
Homework Help - Problem Set 6
Solutions

[Singularity Removal] Singularity in the discrete-modulator context occurs
when energy (non-zero signal) expands its dimensionality, basically from N

∗

to N or N + ν or even to ∞ . Essentially, the discrete modulator interpolates
finite energy (power as N → ∞ and normalized) from the smaller number of
dimensions to the larger number. Decimation is the discrete demodulator’s cor-
responding function. The singular dimensions are the ones carrying no energy
(nor signal) but those extra dimensions are imposed by system architecture or
field implementation/constraints. The only input components that make it to
the output, though, are the ones that are nonsingular in both the input and
then only those components’ components that lay within the channel’s pass
space.

Appendix D’s Paley-Wiener theorems are continuous-time and discrete-time
tests for a signal or channel’s singularity (if PWC is satisfied, it is nonsingular).
The finite-length case PWC equivalent is a non-zero matrix determinant (Rxx
or Rf respectively for input and channel). GDFE theory calls attention to
non-singularity and provides way to understand and transcend it

The HW6 problems that eliminates similarity simply rework the basic small
matrix channel or input autocorrelation by following directly Figure 5.5’s and
5.7’s (the channel- and input-singularity flow charts respectively) 8-step pro-
cesses. For any input autocorrelation matrix, the singularity tests is a zero
determinant, |Rxx| = 0. A little better yet is using the eig command in mat-
lab to find the eigenvalues. If they are all non-zero (and positive real or you
have something that is not an autocorrelation matrix to start), then no singu-
larity. Cyclic matrices are never singular (unless trivialy all zeros). Another
type of matrix that is never singular is any autocorrelation PLUS I (often found
in MMSE estimation and all real systems that have finite noise everywhere,
e.g. nonzero noise on all dimensions).

There are infinite choices for a square root matrix R
1/2
xx (whether singular

or not), so there are many discrete-modulator choices. A common one uses
the eigenvectors directly, equivalently singular vectors borrowed from a chan-
nel description like in vector coding, Also found are the Cholesky factors (or
canonical factors), which are useful for certain implementations, particularly
in multi-user situations or those with very low latency requirements. However,

any square root R
1/2
xx becomes another square root via R

1/2
xx (2)→ R

1/2
xx (1)·Q

for any matrix for which Q · Q∗ = I . With complex systems (or any system
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with 2 or more real dimensions), there are an infinite number of possible square
roots. Thus, as a designer or as a student doing homework, you have choices!.

[Matrix Bias] Repeated from earlier assignment.

Appendix D addresses Mean-Square Error (MSE), but basically as the name
says, it is the mean of the difference between the two quantities, namely the
error, squared. Thus if

a = b+ e

and the error between a and b is e = a − b , then the MSE is simply E[e2] if
e is AWGN. This applies to the AWGN when a = y and b = H · x and the
error is the AWGN noise n . The reverse direction of estimating x from y ,
however, is closer to a receiver’s symbol detection/estimation. This is especially
true if x is a discrete random vector. The average error probability is well
approximated by

Pe ≈ Ne ·Q
(
dmin

2σ

)
where dmin just computes the the difference between the the corresponding
noise-free channel outputs, so

dmin = min
x ′ 6=x∈Cx

‖H · x −H · x ′‖ .

When H = I , this is simply the distance between the closest two code words.
The quantity Ne is the average number of nearest neighbors, which in most
cases is closely approximated by the number of other codewords that may be
at the minimum distance. Chapter 1 addresses this area if more information
required. A binary constellation simply has dmin as the distance between the
two points and Ne = 1. A 4PAM constellation has ±1,±3 with distance
dmin = 2 and an average of 1.5 nearest neighbors for each point, so Pe ≈
1.5Q(1/σ) (the approximation is exact in this example). So if the 4PAM
transmission system had Ēx = 5 and σ2 = .04 with H = 1, then a 4PAM
system would have d/(2 · σ) = 2/(2 · .2) = 5, and the symbol-error probability
is then Pe = 1.5 ·Q(5); in matlab:

>> 1.5*Q(5) = 4.2998e-07

The linear MMSE estimator of channel input, given channel input is always
biased with non-zero noise. Even in the simplest case of y = x + n , it is
possible to multiply y by a number less than 1 that will have a MMSE that
reduces the signal x just enough so that the consequent simultaneous decrease
of noise is beneficial. If the data signal has energy such that SNR = Ēx/σ2 ,
this shrinkage of the channel output produces (1 − 1/SNR) · xk and a ratio
Ēx/MMSE = SNR + 1. That apparently larger SNR misleads somewhat
in that the estimate is biased. Bias removal (multiply by (SNR + 1)/SNR
eliminates the bias and increases the noise back to the original level. Clearly,
the MMSE would not help the x + n channel, but with more general chan-
nels the MMSE estimate can reduce substantially crosstalk and intersymbol
interference; however the same bias/scaling-error occurs. This amount remains
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SNRmmse = Ēx/ ¯MMSE (with SNR = SNRmmse − 1 and the same scale-up
removes the bias.

