Lecture 10
 Broadcast Channels Continued

May 8, 2023
JOHN M. CIOfFI

Hitachi Professor Emeritus of Engineering
Instructor EE392AA - Spring 2023

Announcements \& Agenda

- Announcements
- Problem Set \#5 due Wednesday May 17
- Midterms grades (and PS4?) at canvas
- Feedback/assessment from exam
- Section 2.8 continues
- Projects List (slide 3)

- Agenda

- Vector Gaussian BC Design
- Worst-case-Noise BC Design
- Vector WCN-BC Design
- Maximum BC rate sum

Problem Set 5 = PS5 (due May 17)

1. 2.28 modulo precoding function
2. 2.29 scalar BC region
3. 2.30 vector $B C$ design
4. 2.31 2-user IC region
5. 2.32 bonded relay channel

NO CLASS - MONDAY May 15 MAKE-UP -- FRIDAY May 19 3:00 200-003

Midterm

Midterm Scores

Projects - Very Open to Student Proposals too!

- Adaptive statistical-loading (maybe matlab program?)
- Wireless averaging
- Single-user
- MAC
- BC
- Iterative water-filling program for interference channel (MA is better)
- Multi-level IW program
- Mapping/scheduling of queue-depths to best point (with margin) in capacity region
- Probably use QPS (queue-proportional scheduling at end of Section 2.6)
- Intelligent Reflective Surface (IRS, or RIS)
- Alternating optimization routine to optimize the reflecting elements (modelled as unitary matrix)
- minPIC.m program
- Others?

Vector MMSE BC Design

Known $R_{x x}(u)$ Section 2.8.3.1

Revisit Scalar Example - see L9:28

- $h_{1}=0.8 ; h_{2}=0.5 ; \sigma_{1}^{2}=\sigma_{2}^{2}=.0001$

- User 1 has highest sum rate when User 2 has zero energy
- User 1 is a primary user/component (precoder subtracts user 2 , mods sum to unit energy)
- And adds user 2 at channel input also (modulo in receiver 1)
- User 2 is a secondary user/component (decode with user 1 as noise)

Vector Gaussian BC

- The users' independent message subsymbol vectors sum to a single BC input \boldsymbol{x}

$$
\begin{aligned}
\# \text { of subusers }=U^{\prime} & \leq \sum_{u=1}^{U} \min \left(f_{x}, p_{H_{u}}\right) \leq \mathfrak{L}_{y} \cdot L_{x} \\
& \leq U \cdot L_{x} \text { (our designs) }
\end{aligned}
$$

Modulator $A=R_{x x}^{1 / 2}$ need not be square because it includes the sum

MMSE - BC and Mutual Information - user u

- $I\left(\boldsymbol{x}_{u}: \boldsymbol{y}_{u} / \boldsymbol{x}_{u+1, \ldots, U}\right)=\frac{1}{2} \cdot \log _{2} \frac{\left|R_{x x}(u)\right|}{\left|R_{e e}(u)\right|}$ corresponds to a MMSE problem (like MAC, except \boldsymbol{y}_{u}).

- There is successive-decoding ("GDFE") canonical performance (up to U^{\prime} components)
- BC implements the G^{-1} with a lossless precoder at the transmitter
- This structure reliably achieves highest rate for given input $R_{x x}(u)$, and order $\boldsymbol{\pi}_{u}$.
- The catch? Designer must know $\left\{R_{x \boldsymbol{x}}(\boldsymbol{u})\right\}$ and order beforehand.

Structure for all user components $u \in \boldsymbol{U}^{\prime}$

- This structure needs a little more interpretation when channel rank < number of energized users.

The program mu_bc.m

```
function [Bu, GU, S0, MSWMFunb , B] = mu_bc(H, AU, Lyu , cb)
Inputs: Hu, AU , Usize, cb
Outputs: Bu, Gunb, Wunb, S0, MSWMFunb
H: noise-whitened BC matrix [H1 ; .. ; HU] (with actual noise, not wcn)
    sum-Ly x Lx x N
AU: Block-row square-root discrete modulators, [A1 ... AU]
Set N=1(for now)
    Lx x (U *Lx) x N
Lyu: # of (output, Lyu) dimensions for each user U ... 1 in 1x U row vector
cb: = 1 if complex baseband or 2 if real baseband channel
GU: unbiased precoder matrices: (Lx U) x (Lx U) x N
    For each of U users, this is Lx x Lx matrix on each tone
S0: sub-channel dimensional channel SNRs: (Lx U) x (Lx U) x N
MSWMFunb: users' unbiased diagonal mean-squared whitened matched matrices
    For each of U cells and Ntones, this is an Lx x Lyu matrix
Bu - users bits/symbol 1xU
    the user should recompute SNR if there is a cyclic prefix
    B - the user bit distributions (U x N) in cell array
```


- Same values as blue rate vector on L9:28

```
>> H=
    80
    50
>> Lyu=[1 1];
>> [Bu, Gunb, S0, MSWMFunb] = mu_bc(H, [1/sqrt(2) 1/sqrt(2)], Lyu, 2)
Bu=
    5.8222 0.4997
>> Gunb{:.:} =
    1.0000 1.0000
---
            0 1
S0 =
2 x 1 cell array
    {[3.2010e+03]} User 1 SNR
    {[ 1.9992]} User 2SNR
MSWMFunb =
    2\times1 cell array
    {[0.0177]} multiplies y1
    {[0.0283]} multiplies y2
    Receivers are each simple scaling
>> sum(Bu) = 6.3219
>> [Bu, GU, S0, MSWMFunb , B] = mu_bc(H, [1 0], 1 , 2);
>> B=1\times1 cell array {[6.3220]}
```

