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Announcements & Agenda

= Announcements
*  Problem Set #4 due today
* Midterm in class Thursday

= Agenda (L9)
* Finish L8 MAC examples
° mu_mac.m

* Simultaneous Water-Filling for MAC max rate sum
*  SWF.m and macmax.m

* MAC: Capacity region for frequency-indexed MACs
* BC: Precoder Basics for the Matrix AWGN
* Scalar Gaussian BC
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MAC Examples

Sections 2.7.3-4
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Matrix AWGN MAC Example 1 (L, , = 1)

>> Rf=H"H =
fI _ l 5 2 ] 34 13 REVERSE ORDER - same commands -other vertex
— 13 1 13 5 >H=[ 2 5
>> Rbinv=Rf+eye(2) = 1 3]
35 13 Rbinv =
13 6 6 13
. 13 35
>> Gbar=chol(Rbinv) = Gbar=
5.9161 2.1974 2.4495 5.3072
0 10823 0 26141
. . . . S0=
>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 6.0000 0
35.0000 0 0 6.8333
0 1.1714 G=
>> G = inv(diag(diag(Gbar)))*Gbar = 1.0000 2.1667
1.0000 0.3714 0  1.0000
0 1.0000 b=
>> >> b=0.5*log2(diag(S0)) = 1.2925
2.5646 1.3863
0.1141
>>sum(b) = 2.6788 sum(b)= 2.6788

= These are the two vertices for dimension-share (pentagon outer face).
= Two receiver output dimensions for each one-dimensional input x,, (instead of 1 output dimension earlier)

b Section 2.7.2.2 April 25,2024 L9: 4 Stanford University



Example 1 continued

2

wl

Receiver filters and bias are

Not really triangular, why?

Section 2.7.2.2

April 25,2024

Vertex 1
>> W=inv(S0)*inv(G') =
0.0286 0

-0.3171 0.8537
>> Wunb=S0*inv(S0-eye(2))*W =
0.0294 0
-2.1667 5.8333

>> MSWMFu=Wunb*H' =
0.1471 0.0882
0.8333 -0.6667
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-

eye(2)) =
1.0000 0.3824
0  1.0000

>> MSWMFuU*H =
1.0000 0.3824
2.1667 1.0000

PS4.5-2.25

Vertex 2
>> W=inv(S0)*inv(G') =
0.1667 0

-0.3171 0.1463
>> Wunb=S0*inv(S0-eye(2))*W =
0.2000 0
-0.3714 0.1714
>>MSWMFu=Wunb*H' =
0.4000 0.2000
0.1143 0.1429
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) =
1.0000 2.6000
0 1.0000
>> MSWMFu*H=
1.0000 2.6000
0.3714 1.0000

L9: 5 Stanford University



Easier with mu_mac.m

function [b, GU, WU, SO, MSWMFU] = mu mac(H, A, Lxu, cb)

\

channel Rxx1/2 \ 1cplx, 2 real

#/user xmit
antennas

Per-tonal (temporal dimension) multiuser mac receiver and per-user
bits

Inputs: H, A , Uind , cb
Outputs: b, GU, WU, SO, MSWMFU

H: noise-whitened channel matrix [HU ... H1] Ly x sum-Lxu
A: Block Diag sg-root sum-Lxu x sum-Lxu discrete modulators,
blkdiag([AU ... Al]); The Au entries derive from each MAC user's
Lxu x Lxu input autocorrelation matrix, where the trace is user
u's energy/symbol. This is per-tone.
Lxu: # of dimensions for each user U ...
cb: = 1 if complex baseband or 2 if real baseband channel

1 in 1 x U row vector

GU: unbiased feedback matrix sum-Lxu x sum-Lxu
WU: unbiased feedforward linear equalizer sum-Lxu x sum-Lxu
S0: sub-channel channel gains sum-Lxu x sum-Lxu
MSWMFU: unbiased mean-squared whitened matched filter, sum-Lxu x Ly
b - user u's bits/symbol 1 x U
the user should recompute b if there is a cyclic prefix

