

Lecture 14 MAC GDFEs and Design Measures May 22, 2023

JOHN M. CIOFFI

Hitachi Professor Emeritus of Engineering

Instructor EE392AA – Spring 2023

Announcements & Agenda

- Announcements
 - PS7 last homework nominally due end of week before dead week, but accepted on Monday also
 - Basically have 2 weeks from today, counts double
 - Section 5.4
 - 2023: will skip L13's (ZF/MMSE Convergence p 31-35),

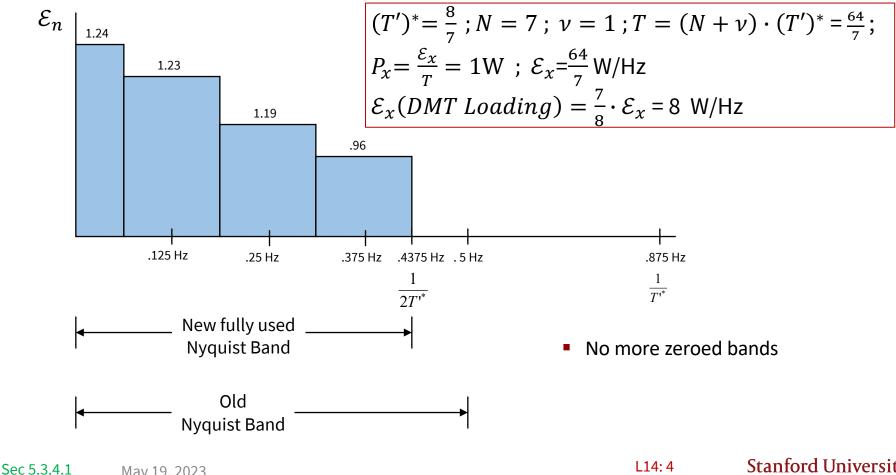
- Agenda
 - MAC and GDFE Comparison (Sec 5.4.1)
 - Tonal MAC with DMT (Section 5.4.2)
 - Tonal GDFE
 - SWF
 - Designs with weighted sums (Section 5.4.3)

Problem Set 7 = PS7 (due May 28)
1. 5.16 A tonal channel
2. 5.17 GDFE MAC Design
3. 5.18 Dual computations
4. 5.19 GDFE BC design via duality
5. 5.20 IC with/without GDFE

L13 conclusion

May 22, 2023

Resampled 1+.9D⁻¹ Another way to match WF to singularity



May 19, 2023

L14:4

Resampled Design Matlab Commands

>> D=exp(j*[0:100]*(7/8)*.01*pi);					
>> H7=sqrt(8/7)*(ones(1,101)+.9*D);					
>> H7=[H7,conj(H7(101:-1:2))];					
>> h7=real(ifft(H7));					
>> h=[h7(200:201),h7(1:5)] =					
-0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232					
>> H=toeplitz([h(1),h(7:-1:2)]',h) =					
-0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232					
0.0232 -0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292					
-0.0292 0.0232 -0.1011 0.9393 1.1979 -0.0603 0.0394					
0.0394 -0.0292 0.0232 -0.1011 0.9393 1.1979 -0.0603					
-0.0603 0.0394 -0.0292 0.0232 -0.1011 0.9393 1.1979					
1.1979 -0.0603 0.0394 -0.0292 0.0232 -0.1011 0.9393					
0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232 -0.1011					
>> H=sqrt(1/.181)*H;					
>> J7=hankel([zeros(1,6),1]');					
>>Q7=(1/sqrt(7))*J7*fft(J7);					
>> rXX=diag([1.23,1.19,.96,.96,1.19,1.23,1.24]);					
>> rxx=real(Q7'*rXX*Q7);					
>> Phibar=lohc(rxx);					
>> A=Phibar;					

8) snrGDFEu = 9.1416 dB (higher, but at lower symbol rate) GU =1.0000 0.4783 -0.0492 -0.0074 0.0208 -0.0760 0.4583 1.0000 0.5663 -0.0507 -0.0100 0.0385 -0.2577 0 1.0000 0.5952 -0.0517 -0.0208 0.1470 0 0 1.0000 0.6049 -0.0463 -0.0833 0 0 0 0 1.0000 0.6042 -0.0105 0 0 0 0 0 0 0 1.0000 0.6074 0 0 0 1.0000 0 0 MSWMFU = -0.0173 0.0040 -0.0050 0.0068 -0.0103 0.2054 0.1611 0.1971 -0.0222 0.0069 -0.0089 0.0125 -0.1032 0.1701 0.1583 0.2097 -0.0250 0.0095 -0.0127 0.0677 -0.0866 0.1539 0.2145 -0.0268 0.0118 -0.0445 0.0590 -0.08080.0559 -0.0786 0.1520 0.2166 -0.0283 0.0302 -0.0397 -0.0401 0.0562 -0.0788 0.1522 0.2163 -0.0258 0.0308 0.0724 -0.0769 0.0956 -0.1281 0.2194 0.1136 -0.0825 >> b' = 0.9313 0.8775 0.8700 0.8691 0.8690 0.8697 0.7970 >> bbar = 1.6013 >> R=bbar*(7/8) = 1.4718 (bits/sec) > 1.3814 bits/sec (same as interp)

>> [snrGDFEu, GU, WU, S0, MSWMFU, b, bbar] = computeGDFE(H, A, 2,

Also 7 Dimensions Converges On GU (and WU (and WU Not shown)