- For this channel the rate sum is already close to maximum which occurs at $b=6.3220$

More Examples

```
H=[50 30
10 20];
>> A =
    0.5000 0 0.5000 0
        0}0.5000\quad0\quad0.500
[Bu, Gunb, S0, MSWMFunb] = mu_bc(H, A, [1 1], 2);
Bu=
    4.8665 0.4971
>> Gunb{:,:} =
    clly}\begin{array}{cllll}{1.0000}&{0.6000}&{1.0000}&{0.6000}\\{0}&{1.0000}&{1.6667}&{1.0000}\end{array}\quad\mathrm{ user 1's own xtalk and user 2 also }\quad\mathrm{ >> sum(Bu) = 5.3636
    ------------------
        user 2's own xtalk
>> MSWMFunb{:,:} =
    0.0400
    0.0667
-----
    Each receiver estimates 2 input dimensions for its user, each a subuser.
    0.2000
    0.1000
```

- mu_bc.m solves two MMSE problems here (for receiver 1 and receiver 2).
- It also aggregates them into right places in single matrix (cell array) of feedback/precoder, receiver filters.
- The receiver filters' rows apply to only their specific user/component (subuser) through MSWMFunb.

Worst Case Noise BC Design

Sections 2.8.3.2 and 2.8.3.5

$L_{y, u}=1$ Case: finding the primary components

- Find each user's normalized channel $\widetilde{H}_{u} \triangleq R_{n n}^{-1 / 2}(u) \cdot H_{u}$
- Later \rightarrow a general ($L_{y, u}>1$) way that uses worst-case noise; however, $L_{y, u}=1$ is simpler to describe

$$
y_{u}=\tilde{h}_{u, 1} \cdot x_{1}+\cdots+\tilde{h}_{u, L_{x}} \cdot x_{L_{x}}
$$

- Find largest BC element
- That is user i_{1} and is first in order π

$$
h_{\max }=\max _{i, j}\left|\tilde{h}_{i, j}\right| i \in I_{B C} \wedge j \in J_{B C}
$$

- Find next largest channel gain with user 1 as noise

$$
\tilde{h}_{\max }=\max _{i, j}\left|\tilde{h}_{i, j}\right|^{2} /\left(\left|\tilde{h}_{i, i_{1}}\right|^{2}+1\right) \forall i \in\left\{I_{B C} \backslash i_{1}\right\} \wedge j \in\left\{J_{B C} \backslash\left\{i_{1}\right\}\right\}
$$

- That is user i_{2} and is second in order π
- Continue recursively $U^{O}=\gamma^{H}$ times
- Any energy on users $\left\{\min \left(L_{x}, \mathfrak{p}_{H}\right)+1, \ldots, U\right\}$ reduces rate sum and comes from secondary components.

Worst-Case Noise (2.8.3.3)

- "Worst-case" noise has covariance $R_{\boldsymbol{n} \boldsymbol{n}}$ that minimizes $\boldsymbol{I}(\boldsymbol{x} ; \boldsymbol{y})$ for a fixed $R_{\boldsymbol{x} \boldsymbol{x}}$
- Only the receivers' local noises $R_{n m}(u)$ are fixed, but the correlation between different user/receivers' noise may vary
- Thm: $\quad R_{w c n}^{-1}-\left[H \cdot R_{x x} \cdot H^{*}\right]^{-1}+R_{p s d}=S_{w c n}$ where $\mathcal{S}_{w c n}$ is $\mathcal{R}_{y} \times \mathfrak{R}_{y}$ block (sub-block sizes $L_{y, u}$) diagonal
- Further: $\mathfrak{p}_{R_{w c n}}=\mathfrak{p}_{S_{w c n}}=\#$ of primary components $=U^{0}$.
- Further: The secondary components correspond to $S_{w c n}$'s zeroed diagonal elements (equivalently nonzero elements correspond to primary components).
- $\quad R_{p s d}$ is a Lagrange constraint for the positive semidefinite nature of the worst-case noise, and $\delta_{w c n}$ is the Lagrange constraint for the block diagonal noises. $R_{p s d}$ is absent unless $R_{w c n}$ is singular - many treatments ignore the singular case.
- Proof: See notes (also Appendix C on matrix calculus)
- When noise has $R_{w c n}$, the MMSE estimate $\hat{\boldsymbol{v}}=W \cdot \boldsymbol{y}$ has W that IS DIAGONAL (block)

So, WCN corresponds to best BC receiver(s)

$$
b=I_{w c n}(\boldsymbol{x} ; \boldsymbol{y})
$$

Remove Singularity and now Precode

- Now that primary (sub-) users are known, SVD on original channel (no noise-whiten) $H \cdot R_{x x}^{1 / 2} \triangleq\left[\begin{array}{ll}F & \boldsymbol{f}\end{array}\right]\left[\begin{array}{cc}\Lambda & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}M^{*} \\ \boldsymbol{m}^{*}\end{array}\right]$
- Input transforms to $\boldsymbol{x} \rightarrow M \cdot \boldsymbol{v}$ (M becomes part of square root and relabel); $H \cdot R_{x x}^{1 / 2} \rightarrow F \Lambda$

