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Announcements & Agenda

Announcements

Problem Set 1 due Wednesday at 17:00
Most relevant reading— 1.5, 2.3, D.1,D.2, 4.1
Problem Set 2 due April 17 at 17:00

= Agenda

General MMSE & Gaussian

e Autocorrelation/Cross-Correlation

Linear MMSE & The Orthogonality Principle
* Biases and SNRs

Examples

Information Measures — generalizing Gaussian to all distributions

Mutual Information and MMSE

April 9, 2024

= Problem Set 2 = PS2 due 4/19 at 17:00
1. 4.29 biases and error probability

4.36 MMSE spatial equalizer

2.10 Entropy and Dimensionality

2.14 Bandwidth vs Power

2.20 MMSE and Entropy

vk wnN

AWGNSs, or whited AGNs:

MMSE is canonical &
asymptotically MAP,
and also close @ finite N.
Max reliable b is capacity.

L3:2 Stanford University



General MMSE and Gaussian

Section D.1

When all random processes are (stationary) Gaussian,
Linear MMSE is the overall best MMSE.
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The MMSE Estimation Problem

X
= Given random x and y, design estimates x as X = f(y). ~
* Designer knows both p, ,, and specific observed y = v. f(y) X e

x and y ‘s distributions are continuous. (random code on x.)
Random

vectors
samples

y=v

= The error is:
c e=x—f).

" |ts mean-square is

© Eylllell®] = Efllx — fFO)I1%].

MMSE = 2i4)1 E [llx — fO)II*].

= |ts minimum over f is the MMSE.

= Solution is
* the conditional mean of x given y; X = E[x/y],

* From p,/, the a posteriori distribution (used for MAP detector). f — [E [x/y] — W . y
* Proof: see Appendix D.1

o ltslinear: (x; + x,) =%, +X,.
wl

Section D.1 intro April 9, 2024 L3:4 Stanford University




Auto- & Cross- correlation

= Autocorrelation generalizes mean-square. When stationary,
« itsamples R,, (1) = E[x(t) - x*(t — 7)] where time is the dimension and T = kT' is correlation interval.
* Vector process samples may correspond to:

O L . _ . —_ R * - . *
frequer.mcy time — time sampl_es x(kT) are t_he vector elements. Rxx = E [x X ] Ryy = [E [y y ]
* space time sets T = 0 — spatial samples (think antennas),

- oftenateachn- (3).

= Energy over symbol if FT, over space dimensions: _ _ s — 2
* Both cases T = 0 (non xtalk/energy) terms are on diagonal. gx - tTClCE{Rxx} - IE[x ’ X]—[E[”.X'” ]

= Cross correlation “generalizes” inner product:
* Itsamples Ry, (1) = E[x(t) - y*(t — 1)]. ny — [E[x ' }’*] Ryx — IE[y ' x*]
* Vectors can be different lengths Ly and L,,.
*  “uncorrelated” (=0) = orthogonal.
* Nondiagonal dimensions.

u+ v, E[|lull?] + E[llv]I?]
= Pythagorus IF uncorrelated R,,;,, = 0.
* Generalizes “variances of uncorrelated v, E[||lv]I?] _
random variables add.” R[u+v] [u+v]™ Ruu + va
e u, E[[[ul]’]

@ Section D.1.1 April 9, 2024 13:5 Stanford University



The Joint Gaussian Distribution

= js completely specified by its autocorrelation (and
cross correlation):

= |ts marginal distributions for x and y o _%{ ey ]a| }
« are also Gaussian. real: p(x,y) = (2n)" 2z  -|R|7Y2%.e L Y

* |ts conditional distributions are Gaussian. NN 1 _{ [z y]-r" : }
* In particular, with non-zero mean E[x/y]. complex: p(z,y) = (m)" TR -e -

= Singularity? s linear
* |Ryy| > 0 with nonsingular noise. [E[X/y]: ny . ;}} -y (for G an)
* |Ryx| 7 |R|? — use pseudoinverse and — or Gaussian).
determinant as product of nonzero . b oap e
eigenvalues. W = ny Ryy |f$|ngUlar.

