

Lecture 8 Multiple Access Channels April 25, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus of Engineering

Instructor EE379B – Spring 2024

Announcements & Agenda

Announcements

- Problem Set #4 is due Tuesday April 30 (no late, so solutions can distribute).
- Midterm is 5/2 in class.

Agenda

- General Capacity Region (delayed from L7)
- MAC C(b) via partial rate sums
- Scalar Gaussian MAC
- Vector Gaussian MAC
 - mu_mac.m software
- Back-up
 - Capacity Region for frequency-indexed channels

General MU Capacity Region and related optima

Section 2.6.4

April 23, 2024

3 General Search Steps

- Search 1: Find \mathbb{I}_{min} for given Π and p_{xy} .
- Search 2: Generate these \mathbb{I}_{min} 's convex hull over all orders Π for the achievable region $\mathcal{A}(\boldsymbol{b}, p_{xy})$.
- Search 3: Generate a 2nd Convex hull over all probability distributions p_x for C(b).
- These searches can be complex for general case, but do simplify for Gaussian MAC, BC, and IC.

Order-and-Distribution-Dependent Region

Order Step forms a first convex hull of all *I*_{min} vectors FOR EACH GIVEN ORDER and input distribution.

Any point outside $\mathcal{A}(\boldsymbol{b}, p_x)$ will, in the chain-rule sense, have large error probability for at least one receiver.

- The orders are "dimension shared" across different designs (the convex hull / union) operation sub users.
- Every order and all convex combinations thereof have been considered, so it it could have been decoded it was inside $\mathcal{A}(\boldsymbol{b}, p_{\boldsymbol{x}})$.
- Distribution Step forms hull over the allowed input distributions (a 2nd convex hull operation).

- The order search is "NP-hard."
- The distribution search can also be "NP-hard."
- Admissibility: Is $b \in C(b)$? (often easier fortunately)

Stanford University

The two convex-hull steps

The order-vertices' hull

The input-distributions' hull

Maximum Rate Sum

- The **rate sum** is **1****b*, or simply the sum of the user bits/symbol.
- This is a hyperplane in *U*-space.
- This plane with normal vector **1** will be tangent to C(b) at b_{max} , where $\mathbf{1}^* b_{max} = b_{max}$, the maximum sum rate.

MU Matrix AWGN Channels

- $C(\mathbf{b})$ for a multi-user AWGN channel $\mathbf{y} = H \cdot \mathbf{x} + \mathbf{n}$ will have all users' input distributions as Gaussian at the region's (non-zero) boundary, $\mathcal{C}(\mathbf{b})$.
 - Each of these points is a mutual information that for each receiver/user $b_u = I$ has a chain-rule decomposition.
 - For any subset of output dimensions y and any subset of inputs x_u , $I(x; y) = I(x_u; y / x_{U \setminus u}) + I(x_{U \setminus u}; y)$.
 - With independent input messages, these are separable and can be separately maximized.
 - The second term is a "single-user," $U \setminus u$, channel, and this channel thus has optimum Gaussian input.
 - The uncancelled users' crosstalk may contribute in MMSE sense to noise, which then is sum of Gaussians that is also Gaussian.
 - (Proof by induction: last user is single-user channel, which has Gaussian; then next to last has Gaussian xtalk and noise, so it also is Gaussian ...), the optimum *u* is also Gaussian. This also works for any user subset *u*. **QED**.

In general, with user components, treat $U \rightarrow U'$.

April 23, 2024

L7:8

Degraded-Matrix AWGN

Definition 2.6.7 [(Subsymbol) Degraded multiuser Gaussian Channel] A (subsymbol)-degraded AWGN multiuser channel has matrix ranks for H and/or R_{xx} that are ϱ_H and $\varrho_{R_{xx}}$ respectively, such that

$$\min\left\{\varrho_{R_{\boldsymbol{x}\boldsymbol{x}}},\varrho_{H}\right\} < U \quad . \tag{2.284}$$

Otherwise, the channel is **non-degraded**. The literature often omits the word "subsymbol," but it is tacit in degraded-channel definitions.

