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Announcements & Agenda

§ Announcements
• Problem Set #2 due Wednesday April 17 at 17:00
• Sections 2.3-2.5
• Need to leave off hours around 10:40 to catch flight today. 
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§ Agenda
• Capacity Continued
• Chain Rule
• Separation Theorem
• Coded MultiTone



Capacity Continued
Sections 2.4 – 2.5

See PS2.3 (Prob 2.10)
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General Capacity Theorem from L3

L4: 4

§ SHANNON’s CAPACITY THEOREM
• Number of codewords is limited by mutual info 𝑏 ≤ I 𝒙	; 𝒚	 .

§ Good codes will have only 1 codeword per conditional entropy subset.

§ MAP detector decision region is then ~ 𝐴 !"
# 𝒙/𝒚    - on average; but we can find it for one good code.

§ If 𝐴 !"
# 𝒙  were any larger, all codes (good or bad) will have at least one 𝐴 !"

# 𝒙/𝒚  that contains 2+ 
codewords, which mean the MAP has to “flip a coin” – not good (high error prob).

• If maximized over input distributions %𝑏 <  (𝒞 ≤ max
$!𝒙
I .𝒙	; .𝒚 %&'(

()%(*+%,-
.

• Which is per-subsymbol equivalent with random code '𝑏 ≤ I (𝒙	; (𝒚	 .

Section  2.3.4 
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The uniform part is most important (from L3)
§ The Gaussian distribution corresponds to marginal of uniform distribution over a hypersphere.

• This uniform distributions marginals are asymptotically Gaussian.
• This is a special case where uniform and Gaussian are basically the same.
• Because all the Gaussian infinite-length vectors (codewords) have same energy (zero variance of the energy).

§ All the points (really volume) are (is) at the surface.

§ The Gaussian marginal dist’n is important only for shaping gain (< 1.53 dB). 

§ The (AEP) uniform spacing of points (no matter where the majority of them sit, surface or otherwise) 
remains for the fundamental gain. 

L3: 5

The uniform spacing separates
codewords in the union of

the hypersquare (orthotope)
and hypersphere.

Thus, good codes can be based on
sequences from uniformly spaced

PAM/QAM subsymbols.

And the rest is MMSE
estimation,

With a chain-rule twist in
some situations

Vector Coding is always MAP,
ML, & MMSE, a special case.
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AWGN Capacity Review (379A)
§ Simple formula says a lot.
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+
𝑝𝒚/𝒙 = 𝑝𝒏 𝒚 − 𝒙

𝒏 ~𝜎! = 𝒩"
#

𝒚

noise

𝒙

𝒞̅ =
1
2 * log! 1 +

/

̅ℰ𝒙
𝜎!	
$%&

§ Often “gain” ℎ + is absorbed into energy, really 𝑔 = , .

-.   so a “channel gain” 𝒞̅ = .
+ & log+ 1 + 𝑔 &

̅ℰ𝒙 .
• Note 𝑔 here is per real dimension, but if complex- baseband channel, it would be (𝒞𝒙 = log0 1 + 𝑔 9 ℰ̅𝒙 .
• Know context and be consistent with numerator/denominator dimensionality.

§ SNR=4.7 dB (3 and 𝑔=1 ), then 𝒞̅ = 1 bit/dimension.

§ SNR=20 dB (100 and 𝑔=1), then 3.33 bits/dimension – and thus 6.67 bits/complex subsymbol.

§ What SNR gives 7 bits per dimension?  10 & log./(2.0−1) = 14 & 3 = 42 dB.

Section  2.4.1 



Chain Rule
Subsection 2.3.2
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Chain Rule

§ If parallel independent channels (we know this by now!), the !𝒙$%& ⋯ !𝒙&  provide no help;
• just sum the individual channels I (𝒙!; (𝒚! .

§ But suppose not: each term represents a code (MMSE-related if Gaussian) problem with SNR, capacity, etc.

