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Announcements & Agenda

" Announcements

Problem Set #4 is due Tuesday April 30 (no late, so solutions can distribute).

Midterm is 5/2 in class.

= Agenda

General Capacity Region (delayed from L7)
MAC C(b) via partial rate sums

Scalar Gaussian MAC

Vector Gaussian MAC

mu_mac.m software

Back-up

Capacity Region for frequency-indexed channels

April 25, 2024

L8: 2

Stanford University



General MU Capacity Region
and related optima

Section 2.6.4
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3 General Search Steps

Search 1: Find Ty, for given IT and py,,.

Search 2: Generate these T ,,i,, ‘s convex hull over all orders I for the achievable region c/l(b ,pxy).

Search 3: Generate a 2" Convex hull over all probability distributions p, for C(b).

These searches can be complex for general case, but do simplify for Gaussian MAC, BC, and IC.



Order-and-Distribution-Dependent Region

Order Step forms a first convex hull of all T,,,;;, vectors FOR EACH GIVEN ORDER and input distribution.

conv

cfl(b ,pxy)= U Imin(H: pxy)
I

Achievable
Region

Any point outside A (b, p,) will, in the chain-rule sense, have large error probability for at least one receiver.

* The orders are “dimension shared” across different designs (the convex hull / union) operation .... sub users.

* Every order and all convex combinations thereof have been considered, so it it could have been decoded it was inside A (b, py).

Distribution Step forms hull over the allowed input distributions (a 2" convex hull operation).

The order search is “NP-hard.”

conv

C(b )= U dq(b :pxy)
Dx

MU Capacity
Region

The distribution search can also be “NP-hard.”

Admissibility: Is b € C(b) ? (often easier fortunately)

many cases
simplify

Section 2.6.4

April 23, 2024
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The two convex-hull steps

= The order-vertices’ hull = The input-distributions’ hull

b, ® = I, (IT) vertex b,

A(b,p,) = order hull “ C(b )= order hull

Hull of vertices over | Hull of A (b, p) over
o Jallorders 17 L allpe. )
0 1 by

inner hull step outer hull step

P
@ Section 2.6.2 April 23,2024 L7:6 Stanford University



Maximum Rate Sum

* The rate sumis 1*b, or simply the sum of the user bits/symbol.
= This is a hyperplane in U-space.

= This plane with normal vector 1 will be tangent to C(b) at b,,4, Where 1*b., 5= bmay , the
maximum sum rate.

bmax

bmax




MU Matrix AWGN Channels

)

ul

= C(b) for a multi-user AWGN channel y = H - x + n will have all users’ input distributions as
Gaussian at the region’s (non-zero) boundary, @(b).

* Each of these points is a mutual information that for each receiver/user b,, = T has a chain-rule decomposition.

* For any subset of output dimensions y and any subset of inputs x,,, T(x;y) = I(xu; y /xU\u) + I(xy\u; y )
* With independent input messages, these are separable and can be separately maximized.
* The second term is a “single-user,” U\u , channel, and this channel thus has optimum Gaussian input.
* The uncancelled users’ crosstalk may contribute in MMSE sense to noise, which then is sum of Gaussians that is also Gaussian.

* (Proof by induction: last user is single-user channel, which has Gaussian; then next to last has Gaussian xtalk and
noise, so it also is Gaussian ...), the optimum u is also Gaussian. This also works for any user subset u . QED.

In general, with user components, treat U — U'.

Section 2.6.5 April 23,2024 L7:8 Stanford University



Degraded-Matrix AWGN

Definition 2.6.7 [(Subsymbol) Degraded multiuser Gaussian Channel] A
(subsymbol)-degraded AWGN multiuser channel has matrix ranks for H and/or
Rz that are oy and Op T respectively, such that

min{0pe 0,05} <U . (2.284)

Otherwise, the channel is non-degraded. The literature often omits the word “subsym-
bol,” but it is tacit in degraded-channel definitions.

This degraded definition depends on channel AND input.

