

Lecture 9 Finish MAC & Broadcast Channels April 30, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus of Engineering

Instructor EE379B – Spring 2024

Announcements & Agenda

- Announcements
 - Problem Set #4 due today
 - Midterm in class Thursday

- Agenda (L9)
 - Finish L8 MAC examples
 - mu_mac.m
 - Simultaneous Water-Filling for MAC max rate sum
 - SWF.m and macmax.m
 - MAC: Capacity region for frequency-indexed MACs
 - BC: Precoder Basics for the Matrix AWGN
 - Scalar Gaussian BC

MAC Examples

Sections 2.7.3-4

April 30, 2024

Matrix AWGN MAC Example 1 ($L_{x,u} \equiv 1$)

 $\widetilde{H} = \left[egin{array}{cc} 5 & 2 \ 3 & 1 \end{array}
ight]$

>> KI=N N =	
34 13	REVERSE ORDER – same commands –other vertex
13 5	>> H=[2 5
>> Rbinv=Rf+eye(2) =	1 3];
35 13	Rbinv =
13 6	6 13
>> Gbar=chol(Rbinv) = 5.9161 2.1974 0 1.0823	13 35 Gbar = 2.4495 5.3072 0 2.6141
>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 35.0000 0 0 1.1714 >> G = inv(diag(diag(Gbar)))*Gbar = 1.0000 0.3714 0 1.0000 >> >> b=0.5*log2(diag(S0)) = 2.5646 0.1141	S0 = 6.0000 0 0 6.8333 G = 1.0000 2.1667 0 1.0000 b = 1.2925 1.3863
>> sum(b) = 2.6788	sum(b) = 2.6788

- These are the two vertices for dimension-share (pentagon outer face).
- Two receiver output dimensions for each one-dimensional input x_u (instead of 1 output dimension earlier)

Example 1 continued

Receiver filters and bias are

Vertex 1

>> W=inv(S0)*inv(G') = 0.0286 0 -0.3171 0.8537 >> Wunb=S0*inv(S0-eye(2))*W = 0.0294 0 -2.1667 5.8333

>> MSWMFu=Wunb*H' = 0.1471 0.0882 0.8333 -0.6667 >> Gunb=eye(2)+S0*inv(S0-eye(2))*(Geye(2)) = 1.0000 0.3824 0 1.0000

Vertex 2

>> W=inv(S0)*inv(G') = 0.1667 0 -0.3171 0.1463 >> Wunb=S0*inv(S0-eye(2))*W = 0.2000 0 -0.3714 0.1714 >> MSWMFu=Wunb*H' = 0.4000 0.2000 0.1143 0.1429 >> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) = 1.0000 2.6000 0 1.0000 >> MSWMFu*H= 1.0000 2.6000 0.3714 1.0000

• Not really triangular, why?

>> MSWMFu*H = 1.0000 0.3824 2.1667 1.0000

Easier with mu_mac.m

April 25, 2024

Section 2.7.2.2

H=[5 2 ; 3 1]; [b, GU, WU, S0, MSWMFU] = mu_mac(H, **eye(2)**, [1 1] , 2);

b = 2.5646 0.1141

= .0000 0.3824 0 1.0000 = 0294 0 .1667 5.8333 .0000 0 0 1.1714 WMFU = .1471 0.0882 .8333 -0.6667 MSWMFU*H = .0000 0.3824 .1667 1.0000

>> SNR = 10*log10(diag(S0)) = 15.4407 0.6872

>> sum(b) = 2.6788

L9:6

Example 2: 2 x 3 MAC (secondary users)

H=[521

311]; basically added a 3rd user

[b, GU, WU, S0, MSWMFU] = mu_mac(H, eye(3), [1 1 1], 2)

```
b = 2.5646
             0.1141 0.1137
GU = 1.0000 0.3824 0.2353
          0 1.0000 0.1667
                 0 1.0000
          0
WU =
 0.0294
           0
              0
 -2.1667 5.8333
                  0
 -1.2857 -0.1429 5.8571
S0 =
 35.0000
           0
                0
   0 1.1714
             0
        0 1.1707
   0
MSWMFU =
 0.1471 0.0882
 0.8333 -0.6667
 -0.8571 1.8571
>> sum(b) = 2.7925
>> MSWMFU*H=
 1.0000 0.3824 0.2353
 2.1667 1.0000 0.1667
 1.2857 0.1429 1.0000
>> SNR10*log10(diag(S0))=
 15.4407
 0.6872
 0.6846
```