L4: 8

I 𝒙; 𝒚 = 2
'()

%

I 3𝒙'; 𝒚	/ 3𝒙'*) ⋯ 3𝒙)

Matrix AWGN: GDFE  (sometimes also called “successive decoding”)

§ Estimate (MMSE) and decode !𝒙$%& ⋯ !𝒙&  first, then simpler single component problem.
• So not just linear MMSE, linear MMSE + subtract “earlier” subsymbols’ effect (nonlinear).

§ It’s parallel channels, but with a twist to make them independent step by step (“decision-feedback”).

Section 2.3.2
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CDEF Example EE379A, L18

§ The MMSE-DFE achieves the highest rate (with Γ	 = 	0	dB) also:
• 𝐼 = 𝐶	if water-filling spectrum is at transmitter.
• But, this spectra may be impossible with a single DFE, so can be several parallel DFES (see Section 3.12).
• No error propagation (true if Pe is zero), and canonical (reliably achieves capacity). 
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+
+

+

ke

kx
'
,kuz

equivalent to

Unbiased
MMSE-DFEkx

'
,kuz

ISI
Channel

𝑆𝑁𝑅 = 𝑆𝑁𝑅++,-*./-,1 = 22
2I 34; 36 − 1

Section 3.12.3

chain rule here

I ;𝑥; 3𝒚 = ℋ34' −ℋ 34'/ 8𝒚 34'()…..(,
	

::$;*<=; 	
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There are many chain rule orders

§ I 𝒙; 𝒚 = ∑12.3 I :𝒙4(1); 𝒚	/ :𝒙4(17.) ⋯ :𝒙4(.) = ∑12.3 I :𝒚4(1); 𝒙	/ :𝒚4(17.) ⋯ :𝒚4(.)

§ 𝑁! orders exist for each of I 𝒙; 𝒚 = I 𝒚; 𝒙 .

§ Every order corresponds to different set of parallel channels (some with feedback, a few without).

§ But they all produce the same maximum data rate (achieved with good code that has zero gap).

§ Thus, not only are there a lot of good codes – there are a lot of good MMSE-based 
modulation/demodulation designs also!

L2: 10
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Forward and its Backward Canonical Models

L4: 11Section 3.12

𝐻 𝐷
)(DY

+

Forward channel

𝑋 𝐷

𝑁 𝐷

𝑊 𝐷 +

Backward canonical channel

𝐸 𝐷

𝑋 𝐷

Same mutual information

𝑟 𝑡 = ℎ> 𝑡 ∗ ℎ>∗ −𝑡 = ℎ ! - 𝑞 𝑡
ℎ"∗ −𝑡𝑦 𝑡

𝑌 𝐷 = 𝑅 𝐷 - 𝑋 𝐷 + 𝑁 𝐷
	

𝒩"
! 	
A& <

Forward Canonical Model

𝑌 𝐷1
𝑇 𝑋 𝐷 = 𝑊 𝐷

	
::$;*B;

- 𝑌 𝐷 + 𝐸 𝐷
	

𝒩"
! 	
AC <

Backward Canonical Model
chain rule helps more here
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For the filtered/matrix AWGN
§ The MAP and MMSE determine the performance, and also the chain rule suggests a simpler decoder:
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= log! 𝑆𝑁𝑅++,-

𝑊 = 𝑅𝒙𝒚 9 𝑅𝒚𝒚45𝒚
7𝒙𝒎𝒎𝒔𝒆 𝑀𝐿	𝐷𝑒𝑐𝑜𝑑𝑒	𝒐𝒏	

I𝒙𝒎𝒎𝒔𝒆
7𝒙𝒎𝒂𝒑

Remove
Earlier

Decisions’ effect 𝒙!"# ⋯ 𝒙#

Still MAP if “previous”
decisions are correct
sequentially decodes

Section 2.3.6

Forward
Backward
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Optimal Detectors for Good Codes

§ ML = MAP since all good code’s 𝒙	codewords/symbols are equally likely (uniform, AEP):
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𝑀𝐴𝑃
𝑀𝐿 ∋min

8𝒙'
A
I(*J

J

B𝒚I − 𝐻 - B𝒙I ! ≠ A
I(*J

J

B𝒏I !.