=  What “degraded” means physically is that there are not enough dimensions to carry all users independently.
*  There are other chain-rule conditional-probability definitions, but they appear equivalent.

= [f all users energize, some must co-exist on the available (subsymbol) dimensions.
*  Aname is NOMA (new name for old subject) — Non-Orthogonal Multiple Access (associated with IoT where U/can be very large).

= Non-degraded channels (Massive MIMO is an example) have a surplus of dimensions (less likely to be degraded).

® Runis never singular on real channels, so noise whitening should not reduce the rank.
. however, we will see a special case where design will assume a fictitious singular noise, so we’ll need care on this when used.

g Section 2.6.5 April 23,2024 L7:9 Stanford University



Capacity-Energy Region (AWGN only)

0 &1

= Essentially redraws the capacity regions for different energy vectors with fixed b.
 Trivially, any point within is reliably achievable, while points outside have insufficient energy.

= Ifagiven &, € Cp(E), then b is admissible when also be _ € C(b).

[3
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Ergodic Capacity Region

= Design averages the capacity region over the variable-channel’s parameter (joint if multiparameters) distribution.

This assumes messages are independent of parameters.

= Example: The ergodic capacity region is (C(b)) = Ey[C(b)] for the matrix AWGN:

interesting result — The distribution p, that maximizes the ergodic capacity when H is Raleigh (any user) fading is a discrete
distribution (so then not Gaussian); extends well-known result for single user.

The AEP results don’t hold because they assume the INPUT distribution is ergodic — and that is not necessarily true if the channel is
varying (the reversal of input/channel limits for large blocklength may not hold and Rayleigh is example).

This presumably extends to multiuser case; however most channel variation for wideband (e.g. modern wireless) have codeword
lengths/delays for good codes that are less than the coherence time, so Gaussian good codes remain in wide use. Thus, might as well
go with Gaussian/known-good-codes for “quasi-stationary” assumption.

= Qutage Capacity Region?

There is some work on “zero-outage” capacity region (depending on definition may not be same as (C(b))).

Not necessarily just (1 — P,,,;) - (C(b))), like single-user case because of “which user outage?” question, although it probably is a
decent measure anyway.

It is probably more important to look at user input-rate variation (and contention for which point in C(b)) and layer 2/3 buffer
overflow outages, etc. (see back up slides for L7)

G Scction 2.6.6 April 23,2024 L7: 11 Stanford University



MAC C(b) via partial rate sums
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The MAC’s partial rate sums

= User u has maximum bit rate, when all other users are given (cancelled):

Px = Hf{zl Px,, independent user inputs

My—p

User U Transmitter Xy
pxU
User 2 Transmitter | X2 Multiple-
P > Access
2 Channel
: p}’/x
User 1 Transmitter X
Px, —
, .-

Single MAC
Detector

= The single receiver can process any user subset u € U.

I \eaan |

* This has a single-macro-user interpretation with summed bits/subsymbol:

c b, = Zueu b, < I(xu;y /xU\u)-

* This defines a hyperplane with |u| — 1 dimensions (E R'"').

= MAC order simplifies (receiver) to Il = ;.

* The user order within u does not change the sum I(xu; y /xU\u), nor does the order within U \ u.
* The number of planes (lines ... hyperplanes) to search decreases substantially to 2Y — 1 (null set excluded) << (UNY (large U).

N

]

Section 2.6.1

April 25, 2024

U mu_l, ...‘ﬁ\ll}

by < I(xu;y /xU\u)

L8:13
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Chain-Rule Reminder Lemma 2.3.4

T(xy) =T (%0 Y /%) +T(Xonu; Y ) 2V possible choices of u
/ \

User (set) u is detected with Other-user (set)U\u is detected with
all other users xy,, given (cancelled). users x,, as noise.

b < T(x;y) - This rate sum corresponds to the choice u= U.

A (hyperplane) face: bi+ by + -+ by < I(xu; y /xU\u) - defines (2%l —1) partial rate sums.

* There are also U trivial faces for positive bits/subsymbol b, = 0, so really 2% -1+ U faces that bound A(b, p,).

