
Homework Help - Problem Set 2
Solutions

[Bias and error probability help] Appendix D addresses Mean-Square Error
(MSE), but basically as the name says, it is the mean of the difference between
the two quantities, namely the error, squared. Thus if

a = b+ e

and the error between a and b is e = a − b , then the MSE is simply E[e2]
if e is AWGN. This applies to the AWGN when a = y and b = H · x and
the error is the AWGN noise n . The reverse direction of estimating x from
y , however, is closer to the detection problem in digital transmission. This is
especially true if x is a discrete random vector. The average error probability
is well approximated by

Pe ≈ Ne ·Q(
dmin

2σ
)

where dmin just computes the the difference between the the corresponding
noise-free channel outputs, so

dmin = min
x ′ 6=x∈Cx

‖H · x −H · x ′‖ .

When H = I , this is simply the distance between the closest two code words.
The quantity Ne is the average number of nearest neighbors, which in most
cases is closely approximated by the number of other codewords that may be
at the minimum distance. Chapter 1 addresses this area if more information
required (but this is sufficient for the homework). A binary constellation simply
has dmin as the distance between the two points and Ne = 1. A 4PAM
constellation ±1,±3 has distance dmin = 2 and an average of 1.5 nearest
neighbors for each point, so Pe ≈ 1.5Q(1/σ) (the approximation is exact in
this example). So if the 4PAM transmission system had Ēx = 5 and σ2 = .04
with H = 1, then a 4PAM system would have d/(2 · σ) = 2/(2 · .2) = 5, and
the symbol error probability is then Pe = 1.5 ·Q(5); in matlab:

>> 1.5*Q(5) = 4.2998e-07

The linear MMSE estimator of channel input, given channel input is always
biased with non-zero noise. Even in the simplest case of y = x + n , it is
possible to multiply y by a number less than 1 that will have a MMSE that
reduces the signal x just enough so that the consequent simultaneous decrease

200

of noise is beneficial. If the data signal has energy such that SNR = Ēx/σ2 ,
this shrinkage of the channel output produces (1 − 1/SNR) · xk and a ratio
Ēx/MMSE = SNR + 1. That apparently larger SNR misleads somewhat
in that the estimate is biased. Bias removal (multiply by (SNR + 1)/SNR
eliminates the bias and increases the noise back to the original level. Clearly,
the MMSE would not help the x + n channel, but with more general chan-
nels the MMSE estimate can reduce substantially crosstalk and intersymbol
interference; however the same bias/scaling-error occurs. This amount remains
SNRmmse = Ēx/ ¯MMSE (with SNR = SNRmmse − 1 and the same scale-up
removes the bias.

A detector designed for the original x has a non-zero-mean Gaussian noise,
given the input x . A non-zero (conditional) mean causes the error-probability
calculation to reduce the minimum distance by the bias amount. The 4 PAM
example above has SNR = 25 (14 dB). The bias then causes

dmin,bias → dmin · (1− 1/25) =
24

25
· dmin

or equivalently the dmin/2 in the Pe formula’s Q-function argument subtracts
dmin · 1/25 while the

√
MMSE reduces to

√
24/25 · σ . The numerator re-

duction offsets the denominator reduction in the trivial scalar AWGN case.
However, if there had been residual ISI added to the noise at this MMSE bi-
ased SNR of 25 dB, the minimum distance decreases by the same amount in
bias removal, but the ISI would reduce presumably by a larger amount than
the noise, and the improvement in distance to residual error would more than
offset. So, removing the bias produces a better (lower) error probability, here
corresponding to an SNR of 24, which still exceeds the value ocuring if some
other non-MMSE estimate of x is instead used.. This holds in general - al-
ways remove the bias, it always improves. In more general cases, despite the
slight reduction from SNRmmse → SNRmmse−1 to remove the bias, this new
MMSE-assisted receiver will always perform at least as well as if there were no
MMSE estimator.

[Matrix AWGN MMSE] A matrix channel example appears at the end of
Lecture 3. It is a simple MMSE example for matrix AWGN. The channel is
just 2× 2, but uses the basic formula W = Rxy ·R−1y y . For matrix AWGN
channels H , Rxy = Rxx · H∗ and Ry y = H · Rxx · H∗ + Rnn . The
MMSE then proceeds directly in Matlab.