Section 2.7.2.2 April 25,2024 L9: 6

H=[52;31];

[b, GU, WU, SO, MSWMFU] = mu_mac(H, eye(2), [11], 2);

b= 2.5646 0.1141

GU=
1.0000 0.3824
0 1.0000

WU =
0.0294 0
-2.1667 5.8333
S0=
35.0000 0
0 1.1714

MSWMFU =
0.1471 0.0882
0.8333 -0.6667

>>MSWMFU*H =
1.0000 0.3824
2.1667 1.0000

>>SNR =10*log10(diag(S0)) =
15.4407
0.6872

>>sum(b) = 2.6788
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Example 2: 2 x 3 MAC (secondary users)

H=[521
311]; basically added a 3" user

[b, GU, WU, SO, MSWMFU] = mu_mac(H, eye(3),[111],2)

b= 25646 0.1141 0.1137

GU= 1.0000 0.3824 0.2353
0 1.0000 0.1667
0 0 1.0000

WU =

0.0294 0 0

-2.1667 5.8333 0

-1.2857 -0.1429 5.8571

S0=

35.0000 0 0
0 1.1714 0
0 0 1.1707

MSWMFU =

0.1471 0.0882
0.8333 -0.6667
-0.8571 1.8571
>>sum(b)= 2.7925
>>MSWMFU*H=

1.0000 0.3824 0.2353
2.1667 1.0000 0.1667
1.2857 0.1429 1.0000
>> SNR10*log10(diag(S0))=
15.4407

0.6872

0.6846

Section 2.7.2.2  apyil 25,2024

= The channel rank is 2 so at least 1 secondary comp = 3-2.
= But secondary applies to energy-sum MAC (which this is

not, yet).

= |f original 2 units of energy is spread over 3 users?

b= 2.0050 0.1009 0.0696
GU=
1.0000 0.3824 0.2353
0 1.0000 0.3878
0 0 1.0000
WU =
0.0662 0 0
-2.3878 6.6582 0
-2.0000 -0.5000 9.8750

S0=
16.1111 0 0
0 1.1502 0
0 0 1.1013
MSWMFU =

0.2206 0.1324
0.9184 -0.3367
-0.7500 2.2500

>>[b, GU, WU, S0, MSWMFU] = mu_mac(H, (2/3)*eye(3), [111], 2)

>>sum(b) = 2.1755 (lower than 2x2 value of 2.6788)

= Relatively more energy on secondary-user comp(s), bsum {.

PS4.4-2.26 MACregions

L9: 7 Stanford University



Non-Zero Gap Achievable Region

= Construct C(b) withT' = 0 dB. b,
= Reduce all rates by y,, relative to boundary points.

= |nscribe smaller region C(b)- (y;, ® 1).

= Square constellations instead of spheres (AWGN) loss
1.53 dB in gap above (0.25 bit/dimension). 0 b,

@ Section2.7.2.3 April 25,2024 L9: 8 Stanford University



Simultaneous Water-Filling for MAC max rate sum

Sections 2.7.3-4

April 30,2024 9



Cﬁ

ul

Revisit the rate-sum mutual information

U
b= ZEu <T (x;y) = log,
u=1

|H'Rxx'H* +Rnn|

|Run|

= Maximum rate-sum focuses on the numerator,

* when optimizing over R,,.

Hy* Rex) - Hi + ) Hy

i#U

max
{Ryx(W)}

) Rxx(i) ) Hi* + Rnn

Rnoise(W)

= Have we seen this problem before?

* Yes, itis Vector Coding / Waterfilling , except with Hu - R

-1/2

noise - Hy foreachu

= But now it repeats U times in the same form for each user.
* Optimum has each user simultaneously water-fill by treating all other users (water-fill) spectra as noise.

