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Announcements & Agenda

§ Announcements
• Problem Set 1 due Wednesday at 17:00
• Most relevant reading – 1.5, 2.3, D.1, D.2, 4.1
• Problem Set 2 due April 17 at 17:00

L3: 2

§ Problem Set 2 = PS2 due 4/19 at 17:00
1. 4.29 biases and error probability
2. 4.36 MMSE spatial equalizer
3. 2.10 Entropy and Dimensionality 
4. 2.14 Bandwidth vs Power
5. 2.20 MMSE and Entropy

§ Agenda
• General MMSE & Gaussian

• Autocorrelation/Cross-Correlation
• Linear MMSE & The Orthogonality Principle

• Biases and SNRs

• Examples
• Information Measures – generalizing Gaussian to all distributions
• Mutual Information and MMSE

AWGNs, or whited AGNs:

MMSE is canonical &
asymptotically MAP,
and also close @ finite N.
Max reliable b is capacity.



General MMSE and Gaussian
Section D.1
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When all random processes are (stationary) Gaussian,
Linear MMSE is the overall best MMSE.
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The MMSE Estimation Problem
§ Given random 𝒙	and	𝒚, design estimates 𝒙	 as '𝒙 = 𝑓 𝒚 .

• Designer knows both 𝑝𝒙,𝒚 and specific observed 𝒚 = 𝒗.
• 𝒙 and 𝒚 ‘s distributions are continuous.  (random code on 𝒙.)
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Random 
vectors 
samples 
𝒚 = 𝒗

𝑓 𝒚 #𝒙
𝒙

- 𝒆

𝑀𝑀𝑆𝐸 = min
&
𝔼 𝒙 − 𝑓 𝒚 ' .

§ Solution is
• the conditional mean of 𝒙 given 𝒚; %𝒙 = 𝔼 𝒙/𝒚 ,
• From 𝑝𝒙/𝒚 the 𝑎̀ posteriori distribution (used for MAP detector).
• Proof: see Appendix D.1
• Its linear:  !𝒙% + 𝒙& = %𝒙% + %𝒙&.

.𝒙 = 𝔼 𝒙/𝒚 = 𝑊 1 𝒚

§ The error is:
• 𝒆 = 𝒙− 𝑓 𝒚 .

§ Its mean-square is
• 𝔼 𝒙,𝒚 𝒆 $ = 𝔼 𝒙− 𝑓 𝒚 $ .

§ Its minimum over 𝑓 is the MMSE.

Section  D.1 intro 
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Auto- & Cross- correlation
§ Autocorrelation generalizes mean-square. When stationary,

• it samples 𝑅𝒙𝒙 𝜏 = 𝔼 𝒙 𝑡 + 𝒙∗ 𝑡 − 𝜏  where time is the dimension and 𝜏 = 𝑘𝑇′ is correlation interval.
•  Vector process samples may correspond to:
• frequency-time – time samples 𝑥 𝑘𝑇  are the vector elements. 
• space time sets	𝜏 = 0 – spatial samples (think antennas), 
• often at each 𝑛 0 !

" .
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§ Energy over symbol if FT, over space dimensions:
• Both cases 𝜏 = 0 (non xtalk/energy) terms are on diagonal.

§ Cross correlation “generalizes” inner product:
• It samples 𝑅!! 𝜏 = 𝔼 𝑥 𝑡 ' 𝑦∗ 𝑡 − 𝜏 .
• Vectors can be different lengths 𝐿'	and	𝐿(.
• “uncorrelated” (=0) à orthogonal.
• Nondiagonal dimensions.

