Lecture 11
 Interference and Other MU Channels

May 10, 2023

John M. Cioffi
Hitachi Professor Emeritus of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements
- PS \#5 due May 17
- REMINDER - Class for 5/15 \rightarrow 5/19 3:00 @ 200-003
- Agenda
- Vector WCN-BC Design
- Scalar Duality (BC and MAC)
- Continuous-time scalar BC
- MAC-set approach to IC
- Examples
- IC maximum rate sum and energy sums
- Nesting, DAS, cellfree, \& relay

Multi-User Fundamentals				
7	4/24	Multi-User Channels and the Capacity Region	2.6	-/-
8	4/26	Multiple Access Channels	2.7	4/3
9	5/1	Broadcast Channels	2.8	-/-
--	5/3	Midterm Exam (open bk) hmwk, 5pm Tues		-/4
10	5/8	Broadcast Channels continued	2.8	5/-
11	5/10	Interference and Other MU Channels	2.9-11	-/-
no class Monday 5/15 - make up Friday 5/19, 3:00 200-003				
12	5/17	GDFE Basics	5.1-3	6/5
13	5/19	GDFE Input Optimization and Forms	5.3	---

Vector WCN-BC Design

PS5.3-2.30 Vector BC Design

WCN Design focuses on primary users

- Any secondary-user components"freeload" on the dimensions best used by primary-user components
- Delete the secondary-user components' rows from \widetilde{H} for initial WCN design
- Nontrivial precoder coefficients depend only upon these primary components
- Energized secondary components "dimension-share" those primary dimensions (reducing overall rate sum)
- WCN design provides BC insight, but is less direct than the earlier BC Design with mu_bc.m
- Chapter 5 will find a way for any desired $\boldsymbol{b}^{\prime} \in \mathcal{C}(\boldsymbol{b})$ to derive the $\left\{R_{x \boldsymbol{x}}(u)\right\}$, but the choice of \boldsymbol{b}^{\prime} (scheduling) may want to know about primary/secondary components

Only for primary users (\rightarrow nonsingular WCN)

- Use $R_{w c n}$ directly
- General $S_{w c n}$ is block diagonal
- Find A

- Indeed, that is the backward MMSE channel in there!
- $Q_{w c n}$ is also block

$$
\begin{equation*}
\Omega^{*} \cdot \mathcal{S}^{\prime} \cdot \Omega=R^{-1} \cdot H \cdot A\left(I+A^{*} \cdot H^{*} \cdot R^{-1} \cdot H \cdot A\right)^{-1} A^{*} \cdot H^{*} \cdot R^{-1} \tag{2.432}
\end{equation*}
$$

- QR factorization (primaries' channel)
- Extract $A=R_{x x}^{1 / 2}$ from tri inverse,
- which is the forward channel

$$
Q_{w c n} \cdot R_{w c n}^{-1} \cdot H=[\underbrace{\mathbf{0}}_{\left(L_{x}-U^{0}\right) \times U^{\circ}} \quad \underbrace{R}_{U^{\circ} \times U^{\circ}}]\left[\begin{array}{c}
\underbrace{\boldsymbol{Q}^{*}}_{U^{\circ} \times L_{x}}
\end{array}\right]=R \cdot Q^{*}
$$

- Cholesky factorization (input)

$$
\Phi \cdot \Phi^{*}=Q^{*} \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot Q
$$

- A special square root!
- "pre-triangularizes" the channel,
- which becomes $R \cdot \Phi$

$$
R_{\boldsymbol{x} \boldsymbol{x}}^{1 / 2}=A=Q \cdot \Phi
$$

The precoder

- Want monic G for precoder

$$
\begin{aligned}
D_{A} & \triangleq \operatorname{Diag}\{R \cdot \Phi\} \\
G & =D_{A}^{-1} \cdot R \cdot \Phi \\
S_{0} & =D_{A} \cdot\left(S^{\prime}\right)_{w c n}^{-1} \cdot D_{A}
\end{aligned}
$$

Find diagonal values

Monic Equivalent

- Check $=R_{b}$ for G and S_{0}

$$
\begin{align*}
G^{-1} \cdot S_{0}^{-1} \cdot G^{-*} & =\left(\Phi^{-1} \cdot R^{-1} \cdot D_{A}\right) \cdot\left(D_{A}^{-1} \cdot S_{w c n} \cdot D_{A}^{-1}\right) \cdot\left(D_{A} \cdot R^{-*} \cdot G^{-*}\right) \tag{2.441}\\
& =\Phi^{-1} \cdot R^{-1} \cdot S_{w c n} \cdot R^{-*} \cdot \Phi^{-*} \\
& =\Phi^{-1} \cdot R^{-1} \cdot\left[Q_{w c n} \cdot R_{w c n}^{-1} \cdot H \cdot A \cdot R_{b} \cdot A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot Q_{w c n}^{*}\right] \cdot R^{-*} \cdot \Phi^{-*} \\
& =\Phi^{-1} \cdot R^{-1} \cdot R \cdot Q^{*} \cdot Q \cdot \Phi \cdot R_{b} \cdot \Phi^{*} \cdot R^{*} \cdot R^{-*} \cdot A \cdot Q^{*} \cdot \Phi^{-*} \tag{2.443}\\
& =R_{b} .
\end{align*}
$$