- The channel rank is 2 so at least 1 secondary comp = 3-2.
- But secondary applies to energy-sum MAC (which this is not, yet).
- If original 2 units of energy is spread over 3 users?

```
>> [b, GU, WU, S0, MSWMFU] = mu_mac(H, (2/3)*eye(3), [1 1 1], 2)
b = 2.0050 0.1009 0.0696
GU =
 1.0000 0.3824 0.2353
         1.0000 0.3878
   0
   0
           0
                 1.0000
WU =
 0.0662
           0
                   0
 -2.3878 6.6582
                   0
 -2.0000 -0.5000 9.8750
S0 =
 16.1111
                   0
            0
    0 1.1502
                   0
            0 1.1013
    0
MSWMFU =
 0.2206 0.1324
 0.9184 -0.3367
 -0.7500 2.2500
>> sum(b) = 2.1755 (lower than 2x2 value of 2.6788)
```

Relatively more energy on secondary-user comp(s), bsum ↓.

PS4.4 - 2.26 MAC regions

L9: 7

Stanford University

Section 2.7.2.2 April 25, 2024

Non-Zero Gap Achievable Region

- Construct $C(\mathbf{b})$ with $\Gamma = 0$ dB.
- Reduce all rates by γ_b relative to boundary points.
- Inscribe smaller region C(b)- ($\gamma_b \odot 1$).
- Square constellations instead of spheres (AWGN) loss
 1.53 dB in gap above (0.25 bit/dimension).

Simultaneous Water-Filling for MAC max rate sum

Sections 2.7.3-4

April 30, 2024

Revisit the rate-sum mutual information

$$b = \sum_{u=1}^{U} \tilde{b}_u \leq \mathbb{I}(\boldsymbol{x}; \boldsymbol{y}) = \log_2 \frac{|H \cdot R_{\boldsymbol{x}\boldsymbol{x}} \cdot H^* + R_{\boldsymbol{n}\boldsymbol{n}}|}{|R_{\boldsymbol{n}\boldsymbol{n}}|}$$

- Maximum rate-sum focuses on the numerator,
 - when optimizing over R_{xx} .

$$\max_{\{R_{\boldsymbol{x}\boldsymbol{x}}(\boldsymbol{u})\}} \left| H_{\boldsymbol{u}} \cdot R_{\boldsymbol{x}\boldsymbol{x}}(\boldsymbol{u}) \cdot H_{\boldsymbol{u}}^{*} + \underbrace{\sum_{i \neq \boldsymbol{u}} H_{i} \cdot R_{\boldsymbol{x}\boldsymbol{x}}(i) \cdot H_{i}^{*} + R_{\boldsymbol{n}\boldsymbol{n}}}_{R_{noise}(\boldsymbol{u})} \right|$$

- Have we seen this problem before?
 - Yes, it is Vector Coding / Waterfilling , except with $\tilde{H}_u \to R_{noise}^{-1/2} \cdot H_u$ for each u
- But now it repeats *U* times in the same form for each user.
 - Optimum has each user **simultaneously water-fill** by treating all other users (water-fill) spectra as noise.

Section 2.7.3

L9: 10

Stanford University

$$\mathcal{E}_{u,l} + \frac{1}{g_{u,l}} = K_u \forall u = 1, ..., U'$$

$$\sum_{l=1}^{L_x} \mathcal{E}_{u,l} = \mathcal{E}_u$$

$$\mathcal{E}_{u,l} \ge 0$$

$$\mathbf{x}_u = M_u \cdot \mathbf{v}_u$$

Simultanoous Matorfilling

Compute Using Iterative Water-filling

- SWC problem is convex, and each single-water-fill step is "gradient-like" in improving direction, swf.m
- E-Sum SWC is a saddle point with enlarged region.
 - 2nd optimization is on the allocation of $\mathcal{E}_{x,u} \to \sum_{u=1}^U \mathcal{E}_{x,u} = \mathcal{E}_x$.

Section 2.7.4.1

SWF.m Program for MAC's max sum rate

function [Rxx, bsum , bsum_lin] = SWF(Eu, H, Lxu, Rnn, cb)

Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE) The input is space-time domain h, and the user can specify a temporal block symbol size N (essentially an FFT size).