𝑅𝒚𝒚 = 𝔼 𝒚 + 𝒚∗𝑅𝒙𝒙 = 𝔼 𝒙 + 𝒙∗

ℰ( = 𝑡𝑟𝑎𝑐𝑒 𝑅𝒙𝒙 = 𝔼 𝒙∗ + 𝒙 =𝔼 𝒙 )

𝑅𝒙𝒚 = 𝔼 𝒙 + 𝒚∗ 𝑅𝒚𝒙 = 𝔼 𝒚 + 𝒙∗

§ Pythagorus IF uncorrelated 𝑅𝒖𝒗 = 0.
• Generalizes “variances of uncorrelated 

random variables add.” 𝑅 𝒖+𝒗 𝒖+𝒗 = 𝑅𝒖𝒖 + 𝑅𝒗𝒗
𝒖	, 𝔼 𝒖 &

𝒗	, 𝔼 𝒗 &

𝒖 + 𝒗	, 𝔼 𝒖 & + 𝔼 𝒗 &

Section  D.1.1 
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The Joint Gaussian Distribution
§ is completely specified by its autocorrelation (and 

cross correlation):
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𝑅 ≜ 𝑅 𝒙
𝒚 𝒙∗ 𝒚∗

=
𝑅𝒙𝒙 𝑅𝒙𝒚
𝑅𝒚𝒙 𝑅𝒚𝒚

.

𝔼 𝒙/𝒚 = 𝑅𝒙𝒚 + 𝑅𝒚𝒚-. + 𝒚

4	

𝑊 = 𝑅𝒙𝒚 + 𝑅𝒚𝒚+  if singular.

It’s linear
(for Gaussian).

MMSE and AWGN’s best transmission are fundamentally connected.

§ Its marginal distributions for 𝒙	and 𝒚
• are also Gaussian.

§ Its conditional distributions are Gaussian.
• In particular, with non-zero mean 𝔼 𝒙/𝒚 .

§ Singularity?
• |𝑅𝒚𝒚| > 0 with nonsingular noise.
• |𝑅𝒙𝒙| ? 𝑅 ? – use pseudoinverse and 

determinant as product of nonzero 
eigenvalues.

Section  D.1.1 



Linear MMSE & The Orthogonality Principle
Section D.2
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Decomposition into pass spaces and null spaces
becomes critical in canonical design (think VC).
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Linear MMSE: any joint distribution of 𝑥 and 𝑦

L3: 8

§ Minimum %𝒙 = 𝑅𝒙𝒚 0 𝑅𝒚𝒚)%

	 +

0 𝒚	, linear in 𝒚 , so true MMSE if Gaussian.

• The true MMSE estimator may not be linear if non-Gaussian.
§  Also again:  *𝒙& + 𝒙$ = -𝒙& + -𝒙$ or .𝐴 0 𝒙 = 𝐴 0 -𝒙 .

§ Given random 𝒙	and	𝒚, receiver estimates 𝒙,	 -𝒙 = 𝑊 / 𝒚 .
• It knows both 𝑝𝒙,𝒚 and specific observed 𝒚 = 𝒗.

§ The error is: 𝒆 = 𝒙 −8
23.

4

𝒘2 + 𝒚2 = 𝒙 −𝑊 + 𝒚.

Orthogonality Principle

𝑊 0 𝒚

𝒆𝒙

§ Its mean-square is
• 𝔼 𝒙,𝒚 𝒆 $ = 𝔼 𝒙−𝑊 0 𝒚 $  .

§ Its minimum occurs when	𝔼 𝒆 / 𝒚<∗ = 𝟎	 for all 𝑛:
• Proof is in Appendix D.2. 
• That is, the error and the estimator’s input are uncorrelated.

MMSE Matrix: 𝑅𝒆𝒆 = 𝑅𝒙𝒙 − 𝑅𝒙𝒚 + 𝑅𝒚𝒚-. + 𝑅𝒚𝒙 = 𝑅𝒙/𝒚7

=𝑅𝒙𝒙 −𝑊 + 𝑅𝒚𝒙

Section  D.2 intro
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Vector and Matrix Norms
§ The trace of an autocorrelation matrix is its norm (and also equal to mean-squared length of random vector).

§ MMSE =𝔼 𝒆 >  =	trace 	𝑅𝒆𝒆  .

