Lecture 14
 MAC GDFEs and Design Measures

May 22, 2023
John M. Cioffi

Hitachi Professor Emeritus of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements
- PS7 - last homework - nominally due end of week before dead week, but accepted on Monday also
- Basically have 2 weeks from today, counts double
- Section 5.4
- 2023: will skip L13's (ZF/MMSE Convergence p 31-35),
- Agenda
- MAC and GDFE Comparison (Sec 5.4.1)
- Tonal MAC with DMT (Section 5.4.2)
- Tonal GDFE
- SWF
- Designs with weighted sums (Section 5.4.3)
- Problem Set 7 = PS7 (due May 28)

1. 5.16 A tonal channel
2. 5.17 GDFE MAC Design
3. 5.18 Dual computations
4. 5.19 GDFE BC design via duality
5. 5.20 IC with/without GDFE

L13 conclusion

Resampled $1+.9 \mathrm{D}^{-1}$ Another way to match WF to singularity

$$
\begin{aligned}
& \left(T^{\prime}\right)^{*}=\frac{8}{7} ; N=7 ; v=1 ; T=(N+v) \cdot\left(T^{\prime}\right)^{*}=\frac{64}{7} ; \\
& P_{x}=\frac{\varepsilon_{x}}{T}=1 \mathrm{~W} ; \varepsilon_{x}=\frac{64}{7} \mathrm{~W} / \mathrm{Hz} \\
& \varepsilon_{x}(D M T \text { Loading })=\frac{7}{8} \cdot \varepsilon_{x}=8 \mathrm{~W} / \mathrm{Hz}
\end{aligned}
$$

$$
J
$$

New fully used Nyquist Band

Resampled Design Matlab Commands

```
>> D=exp(j*[0:100]*(7/8)*.01* pi);
>> H7=sqrt(8/7)*(ones(1,101)+.9*D);
>> H7=[H7,conj(H7(101:-1:2))];
>> h7=real(ifft(H7));
>> h=[h7(200:201),h7(1:5)]=
    -0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232
>> H=toeplitz([h(1),h(7:-1:2)]',h) =
    -0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232
    0.0232-0.1011 0.9393 1.1979 -0.0603 0.0394 -0.0292
    -0.0292 0.0232 -0.1011 0.9393 1.1979 -0.0603 0.0394
    0.0394 -0.0292 0.0232-0.1011 0.9393 1.1979 -0.0603
    -0.0603 0.0394
    1.1979 -0.0603 0.0394 -0.0292 0.0232 -0.1011 0.9393
    0.9393 1.1979 -0.0603 0.0394 -0.0292 0.0232 -0.1011
>> H=sqrt(1/.181)*H;
>> J7=hankel([zeros(1,6),1]');
>> Q7=(1/sqrt(7))*J7*fft(J7);
>> rXX=diag([1.23,1.19,.96,.96,1.19,1.23,1.24]);
>> rxx=real(Q7'*rXX*Q7);
>> Phibar=lohc(rxx);
>> A=Phibar;
```

>> D=exp($\left.\mathrm{j}^{\star}[0: 100]^{\star}(7 / 8)^{\star} .01^{\star} \mathrm{pi}\right)$;
>> H7=sqrt(8/7)*(ones(1,101)+.9*D);
>> H7=[H7,conj(H7(101:-1:2))];
>> h7=real(ifft(H7));
>> h=[h7(200:201),h7(1:5)] =
>> H=toeplitz([h(1),h(7:-1:2)]',h) =
$\begin{array}{lllllll}-0.1011 & 0.9393 & 1.1979 & -0.0603 & 0.0394 & -0.0292 & 0.0232\end{array}$
$\begin{array}{lllllll}0.0232 & -0.1011 & 0.9393 & 1.1979 & -0.0603 & 0.0394 & -0.0292\end{array}$
$\begin{array}{lllllll}0.0394 & -0.0292 & 0.0232 & -0.1011 & 0.9393 & 1.1979 & -0.0603\end{array}$
$\begin{array}{lllllll}-0.0603 & 0.0394 & -0.0292 & 0.0232 & -0.1011 & 0.9393 & 1.1979\end{array}$
$\begin{array}{llllllll}1.1979 & -0.0603 & 0.0394 & -0.0292 & 0.0232 & -0.1011 & 0.9393\end{array}$
$\begin{array}{lllllll}0.9393 & 1.1979 & -0.0603 & 0.0394 & -0.0292 & 0.0232 & -0.1011\end{array}$
>> H=sqrt(1/.181)*H;
>> J7=hankel([zeros(1,6),1]');
>> Q7=(1/sqrt(7))* ${ }^{*}{ }^{*} f f t(J 7)$;
>> rxx=real(O7'*rXX*Q7);
>> A=Phibar;
>> [snrGDFEu, GU, WU, S0, MSWMFU, b, bbar] = computeGDFE(H, A, 2, 8)
snrGDFEu $=9.1416 \mathrm{~dB}$ (higher, but at lower symbol rate) GU =

