in admxx)

white

minPxx
generates
training
data

I trainer

______________________

o
S
=
S
:
=
—~—
)
S
——

= Extended to nesting, complex networks

June 7,2023

probably reccurrent
and/or convolutional
neural net with a
few layers
With also
Reinforcement-learning
Over time

i |
tn
&
=
S
(S
S
S
D
S
N e’

L18: 20 Stanford University



Where, and from what, to compute precoders?

T

Receivers estimate channels today ~?, computing
* filters/matrices t , (Wli'gfei g

. . . . compute precoaders ice |
* bit distributions PR P DA Device 3

compute only
errors here

T x ¥
* energy distributions
. erroir= received pilot - known pilot
= This generates large overhead bandwidth o reduces feedback bandwith
* (even with "indexing” schemes) Y allows precoder calculation at edge

Return only errors for pilots/sounding sequences

Compute instead at edge or at the site where constellations are N ...
generated Lo

* Need error signals from pilots/sounding

Algorithms (ML/AI) based on digital twin of this to update precoders ?

[3



O-RAN/Xhaul split 7.2 (over) simplified

rest of Baseband equivalent i
network (I/Q~ “complex” signals)

1
1
1
1
1
1
1
&(((\ I
1
1
1
1
1
1
1
1
1
1
1
1

tuner

DU = distributed unit Radio Unit (RU) .

RIC =radio intelligent controller ~ ~~7-7777 7=~ =77777"
! 1
: ' RU !
= Share servers for calculations when needed L]
. . . [
= Coordinate the messages/signals , space, time, frequency RU !
1

= This where the Al will become really helpful

[3
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Correlate Design choices with User Reaction

= Thumbs down _\%

EX|t score

= Calls to IT/ISP

Group success rate

plia B

Repair/Intervention
counts

Diagnostics & Analytics
Learn the reward function V
employee feedback and link data

Feedback Data
Thumbs down
Exit Score
Project complete
Complelaycalls

Chat-box contacts
reviews

other

MACHINE LEARN A &
Est User Service

Supervised
Learning

Link Data, [ R,,]
Also throughput, time, P, retrains. pg,
state

Stanford University



Optimize QoE (value

Optimization (management)

= Use analytics to derive Objective is to improve service to “green

* Priorities (orders, weights)
= Optimize accordingly V.or U
k k

/ next profile/state l
Data | Calculation (est LLR) <

State component of
current profile

pid September 21, 2021 24 Stanford University



A Network State Machine: Reinforcement Learning

P1/, Pz, P3/,

Variations P1/,
. Policies become
JIU mj lA| = 4 B, tate dependent
Oa —
Learn the states and P,

= Network user/link may be in a state or profile

Some are ok (user happy or green) ; amber on the edge ; _p3/3 p3/2 0 0_
Red — very likely unhappy pZ 0
0 0 /1
= Markov (state-machine) models Pa = 0 0
1 1
p1/, P1/,

= Learn the profile, apply appropriate design for each state

Objective is move to green state with profile change _pO/ O 0 pO/O_

m =P, -m Markov (stationary) distribution

[3
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A Network State Machine: Reinforcement Learning

= Determines Next Action (State)
Profile {R,,(uw), by ,[G, Wy}, u=1,..,U

Good rate
Or QoE
Marginal rate
Or QoE

Lowest rate

= GYR
* Try to get to better states
* But this depends on cost of doing so

= Markov (state-machine) models

Or QoE

Can include, MCS, number of spatial streams, channel,
spectrum, priority (weights [w 0]), etc

pis September 21,2021 26 Stanford University



Estimating the probabilities and States

Better on-line/real-time “fading” distributions

While all the “Raleigh, Ricean, log-normal, angle-spread, delay-spread ......... “’models create
simulation environments that range through many situations, they’re not specific to situation

Each channel/user may need to estimate probability distributions for “fading/xtalk”
* How do do this well
* Ergodic state machines (Markov models) or slowing varying
* Digital Twins?
* Know the settings for each in advance?

Then identify which state and associated pre-computed design?
* Would this save a lot of computing energy?

Are Pe and data-rates the right measures? -> Quality of Experience (QoE)
¢ Learned from user “feedback” & or

Reinforcement Learning? (Recurrent Neural Net as base?)

June 7,2023 L18:27 Stanford University



MMSE for SVD, QR, Cholesky

Forward Channel Model for SVD Calculation = Backward Channel Model for SVD Calculation

X \ Z=Wy=X l +
\ —

X —Pp - y \ -

. . Noise enhancement occurs in the
No direct noise enhancement backward model. It produces SNR [
occurs in the forward model. It S —— SNR+I]1X
produces SNR[ SNR +1]1 X ~ E

N N=-E (when both converged)

= The matrix factorizations our designs use are SVD, QR, and

Cholesky
* Each can be modeled by a MMSE program (or collections thereof)

= Better ways to compute them online efficiently — see
(Section 7.2 at right) - not tested yet.

Similar MMSE problems set up with G and W for MMSE-
based QR

piS June7,2023

w SNR’s, g’s
Remove
Singular dimension(s) rows from W,
elements from X

W | SNR’s,g’s

H l SNR’s, g’s

M=H*
[SNR+I]J[SNR]
=MX

YES
W, H]~[F*, M] SNR's, g's

L18:28 Stanford University



wl

Reflective Intelligent Surfaces (RIS)

Posed Project/Research
“maxRIS” or “minRIS”

Hlos Nios
== X +
Y [ Hout : QH : Hzn ] |: Nout + QH *Nin X
H;,IS 'n;s

The RIS matrix Qy satisfies ||Qy||% < Gy , the RIS gain — it may also satisfy

* (Qp is unitary matrix (preserves energy)
* Qp is diagonal, and usually also unitary, to be phase/gain-only adjustment on each antenna port (in-to-out)

* Qg has individual elements restricted

For a given Ry, , maximize over Qg Z(y;x) = log, |Rn.r1s + Hris - Rex - Hp s
For a given Q , maximize the same over R, R [ Rnn 0
nn,RIS 0 Rnn,ou+ Q= Rnnin- Q%

lterate

Sec2.11.4 May 10, 2023 L11:29 Stanford University



STANFORD

End Lecture 18

&
EE 392 AA - 2023

THANK YOU !