This degraded definition depends on channel AND input.

- What "degraded" means physically is that there are not enough dimensions to carry all users independently.
 - There are other chain-rule conditional-probability definitions, but they appear equivalent.
- If all users energize, some must co-exist on the available (subsymbol) dimensions.
 - A name is NOMA (new name for old subject) Non-Orthogonal Multiple Access (associated with IoT where U can be very large).
- Non-degraded channels (Massive MIMO is an example) have a surplus of dimensions (less likely to be degraded).
- *R*_{*nn*} is never singular on real channels, so noise whitening should not reduce the rank.
 - however, we will see a special case where design will assume a fictitious singular noise, so we'll need care on this when used.

Capacity-Energy Region (AWGN only)

- Essentially redraws the capacity regions for different energy vectors with fixed b.
 - Trivially, any point within is reliably achievable, while points outside have insufficient energy.
- If a given $\mathcal{E}_x \in \mathcal{C}_b(\mathcal{E})$, then **b** is **admissible** when also $b_{\mathcal{E}_x} \in \mathcal{C}(b)$.

Section 2.6.5.1 April 23, 2024

L7: 10

Ergodic Capacity Region

- Design averages the capacity region over the variable-channel's parameter (joint if multiparameters) distribution.
 - This assumes messages are independent of parameters.
- Example: The **ergodic capacity region** is $\langle \mathcal{C}(\boldsymbol{b}) \rangle = \mathbb{E}_{\boldsymbol{H}}[\mathcal{C}(\boldsymbol{b})]$ for the matrix AWGN:
 - interesting result The distribution p_x that maximizes the ergodic capacity when H is Raleigh (any user) fading is a discrete distribution (so then not Gaussian); extends well-known result for single user.
 - The AEP results don't hold because they assume the INPUT distribution is ergodic and that is not necessarily true if the channel is varying (the reversal of input/channel limits for large blocklength may not hold and Rayleigh is example).
 - This presumably extends to multiuser case; however most channel variation for wideband (e.g. modern wireless) have codeword lengths/delays for good codes that are less than the coherence time, so Gaussian good codes remain in wide use. Thus, might as well go with Gaussian/known-good-codes for "quasi-stationary" assumption.

Outage Capacity Region?

- There is some work on "zero-outage" capacity region (depending on definition may not be same as $\langle C(b) \rangle$).
- Not necessarily just (1 − P_{out}) · ⟨C(b)⟩), like single-user case because of "which user outage?" question, although it probably is a decent measure anyway.
- It is probably more important to look at user input-rate variation (and contention for which point in C(b)) and layer 2/3 buffer overflow outages, etc. (see back up slides for L7)

L7: 11

MAC C(b) via partial rate sums

PS4.3 - 2.23

April 25, 2024

The MAC's partial rate sums

 $p_x = \prod_{u=1}^U p_{x_u}$ independent user inputs

User u has maximum bit rate, when all other users are given (cancelled):

$$b_{u} \leq \mathbb{I}(\boldsymbol{x}_{u}; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \setminus u})$$

- The single receiver can process any user subset $u \subseteq U$.
 - This has a single-macro-user interpretation with summed bits/subsymbol:
 - $b_{\boldsymbol{u}} = \sum_{u \in \boldsymbol{u}} b_u \leq \mathbb{I}(\boldsymbol{x}_{\boldsymbol{u}}; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{U} \setminus \boldsymbol{u}}).$
 - This defines a hyperplane with $|\boldsymbol{u}| 1$ dimensions $(\in \mathbb{R}^{|\boldsymbol{u}|})$.
- MAC order simplifies (receiver) to $\boldsymbol{\Pi} = \boldsymbol{\pi}_1$.
 - The user order within u does not change the sum $\mathbb{I}(x_u; y/x_{U\setminus u})$, nor does the order within $U\setminus u$.
 - The number of planes (lines ... hyperplanes) to search decreases substantially to $2^U 1$ (null set excluded) << $(U!)^U$ (large U).