Mohseni's nonsingular-WCN Program (no CVX)

function [Rwcn, bsum] = wcnoise(Rxx, H, Ly, dual_gap, nerr)

inputs

H is U^{\star} Ly by Lx, where
Ly is the (constant) number of antennas/receiver,
$L x$ is the number of transmit antennas, and
U is the number of users. H can be a complex matrix
$R x x$ is the $L x$ by Lx input (nonsingular) autocorrelation matrix which can be complex (and Hermitian!)
dual_gap is the duality gap, defaulting to $1 e-6$ in wenoise
nerr is Newton's method acceptable error, defaulting to $1 \mathrm{e}-4$ in wenoise

outputs

Rwcn is the U*Ly by U*Ly worst-case-noise autocorrelation matrix. bsum is the rate-sum/real-dimension.
$\mathrm{I}=0.5^{*} \log \left(\operatorname{det}\left(\mathrm{H}^{*} \mathrm{Rxx} \mathrm{H}^{\star}+\mathrm{Rwcn}\right) / \operatorname{det}(\right.$ Rwcn $\left.)\right)$, Rwcn has Ly x Ly diagonal blocks that are each equal to an identity matrix

- Example

```
>> H=[80
50] =
    80
    50 (noise-whitened/normalized channel)
>> [Rwcn,b]=wcnoise(1,H,1,1e-6,1e-4)
Rwcn =
    1.0000 0.6250
    0.6250 1.0000
b=6.3220.
```

- $S_{w c n}(u, u)=$ sensitivity to $R_{n n}(u)$ change, if $=0 \rightarrow$ secondary user

```
>> Htilde=inv(Rwcn)*H =
    80.0000
    0.0000
>>Swcn=inv(Rwcn)-inv(H*H' + Rwcn). =
    0.9998 0.0000
    0.0000 0.0000
>> Ryy=H*H'+Rwcn = 1.0e+03 *
    6.4010 4.0006
    4 . 0 0 0 6 2 . 5 0 1 0
>> SNRp1=det(Ryy)/det(Rwcn) = 6.4010e+03
>> 0.5*log2(SNRp1) = 6.3220 (checks!)
```

- Note WCN program permits easy sketch of the capacity region
- Hint: you know noise-free user 1, and you also know the sum, so user 2's rate is the difference (PS5.3)

Singular 3x3 BC, nonsingular WCN

```
>> H=
    80 60 40
    60}45\quad3
    20 20 20
>> Rxx =
    3 0 0
    0 4 0
    0}
>> [Rwcn, b]=wcnoise(Rxx, H, 1, 1e-5, 1e-4);
>>Rwcn
    1.0000 0.7500}00.001
    0.7500}1.0000\quad0.001
    0.0016 0.0012 1.0000
>> b
11.3777
>> Swcn=inv(Rwcn)-inv(H*Rxx*H'+Rwcn) =
\begin{tabular}{rrr}
0.9995 & 0.0000 & 0.0000 \\
0.0000 & -0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.9948
\end{tabular}
```

- Works for any Rxx if WCN produced is nonsingular
>> sr=[50 0
789
1011 12];
>> Rxx=sr*sr' =
253550
35194266
50266365
>> [Rwcn, b]=wcnoise(Rxx, H, 1, 1e-5, 1e-4);
>> Rwcn
1.00000 .75000 .0002
$\begin{array}{lll}0.7500 & 1.0000 & 0.0001\end{array}$
0.00020 .00011 .0000
>> b $=16.4029$
>> Swcn=inv(Rwcn)-inv(H*Rxx*H'+Rwcn)
Swcn $=$
$0.9999 \quad 0.0000 \quad 0.0000$
$0.0000-0.0000-0.0000$
$0.0000-0.0000 \quad 0.9996$
- Note position of zeros - user 2 is a single secondary component
- Wcnoise.m is sufficient if WCN is nonsingular
- Nonsingular $R_{x x}$ forces ID of secondary components (WCN nonsingular)

Liao's Generalized Worst-Case Noise (uses CVX)

function [Rnn, sumRatebar, S1, S2, S3, S4] = cvx_wcnoise(Rxx, H, Lyu)
cvx_wcnoise This function computes the worst-case noise for any given input autocorrelation Rxx and channel matrix.
Arguments:

- Rxx: input autocorrelation, size(Lx, Lx)
- H: channel response, size (Ly, Lx)
- Lyu: number of antennas at each user, scalar/vector of length U
also allows variable number of antennas/user - not so in wcnoise.m
Outputs:
- Rnn: worst-case noise autocorrelation, with white local noise
- sumRatebar: maximum sum rate/real-dimension
- S 1 is the lagrange multiplier for the real part of Rnn diagonal elements. Zero values indicate secondary users.
- S2 is the imaginary part
- S 3 is for the positive semidefinite constraint on Rwcn
- S 4 is for a larger Schur compliment used in the optimization

S1 and S2 together are $S_{w c n} ; \mathbf{S 2}$ prevents quantization-error accumulation on imaginary part

S3 plus S4 together in upper $\boldsymbol{U} \times \boldsymbol{U}$ positions equal $S_{w c n}$

- This program accommodates singular WCN (which is common in well-designed systems)
- The S3 plus S4 are the $R_{p s d}$ value, which must add to the $S_{w c n}$ (block) diagonal = S1, see text
- Secondary users only identified when $R_{x x}$ is nonsingular or if singular, the best or "water-filling for WCN" case.