§ MMSE = MAP The smallest sum will reduce 8𝒙$  magnitude slightly because it also shrinks noise (trade-off in sum):

Same as max
𝒙
𝑝𝒙/𝒚 ,

where 𝒙 has ∞ length

𝑀𝑀𝑆𝐸 ∋ min
8𝒙'

lim
K→J

1
2𝐾 + 1

A
K(*K

K

B𝒙I −𝑊 - B𝒚I !

§ By LLN, this sum is MMSE & MAP and has optimum $𝒙 = 𝐸 !𝒙/!𝒚  …… on average over the random code set.
§ The bias removal is unnecessary because of the hyper-conical decision regions (like QPSK where decision 

regions don’t change) for a zero-gap AWGN code, but we now know MMSE is a “DFE-like” structure (chain 
rule)

Section 2.3.6

min over entire sum
𝑊 is MMSE filter 

§ 𝒙	codewords/subsymbols selected from Gaussian, 𝒙	 𝒚  are jointly Gaussian (as is then 𝒏 ).



Separation of Coding and 
Modulation

Subsection 4.4
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The best (MAP) receiver

§ Each parallel channel has I 𝑥1; 𝑦1 = log+ 𝑆𝑁𝑅>>?@,1  , since they are independent

§ Suppose each dimension is a dimension within the same code?
• The dimensional subsymbols will remain uncorrelated (but not independent because of the same code).

• On average over all (Gaussian) codes these dimensions are independent, not for specific code.

§ 𝑊 is a scalar multiply for each such uncorrelated dimension (so does not change signal to noise)
• Does use of MMSE matter?  (not for VC or DMT with %𝑏: = log0 1 + 𝑆𝑁𝑅: )
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𝑊 = 𝑅𝒙𝒚 9 𝑅𝒚𝒚45𝒚
7𝒙𝒎𝒎𝒔𝒆

𝑀𝐿	𝐷𝑒𝑐𝑜𝑑𝑒	𝐶𝒙 7𝒙𝒎𝒂𝒑

§ BUT YES, IT DOES MATTER – IF, a constant bits/subsymbol 𝑏1 ≡ G𝑏 (and/or 𝑆𝑁𝑅B@C) – Coded OFDM
• because it impacts the weight of different dimensions before the final ML decoding;  this (it turns out) is the same 

as the earlier bit-loading, in effect for same energy distribution/Rxx.

+
𝑆𝑁𝑅'

+

⋮
(diagonal)

Section 4.4 Intro See PS2.5 (Prob 2.20)

𝐿𝐿' = −
1
2𝜎'!

- 𝑦' − O𝑥' !
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Dimensional Normalizer is MMSE

§ MAP Decoder is 
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d Hn +

2
ns

2

2

n

n
n

H
s

=g

Xn Yn
MAP sequence

decoder

n

Wn ,k+1 =Wn ,k + µ ⋅ !Un ⋅ X̂n

Zero-Forcing Algorithm

Must have each dimension scalar for ZF=MMSE

min
M.,'

A
I(N

J

A
'(N

%*)

𝑋',I −𝑊' - 𝑌',I
! dimensions with low gains 𝑔!  have greater

contribution to minimization, higher soft/intrinsic info,
and the decoder is consequently affected.

.

.

.

Zn d𝑊' = 𝑔'
*)/!

MMSE=ZF for a
single dimension (only)

Section 4.4 Intro

nY
Dec

+

nW

nU
~

Zn

-

X̂n
see also L5:6, L4:30
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Separation Theorem

§ Critical are: 
• the independent parallel dimensions (not code, the partitioned matrix/filtered AWGN), &
• the good code for which the input to the parallel dimensions comes from large constellation with subsymbol distribution 

approaching Gaussian ~ random coding,
• the code can apply “down the symbol” (over the subsymbols that all have same constellation). 