§ The trace of a square autocorrelation matrix is also equal to the sum of its eigenvalues ℰ?',<	:

L3: 9

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙: 	𝑅𝒆8𝒆8= 𝑄 + 	𝑅𝒆𝒆+ 𝑄∗ .𝒆8 = 𝑄 + 𝒆

𝒆 )= 𝒆8 )	because	𝑄𝑄∗ = 𝑄∗𝑄 = 𝐼 .

§ The determinant of an autocorrelation matrix is the product of its eigenvalues ℰ?',<:
§ MMSE =𝔼 𝒆 > 	 and	 ln 𝑅𝒆𝒆 = ∑< ln ℰ?',< .
§ The minimization of each component of 𝒆 is variables separable (has its own row of 𝑊), 

• so then the sum is minimized, 
• but this means each of the 𝒆(	also (𝑊à𝑄 0𝑊) minimized, 
• so then 𝑅𝒆𝒆 = 𝑅𝒆(𝒆(  is also minimized  
• à Minimizing sum (trace) here is same as minimizing product (determinant).

Section  D.2.1 
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Matrix SNR?

§ It’s like the parallel channels (take determinants) 𝑆𝑁𝑅@AB = |𝑅𝒚𝒚| / 𝑅𝒏𝒏DE = F𝒚𝒚
*𝒏𝒏

 .
• Vector code from 𝒗 to 𝒚′.
• Bit rate is then 𝑏 = log$ 𝑆𝑁𝑅+,- .

L3: 10

𝑺𝑵𝑹9:; = 𝑅𝒚𝒚 + 𝑅𝒏𝒏-.

𝒚′ = $𝐻 & 𝒗 + 𝒏′

ℰ𝒙 → 𝑡𝑟𝑎𝑐𝑒 𝑅𝒙𝒙
𝑅𝒙𝒙 = 𝔼 𝒙𝒙∗

𝑆𝑁𝑅9:; =
=𝒚𝒚
F𝒏𝒏

= O0F𝒙𝒙0O∗PF𝒏𝒏
*𝒏𝒏

= ?𝐻 / ?𝐻∗ + 𝐼   =    𝛬) + 𝐼     = ∏23.
4 (𝑆𝑁𝑅2 + 1)

?𝐻 ≜ 𝑅//
0&/$ 0 𝐻 0 𝑅22

&/$ = 𝐹 0 Λ 0 𝑀∗

𝒙 = 𝑅##
$/& 5 𝒗

𝑅𝒗𝒗 = 𝐼 𝑅''
%/&𝒗 𝑅..

)%/&+

AWGN

H

𝒏	~ 𝑅𝒏𝒏 = 𝔼 𝒏𝒏∗

𝒚

§ This set depends on 𝑅𝒙𝒙	choice, likely with fixed 𝑡𝑟𝑎𝑐𝑒 𝑅𝒙𝒙 .
• Water-fill 𝑅𝒙𝒙 = 𝑀 0 𝑑𝑖𝑎𝑔 𝓔01234)5677 0 𝑀∗	maximizes the matrix SNR or effectively its determinant.

𝑅𝒚𝒚 = 𝐻 0 𝑅𝒙𝒙 0 𝐻∗ + 𝑅𝒏𝒏

Section  D.2.1.2 
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Backward Channel and Matrix SNR

§ How about “backward channel’s,” 𝒙	 = 𝑾 / 𝒚 + 𝒆	, (MMSE) 𝑺𝑵𝑹?

L3: 11

𝑺𝑵𝑹!!"# = 𝑅𝒙𝒙 + 𝑅𝒆𝒆&'
+

Error

𝑊
= 𝑅𝒙𝒙

$/& 5 𝑀 5 Λ∗ 5 𝐼 + Λ 5 Λ∗ )$ 5 𝐹∗𝒚 𝒙	 = 𝑾 & 𝒚 + 𝒆

𝒆	~ 𝑅𝒆𝒆 = 𝐸 𝒆𝒆∗

𝑆𝑁𝑅!!"# =
(𝒙𝒙
F𝒆𝒆

= 𝑊 / 𝑅𝒚𝒚 / 𝑊∗ + 𝑅𝒆𝒆 /| 𝑅𝒆𝒆|  =    𝛬) + 𝐼     = ∏*+'
, (1 + 𝑆𝑁𝑅*)

§ Bit rate is again 𝑏 = log& 𝑆𝑁𝑅99:3 , I 𝒙; 𝒚  is symmetric.