Section 2.6.1

L8: 13

Stanford University

Chain-Rule Reminder Lemma 2.3.4

 2^U possible choices of u

- $b \leq I(x; y)$ This rate sum corresponds to the choice u = U.
- A (hyperplane) face: $b_1 + b_2 + \cdots + b_{|u|} \le \mathbb{I}(x_u; y / x_{U \setminus u})$ defines $(2^{|u|} 1)$ partial rate sums.

users x_{μ} as noise.

- There are also U trivial faces for positive bits/subsymbol $b_u \ge 0$, so really $2^u -1 + U$ faces that bound $\mathcal{A}(\mathbf{b}, p_x)$.
- A vertex corresponds to a specific b = I for a specific order π ; examples include for U = 2:

$$\begin{bmatrix} \mathbb{I}(\boldsymbol{x}_2; \boldsymbol{y} / \boldsymbol{x}_1) \\ \mathbb{I}(\boldsymbol{x}_1; \boldsymbol{y}) \end{bmatrix} \begin{bmatrix} \mathbb{I}(\boldsymbol{x}_1; \boldsymbol{y} / \boldsymbol{x}_2) \\ \mathbb{I}(\boldsymbol{x}_2; \boldsymbol{y}) \end{bmatrix}$$

In general, $\exists U!$ vertices for a specific p_x .

all other users $x_{U \setminus u}$ given (cancelled).

L8: 14

Chain-Rule Decoder

- For the given order, decode all the lower-indexed users first and then current user.
- Since there is only one order, relabel users and avoid all the $\pi^{-1}(\cdot)$ notation.
- There is no loss of generality.

April 25, 2024

(or "NOMA")

A 2-user MAC rate region

Specific to a p_{xy}

- Pentagon 5 vertices and 5 faces
 - $2^U 1 + U$ Faces are the $I(x_u; y/x_{U \setminus u}) \& b_u \ge 0$
 - U! = 2 vertices are the both-user order points π
 - 2 more are single-user points, one for each user
 - 1 more is the origin
 - 5 total
- b₂ vertex (short blue line) decodes 1 first (given), then 2 as if 1 is "cancelled."
 - Similar statement holds for b_1 vertex (and short green) line.
- Line with slope -1 is **time-share or really vertex-share**; it also is constant maximum rate sum (for this p_{xy}).
 - There are two codes for each user (4 codes); This is example of user components (or subusers, sometimes called "rate splitting")

A 3-user rate region

- Decahedron 10 faces
 - $2^U 1 + U$ Faces are the $\mathbb{I}(x_u; y / x_{U \setminus u})$
 - U! = 6 vertices (rose) are the 3-user order points π

- b_2 horizontal plane (pentagon) decodes 1 and 3 first (given), then 2 as if 1 and/or 3 are "cancelled."
 - 1 and 3 form a two-user horizontal pentagon region.
 - Similar statements hold for b_1 vertical-plane pentagon and b_3 facial-plane pentagon.
- Rose plane normal to $\mathbf{1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^*$ is dimension-share of rose vertices; it has constant maximum rate sum (for this p_{xy}).
 - There could be as many as 3 codes/components for each user on a time-share of vertices.
- The blue and green planes may also dimension-share vertices.
- $\mathcal{A}(\boldsymbol{b}, p_r)$ is the entire interior plus faces and vertices. Any point outside violates at least one single-user mutual-information bound.