Inputs:

- Eu U x 1 energy/SAMPLE vector. Single scalar equal energy all users any (N/N+nu) scaling should occur BEFORE input to this program.
- **H** The FREQUENCY-DOMAIN Ly x sum(Lx(u)) x N MIMO channel for all users.
- N is determined from size(H) where N = # used tones
- Lxu 1xU vector of each user's number of antennas
- Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is **per tone**) cb cb = 1 for complex, cb=2 for real baseband
 - cb=2 corresponds to a frequency range at an sampling rate 1/T' of [0, 1/2T'] while with cb=1, it is [0, 1/T']. The Rnn entered for these two situations may differ, depending on how H is computed.

Outputs:

Rxx A block-diagonal psd matrix with the input autocorrelation for each user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N . sum trace(Rxx) over tones and spatial dimensions equal the Eu

bsum the maximum rate sum.

bsum bsum_lin - the maximum sum rate with a linear receiver b is an internal convergence sum rate value, not output

This program significantly modifies one originally supplied by student Chris Baca

- Eu is each user's energy/sample.
- For now, N = 1, so time/freq are same:
 - H=h .
- Lxu is number of antennas for each user.
- Separate specification of Rnn removes need for noise whitening.
- cb=1 for complex, =2 for real.

Revisit Previous example (slides L8: 26-29)

```
H =

5 2 1

3 1 1

>> [Rxx, bsum, bsum_lin] = SWF([1 1 1], H, [1 1 1], eye(2), 2)

Rxx =

1 0 0

0 1 0

0 0 1

bsum = 2.7925

bsum_lin = 1.4349
```

- Same result as L8:29, so each user waterfills with all others as noise; this is trivial when each user has only 1 input dimension. (Why?)
- This is for input energy-vector constraint.
- Note linear solution (no feedback, so matrix MMSE-LE) loses roughly ½ the data rate.
- SWF becomes more interesting when N > 1 tones or if $L_{x,u} > 1$ antennas.

For $L_{x,u} = 2$; u = 1,2?

>> H2=[4 3 2 1 5 6 7 8]; >> [Rxx, bsum, bsum_lin] = SWF([0.5 0.5], H2, [2 2], eye(2), 2)					
RXX = 0.7121 0.4528 0	0.4528 0.2879 0	0 0 0.2876	0 0 0.4527	Energy input is per trace{Rx per sample!	x,u)
0 bsum = bsum_lin >> trace(F >> trace(F	0 5.3434 = 4.092 Rxx) % = Rxx(1:2,1 Rxx(3:4,3	0.4527 0 2 (cheo :2))% = :4)) % =	0.7124 ck) 1 1		

- Note block-diagonal Rxx.
- Linear-only loses about 25% in data rate (for this channel).

Or use Macmax.m for Esum MAC

function [Rxx, bsum , bsum_lin] = macmax(Eu, h, Lxu, N , cb)

Simultaneous water-filling Esum MAC max rate sum (linear & nonlinear GDFE) The input is space-time domain h, and the user can specify a temporal block symbol size N (essentially an FFT size).

This program uses the CVX package

the inputs are:

- Eu The sum-user energy/SAMPLE scalar.
- This will be increased by the number of tones N by this program. Each user energy should be scaled by N/(N+nu)if there is cyclic prefix This energy is the sum trace of the corresponding users' Rxx (u). The sum energy is computed as the sum of the Eu components internally.
- **h The TIME-DOMAIN** Ly x sum(Lx(u)) x N channel for all users Lxu The number of antennas for each user 1 x U
- N The number of used tones (equally spaced over (0,1/T) at N/T. cb cb = 1 for complex, cb=2 for real baseband

the outputs are:

Rxx A block-diagonal psd matrix with the input autocorrelation for each user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N . sum trace(Rxx) over tones and spatial dimensions equal the Eu bsum the maximum rate sum.

bsum bsum_lin - the maximum sum rate with a linear receiver

b is an internal convergence (vector, rms) value, but not sum rate

April 30, 2024

- ENERGY-SUM input (per sample)
 - Lxu = numbers of xmit antennas/user
- Time-domain (noise-whitened) h
- This is actually a double loop that:
 - water-fills each and every user for some current set of per-user energies and
 - adjusts energies so they sum to total but increase the rate sum.
- It corresponds to a saddle point.
 - It is not convex (although each sub loop is).
 - It has a solution and converges anyway.
- This will be easier understood later as a dual of a broadcast problem as to why this is true.