A vertex corresponds to a specific b = T for a specific order m; examples include for U = 2 :
I(xzi)’/xl)] T(xy;y /x2)
- IT(x;;y) T(xy;y) I

@ Section234 25 2024 L8: 14 Stanford University

In general, 3 U! vertices for a specific p,.



Chain-Rule Decoder

)

wl

ML Decoder

p
Xu y/[xn_l(l) X lw-1) ]

(cycles U times)

Next
User

x

T

v

Successive Decoding or ...
Generalized Decision Feedback Eq
(or “NOMA”)

= For the given order, decode all the lower-indexed users first and then current user.

= Since there is only one order, relabel users and avoid all the 7 ~1(+) notation.

= There is no loss of generality.

Section 2.7.1

April 25, 2024

L8: 15 Stanford University



A 2-user MAC rate region

b2 Decode 1, then 2
Xy /x
Foaiy /=) Specific to a py,,
b1+ bz = I(x, y)
decl,
then 2 = Pentagon —5 vertices and 5 faces
e 2Y — 1 + U Faces are the I(xu ;y/xU\u) &b, =0
T(xsy) L _~Decode 2, then 1 « U! = 2 vertices are the both-user order points 7
either i dec2,thenl * 2 more are single-user points, one for each user
0 ' b * 1 more is the origin

] 1
0 IT(x;y) T (x;y /x3) ¢ 5total

= b, vertex (short blue line) decodes 1 first (given), then 2 as if 1 is “cancelled.”
* Similar statement holds for b, vertex (and short green) line.

" Line with slope -1 is time-share or really vertex-share; it also is constant maximum rate sum (for this py,).
* There are two codes for each user (4 codes); This is example of user components (or subusers, sometimes called “rate splitting”)

ER)
W Section 2.7.1 Apl’il 25,2024 PS4.4 -2.24 L8: 16 Stanford UniveI'Sity



A 3-user rate region

= Decahedron — 10 faces
e 2Y —1 + U Faces are the I(xu ;Y /xU\u)
* U! = 6 vertices (rose) are the 3-user order points 1T

= vertex for3users U! (= 6)
= vertex for 2 users U! (= 6)
=vertexforluser U (= 3)
=vertexforOQusers  (=1)

> o (lli) - k! =16 vertices

® 0 O

= b, horizontal plane (pentagon) decodes 1 and 3 first (given), then 2 as if 1 and/or 3 are “cancelled.”
* 1and 3 form a two-user horizontal pentagon region.
e Similar statements hold for b; vertical-plane pentagon and b5 facial-plane pentagon.
* Roseplanenormaltol =[1 1 1]*isdimension-share of rose vertices; it has constant maximum rate sum (for this Dxy)-
*  There could be as many as 3 codes/components for each user on a time-share of vertices.
= The blue and green planes may also dimension-share vertices.
=  A(b,p,) is the entire interior plus faces and vertices. Any point outside violates at least one single-user mutual-information bound.

ER)
[ Section 2.7.1 Apl’il 25,2024 L8: 17 Stanford UniveI'Sity



MAC Capacity Region

= More formally, the MAC’s achievable region is bounded by hyperplanar regions

c/l(b,px): ﬂ {bIO < z bi <T (xl-;y/xu\i)} -

ucvu ie{u}

= The vertices are where hyperplanes intersect at a point.
Or, lines (smaller dimensional hyperplanes) may also bound.

= Convex hull over all multi-user input probability distributions p, is

conv

Cusc® = | | Ay,

Uuc py

. | , o
& Section2.7.2.2 April25,2024  PS4.5-2.25 0 18: 18 Stanford University




Scalar Gaussian MAC

PS4.3-2.25 Time-Division Multiplexing region

Section 2.7.2

April 25,2024 19



General Gaussian MAC

n  White Gaussian Noise

: More generally, variable-dim inputs have
~ ~ — | x; U
L, X1
y H —— 2x=ZLx,u~U-Lx
u=1
L, X8, X
2,%1
® |nputs are independent. = One Receiver will estimate all inputs. py, is the matrix H’s rank:
* R, is block diagonal. : 'tha“ do so in any order. it = number of linearly independent
) ¢ “Given an input” x,, means cancel it from y.
* Only 1 output and 1 noise. . . rows (or columns)

This does not necessary mean subtract H;, - x,, from y

o U = # of non-zero singular values.
* Unless L, = Ly, =1;or H, is diagonal and noise is white.