- Check SNR and mutual-info

$$
\begin{aligned}
2^{\mathcal{I}_{w c n}(\boldsymbol{x} ; \boldsymbol{y})} & =\frac{\left|H \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot H^{*}+R_{w c n}\right|}{\left|R_{w c n}\right|} \\
& =\left|R_{w c n}^{-1 / 2} \cdot H \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot H^{*} \cdot R_{w c n}^{-* / 2}+I\right| \\
& =\left|R_{w c n}^{-1 / 2} \cdot H \cdot A \cdot A^{*} \cdot H^{*} \cdot R_{w c n}^{-* / 2}+I\right| \\
& =\left|A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot H \cdot A+I\right| \text { follows from SVD of } R_{w c n}^{-1 / 2} \cdot H \cdot A \\
& =\left|R_{b}^{-1}\right| \\
& =\left|S_{0}\right| \\
\mathcal{I}_{w c n}(\boldsymbol{x} ; \boldsymbol{y}) & =\log _{2}\left(\left|S_{0}\right|\right) \text { bits/complex subsymbol. }
\end{aligned}
$$

- The MMSE receiver is block diagonal!
- For WCN only
- Just what the BC needs

$$
\begin{aligned}
W & =\underbrace{S_{0}^{-1} \cdot G^{-*}}_{1-t o-1} \cdot \underbrace{A^{*} \cdot H^{*} \cdot R_{w c n}^{-1}}_{\text {noise-white-match }} \cdot \underbrace{Q_{w c n}^{*} \cdot Q_{w c n}}_{I} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot \Phi^{*} \cdot Q^{*} \cdot Q \cdot R^{*} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot \Phi^{*} \cdot R^{*} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot G^{-1} \cdot D_{A} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot D_{A} \cdot Q_{w c n},
\end{aligned}
$$

- Same bias removal as with all MMSE

BC WCN-Design Steps Summary (2.8.3.3)

Special Square Root

- Find $R_{w c n}$ - this step also finds $\mathcal{S}_{w c n}$ and also the primary/secondary users and $b_{\max }\left(R_{x x}\right)$
- Delete rows/columns (secondary sub user dimensions) with zeros from $\mathcal{S}_{w c n}$, and correspondingly then in $R_{w c n}$
- If $\mathcal{S}_{w c n}$ is non-trivial (block diagonal), form $\mathcal{S}_{w c n}=Q_{w c n}^{*} \cdot \mathcal{S}_{w c n}^{\prime} \cdot Q_{w c n}$ (eigen decomp)
- Perform QR factorization on $Q_{w c n} \cdot R_{w c n}^{-1} \cdot H=R \cdot Q^{*}$ where R is upper triangular, and Q is unitary
- Perform Cholesky Factorization on $Q^{*} \cdot R_{x x} \cdot Q=\Phi \cdot \Phi^{*}$ where Φ is also upper triangular
- And now, the special square root is $R_{x x}^{1 / 2}=Q \cdot \Phi$ (see diagram last page $=A$)

Precoder and Diagonal Receiver

- Find the diagonal matrix $D_{A}=\operatorname{Diag}\{R \cdot \Phi\}$
- Find the (primary sub-user) precoder $G=D_{A}^{-1} \cdot R \cdot \Phi$ (monic upper triangular)
- Find the backward MMSE (block) diagonal matrix $S_{0}=D_{A} \cdot\left(S^{\prime}\right)_{w c n}^{-1} \cdot D_{A}$ (note, $R_{b}^{-1}=G^{*} \cdot S_{0} \cdot G$)
- Block diagonal (unbiased) receiver is $W_{u n b}=\left(S_{0}-I\right)^{-1} \cdot D_{A} \cdot Q_{w c n}$
- Can check but $b_{m a x}\left(R_{x x}\right)$ from WCN will be $I_{w c n}(\boldsymbol{x} ; \boldsymbol{y})=\log _{2}\left|S_{0}\right|=\sum_{u=1}^{U^{o}} \log _{2}\left(1+S N R_{B C, w c n, u}\right)$

Example - all primary

- Energy $\mathcal{E}_{x}=2, L_{x}=2$

```
>>H=[[\begin{array}{ll}{80}&{70}\end{array}]
    50 60];
>> Rxx=[1 .8
        . 1];
```


$0 \quad 1.3388$
>> DA=diag(diag($\left.\mathrm{R}^{*} \mathrm{Phi}\right)$);
$\gg \mathrm{G}=\mathrm{inv}(\mathrm{DA})^{*} \mathrm{R}^{*} \mathrm{Phi}=$
1.000018 .1182
$0 \quad 1.0000$
>> A=Q*inv(R)*DA*G =
$0.2942-0.9557$
$-0.3381-0.9411$
$\gg S 0=D A * i n v(S w c n) * D A=1.0 e+04$ *
$0.0032-0.0000$
$-0.0000 \quad 2.0229$
\gg Wunb=(inv(S0)-eye(2))* $\mathrm{DA}=$
$5.3983-0.0000$
$-0.0000139 .9857$

Try different Input Rxx, See text

Indeed Diagona!!
\gg Gunb=eye(2) + SO*inv(SO-eye(2))** $($ G-eye(2)) $=$ 1.000018 .7103
01.0000
$\gg b=0.5^{*} \log 2(\operatorname{diag}(S 0))^{\prime}=2.49097 .1521$
\gg sum $(\mathrm{b})=9.6430$ (checks

```
>> Rxxrot=Q'*Rx**Q;
>> Phi=lohc(Rxxrot)=
Wunb* *****inv(G) =
    -0.6987-755.7235
    0.4482 0.0825
    -780.3821-454.9625
```

 9.6430 (checks
 ORDER IS REVERSED SO SWITCH USERS!