Section 2.7.3 April 30,2024

Simultaneous Waterfilling

L9: 10 Stanford University



Compute Using Iterative Water-filling

Capacity region

Decode 1 first, x, has
water-fill with x, as noise

_--""(or capacity region

With SWF, the points meet

I(z;y) = I(z1;y) + [(z2;y/21) = I(225y) + (215 9/72)

as noise

% © bounded with 45° line)
.
\‘\:~
1' . Decode 2 first, x, has
g water-fill with x,
: :
1
¢ by
0 1

= SWC problem is convex, and each single-water-fill step is “gradient-like” in improving direction, swf.m

E-Sum SWC is a saddle point with enlarged region.

* 2nd optimization is on the allocation of €, ,, — U, Exu=Ex.

Section 2.7.4.1

April 30,2024

L9: 11 Stanford University



SWF.m Program for MAC’s max sum rate

function [Rxx, bsum , bsum_lin] = SWF(Eu, H, Lxu, Rnn, cb)

Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE)

The input is space-time domain h, and the user can specify a temporal = Eu iS each user's energy/sample.

block symbol size N (essentially an FFT size).

Inputs:

Eu Ux 1 energy/SAMPLE vector. Single scalar equal energy all users = For now, N = 1, SO time/freq dare same:
any (N/N+nu) scaling should occur BEFORE input to this program.

H The FREQUENCY-DOMAIN Ly x sum(Lx(u)) x N MIMO channel for all users. * H=h.
N is determined from size(H) where N = # used tones .

Lxu 1xU vector of each user's number of antennas " Lxuis number Of antennas fOI’ eaCh user.

Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is per tone)
cb cb =1 for complex, cb=2 for real baseband

cb=2 corresponds to a frequency range at an sampling rate 1/T' of HY H
[0, 1/2T'] while with cb=1, itis [0, 1/T']. The Rnn entered for " Sepa rate SpeC|flcat|0n Of Rnn removes
these two situations may differ, depending on how H is computed. need for noise Whitening.
Outputs:
Rxx A block-diagonal psd matrix with the input autocorrelation for each
user on each tone. Rxx has size (sum (Lx(u)) x sum(Lx(u)) X N . = cb=1 for complex, =2 for real.

sum trace(Rxx) over tones and spatial dimensions equal the Eu
bsum the maximum rate sum.
bsum bsum_Llin - the maximum sum rate with a linear receiver

b is an internal convergence sum rate value, not output

This program significantly modifies one originally supplied by student
Chris Baca

Cﬁ

@ Section 2.7.4.3 Apl’ll 30’ 2024 L9:12 Stanford UniverSity



Revisit Previous example (slides L8: 26-29)

H=
5 2 1
3 11
>> [Rxx, bsum , bsum_lin] = SWF([1 1 1], H, [1 1 1], eye(2), 2)

Rxx =

1 00

0 1 0

0 0 1
bsum= 2.7925

bsum_lin= 1.4349

Forly, =2 ; u=127

Same result as L8:29, so each user waterfills with all
others as noise; this is trivial when each user has only 1
input dimension. (Why?)

This is for input energy-vector constraint.

Note linear solution (no feedback, so matrix MMSE-LE)
loses roughly % the data rate.

SWF becomes more interesting when N > 1 tones or if
Ly, > 1 antennas.

>>H2=[4321
5678
>> [Rxx, bsum , bsum_lin] = SWF([0.5 0.5], H2, [2 2 ], eye(2), 2)

Rxx =
0.7121 0.4528 0 0
0.4528 0.2879 0 0

Energy input is per trace{Rxx,u)

1
0 0 0.2876 0.4527 per sample!
0 o 0.4527 0.7124
bsum= 5.3434

bsum_lin= 4.0920

>>trace(Rxx) %= 2 (check)
>>trace(Rxx(1:2,1:2))% = 1
>>trace(Rxx(3:4,3:4)) % 1

Section 2.7.4.3 April 30, 2024

= Note block-diagonal Rxx.

= Linear-only loses about 25% in data rate (for this channel).

L9: 13 Stanford University



Or use Macmax.m for Esum MAC

function [Rxx, bsum , bsum_lin] = macmax(Eu, h, Lxu, N, cb)

Simultaneous water-filling Esum MAC max rate sum (linear & nonlinear GDFE)

The input is space-time domain h, and the user can specify a temporal
block symbol size N (essentially an FFT size).