P
@ Section27.2  Anii25 2024 L8: 20 Stanford University



a%=.0001
= _ AN 2
€r, =1 %1 g " "\

y

1 361
I(zy) = =logy (14— =
(@1;9) 2 °g2( + .0001+.64)
1 64-1
Z(xo; = =1 14+ ———
(2239) 2 °g2( + .0001+.36)
total = 1.06 bits/dimension

= .32 bits/dimension

= .74 bits/dimension

1 1 .64-1 . . .
Z(zo;y/x1) = 3 log, (1 +SNR3) = 3 log, (1 + W) = 6.32 bits/dimensior

1 1 36-1 . . .
Z(z1;y/x2) = 3 log, (1+ SNR,) = 3 log, {1+ o001 ) = 5.90 bits/dimension

= Point Cis % share B and 3% share A.

A
) Section2.7.2.1 April 25,2024

Achievable rate pairs

P A: decode 1, then 2

C: dimension share

1.72 rbz]
by
; B: 2 1
7 | e e _~B: decode 2, then
0 E % by
p U2 492 590
L8:21 Stanford University



Successive decoding for scalar example

Successive decoder

(order favors user 1) Successive decoder

(order favors user 2)

° Detector 2 522

.6 —»

A £ Detector 1 X

= 3 [J!/ in general (corresponding to each possible order).

Detector 1

y — Detector 2 56\2

= Only 2 orders are possible for 2 users.

= The last user is “favored” in decoding (first accepts other as noise).

£
M Section2.7.2.1 April 25,2024 L8: 22 Stanford University



General formula

2 -UserScalar L, = L, =1

- 1
Housy/ap ) = 5108, (1+

Zieu gz ’ |H'L|2)

Scalar MAC o2
2 users
SNR, = & 'Jfl'z b < %mg2 (1+ SNR;)
SNR, & ';”'2 by < %logz (1+ SNR3)
SNR & -U|h1|2 + & - |hol? by +by, < %1082 (1+SNR)

o2

I

T Section 2.7.2.1

= 3 planes (lines) ~ 3 SNR’s
= ] sum rate
= Nonzero individual rates

April 25, 2024 PS4.5-2.25

%logz (1 +SNR2)

b,

L8:23

1 — by
E‘IOgZ (1+SNR1)

Stanford University



Energy-Sum MAC

Single energy constraint £; + £, < £, (instead of 2 constraints)

Capacity region becomes union of pentagons (and 1 triangle),

one for each combination of energies that add to total.

A: decode 2 only

~

By = 6.82

2

wl

Section 2.7.2.1

April 25,2024

= Orview Energy-Capacity Region
one for each bit vector b

82 Minimun energy-sum rate vector
decode 2, Cp(E)
1.4768 -}----- (@) then 1
@ :D+1E
3 3
dimension share
| SR b e
E IRlIZS S 31
b= [ 5108]
i decode 1,
002850 --|----- R S
| ' —&
1141 1 2.7645
capacity energy region

L8: 24 Stanford University



Time-Sharing Conundrum (Coding Theorist’s Fallacy in disguise)

= What is meaning of time-sharing? (“convex hull”)
* The different codes correspond to user components, each used for its respective fraction of “time” (dimensions).

=  With time-sharing, what does £, mean?

* Energy constant at £, : Is this then for every symbol/subsymbol in the sharing?
* Orthe average over the “time-shared” subsymbols?

= The second instance of averaging often enlarges the capacity region.

= So, “time-sharing” is somewhat ill-defined.
* Despite most info/com texts on MAC using it.