1.0000	0.4783	-0.0492	-0.0074	0.0208	-0.0760	0.4583
0	1.0000	0.5663	-0.0507	-0.0100	0.0385	-0.2577
0	0	1.0000	0.5952	-0.0517	-0.0208	0.1470
0	0	0	1.0000	0.6049	-0.0463	-0.0833
0	0	0	0	1.0000	0.6042	-0.0105
0	0	0	0	0	1.0000	0.6074
0	0	0	0	0	0	1.0000

MSWMFU =
$\begin{array}{lllllll}-0.0173 & 0.0040 & -0.0050 & 0.0068 & -0.0103 & 0.2054 & 0.1611\end{array}$
$\begin{array}{llllllll}0.1971 & -0.0222 & 0.0069 & -0.0089 & 0.0125 & -0.1032 & 0.1701\end{array}$
$\begin{array}{lllllll}0.1583 & 0.2097 & -0.0250 & 0.0095 & -0.0127 & 0.0677 & -0.0866\end{array}$
$\begin{array}{llllllll}-0.0808 & 0.1539 & 0.2145 & -0.0268 & 0.0118 & -0.0445 & 0.0590\end{array}$
$\begin{array}{lllllll}0.0559 & -0.0786 & 0.1520 & 0.2166 & -0.0283 & 0.0302 & -0.0397\end{array}$
$\begin{array}{llllllll}-0.0401 & 0.0562 & -0.0788 & 0.1522 & 0.2163 & -0.0258 & 0.0308\end{array}$
$\begin{array}{lllllll}0.0724 & -0.0769 & 0.0956 & -0.1281 & 0.2194 & 0.1136 & -0.0825\end{array}$
>> $b^{\prime}=$
$\begin{array}{llllllll}0.9313 & 0.8775 & 0.8700 & 0.8691 & 0.8690 & 0.8697 & 0.7970\end{array}$
>> bbar $=1.6013$
$\gg \mathrm{R}=\mathrm{bbar}^{*}(7 / 8)=1.4718$ (bits/sec) $>1.3814 \mathrm{bits} / \mathrm{sec}$ (same as interp)

Also

7 Dimensions

Converges On GU

(and WU Not shown)

- See also the two-band example in Section 5.3
- Tedious but could be helpful in following details for a multiband CDFE (e.g. - uplink carrier aggregation with multiple resource blocks in Cellular)

Some Final Comments

- The GDFE is canonical - capacity rate is reliably achievable with $\Gamma=0$ (or capacity less shaping loss)
- GDFE can have error propagation (limited to \bar{N}) if $\Gamma>0 \mathrm{~dB}$
- Unless it is VC ($\sim D M T$), which is ML decoder uniquely amoung all GDFEs
- Other GDFE's becoming increasingly less favorable performance relative to VC/DMT as gap grows
- The DMT form benefits from FFT algorithms so also more cost effective than the others
- By Separation Theorem, Coded-OFDM can capture the DMT benefits also without error propagation
- But will rapidly lose performance relatively if input is not water filling
- The MMSE-DFE is limiting (stationary) case of the CDFE and can be canonical
- Set of MMSE-DFE's for each of which PWC holds
- Has unlimited error propagation (use precoder) and also degrades more rapidly for nonzero-gap codes

Eventual Global Conclusion: Use DMT (wireline) or C-OFDM (wireless) on almost all difficult single-user transmission systems

MAC and GDFE Comparison

The MMSE MAC vs MMSE GDFE

- GDFE
- Designed for "single-user" $H ; A=R_{x x}^{1 / 2}$
- MMSE: $R_{b}^{-1}=R_{x x}^{-* / 2} \cdot H^{*} \cdot R_{n n}^{-1} \cdot H \cdot R_{x x}^{-1 / 2}+I=G \cdot S_{0} \cdot G^{*}$
- Canonical decision feedback (decisions correct)
- Input restriction trace $\left\{R_{x x}\right\} \leq \mathcal{E}_{x}$
- Rate does not depend on dimensional order (no err prop)

- MAC
- Designed for block-diag $\operatorname{trace}\left\{R_{x x}\right\} \leq \mathcal{E}_{x}$
- only in energy-sum case
- Usually has input energies trace $\left\{R_{x x}(u)\right\} \leq \mathcal{E}_{u}$; separation locations; $A_{u}=R_{x x}^{1 / 2}(u) ; A=R_{x x}^{1 / 2}$
- MMSE: $R_{b}^{-1}=R_{x x}^{-* / 2} \cdot H^{*} \cdot R_{n n}^{-1} \cdot H \cdot R_{x x}^{-1 / 2}+I=G \cdot S_{0} \cdot G^{*}$
- Canonical decision feedback (decisions correct)
- by user - order is more important

A Scalar Example Revisited

- MAC 80/60 channel

```
>> H=[80 60];
\(\gg\) Rxx=0.5*eye(2); (equal energy both dim/users)
\(\gg \mathrm{A}=\left[\right.\) sqrt(.5) \(0^{\prime}\); 0 sqrt(.5) ];
\(\gg\) Lxu=[11];
\(\gg \mathrm{cb}=2\);
>> [b, GU, WU, S0, MSWMFU] = mu_mac(H, A, Lxu , cb);
\(\mathrm{b}=5.82220 .3218\)
\(\mathrm{GU}=1.0000 \quad 0.7500 \quad \mathrm{MSWMFU}=0.0177\)
    0 1.0000 0.0236
\(\mathrm{SO}=1.0 \mathrm{e}+03\) *
    \(3.2010 \quad 0\)
            \(0 \quad 0.0016\)
>> sum(b) \(=6.1440\)
\(\gg 10^{\star} \log 10\left(2^{\wedge}(6.1440)-1\right)=18.4334 \mathrm{~dB}\)
```