This program uses the CVX package

the inputs are:

Eu The sum-user energy/SAMPLE scalar.
This will be increased by the number of tones N by this program.
Each user energy should be scaled by N/(N+nu)if there is cyclic prefix
This energy is the sum trace of the corresponding users’ Rxx (u).
The sum energy is computed as the sum of the Eu components
internally.

h The TIME-DOMAIN Ly x sum(Lx(u)) x N channel for all users

Lxu The number of antennas for each user 1 x U

N The number of used tones (equally spaced over (0,1/T) at N/T.

cb cb =1 for complex, cb=2 for real baseband

the outputs are:

Rxx A block-diagonal psd matrix with the input autocorrelation for each
user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .
sum trace(Rxx) over tones and spatial dimensions equal the Eu

bsum the maximum rate sum.

bsum bsum_lin - the maximum sum rate with a linear receiver

b is an internal convergence (vector, rms) value, but not sum rate

April 30, 2024

Section 2.7.4.3 L9: 14

ENERGY-SUM input (per sample)

¢ Lxu = numbers of xmit antennas/user
Time-domain (noise-whitened) h
This is actually a double loop that:

e water-fills each and every user for some current
set of per-user energies and

e adjusts energies so they sum to total but increase
the rate sum.

It corresponds to a saddle point.

* ltis not convex (although each sub loop is).
* It has a solution and converges anyway.

This will be easier understood later as a dual
of a broadcast problem as to why this is true.

Stanford University



= This produces a larger data rate because there is less energy restriction.

Back to Example

311
>> [Rxx, bmacmax, bmaclin]J=macmax(3/2,H, [111],1, 2)
Rxx =
3.0000 0 0
0 0.0000 0
0 0 0.0000
bmacmax= 3.3432
bmaclin= 3.3432

Rxx energizes just user 3! (It’s all primary user component, and users 1 and 2 are secondary)

Linear is the same. Why?

Section 2.7.4.3 April 30,2024

L9: 15

Stanford University



Capacity region for frequency-indexed MACs

Sections 2.7.4.1-2

April 30,2024 16



C(b) is union of S, (f)-indexed Pentagons

S v 5 ] > 1 U_ S:ru : Hu .
b, x(f) union of pentagons 2::’7 <I(z;y) /_ N -logy |1+ 2w ’Sij(c;)| () df
C1 . F e T ..
: both 45° lines
: < a fmum rate — sum point
.................... oy B ¢ Tk AN e
i ".... '.... N 61 < CZ
""" s SRS e SRS S ()
0 | b P (f)+02+2i¢u5x,i(f)+|Hi(f)|2_K
X —
. c, [H, (PP g

Simultaneous water-filling

) - Maximum rate sum
= Each pentagon corresponds to an S,.(f) choice.

* The pentagons become triangles for the sum-energy MAC.

= The union (convex hull is union when inputs are Gaussian) can dimension-share in frequency as N — oo,

[3

a Section 2.7.4.1 April 30,2024 L9: 17 Stanford University



= The users have continuous-time/frequency channels = use MT on each, theoretically.

= This really means dimensionality is infinite (or very large) so “dimension-sharing” may be inherent.

= SWEF applies, but with some interpretation (like power instead of energy and power per dimension
instead of power-spectral density, etc. ).

C_J

a Section 2.7.4.2 April 30,2024 L9: 18 Stanford University



Decoders and SWF

User 2

a). both flat

b). FDM

Dec2

—>
Y | Decl

=

= FDMis clearly simplest decoder for max rate-sum case.

"

Dec2

y —» Demux

L

Decl

= Both users (and all components in case c) are primary.