L8:17

MAC Capacity Region

More formally, the MAC's achievable region is bounded by hyperplanar regions

0

$$\mathcal{A}(\boldsymbol{b}, \boldsymbol{p}_{\boldsymbol{x}}) = \bigcap_{\boldsymbol{u} \subseteq \boldsymbol{U}} \left\{ \boldsymbol{b} \mid 0 \leq \sum_{i \in \{\boldsymbol{u}\}} b_i \leq \mathbb{I}\left(\boldsymbol{x}_i; \boldsymbol{y} / \boldsymbol{x}_{\boldsymbol{u} \setminus i}\right) \right\}.$$

- The vertices are where hyperplanes intersect at a point.
 - Or, lines (smaller dimensional hyperplanes) may also bound.
- Convex hull over all multi-user input probability distributions p_x is

Scalar Gaussian MAC

PS4.3 - 2.25 Time-Division Multiplexing region

Section 2.7.2

April 25, 2024

General Gaussian MAC

More generally, variable-dim inputs have

 $\mathfrak{L}_x = \sum_{u=1}^U L_{x,u} \sim U \cdot L_x$

- Inputs are independent.
 - R_{xx} is block diagonal.
 - Only 1 output and 1 noise.
- One Receiver will estimate all inputs.
 - It can do so in any order.
 - "Given an input" x_u means cancel it from y.
 - This does not necessary mean subtract $H_u \cdot x_u$ from y
 - Unless $L_y = L_{x,u} = 1$; or H_u is diagonal and noise is white.

 p_H is the matrix H's rank:

- = number of linearly independent rows (or columns)
- = # of non-zero singular values.

Example

$$\mathcal{I}(x_2; y/x_1) = \frac{1}{2}\log_2\left(1 + \text{SNR}_2\right) = \frac{1}{2}\log_2\left(1 + \frac{.64 \cdot 1}{.0001}\right) = 6.32 \text{ bits/dimension}$$

$$\mathcal{I}(x_1; y/x_2) = \frac{1}{2}\log_2\left(1 + \text{SNR}_1\right) = \frac{1}{2}\log_2\left(1 + \frac{.36 \cdot 1}{.0001}\right) = 5.90 \text{ bits/dimension}$$

• Point C is ¼ share B and ¾ share A.

Section 2.7.2.1 April 25, 2024

Successive decoding for scalar example

- Only 2 orders are possible for 2 users.
- $\exists U!$ in general (corresponding to each possible order).
- The last user is "favored" in decoding (first accepts other as noise).

April 25, 2024

L8: 22

2 – User Scalar $L_x = L_y = 1$

Energy-Sum MAC

- Single energy constraint $\mathcal{E}_1 + \mathcal{E}_2 \leq \mathcal{E}_x$ (instead of 2 constraints)
- Capacity region becomes union of pentagons (and 1 triangle),
 - one for each combination of energies that add to total.

- Or view Energy-Capacity Region
 - one for each bit vector **b**

April 25, 2024

Time-Sharing Conundrum (Coding Theorist's Fallacy in disguise)

- What is meaning of time-sharing? ("convex hull")
 - The different codes correspond to user components, each used for its respective fraction of "time" (dimensions).
- With time-sharing, what does \(\mathcal{E}_u\) mean?
 - Energy constant at \mathcal{E}_u : Is this then for every symbol/subsymbol in the sharing?
 - Or the average over the "time-shared" subsymbols?
- The second instance of averaging often enlarges the capacity region.
- So, "time-sharing" is somewhat ill-defined.
 - Despite most info/com texts on MAC using it.
- Lecture 4's Separation Theorem actually allows different mutual information I_A and I_B to be represented by their average information *for the same user.*
 - $I = \alpha \cdot I_A + (1 \alpha) \cdot I_B.$
 - ST uses same constellation with average \boldsymbol{b} for each symbol, possible very large |C|).
 - If the shared same-user codes correspond to vertices with different orders, this creates issues for Separation Thm application.
 - But it is still possible, although the successive decoding needs to become "iterative-user" successive decoding.
 - Of course, each user can use subusers; each user has subcode for A and for B, but then constellation varies.