- GDFE - remove singularity

```
\(\gg[F, L, M]=\operatorname{svd}(H)\);
\(\gg[F, L, M]=\operatorname{svd}(H)\)
\(F=1\)
\(L=100 \quad 0\)
\(M=\)
    \(0.8000-0.6000\)
    \(0.6000 \quad 0.8000\)
\(\gg 0.5^{*} \log 2\left(1+0.5^{*} \mathrm{~L}(1)^{\wedge} 2\right)=6.1440\)
```

All energy on pass space
$\gg 0.5^{\star} \log 2\left(1+L(1)^{\wedge} 2\right)=6.64>6.144$

- But input is $\quad x=\left[\begin{array}{l}.800 \\ .600\end{array}\right] \cdot v$
- v goes to both channel input dimensions (not MAC)
- All GDFE's with this input $R_{x x}=[\mathbf{1 0 ; 0} \mathbf{0}]$ perform same
- And trivially have $G=1$

Or use computeGDFE.m

```
>> [snrGDFEu, GU, WU, S0, MSWMFU, b, bbar,
snrGLEu] = computeGDFE(H, A, cb)
snrGDFEu = 18.4334 dB
GU =
    1.0000 0.7500
        0}1.000
WU =
    0.0003 0
    -1.3333 1.7783
SO = 1.0e+03 *
    3.2010 0
        0.0016
MSWMFU =
    0 . 0 1 7 7
    0 . 0 2 3 6
b=
    5 . 8 2 2 2
    0.3218
bbar= 3.0720
snrGLEu= 16.8125 dB
>> sum(b) = 6.1440
```

```
No Lx
```

No Lx
input

```
input
```

```
>> [F,L,M]=svd(H);
>> Lx=2;
[snrGDFEu, GU, WU, S0, MSWMFU, b, bbar, snrGLEu] =
computeGDFE(H, M(:,1), cb,Lx)
snrGDFEu= 19.9566
GU = 1
WU = 1.0000e-04
SO = 10001
MSWMFU = 0.0100
b= 6.6439
bbar= 3.3220
snrGLEu = 19.9566(dB) - linear is same for VC
(same energy, but more going to best mode)
```

Better to use mu_mac with a MAC,
Than to play with cb \& Lx on computeGDFE,
which is really for single user GDFEs,
Similarly: use computeGDFE on single user

Correct comparison with GDFE notes the A input has 2 real dimensions

 VC resets the Lx to 2 as optional $4^{\text {th }}$ computeGDFE input- MAC Loss - ratio of single-user capacity SNR to MAC maximum-rate-sum SNR (for [$\left.\begin{array}{lll}H & R_{n \boldsymbol{n}}\end{array}\right]$)

$$
\gamma_{M A C} \triangleq \frac{2^{2 \cdot \bar{C}}-1}{2^{2 \cdot \bar{e}_{e-s u m}}-1}
$$

- For the previous example $\quad \gamma_{M A C}=\frac{2^{6.64}-1}{2^{6.144}-1}=1.5 \mathrm{~dB}$
- Clearly $0 \leq \gamma_{M A C} \leq 1$

See also split-dimensionality example in Section 5.4.1

Tonal MAC (with DMT)

 Section 5.4.2Note Section 5.4.1's two-user ISI-GDFE is interesting, but largely becomes superfluous with the tonal vector-DMT system.

Align Receiver DMT Symbols for MAC

- So far, examples have largely been space time (with a few antennas)
- In practice, there usually is also a temporal (time-freq) C-OFDM or DMT system also present.

Vector DMT/OFDM with MAC

Tonal MAC

$$
R_{\boldsymbol{X} \boldsymbol{X}}(u, n)=\mathbb{E}\left[\boldsymbol{X}_{u, n} \cdot \boldsymbol{X}_{u, n}^{*}\right]
$$

$$
\sum_{n} \operatorname{trace}\left\{R_{X X}(u, n)\right\} \leq \varepsilon_{u} \forall u=1, \ldots, U
$$

$$
\text { Esum-MAC: } \sum_{u=1}^{U} \sum_{n=0}^{\bar{N}} \text { trace }\left\{R_{X X}(u, n)\right\} \leq \mathcal{E}_{x}
$$

- Symbol boundaries align through cyclic-extension (guard period) uses (even with different channel delays)
- Basically, an IFFT per transmit-antenna-user
- Discrete version of the MT MAC, indeed all SVD's, Cholesky's, and QR factorizations become "frequency-dependent" (in limit)
- Discrete tonal modulators and GDFEs are independent