- See also the two-band example in Section 5.3
 - Tedious but could be helpful in following details for a multiband CDFE (e.g. uplink carrier aggregation with multiple resource blocks in Cellular)

Sec 5.3.4.1

Some Final Comments

- The GDFE is canonical capacity rate is reliably achievable with $\Gamma = 0$ (or capacity less shaping loss)
- GDFE can have error propagation (limited to \overline{N}) if $\Gamma > 0$ dB
 - Unless it is VC (~DMT), which is ML decoder uniquely amoung all GDFEs
 - Other GDFE's becoming increasingly less favorable performance relative to VC/DMT as gap grows
- The DMT form benefits from FFT algorithms so also more cost effective than the others
- By Separation Theorem, Coded-OFDM can capture the DMT benefits also without error propagation
 - But will rapidly lose performance relatively if input is not water filling
- The MMSE-DFE is limiting (stationary) case of the CDFE and can be canonical
 - Set of MMSE-DFE's for each of which PWC holds
 - Has unlimited error propagation (use precoder) and also degrades more rapidly for nonzero-gap codes

Eventual Global Conclusion: Use DMT (wireline) or C-OFDM (wireless) on almost all difficult single-user transmission systems

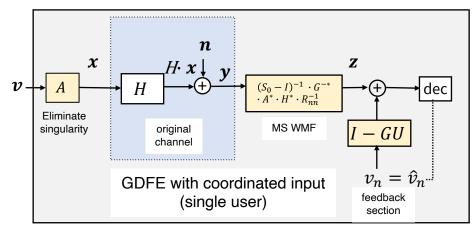
May 19, 2023

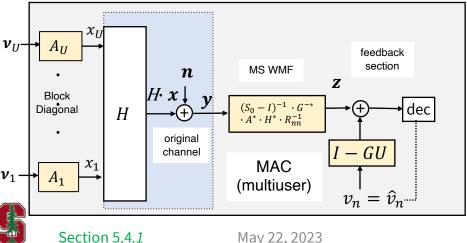
L14:6

MAC and GDFE Comparison

May 22, 2023

The MMSE MAC vs MMSE GDFE





GDFE

- Designed for "single-user" H ; $A = R_{xx}^{1/2}$
- MMSE: $R_b^{-1} = R_{xx}^{-*/2} \cdot H^* \cdot R_{nn}^{-1} \cdot H \cdot R_{xx}^{-1/2} + I = G \cdot S_0 \cdot G^*$
- Canonical decision feedback (decisions correct)
- Input restriction $trace\{R_{xx}\} \leq \mathcal{E}_x$
- Rate does not depend on dimensional order (no err prop)

MAC

- Designed for block-diag $trace\{R_{xx}\} \leq \mathcal{E}_x$
 - only in energy-sum case
- Usually has input energies $trace\{R_{xx}(u)\} \le \mathcal{E}_u$; separation locations; $A_u = R_{xx}^{1/2}(u)$; $A = R_{xx}^{1/2}$
- MMSE: $R_b^{-1} = R_{xx}^{-*/2} \cdot H^* \cdot R_{nn}^{-1} \cdot H \cdot R_{xx}^{-1/2} + I = G \cdot S_0 \cdot G^*$
- Canonical decision feedback (decisions correct)

L14:8

• by user – order is more important

A Scalar Example Revisited

MAC 80/60 channel

```
>> H=[80 60];
>> Rxx=0.5*eye(2); (equal energy both dim/users)
>> A=[sqrt(.5) 0'; 0 sqrt(.5)];
>> Lxu=[1 1];
>> cb=2;
>> [b, GU, WU, S0, MSWMFU] = mu_mac(H, A, Lxu, cb);
 = 5.8222 0.3218
b
GU = 1.0000 \quad 0.7500
                      MSWMFU = 0.0177
          0 1.0000
                                  0.0236
S0 = 1.0e+03 *
      3.2010
               0
        0
             0.0016
>> sum(b) = 6.1440
>> 10*log10(2^(6.1440)-1) = 18.4334 dB
```

• **GDFE** – remove singularity

```
>> [F,L,M]=svd(H);

>> [F,L,M]=svd(H)

F = 1

L = 100 0

M =

0.8000 -0.6000

0.6000 0.8000

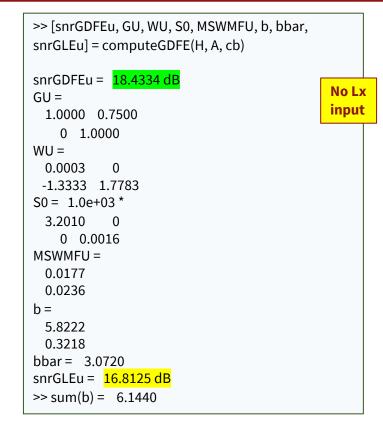
>> 0.5*log2(1+ 0.5*L(1)^2) = 6.1440
```

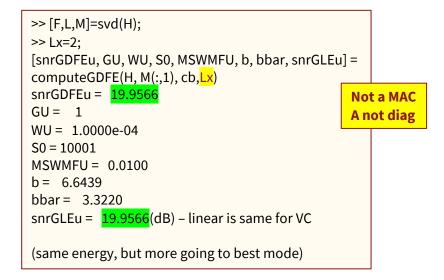
All energy on pass space >> 0.5*log2(1+L(1)^2) = 6.64 > 6.144

• But input is
$$x = \begin{bmatrix} .800 \\ .600 \end{bmatrix} \cdot v$$

- v goes to both channel input dimensions (not MAC)
- All GDFE's with this input $R_{xx} = [1 0; 0 0]$ perform same
 - And trivially have G = 1