Primary and Secondary Components (E-sum MAC)

Primary-user component: has nonzero energy for E-sum MAC's maximum rate.

Secondary-user component: has zero energy for E-sum MAC's maximum rate.

- Primary components dominate with largest pass-space gains (dimensions used for component).
- Secondary users "free load" on these primary-component dimensions.

Previous example (.8 and .6):

The pass-space is just one dimension $(L_y = 1)$. user 2 is all primary (.8) ; user 1 is all secondary (.6). max sum is 6.82 (all energy on user 2).

Rate-sum decreases if secondary user components energize (see slide L8:15).

How Many Primary Components (E-sum MAC)?

• The MAC has no more than $U^o \leq p_H$ primary components, to find them first do U SVD's:

$$\widetilde{H}_u = R_{noise}^{-1/2}(u) \cdot H_u = F_u \cdot \Lambda_u \cdot M_u^* \quad \text{with} \quad \left| \widetilde{H}_u \right| \triangleq \prod_{l=1}^{\mathcal{P}_{H_u}} \lambda_{u,l} > 0 \, .$$

- Each user can excite up to $\mathcal{P}_{H_{\mu}}$ possible independent dimensions per subsymbol.
 - The $R_{noise}(u)$ includes all other user components' crosstalk for whatever energies they use (knows all $R_{xx}(u)$'s).
 - Each user can have vector-coding modulator without loss, or some linear combination of the pass-space dimensions.

For the channel gains in the VC,

$$g_u = \left| \widetilde{H}_u \right|^2 = \prod_{l=1}^{\mathcal{P}H_u} \lambda_{u,l}$$

- The primary-user components correspond to those energized in achieving max rate sum on the E-sum MAC. All others are secondary-user components.
- The "components" idea is helpful when individual users' transmitters have >1 dimension (MIMO), via
 - time-sharing, DMT, and/or multiple antennas.

Conundrum: double-sampling-rate Example

- The vector **b** is now in the interior of the region, although is it the same channel?
 - The time-sharing needs to occur at the same sampling rate, meaning the symbol period increases, for the original C(b) to apply.

Vector Gaussian MAC

PS4.4 - 2.24 MAC regions

Section 2.7.2.2

April 25, 2024

MAC ~ single channel with white input

- This normalizes (redefines, not $R_{noise}(u)$ here) individual user MAC channels to $\tilde{H}_u \triangleq R_{nn}^{-1/2} \cdot H_u \cdot R_{xx}^{1/2}(u)$.
- Normalized MAC is now $y' = \tilde{H} \cdot v + n'$, where:
 - New input(s) is (are) "white", $R_{vv} = I$.
 - New noise is "white", $R_{n'n'} = I$.
 - We drop the primes going forward; $y = \tilde{H} \cdot v + n \rightarrow \tilde{H}'$ s dimensions carry the information (secondary may freeload).

Cholesky Factorization

- This is related to MMSE linear-prediction (see Appendix D).
- Positive definite Hermitian symmetric matrix factors as $R = G^* \cdot S \cdot G$, where
 - G is upper triangular monic (1's on diagonal), &
 - *S* is positive real diagonal matrix (even if *R* is complex).
- Matlab command is "chol" for lower × upper (lower is upper*) produces upper.
 - Gtemp=chol (R)

Appendix D.3.6

- G= inv(diag(diag(Gtemp)))*Gtemp
- S= diag(diag(Gtemp))*diag(diag(Gtemp))
- See website's lohc.m program for *lower* × *upper*.

```
>> R=[21
12];
>> Gtemp=chol(R) % =
 1.4142 0.7071
    0 1.2247
>> G= inv(diag(diag(Gtemp)))*Gtemp %=
 1.0000 0.5000
         1.0000
    0
S= diag(diag(Gtemp))*diag(diag(Gtemp)) % =
 2.0000
          0
    0 1.5000
>> G'*S*G % =
 2.0000 1.0000
 1.0000 2.0000
```