Singular WCN

- Can occur if input is lower rank (optimization)

```
>> H =
    0.4054-0.1990i 0.3641+0.6869i 3.6004+0.5569i 0.5318+0.0080i
    1.8406+1.3469i-1.3014-1.1630i 2.7217+1.0820i 0.0947-1.0710i
    -2.3367+1.1594i -0.3949 + 0.7899i -1.4024+0.8380i 0.8085 + 0.3019i
    1.1210+1.4423i 0.2611+1.6376i 2.9534-0.3945i 0.2962-0.8347i
>> Rxx=
    0.1382+0.0000i 0.0077-0.0664i -0.0701+0.0449i-0.0594-0.0207i
    0.0077+0.0664i 0.2005+0.0000i -0.0155-0.0152i 0.0281-0.0130i
    -0.0701-0.0449i -0.0155+0.0152i 0.0522+0.0000i 0.0262+0.0288i
    -0.0594+0.0207i 0.0281+0.0130i 0.0262-0.0288i 0.0331+0.0000i
    >> rank(H) = 3
    >> rank(Rxx)=2
    >>[V, D]=eig(Rxx);
    diag(D)=-0.0001 0.0001 0.1418 0.2821
    >> Rxx=V(:,3)*V(:,3)'*D(3,3)+V(:,4)*V(:,4)'*D(4,4);
    rank(iRxx) = 2
    [F,L,M]=svd(H);
    diag(L)= 6.7116 3.1056 2.0988 0.0000
    H=F(:,1)*M(:,1)'*L(1,1)+F(:,2)*M(:,2)'*L(2,2)+F(:,3)*M(:,3)'*L(3,3);
    rank(H)=3
```

- It turns out though that 0 sensitivity with singular WCN may not identify secondary user
- Looks like last user here

It will if also maximum rate sum (next lecture) Section 2.8.3.3
[\gg [Rwcn, b, S1, S2, S3, S4] = cvx_wcnoise(Rxx, H, ones $(1,4)$)
Rwcn =

```
1.0000+0.0000i-0.5084+0.0458i 0.1251+0.5916i -0.0042+0.3065i
-0.5084-0.0458i 1.0000+0.0000i -0.4394+0.2473i -0.6341+0.0932i
0.1251-0.5916i -0.4394-0.2473i 1.0000+0.0000i 0.7215+0.3923i
-0.0042-0.3065i-0.6341-0.0932i 0.7215-0.3923i 1.0000+0.0000i
>> rank(Rwcn) = 3
b}=0.824
S1 = 4x1 cell array
    {[ 0.2288]}
    {[ 0.3149]}
    {[ 0.3073]}
    {[5.9295e-09]}
S2 = 4x1 cell array
    {[0]}
    {[0]}
    {[0]}
{[0]}
S3+S4(1:4,1:4) =
    0.2288 0 0 0
```



```
        0}000.3073 
        0 0 0 0.0000
>> pinv(Rwcn)* H = 1.0e+09*
1.0647+0.7898i -0.1492+0.2605i 2.1940+0.5313i 0.1632-0.5248i
0.4982+1.1166i -0.2378+0.1418i 1.5228+1.4199i 0.3687-0.3479i
-0.6578+1.1464i-0.2754-0.1173i-0.2699+2.2345i 0.5387+0.1003i
-0.0000-0.0000i 0.0000-0.0000i-0.0001-0.0000i -0.0000+0.0000i
```


3 Cases

Perfect MIMO: $U^{o}=U^{\prime}$. This case is non-degraded since $U^{\prime}=\varrho_{H}=\varrho_{x}$; there are no secondary components. Perfect MIMO users each have equal number of used transmitter dimensions (antennas) and total number of receiver dimensions (antennas). Perfect MIMO's (all-primarycomponent) dimensions each have a path largely (MMSE sense) free of other users' crosstalk, as becomes evident shortly. Essentially, all the user components get their own dimension.

Degraded (NOMA): $U^{o}<U^{\prime}$. In NOMA, $U^{o}=\min \left(\varrho_{h}, \varrho_{x}\right)<=U^{\prime}$ and secondary components have no dimensions (antennas) to themselves. In this case, energy-sharing (or sharing the secondary components' data rates on common dimensions) is necessary if the secondary components must carry non-zero information. However, the $H_{u \in \boldsymbol{u}^{s}}$ determine these secondary components' maximum reliably decodable rates, even though the primary-component receivers could reliably decode a higher rate for these secondary components.

Enlarged MIMO: $U^{o}>U^{\prime}$. This case corresponds to at least one individual user's receiver having $L_{y, u}>1$; there are multiple receiver dimensions (antennas) per user. There are two sub-cases:

1. $U<U^{o}<U^{\prime}$ (degraded enlarged MIMO). In this case some components may share dimensions to receivers, and there are secondary components.
2. $U<U^{o}=U^{\prime}$ (non-degraded enlarged MIMO). In this case, each component has at least one dimension that is largely free (MMSE sense) of crosstalk from other components.