L4: 17Section 4.4 Intro
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Simple Separation Thm Example
§ The two tones’ ave is HIDE@ = 2.

§ The ST says use of a single constellation 
with 𝐶DE@ = 8 is sufficient.

§ Decoder must consider channel gains.

L4: 18

RI) = 1
𝐶) = 4

RI! = 3
𝐶! = 16

RIOP- = 2
𝐶OP- = 8 § Looks like 2 identical uses of a single AWGN 

with geometric-average SNR, equivalently 
𝑆𝑁𝑅 = 2

FI<=> − 1
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Separation T is widely applicable
§ This works for partitioning with

• SVD,
• Eigenvectors,
• DFT/FFT (becomes Coded-OFDM here), &
• other bases.

§ The transmitter does not need to know individual )𝑏$ , just the sum for any symbol.

§ It works for any ℰ$ and leads to highest rate for those energies I ,𝑥; ,𝑦 .
• Water-fill set gives highest data rate (highest mutual information).

§ We’ve seen in our examples that water-fill is close to on/off.
• So, if the designer guesses well the on/off, the system requires ALMOST no feedback of bit distribution to transmitter.
• In practice, the constellation size and redundancy need specification, and thus on some indication of the value of I G𝑥; G𝑦  for the 

channel.

§ Example:  Wireless “MCS” (modulation coding scheme) specifies code rate and constellation size only in 
feedback to transmitter.  The on/off distribution?
• 5G/Wi-Fi ignore this for time-frequency and just use flat over the entire band.
• 5G/Wi-Fi do excite spatial ”streams” unequally in that some can carry data and while others are zeroed. 

L4: 19Section 4.4

ONLY IF 𝚪 → 𝟎
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Caution on Water-filling and on/off

§ Most water-fill will satisfy 1 + I3J?∗

K ≅ I3J?∗

K   
• IF dimension carries nonzero energy.

L4: 20

steep

§ The	energy	closely	approximates	Alat:
• RA: 𝐾 − %

&#
= ℰ$

(∗
+ %

(∗
A ∑)*+,)-!(∗ ⁄+ && is roughly the same (no one dimension dominates).

• 𝑀𝐴: 	𝐾 − %
&#
= Γ A .'(

∏&)*
+∗ &&

0* +∗

 − %
&#

 = %
&#
A 123,-.

∏&)*,&0#
+∗ &&

0* +∗
− 1  is roughly the same (again no one dim dominates).

§ This	is	true	on	waterVillLs	ENERGIZED “𝑜𝑛” dimensions, NOT for zeroed dimensions (“off”).

So, it is NOT true that wireless’ C-OFDM is the same as DMT, UNLESS the used 
dimensions are close to the same and 𝚪 → 𝟎 !

Sections 4.3, 4.4

ON OFFOFF
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Half-Band Example: Revisit 379A’s L18:12-13

§ The geometric SNR for water-fill is 3 dB higher if capacity-achieving codes are used
• Or could run the water-fill system at same data rate at 3 dB less energy

§ This amount is amplified below capacity by non-unity (not 0 dB) gap-margin product
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𝐻'

𝑁𝑁
2

ℰ'

𝑁𝑁
2

Correct water-fill
ℰ'

𝑁𝑁
2

Uses all dimensions

Wasted
energy

ℰ'

𝑁𝑁
2

Correct water-fill

Twice WF
  energy

Γ D 𝛾 = 3	𝑑𝐵

ℰ'

𝑁𝑁
2

Uses all dimensions

Wasted
energy

Wasted
energy

Γ D 𝛾 = 3	𝑑𝐵 4x WF
  energy !