Forward and Backward Canonical Channels

- Forward Canonical Channel is
 - the output of matched-filter matrix.

$$\mathbf{y}' = \underbrace{\widetilde{H}^* \cdot \widetilde{H}}_{R_f} \cdot \mathbf{v} + \underbrace{\widetilde{H}^* \cdot \mathbf{n}}_{\mathbf{n}'},$$

MMSE Estimator for backward channel

$$R_{\nu y'} \cdot R_{y'y'}^{-1} = R_f \cdot [R_f \cdot R_f + R_f]^{-1} = [R_f + I]^{-1} = R_b$$

Backward Canonical Channel

$$\boldsymbol{\nu} = R_b \cdot \boldsymbol{y}' + \boldsymbol{e} \qquad R_{\boldsymbol{e}\boldsymbol{e}} = R_b$$

• Use **Cholesky** on backward-channel inverse $R_b^{-1} = R_f + I = G^* \cdot S_0 \cdot G$

$$oldsymbol{y}'' = S_0^{-1} \cdot G^{-*} oldsymbol{y}'$$
 (algebra)
 $oldsymbol{y}'' = G \cdot oldsymbol{
u} - oldsymbol{e}'$ where $R_{oldsymbol{e}'e'} = S_0^{-1}$

L8: 32 Stanford University

Sec 2.7.2.2

April 25, 2024

Back Substitution

- Not quite ML/MAP, but successive decoding,
 - but canonical achieves ⊥ reliably, each user,
 - if decisions are correct (asymptotic MMSE = MAP again).
 - If $\Gamma > 0$ dB, then iterative decoding that \rightarrow ML may be needed.
- Each of these is MMSE based,
 - which is related to conditional I.
- The decoder is much simpler decoder ("GDFE").
- SNR (biased) for each decision/dimension is $S_{0,u,l}$.
- But also

$$G = \begin{bmatrix} 1 & g_{U,U-1} & \dots & g_{U,2} & g_{U,1} \\ 0 & 1 & \dots & g_{U-1,2} & g_{U-1,1} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & g_{2,1} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

$$egin{array}{rcl} \hat{oldsymbol{
u}}_1 &=& ext{decision} \left(oldsymbol{y}_1''
ight) \ \hat{oldsymbol{
u}}_2 &=& ext{decision} \left(oldsymbol{y}_2'' - oldsymbol{g}_{2,1} \cdot \hat{oldsymbol{
u}}_1
ight) \ dots &dots &dots \ dots \$$

18:33

i=1

Stanford University

$$\mathcal{I}(\boldsymbol{x};\boldsymbol{y}) = \log_2(|\underbrace{\widetilde{H}^*\widetilde{H} + I}_{R_b^{-1}}|) = \log_2|S_0| = \log_2\left\{\prod_{u=1}^{U^*}\prod_{\ell=1}^{L_{x,u}}SNR_{mmse,u,\ell}\right\} \text{bits / complex symbol} \text{ .} \qquad \underbrace{\text{New parallel "independent" subchannels}}_{\text{subchannels}}$$

CANONICAL RECEIVER (any R_{xx})

Section 2.7.2.2 April 25, 2024

Vector MAC Receiver

Matrix AWGN MAC Example 1

$$\widetilde{H} = \left[egin{array}{cc} 5 & 2 \ 3 & 1 \end{array}
ight]$$

Section 2.7.2.2

>> KI=N N =	
34 13	REVERSE ORDER – same commands – other vertex
13 5	>>H=[2 5
>> Rbinv=Rf+eye(2) =	1 3];
35 13	Rbinv =
13 6	6 13
>> Gbar=chol(Rbinv) = 5.9161 2.1974 0 1.0823	13 35 Gbar = 2.4495 5.3072 0 2.6141
>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 35.0000 0 0 1.1714 >> G = inv(diag(diag(Gbar)))*Gbar = 1.0000 0.3714 0 1.0000 >> >> b=0.5*log2(diag(S0)) =	S0 = 6.0000 0 0 6.8333 G = 1.0000 2.1667 0 1.0000 b = 1.2925
2.5646 0.1141 >> sum(b) = 2.6788	1.3863 sum(b) = 2.6788

These are the two vertices for dimension-share (pentagon outer face).