Return to Design

- The design can allocate $R_{x x}$ energy to secondary and primary users as

primary precoder

- The receivers are easy

Another example - singular 3x3 BC (Ex 2.8.8)

```
> H=[80 60 40
604530
20 20 20];
>rank(H) = 2
>> Rxx=diag([3 4 2]);
>> [Rwcn1, b]=wcnoise(Rxx, H, 1, 1e-5, 1e-4);
>> Rwcn1
    1.0000 0.7500 0.0016
    0.7500 1.0000 0.0012
    0.0016 0.0012 1.0000
>>b= 11.3777
>> Swcn=inv(Rwcn1)-inv(H*Rxx*H'+Rwcn) =
    0.9995 0.0000 0.0000
    0.0000 -0.0000 0.0000
    0.0000 0.0000 0.9948
User 2 is secondary - remove for now
>> H1=[H(1,1:3)
H(3,1:3)] =
    80 60 40
    20 20 20
>> [Rwcn, b]=wcnoise(Rxx, H1, 1, 1e-5, 1e-4);
>> Rwcn =
    1.0000 0.0016
    0.0016 1.0000
>>b=11.3777
>> Swcn=inv(Rwcn)-inv(H1*Rxx*H1'+Rwcn) =
0.9995 0.0000
0.0000 0.9948
Primary/Secondary
```

Section 2.8.3.5

May 8, 2023

```
>> [R,Q,P]=rq(inv(Rwcn)*H1)
R=
    0 9.1016 -33.2537
    0 0-107.6507
Q =
    0.4082-0.5306 -0.7429
    -0.8165 0.1517-0.5571
    0.4082 0.8340-0.3713
P= 2 1
```

ORDER IS REVERSED (Here it is order of
users 1 and 3 since 2 was eliminated)
>> R1=R(1:2,2:3);
>> Q1=Q(1:3,2:3);
>> Rxxrot=Q1'*Rxx*Q1 =
2.32750 .2251
$0.2251 \quad 3.1725$
>> Phi=lohc(Rxxrot);
>> DA=diag(diag(R1*Phi)) =
13.83790
0-191.7414
>> G=inv(DA)*R1*Phi =
1.0000 -4.1971
$0 \quad 1.0000$
>> A=Q1*inv(R1)*DA*G =
$-0.8067-1.3902$
$0.2306-0.9730$
$1.2679-0.5559$
> SO=DA*inv(SwCn)*DA = 1.0e+04 *
0.01920 .0000
Rcvr \& Data Rate
0.00003 .6957
>> MSWMFunb=(inv(S0)-eye(2))*DA =
-13.7657 0.0000
$-0.0000191 .7362$
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) =
1.0000 -4.2191
$-0.00001 .0000$
>> b=0.5* $\log 2(\operatorname{diag}(S 0))^{\prime}=$
3.79097 .5868
>> sum(b) $=11.3777$ checks
$\gg \mathrm{H}^{\star} \mathrm{A}=$
0.0219-191.8333
0.0164-143.8749
$13.8379-58.3825$
See Example 2.8.8 or details of below
Assign 1 energy unit to User $1,1 / 3$ to user 3 , and now squeeze in
2/3 energy on user 2
>> b=0.5* $\log 2(\operatorname{diag}([11 / 3])$ *diag(S0)) =
3.7909
6.7943
Crosstalk is >> ct $=1 / 3^{\star} 143.9^{\wedge} 2=6.8928 \mathrm{e}+03$
\gg b2 $=0.5^{*} \log 2\left(1+(2 / 3)^{*} 60^{\wedge} 2 / 6892.8\right)=0.2155$
>> b2+sum(b) $=10.8007<11.3777$
Energy on secondary reduces rate sum
>> A* $\mathrm{A}^{\prime}=$

Not equal to Rxx Energy not inserted into null space (same on part that is in pass space)

System Diagram for this WCN design

$$
\begin{aligned}
& v_{1}=\sqrt{\mathcal{E}_{1}} \cdot v_{1}^{o}+\sqrt{\mathcal{E}_{1,2}} \cdot v_{2} \\
& v_{3}=\sqrt{\mathcal{E}_{3}} \cdot v_{3}^{o}+\sqrt{\mathcal{E}_{3,2}} \cdot v_{2}
\end{aligned}
$$

$\mathrm{GU}=\begin{array}{rr}1.0000 & -4.2191 \\ -0.0000 & 1.0000\end{array}$
MSWMFU=
-13.7657 0.0000
$-0.0000191 .7362$

$$
\boldsymbol{X}=[\underbrace{\left.\begin{array}{cc}
-0.8067 & -1.3902 \\
0.2306 & -0.9370 \\
1.2679 & -0.5559
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt{\mathcal{E}_{1}} & \sqrt{\mathcal{E}}_{12} & 0 \\
0 & \sqrt{\mathcal{E}}_{23} & \sqrt{\mathcal{E}}_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]}
$$

$$
A
$$

See Ex 2.8.8

Try:

$$
\varepsilon_{1}=1 \text { and } \varepsilon_{12}=0
$$

$$
\varepsilon_{3}=\frac{2}{6} \text { and } \varepsilon_{32}=\frac{4}{6}
$$

Scalar Duality

PS5.2-2.29 scalar BC region

General Dual Channels - Same I $(x ; y)$

- Dual Channels

$$
I(x ; y)=I_{M A C}=\log _{2} \mid H_{M A C} \cdot \operatorname{diag}\left\{\varepsilon_{U}^{M A C} \cdots \varepsilon_{2}^{M A C} \varepsilon_{1}^{M A C}\right\} \cdot H_{M A C}^{*}+I
$$