Section 2.7.4.3

L9: 14

Back to Example

```
>> H3(:,:,1)=H
H =
5 2 1
3 1 1
>> [Rxx, bmacmax, bmaclin]=macmax(3/2, H, [1 1 1], 1, 2)
Rxx =
3.0000 0 0
0 0.0000 0
0 0 0.0000
bmacmax = 3.3432
bmaclin = 3.3432
```

- This produces a larger data rate because there is less energy restriction.
- Rxx energizes just user 3! (It's all primary user component, and users 1 and 2 are secondary)
- Linear is the same. Why?

Capacity region for frequency-indexed MACs

Sections 2.7.4.1-2

April 30, 2024

C(b) is union of $S_x(f)$ -indexed Pentagons

- Each pentagon corresponds to an $S_x(f)$ choice.
 - The pentagons become triangles for the sum-energy MAC.
- The union (convex hull is union when inputs are Gaussian) can dimension-share in frequency as $N \rightarrow \infty$.

Section 2.7.4.1

April 30, 2024

L9: 17

MT MAC

- The users have continuous-time/frequency channels \rightarrow use MT on each, theoretically.
- This really means dimensionality is infinite (or very large) so "dimension-sharing" may be inherent.
- SWF applies, but with some interpretation (like power instead of energy and power per dimension instead of power-spectral density, etc.).

Decoders and SWF

Both users (and all components in case c) are primary.

Symmetric 2-user channel and SWF

- Symmetric means $H_1(f) = H_2(f)$ (noise is one-dimensional and added to sum)
- Each of points A, B, and C have different SWF spectra all have same (max) rate sum

Basic Precoders and the Matrix AWGN

PS5.1 - 2.28 modulo precoding function

April 30, 2024

Broadcast Channel (BC)

- The BC is the "Dual" of the MAC.
- Receivers are in different places and so cannot "co-process" {y_u}.
- Transmitter can co-encode/generate x, although input messages remain independent.
 - Who encodes first? (may be at disadvantage)
 - Who encodes last? (knowing other users' signals is an advantage)
 - What then is the order?

BC is "reversed" MAC

- The MAC's uncoordinated user input is a kind of "worst case" transmitter, reducing data rate.
 - With only an energy-sum constraint, these worst-case inputs' users best pass as primary user components; secondary components "freeload" on the primary's passage.
- The BC similarly will effectively correspond to a worst-case noise for which receiver coordination is useless, reducing data rate.
 - With worst-case noise, the channel best passes the primary components'; secondary components freeload on the primary's passage.

L9:23

Triangular Matrices - Innovations and Prediction

Prediction for some user order separates a modulated input to independent message components.

$$\mathbf{v}_u = \mathbf{x}_u - \widehat{\mathbf{x}}_{u/\{x_{u+1}\dots x_U\}}$$

Innovations or predictions, but for BC v_u become the independent-users' subsymbols, with normalization $R_{vv}(u) = I$.

This is a triangular relationship (inverse of upper triangular is also upper triangular).

$$\boldsymbol{\nu} = \begin{bmatrix} \boldsymbol{\nu}_1 \\ \boldsymbol{\nu}_2 \\ \vdots \\ \boldsymbol{\nu}_U \end{bmatrix} = \begin{bmatrix} 1 & g_{1,2} & \dots & g_{1,U} \\ 0 & 1 & \dots & g_{2,U} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_U \end{bmatrix} = G^{-1} \cdot \boldsymbol{x}$$

- OR, $x = G \cdot v$ (*G* is also upper triangular).
- Generating x from v can increase energy (~ enhance noise in MAC rcvr) if implemented directly (linearly).

(order reversal is intentional)

Section 2.8.1.1 and D.3.6.1.1

April 30, 2024

L9:24

Voronoi Regions and Modulo Addition (Sec 2.1)

- A lattice is a (countable) group of vectors $\Lambda = \{x\}$ that is closed under an operation addition, so that
 - If $x_1 \in \Lambda$ and $x_2 \in \Lambda$, then $x_1 + x_2 \in \Lambda$. (Section 2.2.1.1 and Appendix B.2)
 - A constellation is a finite subset of a lattice, plus a constant (coset) $C \subset \Lambda + \lambda_0$. (λ_0 ensures average value is zero.)