MMSE and AWGN’s best transmission are fundamentally connected.

[3

@ Section D.1.1 April 9, 2024 L3:6 Stanford University



Linear MMSE & The Orthogonality Principle

Section D.2

Decomposition into pass spaces and null spaces
becomes critical in canonical design (think VC).
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Linear MMSE: any joint distribution of x and y

Given random x and y, receiver estimatesx, X =W - y.
* It knows both p, ,, and specific observed y = v.

N
The error is: e=x—an-yn=x—W-y.
n=1

Its mean-square is
Exylllell’] =E[llx—w-yl|*].

Orthogonality Principle

Its minimum occurs when|E[e - y5] = 0| for all n:

* Proofisin Appendix D.2.
* That s, the error and the estimator’s input are uncorrelated.

* MinimumX =R R;}} -y, linearin y, so true MMSE if Gaussian.

xy *
Y MMSE Matrix: Ree = Ryy — Ryy - RyL - Ry, = R:
. . : . "Ttee T Thxx Xy yy yx = x/y
*  The true MMSE estimator may not be linear if non-Gaussian. _
= Alsoagain: (x; +x,)=%; +X,0orAd-x=A-%. Ry — W 'Ryx

ER)
(@ Section D.2intro  April 9,2024 L3:8 Stanford University



Vector and Matrix Norms

= The trace of an autocorrelation matrix is its norm (and also equal to mean-squared length of random vector).
= MMSE =E[||e||?] = trace{ Ree} .
= The trace of a square autocorrelation matrix is also equal to the sum of its eigenvalues €, ,, :
e=0Q-e diagonal: Rgey= Q * Ree: Q" .
lell*= lle’||* because QQ* = Q*Q = I..

" The determinant of an autocorrelation matrix is the product of its eigenvalues €,/ .
= MMSE =E[|[e||?] and In|Ree| =XpIn€,r,,.
= The minimization of each component of e is variables separable (has its own row of /),
* so then the sum is minimized,
* but this means each of the e’ also (W—>Q - W) minimized,
* sothen | Reel|=| Resesl is also minimized
* > Minimizing sum (trace) here is same as minimizing product (determinant).

[3
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Matrix SNR?

[3

wl

E, o trace {Ry,}

AWGN M ~ Ry = E [nn7]] SNR,,. = R,, - R;1
R, = E[xx"] out y nn
J«::R;J/C2 ‘v y
Rw=1 V{2 [ () ke > Yy =H-v4+n'  Ry=H-Ry H +Ra
i a p—1/2 1/2 _ *
H2R '““H-R/. =F-A-M
|Ryy|

" It’s like the parallel channels (take determinants) SNRyy,r = |Ryy| - |R

* Vector code fromvtoy'.

e Bitrateisthenb

= 1082 (SNRout)-

SNRout |R}’J’|

Rnnl

IRz |

=|H-H +1I| =

|42 + 1

[17=1(SNR, + 1)

= This set depends on R, choice, likely with fixed trace {R,,}.
*  Water-fill Ry, = M - diag{Swater_fm} « M™ maximizes the matrix SNR or effectively its determinant.

Section D.2.1.2

April 9, 2024
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Backward Channel and Matrix SNR

Error e ~ [Ree =E [ee’]]

— -1
SNRmmse — Rxx : Ree
W —
=R’1{J/CZ-M'A*'[I+A'A*]_1‘F* 'x —W.y-l_e

= How about “backward channel’s,” x =W -y + e, (MMSE) SNR?

| Rycx| . _ _
SNRymse = |RZ:| = |W'Ryy'W +Ree|/| Reel - |A2 +1I| = g=1(1 + SNRy,)
= SNRou Forward and backward have
» Bitrateis again b = log, (SNR,;mse), L(X; y) is symmetric. same SNR and “bit rate”
= M*-W will estimate v (linearity of MMSE estimates). (Continuous X diStribUtion’ or

Random AEP good-code sense.)