- $H_{M A C}$ for MAC
- $H_{B C}=H_{M A C}^{*} \cdot J$ for dual-of-MAC as a BC

$$
H_{M A C}=\left[\begin{array}{lll}
h_{U} & \cdots & h_{2}
\end{array} h_{1}\right]
$$

$$
I_{B C}(x ; y)=\sum_{u=1}^{U} \log _{2}\left(\frac{\varepsilon_{u}^{B C} \cdot\left|h_{u}\right|^{2}}{1+\left|h_{u}\right|^{2} \cdot \sum_{i=u+1}^{U} \varepsilon_{i}^{B C}}+1\right)
$$

$$
\sum_{u=1}^{U} \varepsilon_{u}^{B C}=\varepsilon_{x}=\sum_{u=1}^{U} \varepsilon_{u}^{M A C}
$$

$$
\left[\begin{array}{c}
\mathcal{E}_{U}^{M A C} \\
\vdots \\
\mathcal{E}_{1}^{M A C}
\end{array}\right] \preccurlyeq \mathcal{E}
$$

Scalar Duality

- Set data rates equal and solve for $\varepsilon_{u}^{M A C / B C}$
order intentionally reversed

MAC	BC
$b_{1}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{1}^{M A C} \cdot g_{1}}{1+\mathcal{E}_{2}^{M A C} \cdot g_{2}+\ldots+\mathcal{E}_{U}^{M A C} \cdot g_{U}}\right)$	$b_{1}=\frac{1}{2} \log _{2}\left(1+\frac{\varepsilon_{1}^{B C} \cdot g_{1}}{1}\right)$1 ND User
$b_{2}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{2}^{M A C} \cdot g_{2}}{1+\mathcal{E}_{3}^{M A C} \cdot g_{3}+\ldots+\varepsilon_{U}^{M A C} \cdot g_{U}}\right)$	$b_{2}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{2}^{B C} \cdot g_{2}}{1+\mathcal{E}_{1}^{B C} \cdot g_{2}}\right)$
\vdots	\vdots
$b_{U}=\frac{1}{2} \log _{2}\left(1+\frac{\varepsilon_{U}^{M A C} \cdot g_{U}}{1}\right)$	1 ND User \ldots

Corresponding Energies

$$
\begin{aligned}
\mathcal{E}_{1}^{B C} & =\mathcal{E}_{1}^{M A C} \cdot \frac{1}{1+\mathcal{E}_{2}^{M A C} \cdot g_{2}+\ldots+\mathcal{E}_{U}^{M A C} \cdot g_{U}} \\
\mathcal{E}_{2}^{B C} & =\mathcal{E}_{2}^{M A C} \cdot \frac{1+\mathcal{E}_{1}^{B C} \cdot g_{2}}{1+\mathcal{E}_{3}^{M A C} \cdot g_{3}+\ldots+\mathcal{E}_{U}^{M A C} \cdot g_{U}} \\
\vdots & =\vdots \\
\mathcal{E}_{U}^{B C} & =\mathcal{E}_{U}^{M A C} \cdot\left(1+\left[\mathcal{E}_{1}^{B C}+\ldots+\mathcal{E}_{U-1}^{B C}\right] \cdot g_{U}\right)
\end{aligned}
$$

- By selecting these energies, all user rates are the same (with the order reversal) and running through all such energies that sum to total produces the SAME capacity region
- See proof in notes (Theorem 2.8.2 in Section 2.8.4)

Revisit Scalar Example

- Total energy is 1 , instead use dual MAC to investigate $B C$ with
- $\varepsilon_{2}^{B C}=0.25$ (bottom of $B C$)
- $\varepsilon_{1}^{B C}=0.75$ (top $B C$)
- reversing order $g_{1}=6400$ and $g_{2}=2500$

$$
\begin{aligned}
& \mathcal{E}_{2}^{M A C}=\frac{\varepsilon_{2}^{B C}}{1+\varepsilon_{1}^{B C} \cdot g_{2}}=\frac{.25}{1+2500 \cdot(.75)}=\frac{1}{7504}=1.3326 \times 10^{-4}(\text { top MAC }) \\
& \varepsilon_{1}^{M A C}=\varepsilon_{1}^{B C} \cdot\left(1+g_{2} \cdot \varepsilon_{2}^{M A C}\right)=.75 \cdot(1+2500 / 7504)=\frac{7503}{7504}=.9999=1-\varepsilon_{2}^{M A C} \text { (bottom MAC) }
\end{aligned}
$$

- User data rates for this combination are (and were in earlier table found directly for BC)

$$
\begin{aligned}
& b_{1}=\frac{1}{2} \cdot \log _{2}\left(1+\frac{\varepsilon_{1}^{M A C} \cdot g_{1}}{1+\varepsilon_{2}^{M A C} \cdot g_{2}}\right)=6.1144 \\
& b_{2}=\frac{1}{2} \cdot \log _{2}\left(1+\frac{\varepsilon_{2}^{M A C} \cdot g_{2}}{1}\right)=.2074
\end{aligned}
$$

- Can use the easier MAC developments to analyze the BC through duality

Continuous-time Scalar BC

 Will skip this short theoretical section to save time this year Design over vector DMT systems will reappear later for any number of tonesSection 2.8.5