Or use computeGDFE.m





Better to use mu_mac with a MAC, Than to play with cb & Lx on computeGDFE, which is really for single user GDFEs,

Similarly: use computeGDFE on single user

Stanford University

Correct comparison with GDFE notes the A input has 2 real dimensions

VC resets the Lx to 2 as optional 4th computeGDFE input

Section 5.4.1

May 22, 2023

L14: 10

MAC Loss

• MAC Loss – ratio of single-user capacity SNR to MAC maximum-rate-sum SNR (for $[H \ R_{nn}]$)

$$\gamma_{MAC} \triangleq \frac{2^{2 \cdot \bar{C}} - 1}{2^{2 \cdot \bar{C}_{e-sum}} - 1}$$

• For the previous example

$$\gamma_{MAC} = \frac{2^{6.64} - 1}{2^{6.144} - 1} = 1.5 \text{ dB}$$

• Clearly $0 \le \gamma_{MAC} \le 1$

See also split-dimensionality example in Section 5.4.1

May 22, 2023

L14: 11

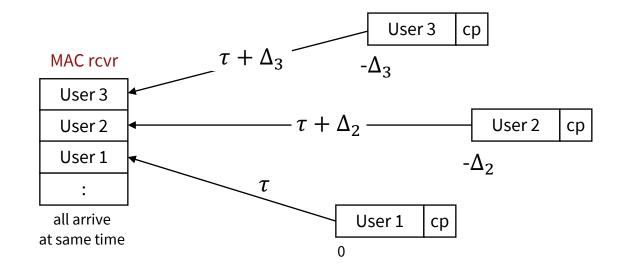
Tonal MAC (with DMT) Section 5.4.2

Note Section 5.4.1's two-user ISI-GDFE is interesting, but largely becomes superfluous with the tonal vector-DMT system.

May 22, 2023

Align Receiver DMT Symbols for MAC

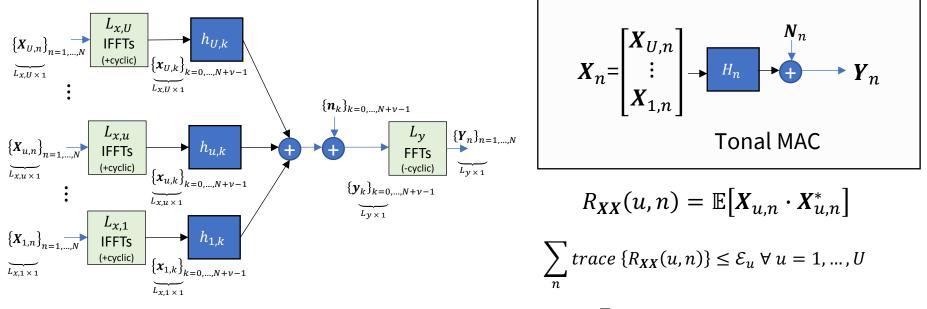
- So far, examples have largely been space time (with a few antennas)
- In practice, there usually is also a temporal (time-freq) C-OFDM or DMT system also present.



May 22, 2023

L14: 13

Vector DMT/OFDM with MAC

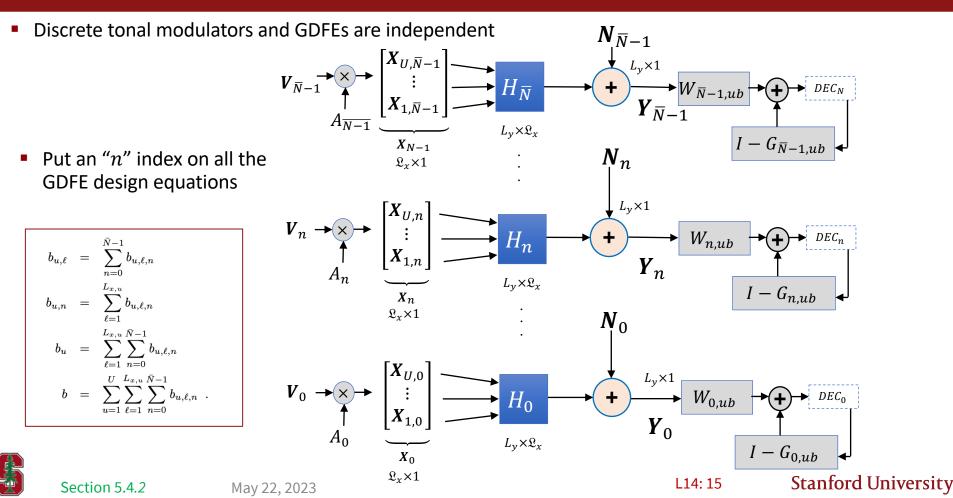


Esum-MAC: $\sum_{u=1}^{U} \sum_{n=0}^{\overline{N}} trace \{R_{XX}(u,n)\} \le \mathcal{E}_{X}$