= Optimizing determinants is same as optimizing MSE/traces.

April 9, 2024 L3: 11 Stanford University



MMSE is always a Biased Estimate

= Biased-Estimate Definition: E [*/x] # x.

= MMSE estimates always have bias (if noise is nonzero), See Appendix D.2:
« E[*/il=U —Ree*Rix) x= (I—SNR7') - x

L o .o L
[ ) o ¢ ¢ ¢
[ ) ® Y ) () ° MMSE trades a little
e o o [ - i
signal reduction for
simultaneous noise reduction
’ PY PY P when m|n|m|2|ngthe grror,
© ® o [ [ now on every dimension.
[ ] [ o o
o %
L) L) [
decision regions same decision regions change See PS2.1 (Prob 4.29)
. SNR
= For scalar case above, removal is scale up (by —— 22—,
SNRymmse—1

SNRmmsen

=  MIMO case, same per dimension, scale up (by - ) IF MMSE R, is diagonal (vector coding).

. , . SNRmmsen—
* |IF not diagonal? (we’ll learn what to do in later lectures.)

Section D.2.2 April 9, 2024 L3: 12 Stanford University



Linear Matrix MMSE Examples

See PS2.2 (Prob 4.36)
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2 X 2 Antenna System

C_J

ul

>>H=[1.9

-.81];

>> Rxx=eye(2);

>>Rnn=.01*eye(2)

>> Ryy=H*Rxx*H'+Rnn;

>> Ryx=H;

>> W=(Ryx')*inv(Ryy) =
0.5780 -0.5199
0.4627 0.5780

>>W*H =
0.9939 0.0003
0.0003 0.9945

>> Ree=Rxx-W*Ryx =
0.0061 -0.0003
-0.0003 0.0055

>> snr=det(Rxx)/det(Ree);

>>log2(snr) = 14.8693

Section 4.1.2

Wireless Matrix
AWGN Channel

= Strong Crosstalk case from Chapter 1

Basically, the same L1:31 result, even without the “M” discrete modulator

but why with no transmit A/ matrix?

>> Mstar =

0.4197 0.9076
0.9076 -0.4197

R, = I is close to water-fill (equal energy this channel);
R, =M-1-M";so“lucky” thatits already close to best.

ML detector is only per-dimension independent if R, and R, are diagonal.

April 9, 2024
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Section 4.1.2

2 X 2 Antenna System

Wireless Matrix
AWGN Channel

= This channel water-filled nonzero energy only on 1 dimension in L1.

>>H =1.0000 0.4000
0.2000 0.1000

>> Rxx=eye(2);
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H;
>>W=(Ryx')*inv(Ryy) =

0.9524 -0.4762

0.0000 1.6667
>>W*H=0.8571 0.3333 not

0.3333 0.1667 diagonal;
>> Ree=Rxx-W*Ryx = ML detect is
0.1429 -0.3333 NOT parallel

-0.3333 0.8333
>>snr=det(Rxx)/det(Ree) = 126.0000
>>b=log2(snr) = 6.9773 (only for VC)

April 9, 2024

Previously in L1, b = log,(1 + 2 - g,) = 6.93 bits/subsymbol
But this time, two dimensions are used, and the ML detectors are interdependent

>> SNR=inv(diag(diag(Ree))) = 7.0000 0

0 1.2000 Thus, data rate loss can occur

with independent detectors and MMSE.

>>|og2(diag(SNR)) =
2.8074
0.2630
>>sum(log2(diag(SNR))) = 3.0704

(This loss can be recovered with Chapter 5’s MMSE GDFE,
in addition to using vector coding, so more than 1 solution)
See PS2.2 (Prob 4.36)

L3: 15 Stanford University



Time-Frequency Block 1 +.9 - D1

>> H=toeplitz([1 zeros(1,7)]',[1 .9 zeros(1,7)]);
>> Rxx=eye(9);

>>Rnn=.181*eye(8); Repeat for 8->32:
>> Ryy=H*Rxx*H'+Rnn;
>> Ryx=H; B
o> W=(Ryx)*inv(Ryy): >>sum(bn/33) = 1.0753
>> P=W*H;
>>size(P) %= 9 9

>>10*logl0(2”(2*ans)-1) = 5.3654 dB

>> Ree=Rxx-W*Ryx;
>> snr=det(Rxx)/det(Ree) = 2.4089e+07

- E,EE:ggi(ligg(ﬁ‘:gg{;ﬁ;;;?; Best infinite length is 5.7 dB.