.. D4 111*11

Example 1 continued

Receiver filters and bias are

Vertex 1

>> W=inv(S0)*inv(G') = 0.0286 0 -0.3171 0.8537 >> Wunb=S0*inv(S0-eye(2))*W = 0.0294 0 -2.1667 5.8333

>> MSWMFu=Wunb*H' = 0.1471 0.0882 0.8333 -0.6667 >> Gunb=eye(2)+S0*inv(S0-eye(2))*(Geye(2)) = 1.0000 0.3824 0 1.0000

Vertex 2

>> W=inv(S0)*inv(G') = 0.1667 0 -0.3171 0.1463 >> Wunb=S0*inv(S0-eye(2))*W = 0.2000 0 -0.3714 0.1714 >> MSWMFu=Wunb*H' = 0.4000 0.2000 0.1143 0.1429 >> Gunb=eye(2)+S0*inv(S0-eye(2))*(G-eye(2)) = 1.0000 2.6000 0 1.0000 >> MSWMFu*H= 1.0000 2.6000 0.3714 1.0000

Stanford University

Not really triangular, why?

>> MSWMFu*H = 1.0000 0.3824 2.1667 1.0000

Easier with mu_mac.m

L8:37

	function [b, GU, WU, S	0, MSWMFU] = mu_mac(H, A, Lxu, cb)	
	8	channel $Rxx1/2$ 1 cplx, 2 real	
	[~ , U] = size(Lxu);	#/user xmit	
	b=zeros(1,U);	antennas	
	% Computing Ht: Ht = H	*A	
	Ht = H*A;		
	%		
	% Computing Rf, Rbinv,	Gbar	
	RI = Ht' ^ Ht; Rbinv = Rf + eve(size(Rf));	
	Gbar = chol(Rbinv);		
	% Computing the matric G = inv(diag(diag(Gbar))	es of interest	
	S0 = diag(diag(Gbar))*	diag(diag(Gbar));	
	<pre>W = inv(S0)*inv(G');</pre>		
	GII = eve(size(G)) + SO	*niny(S0-eve(size(G)))*(G-eve(size(G)));	
	WU = pinv(S0-eye(size(G)))*inv(G');	
	MSWMFU = WU*Ht';		
	index=0;		
	for l=1:Lxu(u)		
	b(u) = b(u) + (1/cb) *	<pre>log2(S0(index+1, index+1));</pre>	
	end		
	<pre>index=index+Lxu(u); end</pre>		
]		
S R	Section 2722	April 25 2021	1.0
	5000012.1.2.2	April 23, 2024	L8:

```
H=[52;31];
[b, GU, WU, S0, MSWMFU] = mu_mac(H, eye(2), [1 1], 2);
b = 2.5646 0.1141
GU =
 1.0000 0.3824
      0 1.0000
WU =
 0.0294
           0
 -2.1667 5.8333
S0 =
 35.0000
         0
   0 1.1714
MSWMFU =
 0.1471 0.0882
 0.8333 -0.6667
>> MSWMFU*H =
 1.0000 0.3824
 2.1667 1.0000
>> SNR = 10*log10(diag(S0)) =
 15.4407
 0.6872
>> sum(b) = 2.6788
```

Example 2: 2 x 3 MAC (secondary users)

H=[521

311]; basically added a 3rd user

[b, GU, WU, S0, MSWMFU] = mu_mac(H, eye(3), [1 1 1], 2)