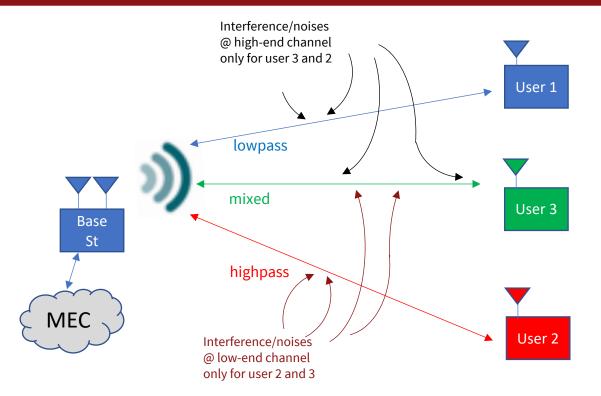
- Symbol boundaries align through cyclic-extension (guard period) uses (even with different channel delays)
- Basically, an IFFT per transmit-antenna-user
- Discrete version of the MT MAC, indeed all SVD's, Cholesky's, and QR factorizations become "frequency-dependent" (in limit)

L14: 14 Stanford University

Tonal GDFEs with MAC



Example complex BB channel



More users than antennas

Allow up to 64 resource Blocks (tones) for each user, all in same channel

Illustrates many effects

$$H(D) = \begin{bmatrix} 1 + .9 \cdot D & -.3 \cdot D + .2 \cdot D^2 & .8\\ .5 \cdot D - .4 \cdot D^2 & 1 - D - .63 \cdot D^2 + .648 \cdot D^3 & 1 - D \end{bmatrix}$$

April 27, 2023

A bit oversimplified, as real only for cplex channel

Example has ISI and MIMO together

- 3 user channels
- Any tone will maximally have rank $\mathcal{P}_H=2$; $\mathcal{N}_0 = .01$

$$H(D) = \begin{bmatrix} 1+.9D & -.3D+.2D^2 & .8\\ .5D-.4D^2 & 1-D-.63D^2+.648D^3 & 1-D \end{bmatrix}$$

h=cat(3,[1 0 .8; 0 1 1],[.93 0; .5 -1 -1],[0 .2 0; .463 0],[0 0 0; 0 .648 0])*10; h(:;:,1) =
10 0 8 0 10 10
h(:,:,2) =
9 -3 0
5 -10 -10
h(:,:,3) =
0 2.0000 0
4.0000 -6.3000 0
h(:,:,4) =
0 0 0
0 6.4800 0 N=8;
H = fft(h, N, 3)
>> H = fft(h, N, 3)
H(:.;,1) =
19.0000 + 0.0000i -1.0000 + 0.0000i 8.0000 + 0.0000i
9.0000 + 0.0000i 0.1800 + 0.0000i 0.0000 + 0.0000i
H(:,:,2) =
16.3640 - 6.3640i -2.1213 + 0.1213i 8.0000 + 0.0000i
3.5355 - 7.5355i -1.6531 + 8.7890i 2.9289 + 7.0711i
And 6 more values, see text

← Increase to 64 – look ahead at MAC with equal energy every dimension

Stanford University

0

0

10

20

30

tone index

40

May 22, 2023

60

70

50

Actual MAC/GDFE cacluations for L14:17

White-Input Tonal GDFE

```
Nmax=32:
U=3;
Ly=2;
cb=1:
Lxu=[111]:
bsum=zeros(1.Nmax):
for index=1:Nmax
i=2*index;
 H = fft(h, i, 3);
 GU=zeros(U,U,i);
 WU=zeros(U,U,i);
 S0=zeros(U,U,i);
 Bu=zeros(U,i);
 MSWMFU=zeros(U,Ly,i);
 AU=zeros(3.3.i):
 for n=1:i
  AU(:,:,n)=sqrt(i)/sqrt(i+3)*eye(3);
 end
 for n=1:i
 [Bu(:,n), GU(:,:,n), WU(:,:,n),S0(:,:,n), MSWMFU(:,:,n)] = ...
  mu_mac(H(:,:,n), AU(:,:,n), Lxu, cb);
 end
bvec=sum(Bu');
Bsum(index) = sum(bvec);
Fnd
bvec = 445.1264 412.8794 132.7477
sum(bvec) = <mark>990.7535</mark>
```

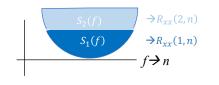
>> GU(:,:,23) =
1.0000 + 0.0000i -1.3365 + 0.3447i -0.3093 + 0.3130i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.8108 + 0.4218i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i
>> MSWMFU(:,:,15) =
0.0454 + 0.0341i -0.0105 + 0.0249i
0.0183 + 0.0179i 0.0275 - 0.0468i
0.0589 + 0.0199i 0.0179 - 0.0416i
>> SNRs = 10*log10(diag(S0(:,:,29)).^(64/67)-eye(3)) =

12.1946 20.7691 8.8939

Feedback is sizeable

Simultaneous Water Filling with DMT

• Frequency $f \rightarrow$ tone index n



See also Section 2.7.4.2 and Lecture 8

- Find all noise and crosstalk
 - $R_{noise}(u,n) = \sum_{i \neq u} H_{i,n} \cdot R_{XX}(i,n) \cdot H^*_{i,n} + R_{NN}(n)$
- Create a noise-equivalent that includes all other users as noise (no order, all)

•
$$\widetilde{H}_{u,n} = R_{noise}^{-1/2}(u,n) \cdot H_{u,n} = F_{u,n} \cdot \Lambda_{u,n} \cdot M_{u,n}^*$$

Water-fill each user

•
$$\mathcal{E}_{u,l,n} + \frac{1}{g_{u,l,n}} = K_u \quad \forall n, l \text{ with } g_{u,l,n} = \lambda_{u,l,n}^2$$

• Form resulting input autocorrelation matrices (energy distribution with $L_{x,u} = 1$)

•
$$R_{XX}^o(u,n) = M_{u,n} \cdot \text{Diag}\{\mathcal{E}_{u,n}\} \cdot M_{u,n}^* \quad \forall n = 0, ..., \overline{N} - 1$$