0.8769 (1500/9;) 1.08991651i09o7 1.0902 1.0673 10054 0.8681 0.6085 (with dimension-by-dimension linear)
>>sumibn = .

>> 10*log10(2’\(2*ans)—1) = 4.4885dB - See Chapter 3, 379A MMSE'LE example

Best with full ML is 8.8 dB, but requires
input WF energy distribution .

Tl April 9, 2024 Might want to make your own homework L3:16 Stanford University




Entropy and Estimation:

generalizing energy to all distributions

See PS2.3 (Prob 2.10)

Rest of L3 repeats EE379A early coding,
but here emphasizes the MMSE-canonical connection.
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Information Measures and Energy/Mean-Square

Gaussian Distribution Any Distribution

Mean-square energy &, = E[|x|?] Entropy H, Section 2.3.1
Mean-square error 62 = E[|e|?] Conditional Entropy H,, Section 2.3.2
Signal-to-Noise &, / 62 Mutual Information T(x; y) = Hy-Hy/y

Section 2.3.2

The information-carried by random variable/process generalizes the energy concepts
from MMSE/Gaussian analysis to a general distribution.

These information measures correspond to bits/symbol quantities, and for the
Gaussian case are basically the log, of the corresponding energy measure.

Section 2.3 April 9, 2024 L3: 18 Stanford University



Entropy — measure information (source)

= Entropy: H5 = E llogz (é)] = Zﬁlo_l px(i) - log, (p;(i)) Discrete px(i)

= Measures a distribution’s many values, its information, by probability (think subsymbols).
= Generalizes bits/subsymbol, especially when the constellation size |C| = MY/N = 2b,

example: pz(i) =% (uniform) > |C| = 2P
Uniform = Hz =log,(MYN) =b  (|C| = 2°*P) 5 = 0 ; uncoded)

= Uniform distribution has maximum entropy

. 1 127
Hy < log,|C]| Binary example: pz(0) = Py and pz(1) = Py
_ log,(128) . 127 (12 ) o6<1

G—J
@ Section 2.3.1 April 9, 2024 13:19 Stanford University



Information left after given another random vector

= Conditional entrOpy }[’f/y: llogz (L>] = ZLY=|(;1 leil()_l pfy(l']) : logz (pg/;(l,])>

Hypy = Hzy - Hy

= Measures X’s residual randomness/info when y is known/given

o 6 8 2
IEET 2 R DN YR 5 =5 loss+ g lo: 8 = 1811
o L 1/8 1/2

1/8 3/8 1/2
1/2 1/2

}[}':1:}[5,

Hyzy = 1.811 — 1 = .811 bits/subsymbol

= If x and y are independent, then Hy /5 = Hx

Section 2.3.2 April 9, 2024 L3:20 Stanford University



Continuous Distribution — DIFFERENTIAL Entropy

Differential Entropy #5=E [logz (p—lﬁ)] = — ffooo pz(u) - log, (

psz(u)) - du

= Differential Entropy #% is not same as an integral-to-sum via a discrete approximation of px(u).
* They differ by a constant that depends on the approximation-interval size.

= Differential Entropy #% does still however measure information content when subsymbols in

codewords are chosen (usually at random) from ps(u).