= Lecture 4’s Separation Theorem actually allows different mutual information I 4 and T3 to be
represented by their average information — for the same user.
° I=a-IA+(1—a)-IB.
* ST uses same constellation with average b for each symbol, possible very large|C]).

e If the shared same-user codes correspond to vertices with different orders, this creates issues for Separation Thm application.
e Butitis still possible, although the successive decoding needs to become “iterative-user” successive decoding.
* Of course, each user can use subusers; each user has subcode for A and for B, but then constellation varies.

Cﬁ

@ Section2.7.2.1  anil25 2024 L8: 25 Stanford University



Primary and Secondary Components (E-sum MAC)

Primary-user component: has nonzero energy for E-sum MAC’s maximum rate.
Secondary-user component: has zero energy for E-sum MAC’s maximum rate.

= Primary components dominate with largest pass-space gains (dimensions used for component).
= Secondary users “free load” on these primary-component dimensions.

Previous example (.8 and .6):
The pass-space is just one dimension (L, = 1).
user 2 is all primary (.8) ; user 1is all secondary (.6).
max sum is 6.82 (all energy on user 2).
Rate-sum decreases if secondary user components energize (see slide L8:15).

[3
@ Section 2.7.2.1 April 25,2024 L8: 26 Stanford University



ul

How Many Primary Components (E-sum MAC)?

The MAC has no more than U° < py primary components, to find them first do U SVD’s:
H, =R 2W) -H, =F, A, - M, with |H,|2T[1"*2,,>0.

noise

Each user can excite up to py, possible independent dimensions per subsymbol.

* The R,,;s. (1) includes all other user components’ crosstalk for whatever energies they use (knows all R, (u)’s).
* Each user can have vector-coding modulator without loss, or some linear combination of the pass-space dimensions.

PHy

For the channel gains in the VC, ~ 12
g gu = || = H’lu,l
=1

The primary-user components correspond to those energized in achieving max rate sum on the E-sum
MAC. All others are secondary-user components.

The “components” idea is helpful when individual users’ transmitters have >1 dimension (MIMO), via
* time-sharing, DMT, and/or multiple antennas.

Section 2.7.2.1 April 25,2024 L8: 27 Stanford University



Conundrum: double-sampling-rate Example

[80 60] channel again at twice sampling rate

bz @ decode 1,
then 2 E = gg]

b, + b, = 11.2883

10.6448

/ C=.6748B + .3252 4
vertex share

@ e — [4.4553]

! 6.8330

i ’ Q"/Q decode 2,
2.1331 T [2.13311,’, then 1
1.4730 |------------ .......... 4 5108 __________
0 0 6436 2.3777 4.5108  9.8154 by

a). capacity rate region

.048 1

002117 --r

T [:024

048

1331
- [i.slsi(g)s]

:: decode 1,

then 2

Q) |

—>

.106
b). capacity energy region

€1

= The vector b is now in the interior of the region, although is it the same channel?
* The time-sharing needs to occur at the same sampling rate, meaning the symbol period increases, for the original

C(b) to apply.
i
&) Section2.7.2.1 April 25, 2024

L8:28
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Vector Gaussian MAC

PS4.4-2.24 MACregions

Section 2.7.2.2

April 25,2024 29



MAC ~ single channel with white input

U
PHy ﬁx = Z Lx,u

=

<

Xy . .
Gaussian Noise Ry,

. Vir_ 1/2 _
Gaussian Code Vy-1 7

n
L, : Lyy-q L, Ly/X1 L/y XLy \U Lyx1
’ X1 Hy VA
Gaussian Code Vq H, L T’ L Run’” 7 y=H-v+n
va =] —— v
v Shapeto x R, remains the same P, < Py whitens noise Rym =1

user input block diagonal matrix

= This normalizes (redefines, not R, (w) here ) individual user MAC channels to H,, £ R;;/Z -H, - Ri,/cz (w).

= Normalized MACisnowy' = H - v + n’, where:

*  New input(s) is (are) “white” , R, = I.