§ 𝑀∗ 8 𝑊 will estimate 𝒗	 (linearity	of	MMSE	estimates).

§ Optimizing determinants is same as optimizing MSE/traces.

= 𝑆𝑁𝑅KLM Forward and backward have
same SNR and “bit rate”

(continuous 𝒙 distribution, or
Random AEP good-code sense.)
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MMSE is always a Biased Estimate
§ Biased-Estimate Definition: 𝔼 ⁄X𝒙 𝒙 ≠ 𝒙.

§ MMSE estimates always have bias (if noise is nonzero), See Appendix D.2:
• 𝔼 ⁄=𝒙 𝒙 = 𝐼 − 𝑅𝒆𝒆 0 𝑅𝒙𝒙0& 0 𝒙 = 𝐼 − 𝑺𝑵𝑹	)% 0  𝒙

L3: 12

§ For scalar case above, removal is scale up (by ;<=""#$
;<=""#$)%

 ).

§ MIMO case, same per dimension, scale up (by ;<=""#$,&
;<=""#$,&)%

 ) IF MMSE 𝑅𝒆𝒆 is diagonal (vector coding).
• IF not diagonal?  (we’ll learn what to do in later lectures.)

decision regions same
decision regions change See PS2.1 (Prob 4.29)

MMSE trades a little
signal reduction for 

simultaneous noise reduction
when minimizing the error,

now on every dimension.

Section  D.2.2 



Linear Matrix MMSE Examples
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See PS2.2 (Prob 4.36)



§ Strong Crosstalk case from Chapter 1
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2 x 2 Antenna System

		y1

		y2

	 x1

	 x2

Wireless Matrix
AWGN Channel

𝐻 = 1 .9
−.8 1

>> H=[1 .9
-.8 1];
>> Rxx=eye(2);
>> Rnn=.01*eye(2) 
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H;
>> W=(Ryx')*inv(Ryy) =
    0.5780   -0.5199
    0.4627    0.5780
>> W*H =
    0.9939    0.0003
    0.0003    0.9945
>> Ree=Rxx-W*Ryx =
    0.0061   -0.0003
   -0.0003    0.0055
>> snr=det(Rxx)/det(Ree);
>> log2(snr) =   14.8693

Basically, the same L1:31 result, even without the “𝑀” discrete modulator
           but why with no transmit M  matrix?

𝜎& = .01

𝑅NN = 𝐼

>> Mstar =

    0.4197    0.9076
    0.9076   -0.4197

𝑅NN = 𝐼 is close to water-fill  (equal energy this channel);
𝑅NN = 𝑀 + 𝐼 + 𝑀∗ ; so “lucky” that its already close to best.

L3: 14

ML detector is only per-dimension independent if 𝑹𝒙𝒙 and 𝑹𝒆𝒆 are diagonal.

Section  4.1.2 



§ This channel water-filled nonzero energy only on 1 dimension in L1.
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2 x 2 Antenna System

L3: 15

		y1

		y2

	 x1

	 x2

Wireless Matrix
AWGN Channel

𝐻 = 1 .4
.2 .1

>>H = 1.0000    0.4000
            0.2000    0.1000
>> Rxx=eye(2);
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H;
>> W=(Ryx')*inv(Ryy) =
    0.9524   -0.4762
    0.0000    1.6667
>> W*H = 0.8571    0.3333
                   0.3333    0.1667
>> Ree=Rxx-W*Ryx =

0.1429   -0.3333
-0.3333    0.8333

>> snr=det(Rxx)/det(Ree) =  126.0000
>> b=log2(snr)  =    6.9773  (only for VC)

Previously	in	L1, 𝑏 = log$(1 + 2 0 𝑔$) = 6.93	bits/subsymbol
But this time, two dimensions are used, and the ML detectors are interdependent

𝜎& = .01

>> SNR=inv(diag(diag(Ree))) =  7.0000         0
                                                                          0    1.2000

>> log2(diag(SNR)) =
    2.8074
    0.2630
>> sum(log2(diag(SNR)))  =    3.0704

Thus, data rate loss can occur
with independent detectors and MMSE.