Continuous time/freq Scalar BC

Scalar Duality

- Replace with integrals and $\varepsilon_{u}^{M A C / B C} \rightarrow S_{u}^{M A C / B C}(f)$
order intentionally reversed

MAC	BC
$b_{1}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{1}^{M A C} \cdot g_{1}}{1+\mathcal{E}_{2}^{M A C} \cdot g_{2}+\ldots+\varepsilon_{U}^{M A C} \cdot g_{U}}\right)$	$b_{1}=\frac{1}{2} \log _{2}\left(1+\frac{\varepsilon_{1}^{B C} \cdot g_{1}}{1}\right)$1 ND User
$b_{2}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{2}^{M A C} \cdot g_{2}}{1+\varepsilon_{3}^{M A C} \cdot g_{3}+\ldots+\varepsilon_{U}^{M A C} \cdot g_{U}}\right)$	$b_{2}=\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{E}_{2}^{B C} \cdot g_{2}}{1+\mathcal{E}_{1}^{B C} \cdot g_{2}}\right)$
\vdots	\vdots
$b_{U}=\frac{1}{2} \log _{2}\left(1+\frac{\varepsilon_{U}^{M A C} \cdot g_{U}}{1}\right)$	1 ND User

Corresponding PSD's

- $\varepsilon_{u}^{M A C / B C} \rightarrow S_{u}^{M A C / B C}(f)$
- See proof in notes (Theorem 2.8.2 in Section 2.8.4), but execute with PSD's $S_{u}^{M A C / B C}(f)$

$$
\begin{aligned}
\mathcal{E}_{1}^{B C} & =\mathcal{E}_{1}^{M A C} \cdot \frac{1}{1+\mathcal{E}_{2}^{M A C} \cdot g_{2}+\ldots+\mathcal{E}_{U}^{M A C} \cdot g_{U}} \\
\mathcal{E}_{2}^{B C} & =\mathcal{E}_{2}^{M A C} \cdot \frac{1+\mathcal{E}_{2}^{B C} \cdot g_{2}}{1+\mathcal{E}_{3}^{M A C} \cdot g_{3}+\ldots+\mathcal{E}_{U}^{M A C} \cdot g_{U}} \\
\vdots & =\vdots \\
\mathcal{E}_{U}^{B C} & =\mathcal{E}_{U}^{M A C} \cdot\left(1+\left[\mathcal{E}_{1}^{B C}+\ldots+\mathcal{E}_{U-1}^{B C}\right] \cdot g_{U}\right)
\end{aligned}
$$

MAC-set Approach to IC

Sec 2.9

The Interference Channel (MAC)

Refine Capacity Region Def: with order-approach: Assume each user must use a single-user $\Gamma=0 d B$ code

$$
b_{u}=\sum_{u^{\prime}=1}^{U} b_{u^{\prime}, u} \longrightarrow \text { User } U \quad \begin{gathered}
U^{2} \text { potential } \\
\text { sub-user } \\
\text { channels/ } \\
\text { decodes }
\end{gathered}
$$

User u

$$
\begin{aligned}
& \boldsymbol{x}_{u}=\sum_{u^{\prime}=1}^{U} \boldsymbol{x}_{u^{\prime}, u} \\
& \\
& \text { User } u \\
& \text { User } 1
\end{aligned}
$$

Prior-User Set (repeat from L7)

- Order vector and inverse
- Permutation (permutation matrix J), etc

$$
\pi_{u}=\left[\begin{array}{c}
\pi\left(U^{\prime}\right) \\
\vdots \\
\pi(1)
\end{array}\right] \quad \pi_{u}^{-1}=\left[\begin{array}{c}
U^{\prime} \\
\vdots \\
1
\end{array}\right] \quad j=\pi(i) \rightarrow i=\pi^{-1}(j)
$$

- Prior-User Set is $\mathbb{P}_{u}(\boldsymbol{\pi})=\left\{j \mid \boldsymbol{\pi}^{-1}(j)<\boldsymbol{\pi}^{-1}(u)\right\}$
- That is "all the users before the desired user u in the given order $\boldsymbol{\pi}$.
- Receiver u best decodes these "prior" users and removes them, while "post" users are noise
- $\boldsymbol{\pi}$ can be any order in $\mathbb{P}_{u}(\boldsymbol{\pi})$, but the most interesting is usually $\boldsymbol{\pi}_{u}$ (receiver u 's order)

rcvr/ User \boldsymbol{i}	$\pi_{4}(i)$	$\pi_{3}(i)$	$\pi_{2}(i)$	$\pi_{1}(i)$
$i=4$	3	3	4	3
$i=3$	4	2	3	2
$i=2$	1	4	2	1
$i=1$	2	1	1	4
$\mathbb{P}_{u}\left(\boldsymbol{\pi}_{u}\right)$	\{1,2\}	\{2,4,1\}	\{1\}	\{4\}
Π	$\left[\begin{array}{l}3 \\ 4 \\ 1 \\ 2\end{array}\right.$	3 2 4 1	4 3 2 1	$\left.\begin{array}{l}3 \\ 2 \\ 1 \\ 4\end{array}\right]$

May 10, 2023

- Data rates (mutual information bounds average out only those users who are nog cancelled as noise)