Section 4.3.7 See PS2.4 (Prob 2.14)



1 2 3 4 5 6 7 8
normalized bits to T=2

1
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iff

er
en

ce
 (d

B)

(3 dB for G=1)

(7 dB for G=8 or 9dB)

margin difference for half-band optimum versus full band

margin difference for half-band optimum versus full band

• Capacity of AWGN with WF is 8 bits/subsymbol (4 bits/dimension)

April 11, 2024 L4: 22

2003 VDSL Olympics - Bellcore

1993 ADSL Olympics – Bellcore
Margin differences at 1.6 Mbps, 4 miles, 11+dB

DMT 4x faster (6 Mbps) at 2 miles

Section 3.12



Coding Gain Refresher

April 11, 2024 L4: 23Sections 1.3.4.3

(b)  6 HEX

Decision or
Voronoi Region

(a)  16 SQ
Decision or

Voronoi Region

𝑚𝑜𝑑	Λ,
𝑚𝑜𝑑	Λ,

Λ = coding lattice for 𝑑KL:
ΛM= shaping lattice for ℰN

good codes can follow
from a\0 \  = 𝐶

Basic principle extends M𝑁 → ∞
Hexagonà hypersphere (Gaussian marginals)

	
]0	

𝐬𝐡𝐚𝐩𝐢𝐧𝐠
𝐠𝐚𝐢𝐧

	
]1

efghijkglim
𝐠𝐚𝐢𝐧



SQ constellations vs “Gaussian”

• There is always a loss for a non-hyper-spherical constellation boundary on the (any 
matrix/filtered) AWGN.
Ø The max shaping gain, 𝛾4,567 <1.53 dB (when p𝑏 ≥ 1), relative	to	hypercube.
Ø Hypercube is often the assumed reference system (so Λ for fundamental and scaled Λ4  for shaping).

• All of random coding/AEP can repeat with the input distribution being uniform in any dimension 
(instead of Gaussian) – hypercube-energy constraint.

• The MMSE Estimator can still be used with decoder, and it’s basically

April 11, 2024 L4: 24

b𝐶 = log! 1 + 𝑆𝑁𝑅++,-,1/𝛾,,+O4 .

• There is loss of 0.5 bit/complex dimension using SQ constellations.

Sections 2.4.6.1 & 2.4.6.2



𝒳 mod	Λ! +
𝑋

𝑁

𝑌
𝑓 𝑌 mod	Λ! 𝑍

error	𝐸! ≜ 𝑋 − 𝑓 𝑌

MMSE best

	

+𝒳

𝐸8

mod	Λ!
𝑍 = [𝒳 +𝐸8 	]9:;	=𝒳+𝐸8

Forney's Crypto MMSE equivalence

• See also Section 2.8 – there is a shaping loss with any	Λ2 that is not a hypersphere (SQ is worst in 
practice) so various shaping methods can apply;  however the separation theorem still applies to 
them all, with random coding used on uniform over	Λ2’s Voronoi region.
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shape

Section 2.4.6.2

uniform ~𝑉 Λ

Λ"=
|C|
2
2 𝑍#

4ℐ ≥ 4𝒞 − log# 𝜋 2 𝑒 2
𝜀

𝑉 	Λ"
	− log#

𝜎$!
#

𝜎%%"&#

	

0

1.53 dB (max) loss

Λ



Coded OFDM/MT
Subsection 4.4.1



SQ constellations vs “Gaussian”
• Matrix/filtered-AWGN loss for “square” constellations 
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b𝐶 = log! 1 + 𝑆𝑁𝑅�-�/𝛾,,+O4

Sections 2.4.6.1 & 2.4.6.2

• When !𝐶 ≤ 1, 𝛾c,efg ≅	0 dB. 
Ø There is tiny low-SNR-AWGN shaping loss for binary codes.

• AEP applies to hypercube (with shaping loss) boundary and random codes.
• MMSE estimator precedes MAP decoder for original code:

Ø ISI/crosstalk is optimally handled linearly with parallel ind subchannels.
Ø Nonlinear decision feedback needed when NOT parallel independent channels 

(chain rule). 

𝜸𝒔 ≤ 𝟏. 𝟓𝟑 dB 𝐬𝐡𝐚𝐩𝐢𝐧𝐠	𝐠𝐚𝐢𝐧
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Coded-MT/OFDM

§ Treats a pre-agreed known set of dimensions as repeated constant SNRgeo dimensions.
• No transmitter bit loading, and energy is on/off on the pre-agreed set.