(This loss can be recovered with Chapter 5’s MMSE GDFE,
in addition to using vector coding, so more than 1 solution)

See PS2.2 (Prob 4.36)

not
diagonal;

ML detect is
NOT parallel

Section  4.1.2 
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Time-Frequency Block 1 + .9 ' 𝐷!"

L3: 16

>> H=toeplitz([1 zeros(1,7)]',[1 .9 zeros(1,7)]);
>> Rxx=eye(9);
>> Rnn=.181*eye(8);
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H;
>> W=(Ryx')*inv(Ryy);
>> P=W*H;
>> size(P) % =   9   9 

>> Ree=Rxx-W*Ryx;
>> snr=det(Rxx)/det(Ree) = 2.4089e+07
>> SNR=inv(diag(diag(Ree)));
>> bn = 0.5*log2(diag(SNR))' =
 0.8769    1.0096    1.0691    1.0907    1.0902    1.0673    1.0054    0.8681   0.6085
>> sum(bn/9) =    0.9651
>> 10*log10(2^(2*ans)-1) =  4.4885 dB

Repeat for 8à32:

>> sum(bn/33)  =  1.0753

>> 10*log10(2^(2*ans)-1) =    5.3654 dB

Best infinite length is 5.7 dB.
(with dimension-by-dimension linear)
- See Chapter 3, 379A MMSE-LE example

Best with full ML is 8.8 dB, but requires
input WF energy distribution .

Might want to make your own homework



Entropy and Estimation:
generalizing energy to all distributions
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See PS2.3 (Prob 2.10)

Rest of L3 repeats EE379A early coding,
but here emphasizes the MMSE-canonical connection.
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Information Measures and Energy/Mean-Square

L3: 18

Gaussian Distribution Any Distribution

Mean-square energy ℰN = 𝔼 𝒙 ) Entropy ℋ𝒙

The information-carried by random variable/process generalizes the energy concepts 
from MMSE/Gaussian analysis to a general distribution.

These information measures correspond to bits/symbol quantities, and for the 
Gaussian case are basically the log2 of the corresponding energy measure.

Gaussian Distribution Any Distribution

Mean-square energy ℰN = 𝔼 𝒙 ) Entropy ℋ𝒙

Mean-square error 𝜎#) = 𝔼 𝒆 ) Conditional Entropy ℋ𝒙/𝒚

Gaussian Distribution Any Distribution

Mean-square energy ℰN = 𝔼 𝒙 ) Entropy ℋ𝒙    Section  2.3.1 

Mean-square error 𝜎#) = 𝔼 𝒆 ) Conditional Entropy ℋ𝒙/𝒚 Section  2.3.2 

Signal-to-Noise ℰN / 𝜎#) Mutual Information I 𝒙; 𝒚  = ℋ𝒙-ℋ𝒙/𝒚
Section  2.3.2

Section  2.3 
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Entropy – measure information (source)

§ Entropy:

L3: 19

ℋQ𝒙 = 𝔼 log)
'
R-𝒙

= ∑S+T
U &' 𝑝Q𝒙 𝑖 + log)

'
R-𝒙 S

Discrete 𝑝Q𝒙 𝑖  

example: 𝑝Q𝒙 𝑖 = '
V

  (uniform) à 𝐶 = 2 WX  

Uniform à ℋQ𝒙 = log) 𝑀'/ Y, = a𝑏

§ Generalizes bits/subsymbol, especially when the constellation size 𝐶 ≥ 𝑀E/ _̀ = 2 ab.