- Voronoi Region of a lattice, $\mathcal{V}(\Lambda_c)$ is the decision region around any point with volume $V(\Lambda_c)$.
 - Λ_c is the "coding" lattice; codes try to pack more points into limited space (volume/area). HEX is better than SQ.
- A constellation C typically selects points in one (coding-gain) lattice, Λ_c, within the V(Λ_s) of another (shaping-gain) lattice Λ' that is larger (can be scaled versions of one another or possibly different). (Subtract any nonzero vector mean to save energy.)
 - All points in Λ_c outside of $\mathcal{V}(\Lambda_s)$ map into a point inside $\mathcal{V}(\Lambda_s)$ disguised detector problem.

Section 2.3, App B.2

April 30, 2024

L9:25

More general precoder (than Tomlinson/Laroia ...)

Generalize Modulo Operation:

$$(\mathbf{v})_{\Lambda_s} = \mathbf{e} \ni \min_{\mathbf{\lambda} \in \Lambda_s} \|\mathbf{e}\|^2$$
 where $\mathbf{e} = \mathbf{v} - \mathbf{\lambda}$

- *e* does not necessarily need to be a point in Λ_c ; instead, it is a point in $\mathcal{V}(\Lambda_s)$.
 - It's essentially the error between input and output of decoder with decision region equal to $\mathcal{V}(\Lambda_s)$ sbs in trivial cases of "uncoded" $\mathcal{V}(\Lambda_s)=\mathbb{Z}^2$.

useful

Lemma 2.8.1 (distribution of modulo addition) Modulo addition distributes as

$$(\boldsymbol{\mu} + \boldsymbol{\nu})_{\Lambda} = (\boldsymbol{\mu})_{\Lambda} \oplus_{\Lambda} (\boldsymbol{\mu})_{\Lambda} .$$
 (2.371)

Side info is *s*.

Section 2.8.1.2

- *s* is known (ISI for causal G(D) = in Tomlinson/DFE)
- Pre-subtract (precode) and use modulo to set \mathcal{E}_{x} level (no energy increase for \boldsymbol{s}).
- Any Λ_s shaping gain also applies here (8.5, s=0).
 - ν then is any (e.g., SQ) input constellation.
 - In shaping case, $\tilde{\nu}$ also needs a subsequent detector yet for whatever code is used on $\nu.$
- \pmb{x} will effectively have continuous uniform distributions over Λ_s .

For BC: s will be the earlier users (but their xtalk cancels) ~ order.

April 30, 2024

PS 5.1 (2.28) – modulo precoder

L9:26

With nontrivial channel, need MMSE version

Forney's Crypto Lemma – 2003 (Section 2.8.1.2)

- The MMSE part can be important in non-trivial cases (often missed in most info-theory texts).
 - It's reshaping the channel crosstalk and/or ISI in MMSE (not zero-forcing) sense.

No xmit energy increase Simplifies ML detection

Stanford University

- When *s* is uniform over $\mathcal{V}(\Lambda_s)$, then so is \boldsymbol{v} , **AND** \boldsymbol{v} is independent of both *s* and \boldsymbol{v} (like encryption), *s* is the "key"
 - Or "writing on dirty paper" (s is the dirt, ν is the writing, and the second modulo cleans the paper).
- Sometimes the channel adds *s* (ISI/xtalk), sometimes the transmitter adds *s* (xmit case, *s* shares dimensions and energy with *x*).
 - The add-at-xmit case has *s* as other users, effectively (with a twist .. later).

Section 2.8.1.2

April 30, 2024

L9:27

Non-Causal?

- Subtly, the lattice Λ_s has a dimensionality N over which s and x are uniformly distributed.
- Wise dimension use with fixed energy \mathcal{E}_x suggests Λ_s has a hyper-spherical boundary, as $N \to \infty$.
 - This infinite-length precoder then also obtains full 1.53 shaping gain.
- Asymtotically, the modulo has infinite number of dimensions, so requires infinite delay for s to be fully known in the formation of x; whence "non-causal."
 - Approximated with finite delay in practice, s becomes another user's encoded signal known first (~ non-causal) \rightarrow order.

- Mod holds energy at \mathcal{E}_x (Gaussian in any finite number of dimensions, uniform in infinite dimensional hypersphere).
- If Λ_s is hypercube, Forney's crypto still holds but with SNR loss of (up to) 1.53 dB (the maximum shaping gain).
 - So reuse code with $\Gamma \rightarrow 0$ dB, with QAM constellations and the (up to) 1.53 dB loss remains (greatly simplifies precoder implementation),
 - but everything else works the same.

L9:28

Midterm Review

- Questions
- Advice

End Lecture 9