\Im_{4}	\Im_{3}	\Im_{2}	\Im_{1}	
	∞	$I_{3}(3 / 1,2,4)$ 20	∞	∞
	$I_{4}(4 / 1,2)$ 10	$I_{3}(2 / 1,4)$ 9	∞	∞
	$I_{4}(1 / 2)$ 5	$I_{3}(4 / 1)$ 4	$I_{2}(2 / 1)$ 4	$I_{1}(1 / 4)$ 2
bottom	$I_{4}(2)$ 1	$I_{(1)}$ 2	$I_{2}(1)$ 2	$I_{1}(4)$ 5

Section 2.6.2
L11: 24

$$
\boldsymbol{I}_{\min }\left(\boldsymbol{\Pi}, p_{x y}\right)=\left[\begin{array}{c}
4 \\
20 \\
1 \\
2
\end{array}\right]
$$

Maximum number of subusers \mathbf{U}^{2}

- User u has maximum bit rate, when all other users are given (cancelled):

$$
b_{u} \leq I\left(\boldsymbol{x}_{u} ; \boldsymbol{y}_{u} / x_{U \backslash u}\right)
$$

- Although -- this may not be good for the other users $i \neq u$.
- $I_{\text {min }}\left(\Pi, p_{x y}\right)$ calculation, given a Π, precedes a subsequent convex-hull search over all Π to obtain the achievable region $\mathcal{A}\left(\boldsymbol{b}, p_{x y}\right)$

$$
\boldsymbol{b}=\sum_{u^{\prime}=1}^{U} \alpha_{u} \cdot \boldsymbol{b}_{u^{\prime}} \quad 1=\sum_{u^{\prime}=1}^{U} \alpha_{u \prime}
$$

No more than U terms needed for U-dimensional \boldsymbol{b}

$$
\boldsymbol{b}=\left[\begin{array}{c}
b_{U} \\
\vdots \\
b_{1}
\end{array}\right] \quad b_{u}=\sum_{u^{\prime}=1}^{U} b_{u^{\prime}, u}
$$

Will do this for $I_{\text {min }}\left(\boldsymbol{\Pi}, p_{x y}\right)$ values over possible $\boldsymbol{\Pi}$'s

- For $U \geq 2$, the other users' subuser components may be desirable to decode, but not all $\rightarrow U^{\prime}!\leq\left(U^{2}\right)$! for each receiver's order search
- Π maximally has $\left(U^{\prime}!\right)^{U}$ possible choices (in most general case)

At any receiver u, the subuser components separate into two groups for any given order π_{u} :
(1) those cancelled (or generally conditional probability has specific given values for those components), and
(2) those not cancelled, which are averaged out generally in marginal distributions

If that choice is made for each user for each receiver, there are thus maximally U choices across all receivers into (1) or (2), so $U^{\prime} \leq U^{2}$

Example channel - Scalar Gaussian IC

Convex combos of
These 2 vertices
Probably includes
Other sub user
combos
(because they are
big)

- Earlier H, but this time as an IC
- Not complete set of orders (4 instead of $\left.(4!)^{\wedge} 2=576\right)$
- Shaded points are interior to line formed by unshaded points

П	u	\mathcal{E}_{u}	$\mathbb{P}_{u}\left(\boldsymbol{\pi}_{u}\right)$	$\mathscr{I}_{u}\left(x_{u} ; y_{u} / \mathbb{P}_{u}\left(\boldsymbol{\pi}_{u}\right)\right.$	$\mathscr{I}_{u}\left(x_{\neg u} ; y_{\neg u} / \mathbb{P}_{\neg u}\left(\boldsymbol{\pi}_{\neg u}\right)\right.$	$\mathcal{I}_{\text {min }, u}(\boldsymbol{\Pi}, \mathcal{E})$
$\left.\begin{array}{ll}{[2} & 2\end{array}\right]$	2	1	\{1\}	6.322	∞	6.322
$\lfloor 1$ 1	1	1	\emptyset	. 3973	. 2378	. 2378
$\left\lceil\begin{array}{ll}1 & 1\end{array}\right]$	2	1	\emptyset	. 9157	. 6196	. 6196
$\left.\begin{array}{ll} \\ 2 & 2\end{array}\right]$	1	1	\{2\}	5.9071	∞	5.9071
$\left.\begin{array}{ll}1 & 2\end{array}\right]$	2	1	\emptyset	. 9157	∞	. 9157
$\left.\begin{array}{ll}{[2} & 1\end{array}\right]$	1	1	\emptyset	. 3973	∞	. 3973
$[2$ 1	2	1	\{1\}	6.322	. 2378	. 2378
$\left\lfloor\begin{array}{ll}1 & 2 \\ \hline\end{array}\right.$	1	1	\{2\}	5.9071	. 6196	. 6196

Table 2.7: Evaluation of $\boldsymbol{\mathcal { I }}_{\text {min }}$ for different orders.