- Put an " n " index on all the GDFE design equations

$$
\begin{aligned}
b_{u, \ell} & =\sum_{n=0}^{\bar{N}-1} b_{u, \ell, n} \\
b_{u, n} & =\sum_{\ell=1}^{L_{x, u}} b_{u, \ell, n} \\
b_{u} & =\sum_{\ell=1}^{L_{x, u}} \sum_{n=0}^{\bar{N}-1} b_{u, \ell, n} \\
b & =\sum_{u=1}^{U} \sum_{\ell=1}^{L_{x, u}} \sum_{n=0}^{\bar{N}-1} b_{u, \ell, n} .
\end{aligned}
$$

Example complex BB channel

More users than antennas

Allow up to 64 resource Blocks (tones) for each user, all in same channel

- Illustrates many effects

$$
H(D)=\left[\begin{array}{ccc}
1+.9 \cdot D & -.3 \cdot D+.2 \cdot D^{2} & .8 \\
.5 \cdot D-.4 \cdot D^{2} & 1-D-.63 \cdot D^{2}+.648 \cdot D^{3} & 1-D
\end{array}\right]
$$

Example has ISI and MIMO together

- 3 user channels
- Any tone will maximally have rank $\wp_{H}=2 ; \mathcal{N}_{0}=.01$
$H(D)=\left[\begin{array}{ccc}1+.9 D & -.3 D+.2 D^{2} & .8 \\ .5 D-.4 D^{2} & 1-D-.63 D^{2}+.648 D^{3} & 1-D\end{array}\right]$


```
h=cat(3,[1 0 . 8; 0 1 1],[.9 -. 3 0; .5-1 -1],[0 .2 0;.4-.63 0],[0 0 0; 0 . 648 0])*10;
h(:,:,1)=
    10}0
    0
h(::,2) =
    9 -3 0
    5 -10 -10
h(:,:,3)=
    0 2.0000 0
    4.0000 -6.3000 0
h(:,:4) =
    0}0
N=8;
H = fft(h, N, 3)
> H = fft(h, N, 3)
H(:,:,1) =
    19.0000+0.0000i -1.0000+0.0000i 8.0000+0.0000i
    9.0000+0.0000i 0.1800+0.0000i 0.0000+0.0000i
H(:,:,2) =
16.3640-6.3640i -2.1213+0.1213i 8.0000 + 0.0000i
3.5355-7.5355i -1.6531+8.7890i 2.9289+7.0711i
And 6 more values, see text
```


\leftarrow Increase to 64 - look ahead at MAC with equal energy every dimension

Actual MAC/GDFE cacluations for L14:17

White-Input Tonal GDFE

```
```

Nmax=32;

```
```

Nmax=32;
U=3;
U=3;
Ly=2;
Ly=2;
cb=1;
cb=1;
Lxu=[lllll
Lxu=[lllll
bsum=zeros(1,Nmax);
bsum=zeros(1,Nmax);
for index=1:Nmax
for index=1:Nmax
i=2*index;
i=2*index;
H=fft(h,i, 3);
H=fft(h,i, 3);
GU=zeros(U,U,i);
GU=zeros(U,U,i);
WU=zeros(U,U,i);
WU=zeros(U,U,i);
S0=zeros(U,U,i);
S0=zeros(U,U,i);
Bu=zeros(U,i);
Bu=zeros(U,i);
MSWMFU=zeros(U,Ly,i);
MSWMFU=zeros(U,Ly,i);
AU=zeros(3,3,i);
AU=zeros(3,3,i);
for n=1:i
for n=1:i
AU(:,:,n)=sqrt(i)/sqrt(i+3)*eye(3);
AU(:,:,n)=sqrt(i)/sqrt(i+3)*eye(3);
end
end
for n=1:i
for n=1:i
[Bu(:,n), GU(:,:,n) , WU(:,:,n),S0(:,:,n), MSWMFU(:,:,n)] = ..
[Bu(:,n), GU(:,:,n) , WU(:,:,n),S0(:,:,n), MSWMFU(:,:,n)] = ..
mu_mac(H(:,,n), AU(:,:,n), Lxu, cb);
mu_mac(H(:,,n), AU(:,:,n), Lxu, cb);
end
end
bvec=sum(Bu');
bvec=sum(Bu');
Bsum(index) = sum(bvec);
Bsum(index) = sum(bvec);
End
End
bvec=445.1264 412.8794 132.7477
bvec=445.1264 412.8794 132.7477
sum(bvec) = 990.7535

```
```

sum(bvec) = 990.7535

```
```

```
>> GU(:;,23) =
    1.0000+0.0000i -1.3365+0.3447i -0.3093+0.3130i
    0.0000+0.0000i 1.0000+0.0000i 0.8108+0.4218i
    0.0000+0.0000i 0.0000+0.0000i 1.0000 + 0.0000i
>> MSWMFU(:,:,15) =
    0.0454+0.0341i -0.0105 + 0.0249
    0.0183+0.0179i 0.0275-0.0468i
    0.0589 + 0.0199i 0.0179-0.0416i
>> SNRs = 10*log10(diag(S0(:,:,29)).^(64/67)-eye(3)) =
12.1946
20.7691
8.8939
```