When $U^{o} \gg U$, enlarged (non-degraded) MIMO often has the name "Massive MIMO."

- Note Wi-Fi, 4G/5G, Vector DSL (sometimes called MU-MIMO) are all "perfect MIMO"
- Time-sharing (TDMA) really just increases channel rank until perfect MIMO
- NOMA is more general; Internet of Things is probably going to force it (if not huge \# antennas)

Vector WCN-BC Design

PS5.3-2.30 Vector BC Design

WCN Design focuses on primary users

- Any secondary-user components"freeload" on the dimensions best used by primary-user components
- Delete the secondary-user components' rows from \widetilde{H}
- The precoder-coefficients' design, which pre-inverts channel, depends on those primary components
- Any energized secondary components "dimension-share" those primary dimensions (and reduce overall rate sum)
- This can provide BC insights
- Chapter 5 will find a way for any desired $\boldsymbol{b}^{\prime} \in \mathcal{C}(\boldsymbol{b})$ to derive the $\left\{R_{x \boldsymbol{x}}(u)\right\}$, but the choice of \boldsymbol{b}^{\prime} (scheduling) may want to know about primary/secondary components

Only for primary users (\rightarrow nonsingular WCN)

- Use $R_{w c n}$ directly
- General $S_{w c n}$ is block diagonal

$$
R_{w c n}^{-1}-\left[H \cdot A \cdot A^{*} \cdot H^{*}+R_{w c n}\right]^{-1}=\mathcal{S}_{w c n}
$$

- Find A
- Indeed, that is the backward MMSE channel in there!
- $Q_{w c n}$ is also block

$$
\begin{align*}
\mathcal{S}_{w c n} & =R_{w c n}^{-1}-\left[R_{w c n}^{-1}-R_{w c n}^{-1} \cdot H \cdot A\left(I+A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot H \cdot A\right)^{-1} A^{*} \cdot H^{*} \cdot R_{w c n}^{-1}\right] \\
Q_{w c n}^{*} \cdot \mathcal{S}_{w c n}^{\prime} \cdot Q_{w c n} & =R_{w c n}^{-1} \cdot H \cdot A \underbrace{\underbrace{\mathcal{S}_{w c n}^{\prime}}_{\text {diagonal }}}_{R_{b} \triangleq_{G^{-1} \cdot S_{0}^{-1} \cdot G^{-*}}^{\left(I+A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot H \cdot A\right)^{-1}} A^{*} \cdot H^{*} \cdot R_{w c n}^{-1}}=\underbrace{Q_{w c n} \cdot R_{w c n}^{-1} \cdot H \cdot A \cdot R_{b} \cdot \underbrace{A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot Q_{w c n}^{*}}_{\text {triangular inverse }},}_{\text {triangular inverse }} \tag{2.432}
\end{align*}
$$

- QR factorization (primaries' channel)
- Extract $A=R_{x x}^{1 / 2}$ from tri inverse,
- which is the forward channel

$$
Q_{w c n} \cdot R_{w c n}^{-1} \cdot H=[\underbrace{\mathbf{0}}_{\left(L_{x}-U^{0}\right) \times U^{\circ}} \quad \underbrace{R}_{U^{\circ} \times U^{\circ}}]\left[\begin{array}{c}
\underbrace{Q^{*}}_{U^{\circ} \times L_{x}}
\end{array}\right]=R \cdot Q^{*}
$$

- Cholesky factorization (input)

$$
\Phi \cdot \Phi^{*}=Q^{*} \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot Q
$$

- A special square root!
- "pre-triangularizes" the channel,
- which becomes $R \cdot \Phi$

$$
R_{\boldsymbol{x} \boldsymbol{x}}^{1 / 2}=A=Q \cdot \Phi
$$

The precoder

- Want monic G for precoder

$$
\begin{aligned}
D_{A} & \triangleq \operatorname{Diag}\{R \cdot \Phi\} \\
G & =D_{A}^{-1} \cdot R \cdot \Phi \\
S_{0} & =D_{A} \cdot\left(S^{\prime}\right)_{w c n}^{-1} \cdot D_{A}
\end{aligned}
$$

Find diagonal values

Monic Equivalent

- Check $=R_{b}$ for G and S_{0}

$$
\begin{align*}
G^{-1} \cdot S_{0}^{-1} \cdot G^{-*} & =\left(\Phi^{-1} \cdot R^{-1} \cdot D_{A}\right) \cdot\left(D_{A}^{-1} \cdot S_{w c n} \cdot D_{A}^{-1}\right) \cdot\left(D_{A} \cdot R^{-*} \cdot G^{-*}\right) \tag{2.441}\\
& =\Phi^{-1} \cdot R^{-1} \cdot S_{w c n} \cdot R^{-*} \cdot \Phi^{-*} \\
& =\Phi^{-1} \cdot R^{-1} \cdot\left[Q_{w c n} \cdot R_{w c n}^{-1} \cdot H \cdot A \cdot R_{b} \cdot A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot Q_{w c n}^{*}\right] \cdot R^{-*} \cdot \Phi^{-*} \\
& =\Phi^{-1} \cdot R^{-1} \cdot R \cdot Q^{*} \cdot Q \cdot \Phi \cdot R_{b} \cdot \Phi^{*} \cdot R^{*} \cdot R^{-*} \cdot A \cdot Q^{*} \cdot \Phi^{-*} \tag{2.443}\\
& =R_{b} .
\end{align*}
$$