* New noise is “white” , Ry = 1. _ _
We drop the primes going forward; y = H-v +n = H'sdimensions carry the information (secondary may freeload).

P
[L--J Section 2.7.2.2 April 25,2024 L8: 30 Stanford University



Cholesky Factorization

2

ul

= This is related to MMSE linear-prediction (see Appendix D).

= Positive definite Hermitian symmetric matrix factorsasR = G* - S - G , where

G is upper triangular monic (1’'s on diagonal), &
S is positive real diagonal matrix (even if R is complex).

= Matlab command is “chol” for lower X upper (lower is upper*) — produces upper.

= See website’s lohc.m program for lower X upper .

Appendix D.3.6

Gtemp=chol (R)
G= inv(diag(diag(Gtemp)))*Gtemp
S= diag(diag(Gtemp))*diag(diag(Gtemp))

April 25, 2024

>>R=[21
12];
>> Gtemp=chol(R) % =
1.4142 0.7071
0 1.2247
>> G= inv(diag(diag(Gtemp)))*Gtemp %=
1.0000 0.5000
0 1.0000
S=diag(diag(Gtemp))*diag(diag(Gtemp)) % =
2.0000 0
0 1.5000
>>G""S*G % =
2.0000 1.0000
1.0000 2.0000

L8: 31 Stanford University




Forward and Backward Canonical Channels

= Forward Canonical Channel is y =H"-H-v+H" -n,
* the output of matched-filter matrix. T - rad
f

= MMSE Estimator for backward channel

Ruy - Ryly = Ry-[Rf-Ry+Rf]™ = [Ry+1]7" =R,

= Backward Canonical Channel p
v=Ry,-y +e Ree:Rb

= Use Cholesky on backward-channel inverse R;' = Ry +1=G*- Sy - G

y' = S;t-G*y (algebra)

" /
e _ y = G-v—e where Rge, = Sg . o
G Sec2.7.22 April 25,2024 L8:32 Stanford University




Back Substitution

—

* Not quite ML/MAP, but successive decoding, JUuU-1 - GUz2 gu.1

* but canonical — achieves T reliably, each user, 0 1 e QU-12 QU-11
* if decisions are correct (asymptotic MMSE = MAP again). ' ’

* If " > 0 dB, then iterative decoding that ML may be needed. G = .
_ 0 0 1 92,1
= Each of these is MMSE based, 0 0 0 1
* which is related to conditional T. B B
= The decoder is much simpler decoder (“GDFE”). 1 = decision (yY)
o vy = decision (y5 — g2,1 - P1)
= SNR (biased) for each decision/dimension is Sg ;, ; .
= Butalso - =i
vy = decision (y'(} — Z qu.i - f/z)
=1
o U Lz New parallel
I(w;y) = logy(| H'H + 1 |) =log, | Sp |= log, H H SN Rmmse,u,e ¢ bits / complex symbol . “independent”
e u=1 f=1 subchannels
b
ED
[L'!I Section 2.7.2.2 April 25,2024 CANONICAL RECEIVER (any Rxx) L8:33 Stanford UniveI'Sity



Vector MAC Receiver

MMSE tor v
v” . (with bias removal)
Decode
u=1..U0
' 1 €ach $
» ’ v
unbiased g U
I'=Gu=1,.v
- ' 1=1,.0xu
2 :
— Ly X1 -1, =%, g*.p-1
5 ' Winpiasea = (So —1)™ -G~ -H" - Ry
: ; N——
— g : -1
Ryy =1 | L, XL, unbiased
Ry absorbed | U
Into H :
BUMES xu
171 u=1
g N Recall: RL/* was absorbed into
@ - ftach user/decoder achieves T(vy; y /[Vu-1 1Z1))
a L8: 34 Stanford University