Example continued

II	u	\mathcal{E}_{u}	$\mathbb{P}_{u}\left(\boldsymbol{\pi}_{u}\right)$	$\mathscr{I}_{u}\left(x_{u} ; y_{u} / \mathbb{P}_{u}\left(\boldsymbol{\pi}_{u}\right)\right.$	$\mathscr{I}_{u}\left(x_{\neg u} ; y_{\neg u} / \mathbb{P}_{\neg u}\left(\boldsymbol{\pi}_{\neg u}\right)\right.$	$\mathcal{I}_{\min , u}(\boldsymbol{\Pi}, \mathcal{E})$
$\left\lceil\begin{array}{ll}2 & 2\end{array}\right]$	2	1	\{1\}	6.322	∞	6.322
$\left.\begin{array}{ll}1 & 1\end{array}\right]$	1	0.5	\emptyset	. 2257	. 1287	. 1287
$\left\lceil 1 \begin{array}{ll}1 & 1\end{array}\right.$	2	1	\emptyset	1.3063	. 9478	. 9478
$\left\lfloor\begin{array}{ll}2 & 2\end{array}\right]$	1	0.5	\{2\}	5.4073	∞	5.4073
$\left\lceil\begin{array}{ll}2 & 2\end{array}\right]$	2	0.5	\{1\}	5.822	∞	5.822
$\left\lfloor\begin{array}{ll}1 & 1\end{array}\right]$	1	1	\emptyset	. 6519	. 4163	. 4163
$\left\lceil\left[\begin{array}{ll}1 & 1\end{array}\right]\right.$	2	0.5	\emptyset	5.822	. 3744	. 3744
$\left\lfloor\begin{array}{ll}2 & 2\end{array}\right]$	1	1	\{1\}	5.9071	∞	5.9071
$\left\lceil\begin{array}{ll}2 & 2\end{array}\right]$	2	1	\{1,2\}	6.322	∞	6.322
$\left\lfloor\begin{array}{ll}1 & 1\end{array}\right\rfloor$	1	0.95	\{1\}	. 3818	. 2276	. 2276
$\lceil[17$	2	1	\{2\}	. 9425	. 6412	. 6412
$\left\lfloor\begin{array}{ll}2 & 2\end{array}\right]$	1	0.95	$\{1,2\}$	5.8701	∞	5.8701

Table 2.8: More example points with the best orders

- Note the dimension-sharing of the large- b_{u} points dominates the other points on the interior
- Also - check of vertices' derivatives relative to the dimension-sharing line (-1.006) - try upper

$$
\begin{array}{ll}
\ln (2) \cdot \frac{d b_{2}}{d \mathcal{E}_{2}}=\frac{3200}{6400 \cdot \mathcal{E}_{2}+1}=0.4999 & \frac{d b_{2}}{d b_{1}}=-3.56 \\
\ln (2) \cdot \frac{d b_{1}}{d \mathcal{E}_{2}}=-\frac{3200 \cdot 2500 \cdot \mathcal{E}_{1}}{6400 \cdot\left(\mathcal{E}_{2}+2500 \cdot \mathcal{E}_{1}+1\right) \cdot\left(6400 \cdot \mathcal{E}_{2}+1\right)}=-.1404 &
\end{array}
$$

IC Rate Region Examples

Sec 2.9.1

So-called "weak" symmetric IC

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{2} \\
y_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & \alpha \\
\alpha & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]+\left[\begin{array}{l}
n_{2} \\
n_{1}
\end{array}\right]} \\
& R_{\boldsymbol{n} \boldsymbol{n}}=I \text { and } \mathcal{E} \leqslant \mathbf{1}
\end{aligned}
$$

- When $\alpha \rightarrow 0$, there is no crosstalk and so $\mathcal{C}_{\text {IC }}(\boldsymbol{b})$ is a square.
- When $\alpha>1, \mathcal{C}_{I C}(\boldsymbol{b})$ is a pentagon.
- When $0<\alpha<1, \mathcal{C}_{I C}(\boldsymbol{b})$ is a hexagon.

Achievable Region when $\mathcal{E}_{1}=\mathcal{E}_{2}=1$

Energy-sum IC extension

- Same channel with only energy-sum constraint:
- Same derivative test shows dimension-sharing line is boundary

- General derivative test

$$
\begin{aligned}
\ln (2) \cdot \frac{d b_{2}}{d \mathcal{E}_{2}} & =\frac{g_{22} / 2}{g_{22} \cdot \mathcal{E}_{2}+1} \\
\ln (2) \cdot \frac{d b_{1}}{d \mathcal{E}_{2}} & =-\frac{g_{22} / 2 \cdot g_{12} \cdot \mathcal{E}_{1}}{g_{22} \cdot\left(\mathcal{E}_{2}+g_{12} \cdot \mathcal{E}_{1}+1\right) \cdot\left(g_{22} \cdot \mathcal{E}_{2}+1\right)} \\
\ln (2) \cdot \frac{d b_{1}}{d \mathcal{E}_{2}} & =-\frac{g_{21} / 2 \cdot g_{11} \cdot \mathcal{E}_{1}}{g_{21} \cdot\left(\mathcal{E}_{2}+g_{11} \cdot \mathcal{E}_{1}+1\right) \cdot\left(g_{21} \cdot \mathcal{E}_{2}+1\right)}
\end{aligned}
$$

Vector Gaussian IC Example


```
R nn}=.01\cdot
H}=[\mp@subsup{\boldsymbol{h}}{12}{
h}\mp@subsup{\boldsymbol{h}}{11}{}]=[.
.7
>> Rb2inv=H2'*H2+diag([1 1]);
>> Gbar2=chol(Rb2inv);
>> G2=inv(diag(diag(Gbar2)))*Gbar2;
>> S02=diag(diag(Gbar2))*diag(diag(Gbar2));
>> 0.5*log2(diag(SO2)) =
b2 = 3.2539
b1 = 2.7526
>> H1 = [8 7
    5 ];
>> Rb1inv=H1'*H1+diag([1 1]);
>> Gbar1=chol(Rb1inv);
>> S01=diag(diag(Gbar1))*diag(diag(Gbar1));
>> 0.5*log2(diag(S01)) =
b2 = 3.3291
b1 = 0.4128
```

```
>> H2 = [9 3
```

>> H2 = [9 3
3 8];

```
    3 8];
```


4×2 IC Example continued

- Vary energies near max points to see if local points above or below dimension-sharing, so curved boundary or flat
- Since the line has slope magnitude less than 1 , then the curvature is above this line with max rate sum at magnitude 1

IC Maximum Rate Sum (\& Minimum Energy Sum)

Max IC Sum Rate by Iterative Water-filling?