>>H = 1.0000 0.4000

0.2000 0.1000

>> Rxx=eye(2);

>> Ryy=H*Rxx*H’+Rnn;

>> Ryx=H;

>> W=(Ryx’)*inv(Ryy) =

0.9524 -0.4762

0.0000 1.6667

>> W*H = 0.8571 0.3333

201

0.3333 0.1667

>> Ree=Rxx-W*Ryx =

0.1429 -0.3333

-0.3333 0.8333

>> snr=det(Rxx)/det(Ree) = 126.0000

>> b=log2(snr) = 6.9773

>> SNR=inv(diag(diag(Ree))) =

7.0000 0

0 1.2000

>> log2(diag(SNR)) =

2.8074

0.2630

>> sum(log2(diag(SNR))) = 3.0704

The bias could be removed, but the matlab commands recognize that the
formula for bit rate has 1 + SNR in it already, which is directly the biased
SNR; so the implementation removes the bias for the detector, but the analysis
need not address it.

[Entropy Help] Section 2.3 describes entropy and differential entropy. However,
a confusion point generally (beyond the class homework assignments) can be
the normalization. The confusion often arises from the correct dimensionality.
For a symbol (codeword) x with N real dimensions, the entropy uses the full
probability distribution px . Each codeword has a probability; often at this
symbol level they are all equally likely, but that need not always hold. When
equally likely, the entropy simply is log2(2

b) = b , and so equal to the number
of bits/symbol. This uniform distribution provides highest entropy.

However, marginal distributions for subsymbols may not have equally likely
points – even if all the full-length codewords are equally likely. The classic
example of this is an infinite-dimensional set of codewords with equally likely
occurrence and uniform spacing throughout a hypersphere has marginal dis-
tributions in any finite set of dimensions that approach Gaussian. Thus, the
entropy of the subsymbol x̃ is Hx̃ and computes entropy for the marginal
distribution that applies to the subsymbol (presumably the same in all subsym-
bols, but often not uniform for the subsymbol points). The different subsym-
bol probabilities allow for redudancy and code design over the entire symbol
length. Sequences of subsymbols can separate more effectively (increasing min-
imum distance and overall performance) if the marginal distributions do not
use all the points, and sometimes this leads to non-uniform distributions. The
entropy formula otherwise applies, but to the marginal distribution px̃ . There
are two possibly different entropies with tilde’s:

Hx̃ = E [log2 (px̃)]

and

H̃x =
Hx

N

202

where again N = N/Ñ . Similarly, Hx and Hx

Hx = E [log2 (px)]

and

Hx =
Hx
N

.

Differential entropy’s maximizing Hx distribution (with an energy constraint)
is Gaussian, so not uniform. However, this is because differential entropy
tacitly presumes an asymptotic equipartition situation where the continuous
distribution arises through random code selection (and thus random subsymbol
selection) from a uniform distribution (which is maximum entropy Hx for the
energy-constrained infinite-dimensional hypersphere). There is really no H̄x
with infinite dimensions, but really only Hx that has useful meaning. However,
it could be argued that H̄x = Hx in this case, so equality can occur but is
not necessarily always applicable.

MMSE and Entropy Conditional entropy and mutual information essentially
generalize the Gaussian channel’s MMSE and SNR to general probability dis-
tributions. Given two random variable/vector processes x and y with joint
probability distribution, the problem of estimating the common part between
them is essentially communication. One direction (e.g., matrix AWGN) is the
forward direction, while the other reverse direction is the backward direction.
The SNR’s (biased and unbiased) are the same for both directions because
the mutual information is symmetric; however the MSE’s and energies are not
the same for forward and backward, must their ratios. Some easy expressions
follow when the joint distribution is Gaussian.

The forward direction yH · x + n (with white noise) thus has estimator H =
Ry x · R−1xx , so forms easily once the two matrices are known. These either
come from the Gaussian probability distribution directly, or can be computed
readily from a given channel as in the notes. The backward direction similarly is
x = W ·y+e , with error autocorrelation matrix Re e and W = Rxy ·R−1y y .
The symmetry of x and y in the expressions suggests the equal common
part - SNR or mutual information. Finding these matrices and MMSE error
autocorrelation matrices appeared earlier in this HWH (PS2.3).

For real-baseband, the conditional entropy basically has 1/2 log2 of the con-
stant (2πe)N , where N is the number of real (error vector) dimensions, times
the determinant of the error’s autocorrelation matrix. The determinant (which
is product of eigvenvalues) should discard any zero eigenvalues. The entropy
can be normalized to the dimensionality of either vector, but by digitial-
transmission convention x (channel input) is chosen. An interesting expression
(see Appendix D) is that for square matrices

I = log2 |I −W ·H|−1 = log2 |I −H ·W |−1 .

203