Feedback is sizeable

Simultaneous Water Filling with DMT

- Frequency $f \rightarrow$ tone index n

See also Section 2.7.4.2 and Lecture 8

- Find all noise and crosstalk
- $R_{\text {noise }}(u, n)=\sum_{i \neq u} H_{i, n} \cdot R_{\boldsymbol{X X}}(i, n) \cdot H_{i, n}^{*}+R_{N N}(n)$
- Create a noise-equivalent that includes all other users as noise (no order, all)
- $\widetilde{H}_{u, n}=R_{n o i s e}^{-1 / 2}(u, n) \cdot H_{u, n}=F_{u, n} \cdot \Lambda_{u, n} \cdot M_{u, n}^{*}$
- Water-fill each user
- $\varepsilon_{u, l, n}+\frac{1}{g_{u, l, n}}=K_{u} \forall n, l$ with $g_{u, l, n}=\lambda_{u, l . n}^{2}$
- Form resulting input autocorrelation matrices (energy distribution with $L_{x, u}=1$)
- $R_{X X}^{o}(u, n)=M_{u, n} \cdot \operatorname{Diag}\left\{\varepsilon_{u, n}\right\} \cdot M_{u, n}^{*} \forall n=0, \ldots, \bar{N}-1$

With MT and Ly=1
There is always an FDM SWF solution

SWF.m versus macmax.m

>> help SWF
function [Rxx, bsum , bsum_lin] = SWF(Eu, H, user_ind, Rnn, cb)
Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE) The input is space-time domain h, and the user can specify a temporal block symbol size N (essentially an FFT size).

Inputs:
Eu U x 1 energy/SAMPLE vector. Single scalar equal energy all users any ($\mathrm{N} / \mathrm{N}+\mathrm{nu}$) scaling should occur BEFORE input to this program
H The FREQUENCY-DOMAIN Ly x sum (Lx(u)) x N MIMO channel for all users. N is determined from size (H) where $N=\#$ tones
(equally spaced over $(0,1 / T)$ at N / T.
if time-domain h, H = 1/sqrt(N)*fft(h, N, 3);
user_ind The start index for each user, in the same order as Eu
The Lxu vector of each user's number of antennas is computed internally. \% U is determined from user_ind
Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is per tone)
$\mathrm{cb} \mathrm{cb}=1$ for complex, $\mathrm{cb}=2$ for real baseband

Outputs:

Rxx A block-diagonal psd matrix with the input autocorrelation for each
user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N.
sum trace(Rxx) over tones and spatial dimensions equal the Eu
bsum the maximum rate sum.
bsum bsum_lin - the maximum sum rate with a linear receiver b is an internal convergence sum rate value, not output

This program is modified version of one originally supplied by student Chris Baca
function [Rxx, bsum, bsum_lin] = macmax(Eu, h, Lxu, N , cb)

Simultaneous water-filling Esum MAC max rate sum (linear \& nonlinear GDFE) The input is space-time domain h , and the user can specify a temporal block symbol size N (essentially an FFT size).

This program uses the CVX package
the inputs are:
Eu The sum-user energy/SAMPLE scalar.
This will be increased by the number of tones N by this program. Each user energy should be scaled by $N /(N+n u)$ if there is cyclic prefix
This energy is the trace of the corresponding user Rxx (u)
The sum energy is compouted as the sum of the Eu components internally.
h The TIME-DOMAIN Ly x sum(Lx(u)) \times N channel for all users
Lxu The number of antennas for each user $1 \times U$
N The number of used tones (equally spaced over $(0,1 / T)$ at N / T.
$\mathrm{cb} \mathrm{cb}=1$ for complex, $\mathrm{cb}=2$ for real baseband
the outputs are:
Rxx A block-diagonal psd matrix with the input autocorrelation for each user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N . sum trace(Rxx) over tones and spatial dimensions equal the Eu bsum the maximum rate sum.
bsum bsum_lin - the maximum sum rate with a linear receiver

Energy-Sum MAC

- SWF is frequency domain input (useful with non-white noise psd) and uses no CVX - while macmax is time-domain (and uses Lxu instead of user_ind) and uses CVX -

Max Rate sum Example

```
h=cat(3,[10.8;011],[.9 -. 3 0;.5-1-1],[0.2 0;.4-.63 0],[0 0 0 ; 0 .648 0])* * 10;
bsum=zeros(1,Nmax);
bsumlin=zeros(1,Nmax);
for index=1:Nmax
    i=2*index; % (don't need to plot a point for every number of tones)
    H=fft(h, i, 3);
    Rnn=zeros(Ly,Ly,i);
        for n=1:i
        Rnn(:,:,n) = eye(2);
        end
    [Rxx, bsum(index), bsumlin(index)] = SWF(i/(i+3)*[[111], H, [1 111], Rnn(:,,:;), 1);
    bsum(index)=bsum(index)/(i+3);
    bsumlin(index)=bsumlin(index)/(i+3);
end
bsum(32)*67= 1011.1 > 990.8
bsumlin(32)*67 = 578.8502
plot(2*[1:Nmax], bsum,2*[1:Nmax],bsumlin)
```

- Even with 3 users > 2 antennas, linear loses much
- ~ 20 dB (from "link budget)
- Linear curve variation is because \bar{N} is finite and the simultaneous water filling is not necessarily best solution under linear restriction When would "linear receiver be best?"