With MT and Ly=1 There is always an FDM SWF solution L14: 19 Stanford University

SWF.m versus macmax.m

>> help SWF function [Rxx, bsum , bsum_lin] = SWF(Eu, H, user_ind, Rnn, cb)		function [Rxx, bsum , bsum_lin] = macmax(Eu, h, Lxu, N , cb) Simultaneous water-filling Esum MAC max rate sum (linear & nonlinear GDFE)	
Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE) The input is space-time domain h, and the user can specify a temporal	-	The input is space-time domain h, and the user can specify a temporal block symbol size N (essentially an FFT size).	
block symbol size N (essentially an FFT size).	Energy-Vector	block symbol size w (essentially an i i size).	Energy-Sum
	MAC	This program uses the CVX package	MAC
Inputs:			
Eu_U x 1 energy/SAMPLE vector. Single scalar equal energy all users		the inputs are:	
any (N/N+nu) scaling should occur BEFORE input to this program.		Eu The sum-user energy/SAMPLE scalar.	
H _The FREQUENCY-DOMAIN Ly x sum(Lx(u)) x N MIMO channel for all users. N is determined from size(H) where N = # tones		This will be increased by the number of tones N by this program. Each user energy should be scaled by N/(N+nu)if there is cyclic prefix	
(equally spaced over $(0,1/T)$ at N/T.		This energy is the trace of the corresponding user Rxx (u)	
if time-domain h, $H = 1/sqrt(N)^*fft(h, N, 3);$		The sum energy is compouted as the sum of the Eu components	
user_ind The start index for each user, in the same order as Eu		internally.	
The Lxu vector of each user's number of antennas is computed		h The TIME-DOMAIN Ly x sum(Lx(u)) x N channel for all users	Up to N on h
internally. % U is determined from user_ind		Lxu The number of antennas for each user 1 x U	
Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is per tone)		N The number of used tones (equally spaced over (0,1/T) at N/T.	
cb cb = 1 for complex, cb=2 for real baseband		cb cb = 1 for complex, cb=2 for real baseband	
Outputs:		the outputs are:	
Rxx A block-diagonal psd matrix with the input autocorrelation for each		Rxx A block-diagonal psd matrix with the input autocorrelation for each	
user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .		user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .	
sum trace(Rxx) over tones and spatial dimensions equal the Eu		sum trace(Rxx) over tones and spatial dimensions equal the Eu	
bsum the maximum rate sum.		bsum the maximum rate sum.	
bsum bsum_lin - the maximum sum rate with a linear receiver		bsum bsum_lin - the maximum sum rate with a linear receiver	
b is an internal convergence sum rate value, not output		b is an internal convergence (vector, rms) value, but not sum rate	
This program is modified version of one originally supplied by student		b is an internal convergence (vector, rms) value, but not sum rate	
Chris Baca			

- SWF is frequency domain input (useful with non-white noise psd) and uses no CVX
- while macmax is time-domain (and uses Lxu instead of user_ind) and uses CVX -

L14: 20

Max Rate sum Example

h=cat(3,[1 0 .8; 0 1 1],[.9 -.3 0; .5 -1 -1],[0 .2 0; .4 -.63 0],[0 0 0; 0 .648 0])*10; bsum=zeros(1,Nmax); bsumlin=zeros(1,Nmax);

for index=1:Nmax

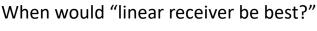
i=2*index; % (don't need to plot a point for every number of tones)
H = fft(h, i, 3);
Rnn=zeros(Ly,Ly,i);
for n=1:i
 Rnn(:,:,n) = eye(2);
 end
[Rxx, bsum(index), bsumlin(index)] = SWF(i/(i+3)*[111], H, [1 11], Rnn(:,:,:), 1);
bsum(index)=bsum(index)/(i+3);

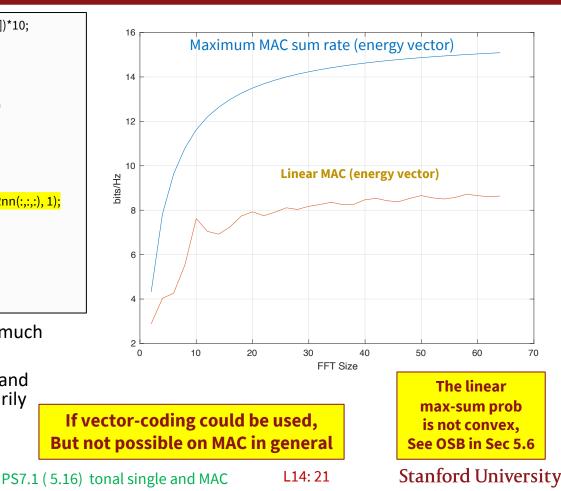
bsumlin(index)=bsumlin(index)/(i+3);

<mark>end</mark>

bsum(32)*67= 1011.1 > 990.8 bsumlin(32)*67 = 578.8502 plot(2*[1:Nmax], bsum,2*[1:Nmax],bsumlin)

- Even with 3 users > 2 antennas, linear loses much
- ~ 20 dB (from "link budget)
- Linear curve variation is because N
 is finite and the simultaneous water filling is not necessarily best solution under linear restriction