- Check SNR and mutual-info

$$
\begin{aligned}
2^{\mathcal{I}_{w c n}(\boldsymbol{x} ; \boldsymbol{y})} & =\frac{\left|H \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot H^{*}+R_{w c n}\right|}{\left|R_{w c n}\right|} \\
& =\left|R_{w c n}^{-1 / 2} \cdot H \cdot R_{\boldsymbol{x} \boldsymbol{x}} \cdot H^{*} \cdot R_{w c n}^{-* / 2}+I\right| \\
& =\left|R_{w c n}^{-1 / 2} \cdot H \cdot A \cdot A^{*} \cdot H^{*} \cdot R_{w c n}^{-* / 2}+I\right| \\
& =\left|A^{*} \cdot H^{*} \cdot R_{w c n}^{-1} \cdot H \cdot A+I\right| \text { follows from SVD of } R_{w c n}^{-1 / 2} \cdot H \cdot A \\
& =\left|R_{b}^{-1}\right| \\
& =\left|S_{0}\right| \\
\mathcal{I}_{w c n}(\boldsymbol{x} ; \boldsymbol{y}) & =\log _{2}\left(\left|S_{0}\right|\right) \text { bits/complex subsymbol. }
\end{aligned}
$$

- The MMSE receiver is block diagonal!
- For WCN only
- Just what the BC needs

$$
\begin{aligned}
W & =\underbrace{S_{0}^{-1} \cdot G^{-*}}_{1-t o-1} \cdot \underbrace{A^{*} \cdot H^{*} \cdot R_{w c n}^{-1}}_{\text {noise-white-match }} \cdot \underbrace{Q_{w c n}^{*} \cdot Q_{w c n}}_{I} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot \Phi^{*} \cdot Q^{*} \cdot Q \cdot R^{*} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot \Phi^{*} \cdot R^{*} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot G^{-*} \cdot G^{-1} \cdot D_{A} \cdot Q_{w c n} \\
& =S_{0}^{-1} \cdot D_{A} \cdot Q_{w c n},
\end{aligned}
$$

- Same bias removal as with all MMSE

BC WCN-Design Steps Summary (2.8.3.3)

Special Square Root

- Find $R_{w c n}$ - this step also finds $\mathcal{S}_{w c n}$ and also the primary/secondary users and $b_{\max }\left(R_{x x}\right)$
- Delete rows/columns (secondary sub user dimensions) with zeros from $\mathcal{S}_{w c n}$, and correspondingly then in $R_{w c n}$
- If $\mathcal{S}_{w c n}$ is non-trivial (block diagonal), form $\mathcal{S}_{w c n}=Q_{w c n}^{*} \cdot \mathcal{S}_{w c n}^{\prime} \cdot Q_{w c n}$ (eigen decomp)
- Perform QR factorization on $Q_{w c n} \cdot R_{w c n}^{-1} \cdot H=R \cdot Q^{*}$ where R is upper triangular, and Q is unitary
- Perform Cholesky Factorization on $Q^{*} \cdot R_{x x} \cdot Q=\Phi \cdot \Phi^{*}$ where Φ is also upper triangular
- And now, the special square root is $R_{x x}^{1 / 2}=Q \cdot \Phi$ (see diagram last page $=A$)

Precoder and Diagonal Receiver

- Find the diagonal matrix $D_{A}=\operatorname{Diag}\{R \cdot \Phi\}$
- Find the (primary sub-user) precoder $G=D_{A}^{-1} \cdot R \cdot \Phi$ (monic upper triangular)
- Find the backward MMSE (block) diagonal matrix $S_{0}=D_{A} \cdot\left(S^{\prime}\right)_{w c n}^{-1} \cdot D_{A}$ (note, $R_{b}^{-1}=G^{*} \cdot S_{0} \cdot G$)
- Block diagonal (unbiased) receiver is $W_{u n b}=\left(S_{0}-I\right)^{-1} \cdot D_{A} \cdot Q_{w c n}$
- Can check but $b_{\max }\left(R_{x x}\right)$ from WCN will be $I_{w c n}(\boldsymbol{x} ; \boldsymbol{y})=\log _{2}\left|S_{0}\right|=\sum_{u=1}^{U^{o}} \log _{2}\left(1+S N R_{B C, w c n, u}\right)$ Other data rate vectors \boldsymbol{b} then share this system between primary/secondary

Example - all primary

- Energy $\mathcal{E}_{x}=2, L_{x}=2$

```
>>H=[ [ 80 70
    50 60];
>> Rxx=[1 .8
        . 1];
```