[3

Tl Section 2.7.4.2

April 30,2024

Subuser
components!
(freq-share
& time-share)

f

c). Mixed — sub users

—>

Decl

y—b

Demux

i)jcz
| A

Decl

A 4

—-»>

A 4

Dec2

Xy

— A

—>

L9:19

Stanford University



Symmetric 2-user channel and SWF

b2

C, = %log2(1+SNR2)

Hi(f) = H:(f)

Achievable rate pairs

Ctotal - Cl 1

0

0 Ctotar — C2 C, = %log2(1+SNR1)

= Symmetric means H,(f) = H,(f) (noise is one-dimensional and added to sum)
= Each of points A, B, and C have different SWF spectra — all have same (max) rate sum

Section 2.7.4.2 April 30,2024 L9: 20 Stanford University



Basic Precoders and the Matrix AWGN

PS5.1-2.28 modulo precoding function

April 30,2024 21



Broadcast Channel (BC)

2

wl

m={my, my, ..., my}

x ={xq, X3, .., Xy}

Single BC
Encoder
Px

)

Broadcast

Y1

Y2

User 1 Detector

Channel

DY/

Yu

\ 4

User 2 Detector

= The BCis the “Dual” of the MAC.

= Receivers are in different places and so cannot “co-process” {y,, }.

= Transmitter can co-encode/generate x, although input messages remain independent.
* Who encodes first? (may be at disadvantage)
* Who encodes last? (knowing other users’ signals is an advantage)

* What then is the order?

Sec2.6.1and 2.8

April 30,2024

A

User U Detector

y=uy2 - yul

L9:22

Stanford University



BC is “reversed” MAC

MAC receiver
Zy
yk—> » o : > ’x\k
e
post-triangularizes channel inverts triangle nonlinearly
diagonalizes error/noise without noise increase

BC transmitter
Vi 2%

— - —> X

with I (- Sometimes also x}, [A]
depending on situation

inverts triangle nonlinearly R =E_ . ] pre-triangularizes channel
without energy increase i % For white diagonal input = **

Ry, =1

=  The MAC’s uncoordinated user input is a kind of “worst case” transmitter, reducing data rate.
. With only an energy-sum constraint, these worst-case inputs’ users best pass as primary user components; secondary components “freeload” on the primary’s passage.

= The BC similarly will effectively correspond to a worst-case noise for which receiver coordination is useless, reducing data rate.
. With worst-case noise, the channel best passes the primary components’; secondary components freeload on the primary’s passage.

Onlyin Lecture  April 30,2024 L9:23 Stanford University




Triangular Matrices - Innovations and Prediction

= Prediction for some user order separates a modulated input to independent message components.

Vu=Xu~ Xu/{x,411..x75)

Innovations or predictions, but for BC v,, become the independent-users’ subsymbols, with normalization R, (u) = I.

= This is a triangular relationship (inverse of upper triangular is also upper triangular).

Vi 1 g1,2 - qQ1U 1
Vo 0 1 e goU 2 _1
V=1 1= : S e CR ¢
| vy | | 0 0 1 | | zu |

* OR,x= G -v (Gisalso upper triangular).
= Generating x from v can increase energy (~ enhance noise in MAC rcvr) if implemented directly (linearly).
TN (order reversal is intentional)

@ Section2.8.l.1andD.3.6.1.1 April 30, 2024 L9:24 Stanford University



Voronoi Regions and Modulo Addition (Sec 2.1)

= A lattice is a (countable) group of vectors A= {x} that is closed under an operation addition, so that
* Ifx; €EAandx, €EA,thenx; +x, € A. (Section 2.2.1.1 and Appendix B.2)

* A constellation is a finite subset of a lattice, plus a constant (coset) C € A 4+ A4y . (Ay ensures average value is zero.)

SQ rectangular or Z?

o o|olo]
o o N\
Decision or \l
Voronoi Region o @ ® o
V(A = 47?)
Contains 16 ‘ ‘ ‘ ‘
® & o o /[
o

Voronoi Region

HEX or A2

‘o) (@)

Decision or

V(A =17?%)

V=4,

Decision or
Voronoi Region
V(A =34,)
contains 9

Ao isthe "coset leader”

Green indicates
Modulo operation
(split ties equally)

= Voronoi Region of a lattice, V(A,) is the decision region around any point with volume V(A,).
* A, isthe “coding” lattice; codes try to pack more points into limited space (volume/area). — HEX is better than SQ.