§ Uniform distribution has maximum entropy

ℋQ𝒙 ≤ log) 𝐶 Binary example: 𝑝Q𝒙 0 = '
')Z

 and	𝑝Q𝒙 1 = ')[
')Z

 

ℋ>𝒙 =
log$ 128
128

+
127
128

0 log$
128
127

= .06 < 1

( 𝐶 = 2 WX\Q])	 g𝜌 = 0 ; uncoded) 

§ Measures a distribution’s many values, its information, by probability (think subsymbols). 

See PS2.3 (Prob 2.10)

Section  2.3.1 
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Information left after given another random vector

§ Conditional entropy

L3: 20

§ If 𝒙 and 𝒚 are independent, then ℋc𝒙/c𝒚 = ℋc𝒙

ℋQ𝒙/Q𝒚=𝔼 log)
'

R-𝒙/-𝒚
= ∑^+T

_ &'∑S+T
U &' 𝑝Q𝒙Q𝒚 𝑖, 𝑗 + log)

'
R-𝒙/-𝒚 S,^

ℋQ𝒙/Q𝒚 = ℋQ𝒙Q𝒚 - ℋQ𝒚

§ Measures O𝒙’s residual randomness/info when O𝒚 is known/given

j𝒙	; j𝒚 0 1 𝑝>𝒙
0 3/8 1/8 1/2

1 1/8 3/8 1/2

𝑝>𝒚 1/2 1/2

ℋ>𝒙>𝒚 =
?
@
0 log𝟐

@
B
+ $

@
0 log$ 8 = 1.811 

ℋ>𝒙 = 1 = ℋCD  

ℋ>𝒙/>𝒚 	= 1.811 − 1 = .811	𝑏𝑖𝑡𝑠/𝑠𝑢𝑏𝑠𝑦𝑚𝑏𝑜𝑙

Section  2.3.2 
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Continuous Distribution – DIFFERENTIAL Entropy

§ More generally, trace 𝑅c𝒙c𝒙 = ℰc𝒙.

L3: 21

§ Differential Entropy H Q𝒙=𝔼 log)
'
R-𝒙

= −∫&a
a 𝑝Q𝒙 𝑢 + log)

'
R-𝒙 L

+ 𝑑𝑢

m
&a

a
𝑝Q𝒙 𝑢 + 𝑢 ) + 𝑑𝑢 = ℰQ𝒙	

§ Differential Entropy H c𝒙 is not same as an integral-to-sum via a discrete approximation of 𝑝c𝒙 𝑢 .
• They differ by a constant that depends on the approximation-interval size.

§ Differential Entropy H -𝒙 does still however measure information content when subsymbols in 
codewords are chosen (usually at random) from 𝑝-𝒙 𝑢 .

§ MaximumH c𝒙 occurs when 𝑝c𝒙 𝑢 	is	𝐆𝐚𝐮𝐬𝐬𝐢𝐚𝐧 any	mean ,with	constant	average	energy.

H bN = log𝟐 𝜋𝑒ℰQ𝒙  bits/clpx-subsymbolComplex

H N =
'
)
log𝟐 2𝜋𝑒 ̅ℰ𝒙  bits/dimensionReal

H Q𝒙 = log𝟐 𝜋𝑒𝑅Q𝒙Q𝒙  bits/cplx-subsymbol
Section  2.3.1 
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Gaussian MMSE & conditional entropy

§ Complex scalar Gaussian 𝑥

L3: 22

px u( )= 1
πσ x

2 e
−
x
2

σ x
2

§ Conditional 𝑥/𝑦 ?

§ Vector 𝒙?

(Appendix D on MMSE)

N 	is	the	number	of	complex	dimensions	=	N /2

𝜎N/d) = 𝜎N) − pe/01

f01
= MMSE

𝑅𝒙/𝒚g = 𝑅𝒙𝒙) − 𝑅𝒙/𝒚 + 𝑅𝒚𝒚&' + 𝑅𝒙/𝒚	= MMSEH𝒙 = log) 𝜋𝑒 Y, + 𝑅𝒙𝒙

H𝒙/𝒚 = log) 𝜋𝑒 Y, + 𝑅𝒙/𝒚g

HN = log) 𝜋 + 𝑒 + 𝜎N)

HN/d = log) 𝜋 + 𝑒 + 𝜎N/d)

Section  2.3.4 See PS2.5 (Prob 2.20)
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Relation to MMSE Estimation

§ If O𝒙 and	O𝒚 are jointly Gaussian, then 𝑝c𝒙/c𝒚 is also Gaussian and has mean as MMSE estimate 𝔼 O𝒙/O𝒚  
and autocorrelation  𝑅𝒆𝒆= 𝑅c𝒙c𝒙 −𝑅c𝒙c𝒚 / 𝑅c𝒚c𝒚DE / 𝑅c𝒚c𝒙	.