SWF energy/Rxx distribution

Rxx(:,:,1) 1.4504 0 0 0 0 0 0 0 1.3050 Rxx(:,:,2) =1.4512 0 0 0 0 0 0 1.3120 Rxx(:,:,3) =1.4528 0 0 0 0 0 0 0 1.3274 Rxx(:,:,9) = 1.4419 0 0 0 0.0670 0 0 1.3303 n Rxx(:,:,11) = 1.3170 0 n 0 1.0228 0 0 0.5748 0 Rxx(:,:,15) = 1.3889 0 0 0 1.4116 0 0 0.1513 0 Rxx(:,:,26) = 0.1384 0 0 0 1.4184 0 0 0 1.3192

Example 5.4.6

D_{1}	
Rxx(:,:,27) =	
<mark>0</mark> 000 01.49390	
0 1.4939 0)
0 0 1.3767	7
Rxx(:,:,28) =	
0 0 0	
0 0 0 0 1.4885 0)
0 0 1.3761	1
Rxx(:,:,31) =	
0 0 0	
0 1.4229 0)
0 0 1.3689	9
Rxx(:,:,32) =	
0 0 0	
0 1.3394 0)
0 0 1.3606	ŝ
Rxx(:,:,39) =	
0 0 0	
0 1.4939 0	h
0 0 1.3767	
Rxx(:,:,40) = 0.1384 0 0	h
0 1.4184 0	-
0 0 1.3192	-
Rxx(:,:,51) =	۷
	`
1.3889 0 0	
0 1.4116 0	
0 0 0.1513	5
Rxx(:,:,52) =	
1.3871 0 0	-
0 1.3929 0	
0 0 0.1700)

May 22, 2023

Rxx(:,:,53) = 1.3678 0 0 0 1.3329 0 0 0 0.243 Rxx(:,:,57) =1.4419 0 0 0 0.0670 0 0 0 1.3303 Rxx(:,:,58) =1.4577 0 0 0 0 0 0 1.3736 Rxx(:,:,59) =1.4573 0 0 0 0 1.3693 0 Rxx(:,:,60) =1.4567 0 0 0 0 1.3633 Rxx(:,:,61) =0 1.4557 0 0 0 0 1.3548 Rxx(:,:,62) =1.4544 0 0 0 0 0 0 1.3428 Rxx(:,:,63) =1.4528 0 0 0 0 0 0 1.3274 0

$\wp_{H,n} \leq U$??

With $\overline{N} > 1$, there can be some tones that use all 3 dimensions

These are equivalent to time-shared (dimension shared) of 2-user-only tones

Cannot happen when $\overline{N} = 1 \& \wp_H < U$

Also Ly > 1, So FDM not assured

L14: 22

Stanford University

Macmax

```
[RxxEsum, bsumEsum, bsum_linEsum] = macmax(3*64/67, h, [1 1 1], 64, 1);

bsumEsum = 1011.3 > 1011.2 	(just slightly)

bsum_linEsum = 571.7289 < 578.85 	(no guarantee that linear version is best)

>> sum(real(Rxx),3) =

61.1343 	0 	0

0 	61.1343 	0

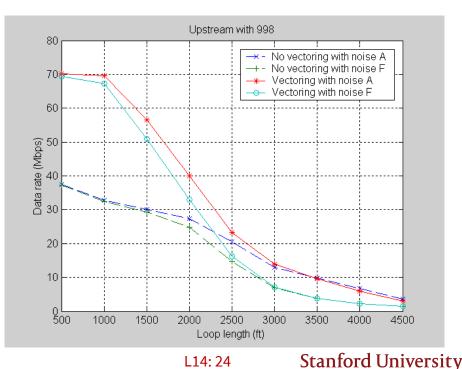
>> 64^2/67 = 61.1343 	checks on each dimension

>> trace(sum(real(Rxx),3)) = 183.4030 	(clearly 3x single dimensional energy)
```

- The RxxEsum are very similar to those from SWF.m
- While many tones individually zero one user (consistent with secondary-component concept)
 - Not the same user for all such tones
 - Some energize all 3 users
- $\sum_{n} \wp_{H,n} > U$, significantly so. This means there is effectively dimension-sharing occurring over the 64 tones, at least for the rate-sum max.

Gain is larger when crosstalk is larger

- Binders of copper wires (think ethernet or your neighbor cable of telephone wires) crosstalk
 - Highly variable with twisting (even measuring point can lead to 20dB or more variation if moved an inch or two)
 - Probabalistic models (like wireless' distributions) used
 - Average xtalk is larger on SHORTER wires
 - Why?
 - They use higher frequencies that are less attenuated
- Example is vectored VDSL (upstream MAC)
- Each user has its own "link" that terminates (upstream) on a common receiver – by default all primary users (no timesharing needed)
 - "perfect massive MIMO" all (used) tones (plot is for 25 links)
 - Can see up to U=384 links vectored (predates "massive MIMO" in invention and use by 10 years)
- The GDFE cancels the crosstalk
- It exhibits diagonal dominance too. Why?
 - So typically no feedback section used
- Actually, some "mgfast" (ITU G.9711) to 5 Gbps multiuser and 10 Gbps "fastback" (ITU G.9702), 2 pairs – 3 channels, single user can use some GDFE's at lowest frequencies



£

May 22, 2023

Wireless – uplink Cellular or Wi-Fi

- The C-OFDM systems are as in Lecture 6
- Common FFTs in the single MAC receiver (one for each spatial stream/dimension with MIMO)
- They share common frequencies
- Usually no feedback sections used Yet, so linear setting from computeGDFE provides performance

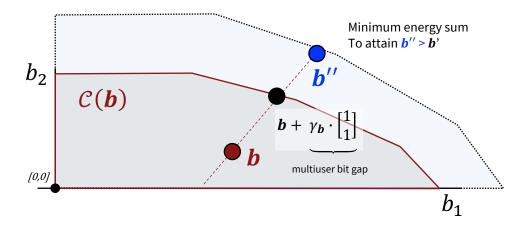
OK – All good, but what is $R_{xx}(u)$ when we don't maximize a rate sum??