= A constellation C typically selects points in one (coding-gain) lattice, A, , within the V(A;) of another
(shaping-gain) lattice A’ that is larger (can be scaled versions of one another or possibly different).
(Subtract any nonzero vector mean to save energy.)
P * All points in A, outside of V(A) map into a point inside V(Ay) - disguised detector problem.

P Section 2.3, App B.2

April 30, 2024

L9:25
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More general precoder (than Tomlinson/Laroia ...)

= Generalize Modulo Operation: (), =€3 En}\n”eﬂz where e=v— 141
EAg

e does not necessarily need to be a point in A, ; instead, it is a point in V(Ay).

+ It’s essentially the error between input and output of decoder with decision region equal to V(Ay) - sbs in trivial cases of “uncoded” V(A¢)=Z2.

Lemma 2.8.1 (distribution of modulo addition) Modulo addition distributes as

= useful
(B +v)a=(1)a @ (B)r - (2.371)
. Slde mfo is S.
is known (ISl for causal G(D) = in Tomlinson/DFE) .
Pre subtract (pre%:ode) z)and use modulo to set &, level (no x' X y Dirty plaper
energy increase for ~ ~ P »
Any A, shaping gain also applies here (8.5,5=0). 14 (x,)As (x)AS —>V nolseless
v then is any (e.g., SQ) input constellation. .
In shaping case, ¥ also needs a subsequent detector yet for (nonh near)
whatever code is used on v.
x will effectively have continuous uniform distributions over precoder
. —S s n
o For BC: s will be the earlier users (but their xtalk cancels) ~ order.
f  Section2.8.1.2 April 30,2024 PS 5.1 (2.28) - modulo precoder 19:26 Stanford University



With nontrivial channel, need MMSE version

Forney’s Crypto Lemma — 2003 (Section 2.8.1.2)

Corresponding Maximum Likelihood Decoder

Crypto Lemma / Precoder (independent symbols/codewords)

X Y s | S Lle
v @[ 1 R(Y) i (@) a, P

MMSE removal

No xmit energy increase
Simplifies ML detection

The MMSE part can be important in non-trivial cases (often missed in most info-theory texts).
It's reshaping the channel crosstalk and/or ISl in MMSE (not zero-forcing) sense.

When s is uniform over V(Ag) , then so is v, AND v is independent of both s and v (like encryption), s is the “key”
Or “writing on dirty paper” (s is the dirt, v is the writing, and the second modulo cleans the paper).

Sometimes the channel adds s (ISI/xtalk), sometimes the transmitter adds s (xmit case, s shares dimensions and energy with x).
E} * The add-at-xmit case has s as other users, effectively (with a twist .. later).

g  Section2.8.1.2 April 30, 2024 L9:27 Stanford University



Non-Causal ?

Subtly, the lattice A has a dimensionality N over which s and x are uniformly distributed.

Wise dimension use with fixed energy &, suggests A has a hyper-spherical boundary, as N — oo.
* This infinite-length precoder then also obtains full 1.53 shaping gain.

Asymtotically, the modulo has infinite number of dimensions, so requires infinite delay for s to be fully known in

the formation of x; whence “non-causa

* Approximated with finite delay in practice, s becomes another user’s encoded signal known first (~ non-causal) - order .

(),

Mod holds energy at £, (Gaussian in any finite number of dimensions, uniform in infinite dimensional hypersphere).

—)

e,

2

ul

If A, is hypercube, Forney’s crypto still holds but with SNR loss of (up to) 1.53 dB (the maximum shaping gain).

* Soreuse code with I" = 0 dB, with QAM constellations and the (up to) 1.53 dB loss remains (greatly simplifies precoder implementation),

but everything else works the same.

Section 2.8.1.2 April 30, 2024

L9:28 Stanford University



Midterm Review

= Questions

= Advice

April 30, 2024 L9:29 Stanford University
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