>> Rxxrot=Q'*Rx**;
>> Phi=lohc (Rxxrot) =
$0.4482 \quad 0.0825$
$0 \quad 1.3388$
>> DA=diag(diag($\left.\mathrm{R}^{*} \mathrm{Phi}\right)$);
$\gg \mathrm{G}=\mathrm{inv}(\mathrm{DA})^{*} \mathrm{R}^{\star} \mathrm{Phi}=$
1.000018 .1182
$0 \quad 1.0000$
>> A=Q*inv(R)*DA*G =
$0.2942-0.9557$
$-0.3381-0.9411$
$\gg S 0=D A * i n v(S w c n) * D A=1.0 e+04$ *
$0.0032-0.0000$
$-0.0000 \quad 2.0229$
\gg Wunb=(inv(S0)-eye(2)) *DA =
$5.3983-0.0000$
$-0.0000139 .9857$

> Try different Input Rxx, See text

Indeed Diagona!!
\gg Gunb=eye(2) + SO*inv(SO-eye(2))** $($ G-eye(2)) $=$ 1.000018 .7103
01.0000
$\gg b=0.5^{*} \log 2(\operatorname{diag}(S 0))^{\prime}=2.49097 .1521$
$\gg \operatorname{sum}(\mathrm{b})=9.6430$ (checks

```
Wunb***A*inv(G) =
    -0.6987-755.7235
    -780.3821-454.9625
```

ORDER IS REVERSED SO SWITCH USERS!

Return to Design

- The design can allocate $R_{x x}$ energy to secondary and primary users as

primary precoder

- The receivers are easy

Another example - singular 3x3 BC (Ex 2.8.8)

```
> H=[80 60 40
604530
20 20 20];
> rank(H) = 2
>> Rxx=diag([3 4 2]);
>> [Rwcn1, b]=wcnoise(Rxx, H, 1, 1e-5, 1e-4);
>> Rwcn1
    1.0000 0.7500 0.0016
    0.7500 1.0000 0.0012
    0.0016 0.0012 1.0000
>>b= 11.3777
>> Swcn=inv(Rwcn1)-inv(H*Rxx*H'+Rwcn) =
    0.9995 0.0000 0.0000
    0.0000 -0.0000 0.0000
    0.0000 0.0000 0.9948
User 2 is secondary - remove for now
>> H1=[H(1,1:3)
H(3,1:3)] =
    80 60 40
    20 20 20
>> [Rwcn, b]=wcnoise(Rxx, H1, 1, 1e-5, 1e-4);
>> Rwcn =
    1.0000 0.0016
    0.0016 1.0000
>>b=11.3777
>> Swcn=inv(Rwcn)-inv(H1*Rxx*H1'+Rwcn) =
0.9995 0.0000
0.0000 0.9948
Primary/Secondary
```

Section 2.8.3.5

May 8, 2023

```
>> [R,Q,P]=rq(inv(Rwcn)*H1)
R=
    0 9.1016 -33.2537
    0 0-107.6507
Q =
    0.4082-0.5306 -0.7429
    -0.8165 0.1517-0.5571
    0.4082 0.8340-0.3713
P= 2 1
```

ORDER IS REVERSED (Here it is order of
users 1 and 3 since 2 was eliminated)
>> R1=R(1:2,2:3);
>> Q1=Q(1:3,2:3);
>> Rxxrot=Q1'*Rxx*Q1 =
2.32750 .2251
$0.2251 \quad 3.1725$
>> Phi=lohc(Rxxrot);
>> DA=diag(diag(R1*Phi)) =
$13.8379 \quad 0$
0-191.7414
>> G=inv(DA)*R1*Phi =
1.0000 -4.1971
$0 \quad 1.0000$
>> A=Q1*inv(R1)*DA*G =
$-0.8067-1.3902$
$0.2306-0.9730$
$1.2679-0.5559$
>> S0=DA*inv(Swcn)*DA = 1.0e+04 *
0.01920 .0000
Rcvr \& Data Rate
0.00003 .6957
>> MSWMFunb=(inv(S0)-eye(2))*DA =
-13.7657 0.0000
$-0.0000191 .7362$
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) =
1.0000 -4.2191
$-0.0000 \quad 1.0000$
>> b=0.5* $\log 2(\operatorname{diag}(S 0))^{\prime}=$
3.79097 .5868
>> sum (b) $=11.3777$ checks
$\gg \mathrm{H}^{*} \mathrm{~A}=$
0.0219-191.8333
0.0164-143.8749
$13.8379-58.3825$
See Example 2.8.8 or details of below
Assign 1 energy unit to User $1,1 / 3$ to user 3 , and now squeeze in
2/3 energy on user 2
>> b=0.5* $\log 2(\operatorname{diag}([11 / 3])$ *diag(S0)) =
3.7909
6.7943
Crosstalk is >> ct $=1 / 3^{\star} 143.9^{\wedge} 2=6.8928 \mathrm{e}+03$
\gg b2 $=0.5^{*} \log 2\left(1+(2 / 3)^{*} 60^{\wedge} 2 / 6892.8\right)=0.2155$
>> b2+sum(b) $=10.8007<11.3777$
Energy on secondary reduces rate sum
>> A* $\mathrm{A}^{\prime}=$

Not equal to Rxx Energy not inserted into null space (same on part that is in pass space)