Section 2.7.2.2 April 25,2024



Matrix AWGN MAC Example 1

>> Rf=H"H =
fI . l 5 2 ] 34 13 REVERSE ORDER - same commands -other vertex
— 13 1 13 5 >H=[ 2 5
>> Rbinv=Rf+eye(2) = 1 3]
35 13 Rbinv =
13 6 6 13
. 13 35
>> Gbar=chol(Rbinv) = Gbar=
5.9161 2.1974 2.4495 5.3072
0 10823 0 26141
>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 506.0000 0
35.0000 0 0 6.8333
0 1.1714 G=
>> G = inv(diag(diag(Gbar)))*Gbar = 1.0000 2.1667
1.0000 0.3714 0  1.0000
0 1.0000 b=
>> >> b=0.5*log2(diag(S0)) = 1.2925
2.5646 1.3863
0.1141
>>sum(b) = 2.6788 sum(b)= 2.6788

= These are the two vertices for dimension-share (pentagon outer face).

wh Section 2.7.2.2 April 25,2024 L8: 35
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Example 1 continued

2

wl

Receiver filters and bias are

Not really triangular, why?

Section 2.7.2.2

April 25,2024

Vertex 1
>> W=inv(S0)*inv(G') =
0.0286 0

-0.3171 0.8537
>> Wunb=S0*inv(S0-eye(2))*W =
0.0294 0
-2.1667 5.8333

>> MSWMFu=Wunb*H' =
0.1471 0.0882
0.8333 -0.6667
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-

eye(2)) =
1.0000 0.3824
0  1.0000

>> MSWMFuU*H =
1.0000 0.3824
2.1667 1.0000

PS4.5-2.25

Vertex 2
>> W=inv(S0)*inv(G') =
0.1667 0

-0.3171 0.1463
>> Wunb=S0*inv(S0-eye(2))*W =
0.2000 0
-0.3714 0.1714
>>MSWMFu=Wunb*H' =
0.4000 0.2000
0.1143 0.1429
>> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) =
1.0000 2.6000
0 1.0000
>> MSWMFu*H=
1.0000 2.6000
0.3714 1.0000

L8: 36 Stanford University



Easier with mu_mac.m

function [b, GU, WU, SO, MSWMFU] = mu mac(H, A, Lxu, cb) H=[52;31];
\ [b, GU, WU, SO, MSWMFU] = mu_mac(H, eye(2), [1 1], 2);
channel Rxx1/2 1 cplx, 2 real
B ron (10 e #/user xmit b= 2.5646 0.1141
antennas
% Computing Ht: Ht = H*A GU=
St 1.0000 0.3824
o 0 1.0000
WU =
% Computing Rf, Rbinv, Gbar 0.0294 0
Rf = Ht' * Ht; ’
Rbinv = Rf + eye (size (Rf)); -2.1667 5.8333
Gbar = chol (Rbinv) ; S0=
35.0000 0
% Computing the matrices of interest 0 1.1714
G = inv(diag(diag(Gbar))) *Gbar; ’
S0 = diag(diag(Gbar)) *diag(diag (Gbar)) ;
W = inv(S0)*inv(G'); MSWMFU =
0.1471 0.0882
GU = eye(size(G)) + SO0*pinv (SO-eye(size(G)))* (G-eye(size(G))); 0.8333 -0.6667
WU = pinv(SO-eye(size(G)))*inv (G'); *y —
MSWMFU = WU*Ht'; >>MSWMFU™H =
index=0; 1.0000 0.3824
for u=1:U 2.1667 1.0000
for 1=1:Lxu(u)
b =Db 1/cb) *1log2 (SO (ind 1,ind 1)) . .
oL T blwry (/e iogl (S0 (ndextd, dndextd)) >> SNR = 10*log10(diag(S0)) =
index=index+Lxu (u) ; 15.4407
end 0.6872
[3 >> sum(b) = 2.6788
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Example 2: 2 x 3 MAC (secondary users)