If vector-coding could be used, But not possible on MAC in general

max-sum prob is not convex, See OSB in Sec 5.6

Rxx(:, , ,1)	
1.4504	00
0	0 0
	01.3050
Rxx($(,, 2$ 2) $=$	
1.4512	20
0	0 0
	$0 \quad 1.3120$
Rxx(:,.,3) =	
1.4528	00
0	0 0
	01.3274
Rxx(:,.,9) =	
1.4419	0
	0.0670 0
	$0 \quad 1.3303$
Rxx(:., 11) =	
1.3170	0
01	1.02280
0	$0 \quad 0.5748$
Rxx(:.,,15) =	
1.3889	0
	1.4116
0	00.1513
Rxx(:.,26) =	
0.1384	00
01.4184	
$0 \quad 0 \quad 1.3192$	

```
Rxx(:,;27)=
    0 0
    0}1.4939 
    0
Rxx(:,:,28) =
    0 0 0
    0}1.4885 
    0 0 1.3761
Rxx(:,:,31) =
    0 0 0
    0 1.4229 0
    0 0 1.3689
Rxx(:,:,32) =
    0
    0 0 1.3606
Rxx(:,:,39)=
    0 0 0
    0 1.4939 0
    0 0
Rxx(::,,40) =
0.1384 0}
    0 1.4184 0
    0 0 1.3192
Rxx(:,:51)=
    1.3889 0 0
        0 1.4116 0
        0 0.1513
Rxx(:,:52) =
    1.3871 0}
        0}1.3929 
        0}00.170
```


$$
\wp_{H, n}<U \text { ?? }
$$

With $\bar{N}>1$, there can be some tones that use all 3 dimensions

These are equivalent to time-shared (dimension shared) of 2-user-only tones

Cannot happen when $\bar{N}=1 \& \wp_{H}<U$

```
[RxxEsum, bsumEsum, bsum_linEsum] = macmax(3*64/67, h, [1 1 1], 64 , 1);
bsumEsum = 1011.3 > 1011.2 (just slightly)
bsum_linEsum = 571.7289 < 578.85 (no guarantee that linear version is best)
>> sum(real(Rxx),3) =
61.1343 0 0
    061.1343 0
    0 0 61.1343
>> 64^2/67 = 61.1343 checks on each dimension
>> trace(sum(real(Rxx),3)) = 183.4030 (clearly 3x single dimensional energy)
```

- The RxxEsum are very similar to those from SWF.m
- While many tones individually zero one user (consistent with secondary-component concept)
- Not the same user for all such tones
- Some energize all 3 users
- $\sum_{n} \wp_{H, n}>U$, significantly so. This means there is effectively dimension-sharing occurring over the 64 tones, at least for the rate-sum max.

Gain is larger when crosstalk is larger

- Binders of copper wires (think ethernet or your neighbor cable of telephone wires) crosstalk
- Highly variable with twisting (even measuring point can lead to 20 dB or more variation if moved an inch or two)
- Probabalistic models (like wireless' distributions) used
- Average xtalk is larger on SHORTER wires
- Why?
- They use higher frequencies that are less attenuated
- Example is vectored VDSL (upstream MAC)
- Each user has its own "link" that terminates (upstream) on a common receiver - by default all primary users (no timesharing needed)
- "perfect massive MIMO" all (used) tones (plot is for 25 links)
- Can see up to $U=384$ links vectored (predates "massive MIMO" in invention and use by 10 years)
- The GDFE cancels the crosstalk
- It exhibits diagonal dominance too. Why?
- So typically no feedback section used
- Actually, some "mgfast" (ITU G.9711) to 5 Gbps multiuser and 10 Gbps "fastback" (ITU G.9702), 2 pairs - 3 channels, single user can use some GDFE's at lowest frequencies

Wireless - uplink Cellular or Wi-Fi

- The C-OFDM systems are as in Lecture 6
- Common FFTs in the single MAC receiver (one for each spatial stream/dimension with MIMO)
- They share common frequencies
- Usually no feedback sections used Yet, so linear setting from computeGDFE provides performance

OK - All good, but what is $R_{x x}(u)$ when we don't maximize a rate sum??

Designs with weighted sums

Section 5.4.3

Capacity region(s)

- $\mathcal{C}(\boldsymbol{b})$ contains all possible weighted rate sums $\sum_{u=1}^{U} \theta_{u} \cdot b_{u}$ that meet energy-vector constraint $\mathcal{E} \leqslant \boldsymbol{E}_{x}$
- The max-b-sum point is "highest" (tangent to plane $\mathbf{1}^{t} \cdot \boldsymbol{b}$) with \boldsymbol{b} in $\mathcal{C}(\boldsymbol{b})$, but we want another \boldsymbol{b} !
- If $\mathcal{\varepsilon} \preccurlyeq \mathcal{E}_{x}$, then b is admissible
- If not, we might still desire the minimum energy-sum that achieves \boldsymbol{b}

minimum weighted energy sum

- Minimize weighted energy sum \mathcal{E}_{x}, given \boldsymbol{b}
- No energy limit (beyond minimum)
- Energy weights \boldsymbol{w} given, non-negative

$$
\begin{array}{rc}
\min _{\left\{R \boldsymbol{x} \boldsymbol{x}^{(u)\}}\right.} & \sum_{u=1}^{U} w_{u} \cdot \operatorname{trace} \underbrace{\left\{R_{\boldsymbol{x} \boldsymbol{x}}(u)\right\}}_{\mathcal{E}_{u}} \\
S T: & \boldsymbol{b} \succeq\left[b_{1, \text { min }} b_{2, \text { min }} \ldots b_{U, \min }\right]^{*}=\boldsymbol{b}_{\min }^{*} \succeq \mathbf{0} \\
\mathcal{E} \succeq \mathbf{0} .
\end{array}
$$