§ The MT could be replaced by space-time MIMO, “Coded-Vector-Coding” – same basic principle.
§ Usually wireless MIMO does allow “water-fill” over spatial dimensions (but not temporal).

L4: 28
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2ℐ bits

𝒗

𝐺# 𝒗 = 𝑋#

𝐺$ 𝒗 = 𝑋$

𝐺%&$ 𝒗 = 𝑋%&$

𝑌'

𝑌(
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'𝒗
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%&$

𝑌) − 𝐻) = 𝐺) >𝒗 +
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?𝒗

Section 4.4 intro

𝐶
values

𝐶
values

𝐶
values



Encoder
Good code

Approximates
Gaussian

data
bits

“innovations”

ave	𝜀 = at-data-rate points

= redundant points

b1,DMT = 5 b2,DMT = 1

C-DMT

C-OFDM

!n,OFDM ≡	3

$n,OFDM ≡ 3 $n,OFDM ≡ 3

!n,OFDM ≡	3

!n,DMT ≡ 1 !n,DMT ≡ 1

!!
"

!!
" ! "#

!
"

!
" ! "

!!
"

!!
" ! "#

!"
"

!"
" ! ""

""

"#

C-DMT

C-OFDM

Comparison of variable and fixed constellation

• These types of system are heavily used in practice

April 11, 2024 L4: 29Section 4.4



´yn
x̂n

Wn =
1

κ ⋅ gn

Decoder
(Coded MT)Soft I v

…
From all other tones’, the same

𝐿𝐿𝑅678 X̂m≠n LLR v̂ j≠i( )

LLRng<g0
s2>s20 

LLR v̂i( )!σ n
2

Wn ,k+1 =Wn ,k + µ ⋅ !Un ⋅ X̂n
!σ n ,k+1
2 = 1− µ '( )⋅ !σ n ,k

2 + µ '⋅ !Un ,k
2

nY
Dec

+

nW

nU
~

Zn

-

X̂n

gn = 1
!σ n
2

Full MAP Decoder – Coded MT

April 11, 2024 L4: 30Section 4.4

LLR = log likelihood ratio
Computed from Gaussian noise dist’n
& from input code constraints, each
subsymbol and/or bit P𝜎>?



End Lecture 4
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BSC and BEC
§ BSC has 𝒞̅ = 1 −ℋ 𝑝 = 1 − 𝑝 & log" 𝑝 − 1 − 𝑝 & log" 1 − 𝑝 .

• 𝑝 = 1/2 à 0 bits possible (makes sense).
• 𝑝 = 0 à 1 bit/dimension reliably (makes sense).
• 0 ≤ 𝒞̅ ≤ 1 .
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p-1

p

p

p-1

0 0

11

𝑝 ⁄B 7 = 𝑝	

p-1

p
p

p-1

0 0

11

e (for erase)

§ BEC has 𝒞̅ = 1 − 𝑝.
• 𝑝 = 1/2à 1/2 bits/dim reliable (no errors only erasures).
• 𝑝 = 0 à 1 bit/dimension reliably (makes sense).
• 0 ≤ 𝒞̅ ≤1 .

§ BEC is better than BSC (higher capacity) – decoders can use 
erasures with 𝑁 > 1 to improve (reduce) 𝑃% (soft info, 379A).

Section  2.4.2 
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Symmetric DMC

§ Generally, just a discrete probability transition matrix (Appendix A).
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§ q-ary (example 0,…,255 for a byte = subsymbol)

0

1

q-1

0

1

q-1

.

.

.

1 − 𝑝"

𝑝!
𝑞 − 1

𝑝!
𝑞 − 1

𝑝!
𝑞 − 1

𝑝!
𝑞 − 1

𝑝!
𝑞 − 1

1 − 𝑝"

1 − 𝑝"

𝑝!
𝑞 − 1

Section 2.4.2

• 𝑝B = .01
• 𝒞 = 7.88 bits/subsymbol.