H=[521
311]; basically added a 3" user

[b, GU, WU, SO, MSWMFU] = mu_mac(H, eye(3),[111],2)

b= 25646 0.1141 0.1137

GU= 1.0000 0.3824 0.2353
0 1.0000 0.1667
0 0 1.0000

WU =

0.0294 0 0

-2.1667 5.8333 0

-1.2857 -0.1429 5.8571

S0=

35.0000 0 0
0 1.1714 0
0 0 1.1707

MSWMFU =

0.1471 0.0882
0.8333 -0.6667
-0.8571 1.8571
>>sum(b)= 2.7925
>>MSWMFU*H=

1.0000 0.3824 0.2353
2.1667 1.0000 0.1667
1.2857 0.1429 1.0000
>> SNR10*log10(diag(S0))=
15.4407

0.6872

0.6846

Section 2.7.2.2  apyil 25,2024

= The channel rank is 2 so at least 1 secondary comp = 3-2.
= But secondary applies to energy-sum MAC (which this is

not, yet).

= Qriginal 2 units of energy is spread over 3 users?

b= 2.0050 0.1009 0.0696
GU=
1.0000 0.3824 0.2353
0 1.0000 0.3878
0 0 1.0000
WU =
0.0662 0 0
-2.3878 6.6582 0
-2.0000 -0.5000 9.8750

S0=
16.1111 0 0
0 1.1502 0
0 0 1.1013
MSWMFU =

0.2206 0.1324
0.9184 -0.3367
-0.7500 2.2500

>>[b, GU, WU, S0, MSWMFU] = mu_mac(H, (2/3)*eye(3), [111], 2)

>>sum(b) = 2.1755 (lower than 2x2 value of 2.6788)

= Relatively more energy on secondary-user comp(s), bsum {.

PS4.4-2.26 MACregions
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Non-Zero Gap Achievable Region

= Construct C(b) withT' = 0 dB. b,
= Reduce all rates by y,, relative to boundary points.

= |nscribe smaller region C(b)- (y;, ® 1).

= Square constellations instead of spheres (AWGN) loss
1.53 dB in gap above (0.25 bit/dimension). 0 b,

@ Section2.7.2.3 April 25,2024 L8: 39 Stanford University
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End Lecture 8
(back-up material FYI)

Stanford University



Capacity Region for continuous-frequency-indexed

channels

Sections 2.7.4.1-2

April 25,2024 41



C(b) is Union of S,.(f)-indexed Pentagons

S o Nb < T(ma) = [ 1 2Y, Sl - H(P
b, x (f) union of pentagons b= ;b“ = Hein) = /_oo R Sa(f) v
C, :
"""""""""" i L both 45° lines Calculus of variations again,
i o rate  sum point decomposes into U water-fills,
.................... : R each with other Users as noise
i o C1<Cy more details in L9.
""" 5 A i ()
0 | b, P (f)+02+2i¢u5x,i(f)+|Hi(f)|2:K
. C, EAGIE u

Simultaneous water-filling

) - Maximum rate sum
= Each pentagon corresponds to an S,.(f) choice.

* The pentagons become triangles for the sum-energy MAC.

= The union (convex hull is union when inputs are Gaussian) can dimension-share in frequency as N — oo,

[3
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2 X, P Hy(f)
z
P, %, =g —_><|'9—»é>—»y

= The users have continuous-time/frequency channels = use MT on each, theoretically.

= This really means dimensionality is infinite (or very large) so “dimension-sharing” may be inherent.

= SWF applies, but with some interpretation (like power instead of energy, etc and power per
dimension instead of power-spectral density, etc. )

[3
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Decoders and SWF

User 2

I f f f
a). both flat b). FDM c). mixed
—,?_» Dec2 ] Dec2 —>i)jcz
Yy —»| Demux > Decl | ~ X
Lyl Decl Y — [ —L xl . 2

A 4

Dec2

= FDM is clearly simplest decoder for max rate sum case.

[3
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Symmetric 2-user channel and SWF

b2

C, = %log2(1+SNR2)

Achievable rate pairs

Ctotal - Cl 1

0

0 Ctotar — C2 C, = %log2(1+SNR1)

= Symmetric means H,(f) = H,(f) (noise is one-dimensional and added to sum)
= Each of points A, B, and C have different SWF spectra — all have same (max) rate sum

[3
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