
Homework Help - Problem Set 3
Solutions

Coded OFDM Data-rate computation multiplies the (sub)symbol-rate by the
total number of bits per (sub)symbol. For instance, if the sampling rate (for
each of inphase and quadrature) of a digital-video broadcast system has T ′ =
109.375 ns with N̄ = 8192 and a cyclic prefix that is 1/4 the FFT size, then
the symbol period is

T = 8192(1 +
1

4
) · T ′ = 10240 · 109.375× 10−9 = 1.12× 10−3

so the symbol rate is then 893 Hz. Thus, a 64 QAM system with no code
(r = 1) would carry, with for example 6000 used tones,

R = 893 · 6 · 6000 ≈ 32 Mbps

Coded-OFDM usually has a limited set of “MCS” (Modulation Coding Scheme)
options that basically are the code rates allowed for a set of constellations.
Thus, the data rates R are basically found by multiplying r (code rate) by
log2(C) (number of bits in constellation) times the number of used tones times
the symbol rate. If there were 4 codes and 5 constellations allowed, there would
be 20 possible data rates.

With the MCS, the code will have certain free distance improvements that
multiply the SNR so SNR → dfree · SNR at the expense of a lower r for
higher dfree . The MCS-style loading knows the distances for each of the codes,
and has measured the SNR . Loading amounts to finding the code and dfree at
this particular SNR that provides largest reliable data rate. Because there are
only a few choices, simple trial-and-error over the MCS sets is usually sufficient.
So for instance, if a Wi-Fi device (like a smart phone) moves closer to the Wi-Fi
router, the channel gain presumably would improve. Improvement may then
lead to a higher-data-rate MCS choice. For each channel gain g , there will thus
be a best MCS choice. So at design time, a simple table of code/rate versus
measured channel gain may suffice as long as the channel-gain distribution
remains constant. In reality, the channel-gain distribution may vary and so a
simple table is not sufficient and thus calculation of < Pe > and/or Pout with
selection of MCS to meet both criteria improves with respect to single fixed
table.

For Problem 4.14(b), a portion of the solution with a different channel input
energy/noise ratio of 2000 (33 dB) is provided here to help students progress:

200



The MA Kma is given by

Kma = Γ ·

(
2<b>

)[ 1∑
g∈G∗ pg

]

∏
g∈G∗ (g)

[
pg∑

g∈G∗ pg

] ,

which simplifies for this problem’s constant pg = 0.1 (so initially |G∗| = 10)
to:

Kma = Γ ·

 2
10·<b>
|G∗|∏

g∈G∗ g
1
|G∗|


= Γ ·

[
210·<b>∏
g∈G∗ g

] 1
|G∗|

Ergodic water-filling starts with that |G∗| = 10 and includes all g ’s in the
calculation of Kma for any of the permitted constellations. The energy corre-
sponding to the lowest g value is checked and if negative, then this range of g
is discarded and erased by the receiver with the set G∗ then being reduced in
cardinality by deletion of this smallest g value and its corresponding interval.
A new Kma is then computed. Once all energies are positive and the average
energy is not exceeded, the solution is feasible. For 4-QAM, the first Kma try
is thus

4QAM:

Kma =10^(0.9)*(4^10 / (prod(2000*g(1:10))))^(1/10) = 0.2708

e1=Kma-10^(0.9)/(2000*g(1)) = -0.4857 < 0

e2=Kma-10^(0.9)/(2000*g(2)) = 0.0287 > 0

So delete the smallest g value of .0053, and try |G∗| = 9.

Kma =10^(0.9)*(4^10 / (prod(2000*g(2:10))))^(1/9) = 0.2416

>> e2=Kma-10^(0.9)/(2000*g(2)) =0 ( so g(2) is not used)

so, MA ergodic water-filling for 4QAM will not use g in the first tier that has
value of .0053. However, the average energy also should be checked, which
corresponds to ensuring the margin is positive.

e1=Kma-10^(0.9)/(2000*g(1));

e2=Kma-10^(0.9)/(2000*g(2));

e3=Kma-10^(0.9)/(2000*g(3));

e4=Kma-10^(0.9)/(2000*g(4));

e5=Kma-10^(0.9)/(2000*g(5));

e6=Kma-10^(0.9)/(2000*g(6));
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e7=Kma-10^(0.9)/(2000*g(7));

e8=Kma-10^(0.9)/(2000*g(8));

e9=Kma-10^(0.9)/(2000*g(9));

e10=Kma-10^(0.9)/(2000*g(10));

>> e=[0,e2,e3,e4,e5,e6,e7,e8,e9,e10];

>> 0.1*sum(e) = 0.1491 < 1

Thus 4 QAM is feasible on this channel with full constellation and gap Γ = 9
dB. The same process is followed for 16-QAM and 64- QAM.