April 25, 2024

```
b = 2.5646
             0.1141 0.1137
GU = 1.0000 0.3824 0.2353
          0 1.0000 0.1667
                 0 1.0000
          0
WU =
 0.0294
           0
              0
 -2.1667 5.8333
                  0
 -1.2857 -0.1429 5.8571
S0 =
 35.0000
           0
                0
   0 1.1714
             0
        0 1.1707
   0
MSWMFU =
 0.1471 0.0882
 0.8333 -0.6667
 -0.8571 1.8571
>> sum(b) = 2.7925
>> MSWMFU*H=
 1.0000 0.3824 0.2353
 2.1667 1.0000 0.1667
 1.2857 0.1429 1.0000
>> SNR10*log10(diag(S0))=
 15.4407
 0.6872
 0.6846
```

Section 2.7.2.2

- The channel rank is 2 so at least 1 secondary comp = 3-2.
- But secondary applies to energy-sum MAC (which this is not, yet).
- Original 2 units of energy is spread over 3 users?

```
>> [b, GU, WU, S0, MSWMFU] = mu_mac(H, (2/3)*eye(3), [1 1 1], 2)
b = 2.0050 0.1009 0.0696
GU =
 1.0000 0.3824 0.2353
         1.0000 0.3878
   0
   0
           0
                 1.0000
WU =
 0.0662
           0
                   0
 -2.3878 6.6582
                   0
 -2.0000 -0.5000 9.8750
S0 =
 16.1111
                   0
            0
    0 1.1502
                   0
            0 1.1013
    0
MSWMFU =
 0.2206 0.1324
 0.9184 -0.3367
 -0.7500 2.2500
>> sum(b) = 2.1755 (lower than 2x2 value of 2.6788)
```

Relatively more energy on secondary-user comp(s), bsum ↓.

PS4.4 - 2.26 MAC regions

L8: 38

Non-Zero Gap Achievable Region

- Construct $C(\mathbf{b})$ with $\Gamma = 0$ dB.
- Reduce all rates by γ_b relative to boundary points.
- Inscribe smaller region C(b)- ($\gamma_b \odot 1$).
- Square constellations instead of spheres (AWGN) loss
 1.53 dB in gap above (0.25 bit/dimension).

End Lecture 8 (back-up material FYI)

Capacity Region for continuous-frequency-indexed channels

Sections 2.7.4.1-2

April 25, 2024

C(b) is Union of $S_x(f)$ -indexed Pentagons

$$ar{b} = \sum_{u=1}^U ar{b}_u \leq \overline{\mathcal{I}}(oldsymbol{x};oldsymbol{y}) = \int_{-\infty}^\infty rac{1}{2} \cdot \log_2 \left[1 + rac{\sum_{u=1}^U S_{x,u}(f) \cdot |H_u(f)|^2}{S_n(f)}
ight] df$$

Calculus of variations again, decomposes into U water-fills, each with other users as noise – more details in L9.

$$S_{x,u}(f) + \frac{\sigma^2 + \sum_{i \neq u} S_{x,i}(f) + |H_i(f)|^2}{|H_u(f)|^2} = K_u$$

Simultaneous water-filling → Maximum rate sum

- Each pentagon corresponds to an $S_x(f)$ choice.
 - The pentagons become triangles for the sum-energy MAC.
- The union (convex hull is union when inputs are Gaussian) can dimension-share in frequency as $N \rightarrow \infty$.

Section 2.7.4.1

April 25, 2024

L8: 42

MT MAC

- The users have continuous-time/frequency channels \rightarrow use MT on each, theoretically.
- This really means dimensionality is infinite (or very large) so "dimension-sharing" may be inherent.
- SWF applies, but with some interpretation (like power instead of energy, etc and power per dimension instead of power-spectral density, etc.)

Decoders and SWF

Section 2.7.4.2

April 25, 2024

L8: 44

Symmetric 2-user channel and SWF

- Symmetric means $H_1(f) = H_2(f)$ (noise is one-dimensional and added to sum)
- Each of points A, B, and C have different SWF spectra all have same (max) rate sum