- Maximize weighted rate sum b, given $\boldsymbol{\mathcal { E }}$
- No rate limit
- rate weights $\boldsymbol{\theta}$ given, non-negative

\max rate sum; $\boldsymbol{\theta}=\mathbf{1}$
- These are "dual" problems

$$
\begin{aligned}
& L_{\min E}\left(R_{\boldsymbol{x} \boldsymbol{x}}, \boldsymbol{b}, \boldsymbol{w}, \boldsymbol{\theta}\right)=\max _{\boldsymbol{\theta}} \min _{R \boldsymbol{x} \boldsymbol{x}} \underbrace{\sum_{u=1}^{U}\left[w_{u} \cdot \operatorname{trace}\left\{R_{\boldsymbol{x} \boldsymbol{x}}(u)\right\}+\theta_{u} \cdot b_{u}\right.}_{\text {common term }}-\theta_{u} \cdot b_{\min , u}] \\
& L_{\max R}\left(R_{\boldsymbol{x} \boldsymbol{x}}, \boldsymbol{b}, \boldsymbol{w}, \boldsymbol{\theta}\right)=\min _{\boldsymbol{w}} \max _{R} \boldsymbol{x} \boldsymbol{x} \underbrace{\underbrace{U}_{u=1}\left[w_{u} \cdot \operatorname{trace}\left\{R_{\boldsymbol{x} \boldsymbol{x}}(u)\right\}+\theta_{u} \cdot b_{u}\right.}_{\text {common term }}-w_{u} \cdot \mathcal{E}_{\max , u}]
\end{aligned}
$$

Basic Solution Cycles

" Each of these "boxes" (subnetworks) can be intense calculation, but (~, see L14: 31) convex and convergent

- The overall recursive cycling also converges if $\boldsymbol{b} \in \mathcal{C}(\boldsymbol{b})$

Potential Project - approximate this with ML/AI method?

Tonal Lagrangian

- Minimize (over $R_{x x}(u)$) weighted sum at any given (think temporary) $\boldsymbol{\theta}$ where \boldsymbol{b} and \boldsymbol{w} are the specified values

$$
L\left(R_{\boldsymbol{X} \boldsymbol{X}}, \boldsymbol{b}, \boldsymbol{w}, \boldsymbol{\theta}\right)=\sum_{n=0}^{\bar{N}-1}\{\underbrace{\sum_{u=1}^{U}\left[w_{u} \cdot \operatorname{trace}\left\{R_{\boldsymbol{X} \boldsymbol{X}}(u, n)\right\}-\sum_{u=1}^{U} \theta_{u} \cdot b_{u, n}\right]}_{L_{n}\left(R_{X} \boldsymbol{X}^{\left.(n), \boldsymbol{b}_{n}, \boldsymbol{w}, \boldsymbol{\theta}\right)}\right.}\}+\theta_{u} \cdot b_{u} \quad \begin{array}{|c:c}
\begin{array}{c}
\text { With fixed } \boldsymbol{\theta} \succcurlyeq \boldsymbol{0} \\
\text { each tone can } \\
\text { be individually } \\
\text { minimized }
\end{array} \\
\hline
\end{array}
$$

- Which produces then for tone n

$$
L_{m i n}(\boldsymbol{\theta}, n) \triangleq \min _{\left\{R \boldsymbol{X} \boldsymbol{X}^{(u, n)\}, b_{u, n}}\right.} L_{n}\left(R_{\boldsymbol{X}} \boldsymbol{X}^{\left.(n), \boldsymbol{b}_{n}, \boldsymbol{w}, \boldsymbol{\theta}\right)}\right.
$$

- Then max over $\boldsymbol{\theta}$

$$
L^{*}=\max _{\boldsymbol{\theta}} \sum_{n=0}^{\bar{N}-1} L_{m i n}(\boldsymbol{\theta}, n) \triangleq \max _{\boldsymbol{\theta}} L_{\text {min }}(\boldsymbol{\theta})
$$

- and satisfy tonal GDFE (achievable region) constraint

$$
\boldsymbol{b}_{n} \in\left\{\boldsymbol{b}_{n}\left|0 \leq \sum_{\boldsymbol{u} \subseteq \boldsymbol{U}} b_{u, n} \leq \log _{2}\right|\left(\sum_{u=1}^{U} \widetilde{H}_{u, n} \cdot R_{\boldsymbol{X} \boldsymbol{X}}(u, n) \cdot \widetilde{H}_{u, n}^{*}\right)+I \mid\right\}=\mathcal{A}_{n}\left(\left\{R_{\boldsymbol{X} \boldsymbol{X}}(n)\right\}, \bar{H}_{n}\right)
$$