Similarly for part c, but with just the water-filling constant given, here but
proceeds in similar fashion:

The RA Kra simplifies with pg = 0.1 to:

Kra =
1 + Γ ·

∑
g∈G∗

1
10g∑

g∈G∗ 0.1
,

or:

Kra =
10 + Γ ·

∑
g∈G∗

1
g

|G∗|
(1)

The corresponding maximized average bit rate is

< b >=
∑
g∈G∗

0.1 · log2

(
Kra

Γ
g

)
. (2)

Execution of water-filling for Γ = 9 dB yields:

>> Kra=0.1*(10 + (10^.9)*sum(ones(1,10)./(2000*g))) = 1.1441

Discrete Loading Best Discrete loading adds an extra unit of information, which
for SQ QAM restriction means two bits/tone (one bit in each dimension),
simply adds bits in the positions of next least energy. This is the “greedy
algorithm” that is used by Levin Campello. Thus, the incremental-energy
table is just a way to enumerate how much energy needed for each additional
unit on each tone. The better tones have smaller incremental energy until they
get heavily loaded and each additional bit on them looks less attractive that
putting a few bits on some of the lower-SNR tones.

SQ QAM is pretty easy and basically has (Γ in dB)

E1(2) = 2 · 10Γ/10

gn

(
22 − 1

)
,

and thus

e1(4) = 4 · E1(2)

e1(6) = 4 · e1(4)

e1(8) = 4 · e1(6) ,

and so on. Tables can be created from this and greedy applied.
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Binning The binning problem 4.16 attempts to be self-explanatory by taking
the student through a series of steps that lead to comparison of the sam-
pled/learned distribution to random samples generated from a known distri-
bution. Of course in practice, the distribution won’t be known for comparison.

The inverse Pe = 10−5 expression (any P̄e could be substituted in and for
instance, 10−6 produces 101.37 ) is

g =
|C| − 1

3 · dfree
·

Q−1(10−5)︸ ︷︷ ︸
100.63


2

.

so one can generate g values for potential bin interval endpoints from such an
expression, substituting in the possible constellation sizes. For instance the
matlab commands run through a set of values:

>> dfree=[10 6 5 4 3];

>> r=[1/2 2/3 3/4 5/6 7/8];

>> M=[4 16 64 256];

>> arg=kron((ones(1,5)./(3*dfree))’,M-ones(1,4)) =

0.1000 0.5000 2.1000 8.5000

0.1667 0.8333 3.5000 14.1667

0.2000 1.0000 4.2000 17.0000

0.2500 1.2500 5.2500 21.2500

0.3333 1.6667 7.0000 28.3333

The data rates form from r · |C| , running through r values and constellation
sizes.

Evaluation of the set of g ’s generated can form a distribution, for instance
exponential distribution with

pg=[exp(-.1*([0,g]))]-[exp(-.1*(g)),0]

that should sum to 1. From basic probability, the cumulative distribution is
formed by cumulative sums, or the matlab cumsum command. However, the
homework problem can easily directly compute the cumulative distribution in
simple math, and then generate N samples according to

>> samples=F(rand([1,N]);

Wi-FI Loading The analog front-end noise of any wireless receiver simply adds
the noise figure to the ambient psd (which at room temperature is -174 dBm/Hz).
To find the power over a frequency range, simply add 10 · log10 W to the psd.
Wider range (larger W ) is larger power. The transmit power is 2 times the
energy/real-dimension for complex signals, of course reduced by any channel
attenuation to be used at the channel output.

The rest of Problem 4.15 uses similar calculations to the examples in the notes
and in Problem 4.22.
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