May 22, 2023

L14: 25

Designs with weighted sums Section 5.4.3

Capacity region(s)



- C(b) contains all possible weighted rate sums $\sum_{u=1}^{U} \theta_u \cdot b_u$ that meet energy-vector constraint $\mathcal{E} \leq \mathcal{E}_x$
- The max-b-sum point is "highest" (tangent to plane $1^t \cdot b$) with **b** in $\mathcal{C}(b)$, but we want another **b**!
- If $\mathcal{E} \leq \mathcal{E}_x$, then **b** is admissible
- If not, we might still desire the minimum energy-sum that achieves b

minimum weighted energy sum

• Minimize weighted energy sum \mathcal{E}_x , given \boldsymbol{b}

- No energy limit (beyond minimum)
- Energy weights *w* given, non-negative

- Maximize weighted rate sum b, given E
 - No rate limit
 - rate weights **heta** given, non-negative

$$\begin{array}{l} \max_{\{R_{\boldsymbol{x}\boldsymbol{x}}(u)\}} & \sum_{u=1}^{U} \theta_u \cdot b_u \\ ST : \quad \boldsymbol{\mathcal{E}}_{\boldsymbol{x}} \preceq \left[\mathcal{E}_{1,max} \ \mathcal{E}_{2,max} \ ... \mathcal{E}_{U,max} \right]^* = \boldsymbol{\mathcal{E}}_{max}^* \succeq \boldsymbol{0} \\ \boldsymbol{b} \succeq \boldsymbol{0} \quad . \end{array}$$

$$\theta_1 \cdot (b_1 - b_1') + \theta_2 \cdot (b_2 - b_2')$$

$$b'$$

$$\mathcal{C}(b) \quad b'_{max}$$

max rate sum; $\theta = 1$

$$L_{minE}(R_{\boldsymbol{x}\boldsymbol{x}},\boldsymbol{b},\boldsymbol{w},\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \min_{R_{\boldsymbol{x}\boldsymbol{x}}} \underbrace{\sum_{u=1}^{U} [w_u \cdot trace \{R_{\boldsymbol{x}\boldsymbol{x}}(u)\} + \theta_u \cdot b_u}_{\text{common term}} - \theta_u \cdot b_{min,u}]$$

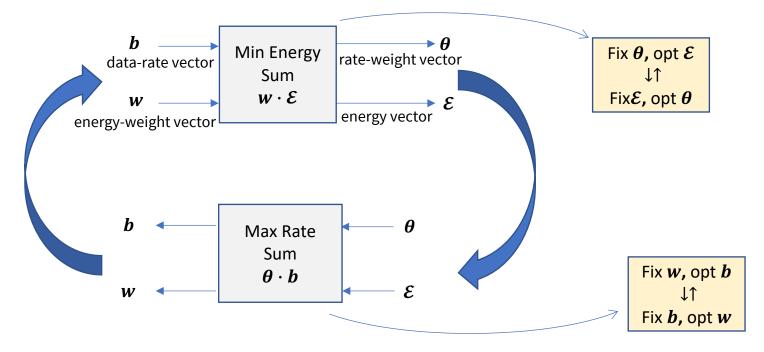
$$L_{maxR}(R_{\boldsymbol{x}\boldsymbol{x}},\boldsymbol{b},\boldsymbol{w},\boldsymbol{\theta}) = \min_{\boldsymbol{w}} \max_{R_{\boldsymbol{x}\boldsymbol{x}}} \underbrace{\sum_{u=1}^{U} [w_u \cdot trace \{R_{\boldsymbol{x}\boldsymbol{x}}(u)\} + \theta_u \cdot b_u]}_{\text{common term}} - w_u \cdot \mathcal{E}_{max,u}]$$

$$L_{14:28}$$
Stanford University

These are "dual" problems

Section 5.4.3-4 May 22, 2023

Basic Solution Cycles



- Each of these "boxes" (subnetworks) can be intense calculation, but (~, see L14: 31) convex and convergent
- The overall recursive cycling also converges if $b \in C(b)$

Section 5.4.4

May 22, 2023

Potential Project – approximate this with ML/AI method?

L14:29

Tonal Lagrangian

• Minimize (over $R_{xx}(u)$) weighted sum at any given (think temporary) θ where **b** and **w** are the specified values

$$L(R_{\boldsymbol{X}\boldsymbol{X}}, \boldsymbol{b}, \boldsymbol{w}, \boldsymbol{\theta}) = \sum_{n=0}^{\bar{N}-1} \left\{ \underbrace{\sum_{u=1}^{U} \left[w_u \cdot \operatorname{trace} \left\{ R_{\boldsymbol{X}\boldsymbol{X}}(u, n) \right\} - \sum_{u=1}^{U} \theta_u \cdot b_{u,n} \right]}_{L_n(R_{\boldsymbol{X}\boldsymbol{X}}(n), \boldsymbol{b}_n, \boldsymbol{w}, \boldsymbol{\theta})} \right\} + \theta_u \cdot b_u$$