- Maximum $\sum_{u=1}^{U} \theta_{u} \cdot b_{u, n}$ occurs at $\mathcal{A}_{n}\left(R_{X X}(u, n), b_{n}\right)$ vertex (think slope -1 line and pentagon)
- Given $R_{X X}(u, n) \rightarrow R_{X X}(u)$; equivalently max $\sum_{u=1}^{U} \theta_{u} \cdot b_{u}$ occurs at $\mathcal{A}\left(R_{X X}(u), \boldsymbol{b}\right)$ vertex
- That max-weighted-sum vertex has specific θ_{u}, that must satisfy $\theta_{\pi^{-1}(U)} \geq \theta_{\pi^{-1}(U-1)} \geq \ldots \geq \theta_{\pi^{-1}(1)} \begin{gathered}\mid \text { slope } \mid>1 \\ \theta_{2}<\theta_{1}\end{gathered}$
- Proof see Theorem 5.4.1, and also discussion in Sec 5.4.4.1. (Same order all tones)
- Don't need to test all orders - optimum order is inferred from the (converged) real vector $\boldsymbol{\theta}$!!
- The user data rates in $\mathcal{A}_{n}\left(R_{X X}(u, n), \boldsymbol{b}_{n}\right)$ must satisfy the (sum of) tonal-GDFE constraint(s):

$$
\begin{aligned}
b_{u, n}=\log _{2}\left\{\frac{\left|R_{y y}(u, n)\right|}{\left|R_{y y}(u-1, n)\right|}\right\} & =\log _{2} \mid \sum_{i=1}^{u} \widetilde{H}_{\pi^{-1}(i), n} \cdot R_{\boldsymbol{X}} \boldsymbol{X}^{\left(\pi^{-1}(i), n\right) \cdot \widetilde{H}_{\pi^{-1}(i), n}^{*}+I \mid} \\
& -\log _{2}\left|\sum_{i=1}^{u-1} \widetilde{H}_{\pi^{-1}(i), n} \cdot R_{\boldsymbol{X} \boldsymbol{X}}\left(\pi^{-1}(i), n\right) \cdot \widetilde{H}_{\pi^{-1}(i), n}^{*}+I\right|
\end{aligned}
$$

- For given $\boldsymbol{\theta}$, min weighted rate sum over $R_{X X}(u, n)$ minimizes convex sum

$$
\sum_{u=1}^{U} \theta_{u} \cdot b_{u, n}=\sum_{u=1}^{U}\{\underbrace{\left[\theta_{\pi^{-1}(u)}-\theta_{\pi^{-1}(u+1)}\right]}_{\delta_{\pi-1}(u) \leq 0} \cdot \log _{2}\left|\sum_{i=u}^{U} \widetilde{H}_{\pi^{-1}(i), n} \cdot R_{\boldsymbol{X} \boldsymbol{X}}\left(\pi^{-1}(i), n\right) \cdot \widetilde{H}_{\pi^{-1}(i), n}^{*}+I\right|\}
$$

Equal Theta

- Successive equal theta values
- This can happen often
- Usually happens when there are secondary user components
- The corresponding rate-sum difference term(s) is (are) zero
- Only the sum rate of the corresponding users can be varied $b_{\pi^{-1}(u)}+b_{\pi^{-1}(u)+1}$ is optimized
- The corresponding vertices for swapping the order (more generally varying when 3 or more) need to be "vertex-shared" in a proportion that causes the desired data rate to be achieved.
- Complicated program in matlab to do this, although concept is straightforward

Coming Attraction: The Stanford minPMAC program(s)

End Lecture 14

Two iterated steps

- $R_{X X}(u, n)$ step: With the given (current) $\boldsymbol{\theta}, \boldsymbol{w},\left\{b_{u, n}\right\}$, minimize the (neg) weighted rate sum over $R_{X X}(u, n)$
- Each tone separately and sum

$$
L_{\min }(\boldsymbol{\theta}, n)=\underbrace{\left.\boldsymbol{X} \boldsymbol{X}^{(n), \boldsymbol{b}_{n}}, \boldsymbol{w}, \boldsymbol{\theta}\right)}_{L_{n}(R} \underbrace{\sum_{u=1}^{U}\left[w _ { u } \cdot \operatorname { t r a c e } \left\{R \boldsymbol{X}^{\left.(u, n)\}-\sum_{u} \cdot b_{u, n}\right]}\right.\right.}_{u=1}
$$

e.g. $\quad L_{k+1}=L_{k}-\mu \cdot\left(\nabla^{2} L_{k}\right)^{-1} \cdot \nabla L_{k} \quad$ Weighted steepest descent ("Newton")

- Order step: With the given (current) $R_{X X}(u, n), \boldsymbol{w},\left\{b_{u, n}\right\}$, maximize the Lagrangian over $\boldsymbol{\theta}$

$$
L(\boldsymbol{\theta})=\sum_{n=1}^{\bar{N}} L_{\min }(\boldsymbol{\theta}, n)
$$

Initialize (first time only) with FM SWF for given \boldsymbol{b}
This is the "find the vertex set" - elliptic algorithm, see text