= Maximum #% occurs when pz(u) is Gaussian (any mean), with constant average energy.

o0 Complex | #; = log,(me&y) bits/clpx-subsymbol
| peo- il - du = &5
- Real e = %logz (2me&,) bits/dimension
" More generally, trace{Ryz} = & 7+ = log,|meRsz| bits/cplx-subsymbol

Section 2.3.1 April 9, 2024
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Gaussian MMSE & conditional entropy

al
= Complex scalar Gaussian x _ 1 oy
Px(“)— ol #. = log,{m - e o?}
- oge _ 2 T' _
Conditional x/y ? %é/y — 10g2{7-[ ce - Ux/y} g/y_ o2 — xy/0'32;_ MMSE

RL =R2 —R = MMSE

—1
‘Ry3 - R

x/y x/y x/y

= Vector x? 27§ = logz{(T[@)Iv * |Rxx|]l

(Appendix D on MMSE)
#ery = loga{(me)V - IRy/y|}

N is the number of complex dimensions = N /2

Gﬁ
(@ Section 2.3.4 April 9, 2024 See PS2.5 (Prob 2.20) L3:22 Stanford University




Relation to MMSE Estimation

= If X and Yy are jointly Gaussian, then py/3 is also Gaussian and has mean as MMSE estimate E[X /Y]
and autocorrelation Ree= Rz — Ry * Ryy - Ry .

%g/y = log,|meR,,| - thatis, the entropy is essentially just the log of the MMSE (Gaussian).

* Entropy generalizes MMSE to any probability distribution.
* Measures the information content of the “miss” in estimating X from y for any pz;.

[3

@ Section 2.3.2.1 April 9, 2024 See PS2.5 (Prob 2.20) L3:23 Stanford University




Mutual Information and SNR

Subsection 2.3.2

See PS2.5 (Prob 2.20)

For Gaussian, T and (geo) SNR are in 1-to-1 relationship
MMSE and best rate are essentially same thing.

April 9, 2024 24



Mutual Information ~¥ SNR

Mutual Information is:

L(X;y)=E [1082 ( Py ) = = Fam— e — T

bxPy) |

* For discrete example T = 1-.811 = .189 bits/subsymbol. = Hyz —Hz5 = f,l—[y _j'[i/i

T(X;y) is symmetric in X and ¥ (MMSE forward and backward channel).

~ o~ . . ~ ~ Px/y
T(X; ¥) measures common (“mutual”) information between X and y , E [log2 (;—”)]
y

* On average, I (X; ¥) measures how much bigger is unconditional info versus conditional info, in bits.

n
H
f‘\
=
<
-
5
o)

N

l— log, =% IRny =log, ((1 + SNR geo) ) for the matrix AWGN.

= OR as earlier for vector coding T(%; ¥) = ¥V_, log, SNRmsen for the matrix AWGN.

Cﬁ
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Law of Large Numbers, repeat 379A

Theorem 2.1.1 (Law of Large Numbers (LLN)) The LLN observes that a station-
ary random variable z’s sample average over its observations {z,}n=1,.. N converges to
its mean with large N such that

N
) 1
1\}51100 Pr N nz_:l zn | —E[z]| > €p = 0 weak form (2.13)
| X
A}gl’loo Pr N n;l zn = E[z] p =1 strong form . (2.14)

= Distribution of z must be the same (stationary) for all random selections.

* The random z can be function of random variable ( z = f(x) )and the sample mean converges to E[f (x)].
* Eg, z, = ||x,||> where the vector x,, might also have (a growing) N components (energy sample or length of the vector).

* LLN then states that all the energy (really points in selection from any distribution withIE([Jlxllz] < &) of a hypersphere are are at its surface with probability
1. Points on the interior have probability zero. It is also a sum of independent terms, and thus Gaussian (central limit theorem).

e  The marginal distributions for the vector x,,‘s element selections, and thus for x,, also, would be Gaussian if this N— co-sequence has max entropy (uniform).

* The function of most interest in coding is f (x) = —log,[p,(x)]- that is the function itself is probability distribution’s log.
* The sample average of this function converges to the entropy.
*  This suggests choosing codewords (this means each subsymbol in the codeword) at random from stationary distribution,
* and then repeat at higher level for several codes chosen at random.
* These are discrete codes, even when x is continuous, but their average follows the entropy (and mutual information).
L) *  Generalizes sphere-packing (which was for the AWGN only).