A detector designed for the original x has a non-zero-mean Gaussian noise,
given the input x . A non-zero (conditional) mean causes the error-probability
calculation to reduce the minimum distance by the bias amount. The 4 PAM
example above has SNR = 25 (14 dB). The bias then causes

dmin,bias → dmin · (1− 1/25) =
24

25
· dmin

or equivalently the dmin/2 in the Pe formula’s Q-function argument subtracts
dmin · 1/25 while the

√
MMSE reduces to

√
24/25 · σ . The numerator re-

duction offsets the denominator reduction in the trivial scalar AWGN case.
However, if there had been residual ISI added to the noise at this MMSE bi-
ased SNR of 25 dB, the minimum distance decreases by the same amount in
bias removal, but the ISI would reduce presumably by a larger amount than
the noise, and the improvement in distance to residual error would more than
offset. So, removing the bias produces a better (lower) error probability, here
corresponding to an SNR of 24, which still exceeds the value ocuring if some
other non-MMSE estimate of x is instead used.. This holds in general - al-
ways remove the bias, it always improves. In more general cases, despite the
slight reduction from SNRmmse → SNRmmse−1 to remove the bias, this new
MMSE-assisted receiver will always perform at least as well as if there were no
MMSE estimator.

[Colored Inputs] Problem 5.8’s Colored inputs have non-diagonal autocorre-
lation matrices (thus “not white”). They often can be better than “white”
inputs in that they match a set of independent messages’ transmission to a
channel. The essence (entropy) of the information though is always carried by
a white component. It is this component that the GDFE finds and estimates
(recursively with non-trivial feedback).

The steps in the channel-input singularity flow chart (Figure 5.5 in current
text) is a blue print on how to work Problem 5.8. This problem goes beyond
the blue print to investigate what the signals actually look like (for 8 easy ±1
length-3 input sequences, or 2 PAM). With the process correctly implemented
from the Figures, simple linear combinations of the original ±1 values produces
the discrete modulator signals along the transmit processing path. Use matlab,
but it is not hard to find them. Yes, they look strange, but are the part in the
pass space. How much energy lost to pass space? There is a very easy way to
find this (and a hard way). The problem also explores an optimum detector
for the pass-speace signal component, but then illustrates also how easily the
same information rate could be attained by simply coding on the “white part”
of the input.

[White Inputs, asymptotic convergence] Problem 5.9 follows 5.8 with a
white input. The cyclic prefix forces a cyclic channel that has empty null
space always (unless all zeros). Thus, if all dimensions energized equally (white
input), they make it through. The GDFE reduces to the simpler yet CDFE
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in this case. However, that white input may not be the best input energy
distribution (we all know by now that water-filling is the best).

This problem illustrates a simple 1+D channel (often called “Duobinary”). At
small N , it is easy to work, but frankly the SNR sucks compared to reasonably
simply MMSE-DFE design (just use the program from Chapter 3, you need not
understand all the theory there - although that theory is a twisted on what you
see in Chapters 2 and 5). Basically for small number of feedforward taps (16 is
on the border of small perhaps and a bit complex) and only 1 feedback tap, the
maximum SNR is attained that (same non-water-fill-white-input) DMT would
get. The problem does also illustrate that a simple reallocation of one unit
of energy to the pass space helps a bit, but not quite the solution here either.
However, by increasing the block size, the CDFE does also get the MMSE-DFE
result.

The problem attempts to illustrate that the CDFE takes a pretty long block
length to get to the MMSE-DFE result; however the CDFE is better than the
MMSE-DFE on any finite-length packet. One then starts to wonder (hopefully)
about the MMSE-DFE’s use on finite-length packets. Ultimately, with the fast
algorithms for DFT (that is FFT), one is drawn back to the conclusion that
the canonical and optimum transmission system (DMT when guard period
is small fraction) is probably the wisest choice. It took a lot of effort (and
> 1000 students through previous versions of this course) to get the industry
to appreciate and move to DMT, C-OFDM for wireless, etc. This problem
attempts to illustrate that efficacy, nowadays more widely understood (but
there are still some confused out there too!).

[Cyclic Antennas] This MIMO Antenna problem might better be named cyclic
antennas.

Basically, the problem as is tests the ability to recognize the cyclic channel,
even if it occurs in space time. It’s pretty easy from there and simply requires
finding water-fill (hardest part but only small number of variables - borrow
commands from inside the dmtra.m program if you like). Recall that the M
matrix for circulant channel is the DFT matrix. This also checks if you can
find the right Cholesky factor (or use Yun’s ”loch.m” program ...).

Once through it, you might be thinking of any way to create cyclic channels
in time space. Indeed, this is what cellular MIMO does attempt to do in that
the space-time transmit matrices (think per-tone if you like, but usually the
same across many tones) are chosen from a set of DFT matrices with different
“repeating tone widths.” (The receiver just sends back a “modulation-coding
index” on which DFT the transmitter should use after the receiver learns the
channel.) That would only be optimum if the channel is cyclic, but space-time
is not cyclic like time-frequency, or may is it?

On this problem think of 3 antennas in a triangle at transmitter and at receiver.
In a fairly symmetric environment, what might you expect the crosstalk to look
like? Now look at the H in this problem. How about 4 antennas? Of course
real environments would destroy the crosstalk ”cyclic symmetry,” but how far
off? At least to date, the 3GPP standards seem to believe that is pretty close.

203



An indeed with lots of antennas and thus no need for feedback sections, it may
well be good enough.
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