§ H de/c𝒚 = log𝟐 𝜋𝑒𝑅𝒆𝒆   - that is, the entropy is essentially just the log of the MMSE (Gaussian).

• Entropy generalizes MMSE to any probability distribution.
• Measures the information content of the “miss” in estimating j𝒙 from j𝒚 for any 𝑝>𝒙>𝒚.

L3: 23See PS2.5 (Prob 2.20)Section  2.3.2.1 



Mutual Information and SNR
Subsection 2.3.2

April 9, 2024 24

See PS2.5 (Prob 2.20)

For Gaussian, I and (geo) SNR are in 1-to-1 relationship
MMSE and best rate are essentially same thing.



April 9, 2024

Mutual Information ~ SNR
§ Mutual Information is: 

L3: 25

§ OR as earlier for vector coding I q𝒙; q𝒚  = ∑*+'
Y, log) 𝑆𝑁𝑅!!"#,* for the matrix AWGN.

I q𝒙; q𝒚 =𝔼 log)
R-𝒙-𝒚
R-𝒙8R-𝒚

= H bN	−	H bN/Q𝒚	= H Q𝒚 	− H Q𝒚/ bN.

§ I q𝒙; q𝒚 	is symmetric in	q𝒙 and	q𝒚 (MMSE forward and backward channel).

§ I q𝒙; q𝒚  measures common (“mutual”) information between q𝒙 and	q𝒚  , 𝔼 log)
R2𝒙/-𝒚
R-𝒚

.

• On average, I O𝒙; O𝒚 	measures how much bigger is unconditional info versus conditional info, in bits.

§ I q𝒙; q𝒚 = log𝟐
(-𝒙-𝒙
(𝒆𝒆

= log𝟐
(-𝒚-𝒚
(𝒏𝒏

 = log𝟐 1 + 𝑆𝑁𝑅𝒈𝒆𝒐
Y𝑵

 for the matrix AWGN.

= ℋQ𝒙 −ℋQ𝒙/Q𝒚 = ℋQ𝒚 −ℋQ𝒚/Q𝒙 .• For discrete example I	= 1-.811 = .189 bits/subsymbol.

Section  2.3.2 



April 9, 2024

Law of Large Numbers, repeat 379A

§ Distribution of 𝑧 must be the same (stationary) for all random selections.

§ The random 𝑧 can be function of random variable ( 𝑧 = 𝑓 𝑥 	)and the sample mean converges to 𝔼 𝑓(𝑥) .
• E.g.,  𝑧! = 𝒙! "	where the vector 𝒙!  might also have (a growing) 𝑁 components (energy sample or length of the vector).
• LLN then states that all the energy (really points in selection from any distribution with𝔼 𝒙 " ≤ ℰ#) of a hypersphere are are at its surface with probability 

1.  Points on the interior have probability zero.  It is also a sum of independent terms, and thus Gaussian (central limit theorem).
• The marginal distributions for the vector 𝒙!‘s element selections, and thus for 𝒙!  also, would be Gaussian if this N→ ∞-sequence has max entropy (uniform).

 
§ The function of most interest in coding is 𝑓 𝑥 	= −log& 𝑝' 𝑥 - that is the function itself is probability distribution’s log.

• The sample average of this function converges to the entropy.
• This suggests choosing codewords (this means each subsymbol in the codeword) at random from stationary distribution,

• and then repeat at higher level for several codes chosen at random.
• These are discrete codes, even when 𝒙 is continuous, but their average follows the entropy (and mutual information).
• Generalizes sphere-packing (which was for the AWGN only).