With fixed *θ* ≥ 0 each tone can be individually minimized

Stanford University

• Which produces then for tone *n*

$$L_{min}(\boldsymbol{\theta}, n) \stackrel{\Delta}{=} \min_{\substack{\{R_{\boldsymbol{X}}\boldsymbol{X}^{(u,n)}\}, b_{u,n}}} L_n(R_{\boldsymbol{X}}\boldsymbol{X}(n), \boldsymbol{b}_n, \boldsymbol{w}, \boldsymbol{\theta})$$

Then max over θ

$$L^* = \max_{\boldsymbol{\theta}} \sum_{n=0}^{N-1} L_{min}(\boldsymbol{\theta}, n) \stackrel{\Delta}{=} \max_{\boldsymbol{\theta}} L_{min}(\boldsymbol{\theta})$$

and satisfy tonal GDFE (achievable region) constraint

$$\boldsymbol{b}_{n} \in \left\{ \boldsymbol{b}_{n} \mid 0 \leq \sum_{\boldsymbol{u} \subseteq \boldsymbol{U}} b_{u,n} \leq \log_{2} \left| \left(\sum_{u=1}^{U} \widetilde{H}_{u,n} \cdot R_{\boldsymbol{X}\boldsymbol{X}}(u,n) \cdot \widetilde{H}_{u,n}^{*} \right) + I \right| \right\} = \mathcal{A}_{n} \left(\left\{ R_{\boldsymbol{X}\boldsymbol{X}}(n) \right\}, \bar{H}_{n} \right)$$

May 22, 2023

L14: 30

The tonal achievable-region constraint

- Maximum $\sum_{u=1}^{U} \theta_u \cdot b_{u,n}$ occurs at $\mathcal{A}_n(R_{XX}(u,n), \mathbf{b}_n)$ vertex (think slope -1 line and pentagon) $\theta_1 < \theta_2$
 - Given $R_{XX}(u, n) \rightarrow R_{XX}(u)$; equivalently max $\sum_{u=1}^{U} \theta_u \cdot b_u$ occurs at $\mathcal{A}(R_{XX}(u), b)$ vertex
- That max-weighted-sum vertex has specific θ_u , that must satisfy $\theta_{\pi^{-1}(U)} \ge \theta_{\pi^{-1}(U-1)} \ge \dots \ge \theta_{\pi^{-1}(1)} \xrightarrow{|slope| > 0}{|\theta_2 < \theta_1|}$

|slope| < 1

- Proof see Theorem 5.4.1, and also discussion in Sec 5.4.4.1. (Same order all tones)
- Don't need to test all orders optimum order is inferred from the (converged) real vector θ !!
- The user data rates in $\mathcal{A}_n(R_{XX}(u, n), \boldsymbol{b}_n)$ must satisfy the (sum of) tonal-GDFE constraint(s):

$$b_{u,n} = \log_2 \left\{ \frac{\left| R_{yy}(u,n) \right|}{\left| R_{yy}(u-1,n) \right|} \right\} = \log_2 \left| \sum_{i=1}^u \widetilde{H}_{\pi^{-1}(i),n} \cdot R_{XX}(\pi^{-1}(i),n) \cdot \widetilde{H}_{\pi^{-1}(i),n}^* + I \right| - \log_2 \left| \sum_{i=1}^{u-1} \widetilde{H}_{\pi^{-1}(i),n} \cdot R_{XX}(\pi^{-1}(i),n) \cdot \widetilde{H}_{\pi^{-1}(i),n}^* + I \right| \right\}$$

• For given θ , min weighted rate sum over $R_{XX}(u, n)$ minimizes convex sum

Equal Theta

- Successive equal theta values
 - This can happen often
 - Usually happens when there are secondary user components
- The corresponding rate-sum difference term(s) is (are) zero
- Only the sum rate of the corresponding users can be varied $b_{\pi^{-1}(u)} + b_{\pi^{-1}(u)+1}$ is optimized
- The corresponding vertices for swapping the order (more generally varying when 3 or more) need to be "vertex-shared" in a proportion that causes the desired data rate to be achieved.
- Complicated program in matlab to do this, although concept is straightforward

Coming Attraction: The Stanford minPMAC program(s)

End Lecture 14

Two iterated steps

- $R_{XX}(u, n)$ step: With the given (current) θ , w, $\{b_{u,n}\}$, minimize the (neg) weighted rate sum over $R_{XX}(u, n)$ Each tone separately and sum

$$L_{min}(\boldsymbol{\theta}, n) = \underbrace{\sum_{u=1}^{U} \left[w_u \cdot \operatorname{trace} \left\{ R_{\boldsymbol{X}\boldsymbol{X}}(u, n) \right\} - \sum_{u=1}^{U} \theta_u \cdot b_{u, n} \right]}_{L_n(R_{\boldsymbol{X}\boldsymbol{X}}(n), \boldsymbol{b}_n, \boldsymbol{w}, \boldsymbol{\theta})}$$

e.g.
$$L_{k+1} = L_k - \mu \cdot \left(\bigtriangledown^2 L_k \right)^{-1} \cdot \bigtriangledown L_k$$
 Weighted steepest descent ("Newton")

Order step: With the given (current) $R_{XX}(u, n)$, w, $\{b_{u,n}\}$, maximize the Lagrangian over θ

$$L(\boldsymbol{\theta}) = \sum_{n=1}^{\overline{N}} L_{min}(\boldsymbol{\theta}, n)$$
Initialize (first time only) with FM SWF for given **b**
This is the "find the vertex set" – elliptic algorithm, see text
May 22, 2023
L14: 34
Stanford University