System Diagram for this WCN design

$$
\begin{aligned}
& v_{1}=\sqrt{\mathcal{E}_{1}} \cdot v_{1}^{o}+\sqrt{\mathcal{E}_{1,2}} \cdot v_{2} \\
& v_{3}=\sqrt{\mathcal{E}_{3}} \cdot v_{3}^{o}+\sqrt{\mathcal{E}_{3,2}} \cdot v_{2}
\end{aligned}
$$

$$
\mathrm{GU}=1.0000-4.2191
$$

$$
-0.0000 \quad 1.0000
$$

MSWMFU=
-13.7657 0.0000
$-0.0000191 .7362$

$$
\begin{aligned}
& \boldsymbol{X}=[\underbrace{\left.\begin{array}{cc}
-0.8067 & -1.3902 \\
0.2306 & -0.9370 \\
1.2679 & -0.5559
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt[\mathcal{E}]{1}^{1} & \sqrt{\mathcal{E}}_{12} & 0 \\
0 & \sqrt{\mathcal{E}}_{23} & \sqrt{\mathcal{E}}_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], ~} \\
& \text { Try: } \\
& \varepsilon_{1}=1 \text { and } \varepsilon_{12}=0 \\
& \varepsilon_{3}=\frac{2}{6} \text { and } \varepsilon_{32}=\frac{4}{6}
\end{aligned}
$$

Gaussian Vector BC System Diagram

- Works for any $R_{x x}$, but the square root $Q \cdot \Phi$ is very special and unique, and the design is for the $R_{w c n}$, no matter the real correlation between receiver noises; U^{\prime} is number of user components

Maximum BC rate sum

Maximum $B C$ rate sum

- Maximize $I(\boldsymbol{x} ; \boldsymbol{y})$ through water-filling (but ... presumes receivers can coordinate)
- This is concave problem that always can be solved for the best input autocorrelation $R_{x x}$
- Minimize $I_{\min }(\boldsymbol{x} ; \boldsymbol{y})$ through worst-case-noise to get $I_{w c n}(\boldsymbol{x} ; \boldsymbol{y})$
- This is also convex problem that always can be solved for worst noise autocorrelation $R_{w c n}$
- This is a saddle-point problem that produces a max-min = min-max

bcmax.m

function [Rxx, Rwcn, bmax] = bcmax(iRxx, H, Lyu)

Uses cvx_wcnoise.m and rate-adaptive waterfill.m (Lagrange Multiplier based)
Inputs:

- iRxx: initial input autocorrelation array, size is $L x x L x \times N$. Only the sum of traces matters, so can initialize to any valid autocorrelation matrix Rxx to run wenoise.
needs to include factor $N /(N+n u)$ if nu $\sim=0$
- H : channel response, size is $\mathrm{Ly} \times \mathrm{Lx} \times \mathrm{N}, \mathrm{w} / \mathrm{o}$ sqrt(N)
normalization
- Lyu: array number of antennas at each user; scalar Lyu means same for all

Outputs:

- Rxx: optimized input autocorrelation, Lxx Lx x N
- Rwcn: optimized worst-case noise autocorrelation, with white local noise Ly x Ly x N
so IF H is noise-whitened for Rnn, then actual noise is Rwcn^(1/2)*Rn**wcn^(*/2)
- b: maximum sum rate/real-dimension - user must mult by 2 for complex case

- Revisit example from slide 29

```
iRxx=
    3 0 0
    0 4 0
    0 0 2
> H=
    80 60 40
    60 45 30
    20 20 20
[RxxA, RwcnA, bmax] = bcmax(iRxx, H, 1)
RxxA=
    3.7515 1.5032-0.7451
    1.5032 1.5019 1.5007
    -0.7451 1.5007 3.7465
RwcnA =
    1.0000 0.7500 0.0008
    0.7500}1.00000.000
    0.0008 0.0006 1.0000
bmax = 12.1084 (> 11.3777 that occurred earlier)
```


- No secondary components

Another example

```
H=[\begin{array}{lll}{80}&{70}\end{array}]
    50 60];
>> iRxx=[1 .8
    . 1];
>> [Rxx, Rwcn, bmax] = bcmax(iRxx, H, Lyu)
Rxx=
    1.0001 0.0082
    0.0082 0.9999
Rwcn =
    1.0000 0.0049
    0.0049 1.0000
bmax = 10.3517>9.6430
```

- Usually converges pretty quickly, not always though - CVX can get finicky when singularity involved

New Example - Singular Rwcnopt


```
inv(Rwcnopt) - inv(H*Rxxopt*H'+Rwcnopt)
69.9931 62.4186-26.7687 -6.3512
62.4186-54.9656 23.8385 5.6560
-26.7687 23.8385 -9.5873-2.4256
-6.3512 5.6560 -2.4256-0.1050
Rwcnopt, sumRatebar, S1, S2, S3, S4] =
cvx_wcnoise(Rxxopt, H, [1:1
Rwcnopt =
    1.0000 0.9163 -0.4792 -0.0191
    0.9163 1.0000 -0.0991 0.1251
    -0.4792 -0.0991 1.0000 0.1044
    -0.0191 0.1251 0.1044 1.0000
sumRatebar = 2.1911
rank(H)= 3
>> S3+S4(1:4,1:4) =
    0.0978 0 0 0
        0.6204 0 0
    0 0 0.6360 0
    0}00000.470
rank(H)= 3
>> Htilde=pinv(Rwcnopt)*H;
>> [R,Q,P]=rq(Htilde);
R=
    0.0000 0.0211 -0.2595 0.1213
    0
    0
    0
P= 1 4 4 2 3
```


End Lecture 10