(ﬂ Sections A.1.9,2.3.3 April 9, 2024 L3:26 Stanford University
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Random coding generalizes 379A sphere packing

= Pick subsymbols x,, randomly (independently) from (stationary) distribution p3 for each of M = 2P ¢’words.
* Thisis one random code.

Repeat the exercise for another code, and .... many more.

Compute the average performance of all these random selected codes:
« As N — oo, this average performance is outstanding (as we’ll see), as long as b < T(%; ).
* So at least one good one must exist.

~ =
= Entropy per subsymbol is He = = E [logy (pz)]
4 N
= LLN with function log, [pgl] is the sample-average entropy estimate. ~ ﬁ Z logz Pa:n ’
a —_ N _1
He = = Z og, [p(Zn)] = == -log, [p(x)] . , which converges to (constant) H,

N

= The constant means the ave code has uniform distribution of codewords (asymptotically), 2N-Hy of them.
G Asymptotic Equal Partition (AEP)

g Section 2.3.3 April 9, 2024 L3: 27 Stanford University




= The setis

AEP Typical Sets ~ spheres/ball packing

Aeﬁ(az) =

A

Lemma 2.3.6 [AEP Lemma] For a typical set with N — oo, the following are true:
. Pr{Afﬁ(m)} -1

e for any codeword x € A%, Pr{z} — 9~ NHg

i

ul

—Prob —1
typical set
2]7-27'_[35 number of
sequences
all sequences
Section 2.3.3 April 9, 2024

{w = [0, 22, .., 2] } 2~ NHa=¢ < p(y, &, e &) < 2‘ﬁ‘”é+f}

Decoder works well
if only one codeword
in conditional set for each
y value, so good code spreads
them uniformly.

€
Ay (x)
unconditional typical set

A5 (x/y)

conditional
Typical set

all sequences

There are 2VHz . 27N'Hzy — 2N-LEY) |jttle sets
In the big set if “equally partitioned”

| redundancy p = Hy/,, bits
| NHyy

Hz = T(%; 7)"‘7'[32/37
bits/subsymbol
<b+p
So pick p large enough.
13:28 Stanford University



General Capacity Theorem

AN (=) — 9L(T;Y)

since Z(x;y) = Hae — H
A% (z/y)] =Y

= Good codes will have only 1 codeword per conditional entropy subset.
= MAP detector decision region is then ~ A5 (x/y) - on average; but we can find it for one good code.

= |f A5 (x) were any larger, all codes (good or bad) will have at least one A5 (x/y) that contains 2+
codewords, which mean the MAP has to “flip a coin” — not good (high error prob).

= SHANNON'’s CAPACITY THEOREM

*  Number of codewords is limited by mutual info b < T(x;y).
«  Which is per-subsymbol equivalent with random code b < T(¥; y).

bits

* If maximized over input distributions b < C < HZISX I(x; )’)—Subsymbol-

C_J

g Section 2.3.4 April 9, 2024 L3:29 Stanford University



The uniform part is most important.

= The Gaussian distribution corresponds to marginal of uniform distribution over a hypersphere.
* This uniform distributions marginals are asymptotically Gaussian.
* This is a special case where uniform and Gaussian are basically the same.
* Because all the Gaussian infinite-length vectors (codewords) have same energy (zero variance of the energy).

= All the points (really volume) are (is) at the surface.
= The Gaussian marginal dist’n is important only for shaping gain (< 1.53 dB).

= The (AEP) uniform spacing of points (no matter where the majority of them sit, surface or otherwise)
remains for the fundamental gain.

L~ \ The uniform spacing separates And the rest is MMSE
codewords in the union of Estimation,
the hypersquare (orthotope)
and hypersphere. With a chain-rule twist in

Some situations

Thus, good codes can be based on

sequences from uniformly spaced Vector Coding is always all MAP,
N / PAM/QAM subsymbols. All ML, all MMSE special case.

April 9, 2024 L3:30 Stanford University
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End Lecture 3