L3: 26Sections  A.1.9 , 2.3.3 
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Random coding generalizes 379A sphere packing
§ Pick subsymbols 𝒙< randomly (independently) from (stationary) distribution 𝑝c𝒙 for each of 𝑀 = 2b c’words.

• This is one random code.

§ Repeat the exercise for another code, and …. many more.

§ Compute the average performance of all these random selected codes:
• As s𝑁 →∞ , this average performance is outstanding (as we’ll see), as long as v𝑏 < I j𝒙; j𝒚 .
• So at least one good one must exist.

§ Entropy per subsymbol is 

L3: 27

, which  converges to (constant) ?ℋ𝒙 

§ The constant means the ave code has uniform distribution of codewords (asymptotically), 2 _̀0 oℋ𝒙 of them.

§ LLN with function log5 𝑝7̃89 is the sample-average entropy estimate.

Asymptotic Equal Partition (AEP) 
Section  2.3.3 



unconditional typical set

all sequences

conditional
Typical set

𝐴Y,
k 𝒙

𝐴 _̀q 𝒙/𝒚

April 9, 2024

AEP Typical Sets ~ spheres/ball packing

§ The set is

L3: 28

typical set
number of
sequences

1Prob®

all sequences

2 Y,8 Yℋ/

𝐴Y,
k 2 _̀0O>𝒙

2 _̀0O>𝒙/>𝒚

redundancy	 C𝜌 = 𝐻'𝒙/𝒚 bits

ℋ>𝒙 = I c𝒙; c𝒚 + ℋ>𝒙/>𝒚 
bits/subsymbol

≤ a𝑏 + d𝜌
So pick d𝜌 large enough.

Decoder works well
if only one codeword

in conditional set for each
𝒚 value, so good code spreads

them uniformly.

Section  2.3.3 
There are 2<?@$𝒙 0 2)<?@$𝒙/$𝒚 = 	2<?I >𝒙;>𝒚  little sets
In the big set if “equally partitioned”
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General Capacity Theorem

L3: 29

§ SHANNON’s CAPACITY THEOREM
• Number of codewords is limited by mutual info 𝑏 ≤ I 𝒙	; 𝒚	 .

§ Good codes will have only 1 codeword per conditional entropy subset.

§ MAP detector decision region is then ~ 𝐴 MN
O 𝒙/𝒚    - on average; but we can find it for one good code.

§ If 𝐴 MN
O 𝒙  were any larger, all codes (good or bad) will have at least one 𝐴 MN

O 𝒙/𝒚  that contains 2+ 
codewords, which mean the MAP has to “flip a coin” – not good (high error prob).

• If maximized over input distributions v𝑏 <  w𝒞 ≤ max
P'𝒙
I j𝒙	; j𝒚 QRST

TUQTVWQXY
.

• Which is per-subsymbol equivalent with random code a𝑏 ≤ I c𝒙	; c𝒚	 .

Section  2.3.4 



April 9, 2024

The uniform part is most important.
§ The Gaussian distribution corresponds to marginal of uniform distribution over a hypersphere.

• This uniform distributions marginals are asymptotically Gaussian.
• This is a special case where uniform and Gaussian are basically the same.
• Because all the Gaussian infinite-length vectors (codewords) have same energy (zero variance of the energy).

§ All the points (really volume) are (is) at the surface.

§ The Gaussian marginal dist’n is important only for shaping gain (< 1.53 dB). 

§ The (AEP) uniform spacing of points (no matter where the majority of them sit, surface or otherwise) 
remains for the fundamental gain. 

L3: 30

The uniform spacing separates
codewords in the union of

the hypersquare (orthotope)
and hypersphere.

Thus, good codes can be based on
sequences from uniformly spaced

PAM/QAM subsymbols.

And the rest is MMSE
Estimation,

With a chain-rule twist in
Some situations

Vector Coding is always all MAP,
All ML, all MMSE special case.



End Lecture 3