Posed Project/Research "maxRIC" or "minPIC" $\max \sum_{u=1}^{U} b_{u}$	IC Sum Rate
$\text { ST: } \quad b_{u, i} \geq\left\{\begin{array}{l} \log _{2}\left\{\frac{1+\sum_{j=i}^{U \prime} \widetilde{H}_{u, \pi_{u}^{-1}(j)} \cdot \varepsilon_{\pi_{u}^{-1}(j)} \cdot \widetilde{H}_{u, \pi_{u}^{*}(j)}^{*}}{1+\sum_{j=i+1}^{U \prime} \widetilde{H}_{u, \pi_{u}^{-1}(j)} \cdot \varepsilon_{\pi_{u}^{-1}(j)} \cdot \widetilde{H}_{u, \pi_{u}^{*}(j)}^{-1}}\right\} \pi_{u}(i) \leq \pi_{u}(u) \\ 0 \end{array}\right\} \begin{aligned} & u=1, \ldots, U \\ & i=1, \ldots, U \end{aligned}$	Users' $\mathcal{A}_{u}(b)$ constraints
$\sum_{i=1}^{U} b_{u, i}=b_{u}$	subusers' sum constraints
$\mathcal{E}_{x} \succcurlyeq \mathcal{E}$	users' energy constraints

- For an order Π and each user u
- RA water-fill ε_{u} with $\pi_{u}^{-1}(i) \geq \pi_{u}^{-1}(u)$ as xtalk noise, others cancelled (uncancelled users' energies not updated)
- There are $U^{\prime}=U^{2}$ user rate constraints for the U receivers' achievable regions, which transform into convex constraints, $\boldsymbol{\theta}_{u}$ (will show how later in Sections 5.4 and 5.6)
- Along with the energy-vector constraint \boldsymbol{w}_{u} where each user's energy is sum of its subusers' energies
- Between water-fills, descent update Π for all u
- The successive values within $\boldsymbol{\theta}_{u}$ must be ordered in value within the sum constraint to keep constraint convex
- Each other user has a $\Delta \boldsymbol{b}_{u}$ error for $\boldsymbol{\theta}_{u}$ that updates the constraint

May need Ellipsoid descent for Lagrange multipliers, See Chapter 5

- Each similarly adds over subusers and has $\Delta \boldsymbol{\varepsilon}_{u}$ for \boldsymbol{w}_{u}

Nesting, DAS, cellfree \& Relay

Multiuser Nesting

((c)=((q)))
 a) radio node edge (base station or Access point)
 b) two subnetworks Down (BC) and up (MAC) IC network between them

 Macro User

c) three nested IC: (BC, MAC) Like those in b), nested into 3×3 IC network

Will be suboptimal, But easier
Section 5.6.2.3 later

Single-Stage Relay Channel

- Conceptually uses what we know already and introduces sub-users at k_{r} relay points

- Searches can be very complex

$$
\mathcal{C}(\boldsymbol{b})=\bigcup_{\left[R_{x x}^{(1)} R_{x x}^{(2)}\right]}^{\text {hull }}\left[\begin{array}{c}
b_{U} \\
\vdots \\
b_{1}
\end{array}\right]
$$

- Multi-stage tedious, but same principles apply recursively

Reflective Intelligent Surfaces (RIS)

Posed Project/Research
"maxRIS" or "minRIS"

$$
\boldsymbol{y}=\underbrace{\left[\begin{array}{c}
H_{l o s} \\
H_{o u t} \cdot Q_{H} \cdot H_{i n}
\end{array}\right]}_{H_{R I S}} \cdot \boldsymbol{x}+\underbrace{\left[\begin{array}{c}
\boldsymbol{n}_{\text {los }} \\
\boldsymbol{n}_{\text {out }}+Q_{H} \cdot \boldsymbol{n}_{i n}
\end{array}\right]}_{\boldsymbol{n}_{R I S}}
$$

- The RIS matrix Q_{H} satisfies $\left\|Q_{H}\right\|_{F}^{2} \leq G_{H}$, the RIS gain - it may also satisfy
- Q_{H} is unitary matrix (preserves energy)
- Q_{H} is diagonal, and usually also unitary, to be phase/gain-only adjustment on each antenna port (in-to-out)
- Q_{H} has individual elements restricted
- For a given $R_{x x}$, maximize over Q_{H}

$$
\mathcal{I}(\boldsymbol{y} ; \boldsymbol{x})=\log _{2}\left|R_{n, R I S}+H_{R I S} \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot H_{R I S}^{*}\right|
$$

- For a given Q_{H}, maximize the same over $R_{x x}$

$$
R_{\boldsymbol{n} \boldsymbol{n}, R I S}=\left[\begin{array}{cc}
R_{\boldsymbol{n n}} & 0 \\
0 & R_{\boldsymbol{n} \boldsymbol{n}, \text { out }}+Q_{H} \cdot R_{\boldsymbol{n} \boldsymbol{n} \boldsymbol{n} \boldsymbol{n}} \cdot Q_{H}^{*}
\end{array}\right]
$$

- Iterate

End Lecture 11

