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April 4, 2024

Announcements & Agenda

§ Announcements
• Problem Set 1 due Wednesday, April 12 @ 17:00
• Most relevant reading – Sections 2.5, 4.4-4.7
• Education Foundation?
• HWH 1 is at web site. 

§ Agenda
• RA/MA water-fill flow charts (finish L1)
• Vector Coding in Time-Frequency

• 1+.9D-1 Vector-Code Example

• DMT/OFDM partitioning
• DMT Waterfilling Software
• Vector DMT/OFDM partitioning

L2: 2
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RA Water-Fill Flow Chart

§ Can start with all channels energized
• Compute 𝐾, test lowest energy
• Reduce number of dimensions 

incrementally

L2: 3

§ Can also start with 1 channel energized
• Compute K, test lowest energy
• Increase number of dimensions incrementally

§ The sort is most complex part
• Can use pivots and bi-section
• Avoids sort

Sort subchannels 𝑔! ≥ 𝑔" ≥ ⋯ ≥ 𝑔#

no

Compute WF Energies ̅ℰ! 	 = 𝐾 − ⁄$ %! 	 𝑙 = 1, … , 𝑗 = 𝐿∗

Unsort subchannels /𝑏'	 =
!
" 1 𝑙𝑜𝑔" 1 +

#ℰ!	)%!
$     𝑙 = 1, … , 𝑗 = 𝐿∗

𝑗 = 𝐿	; 	 5𝐾 = ℰ* +7
'+!

#	

8Γ 𝑔'

Check lowest energy ̅ℰ#	 = 𝐾 − &$ %# < 0

𝐾 = ⁄5𝐾 𝑗 j=j-1

yes
Update WF constant
	 5𝐾 = 5𝐾- 8$ %#

Section 4.3.1



Sort subchannels 𝑔! ≥ 𝑔" ≥ ⋯ ≥ 𝑔#

𝑖 = 𝐿	; 	 log" 5𝐾 = 2 1 𝑏	 −7
'+!

#	

log" 𝑔'

Compute WF constant: 	log" 𝐾 = log" Γ + ,-.$ /0
1

Check lowest energy ̅ℰ1 = 𝐾 − ⁄$ %% < 0

log" 5𝐾 = log" 5𝐾 + log" 𝑔1

yes
𝑖	 = 𝑖 − 1

no

Compute WF Energies ̅ℰ' = 𝐾 − ⁄$ %! 	 𝑙 = 1, … , 𝑗 = 𝐿∗

Unsort subchannels $𝑏! 	 =
%
&
' 𝑙𝑜𝑔& 1 +

ℰ!)%!
$

    𝑙 = 1, … , 𝑗 = 𝐿∗

𝛾34* =
ℰ*

∑'+!#∗ ̅ℰ'

Margin Adaptive Flowchart

April 4, 2024 L2: 4

Section 4.3.2



Vector Coding in Time/Frequency
Section 4.6.1

April 4, 2024 5

See PS1.5 (Prob 4.25) (matrix AWGN and vector coding)
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Scalar Time/Frequency (filtered) AWGN Channel

§ Ideal AWGN channels just have noise,  but often filter also:
• Attenuation,
• band-limits, &
• spectrally shaped noise (See Sec 1.3.7).

L2: 6

+

n t( )
y t( )

§ The ℎG 𝑡 causes interference between successive transmissions – complicates and changes performance;
• see Chapter 3 in EE379A.

§ Sampled equivalent has  𝑇H < 𝑇 is the sample period – generalizes 379A’s “fractional spacing.”

𝑥 𝑡

𝑥! 𝜑 𝑡
D
A
C

"
#$

𝜙 𝑡
A
D
C

"
#$

𝑦!
	

ℎ! ≠ 𝛿!
sampled pulse response

𝑦! = 𝑥! ∗ ℎ! + 𝑛!

ℎ% 𝑡

+

𝑥 𝑡 y 𝑡
𝑛 𝑡

ℎ% 𝑡

Sections 1.3.7.2, 4.5.1.1 
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Guard Periods for frequency-time

§ The guard period (GP) 𝑇𝐻
• lets ISI abate before next symbol.

§ This wastes 𝑇𝐻/𝑇	of resources (time dimensions):
• If 𝑇 >> 𝑇𝐻, then the guard period may be worth it.
• GP may be zeroed or anything the receiver ignores.

α =
TH

T −TH
excess bandwidth

§ A (scalar / SISO) symbol with !𝑁 dimensions (samples) has:
• 𝑇6 = 𝜈 1 𝑇7	 so	up	to	𝜈+1 non-zero samples/dimensions in ℎ8 .
• T𝑁 works for real ( 5𝑁 = 1	) or complex ( 5𝑁 = 2	).

0 TH T T+TH

Guard Period

Free of ISIFree of ISI

ISI

L2: 7Section  4.5.4.1, 4.6.1  

0 -𝑁 − 1−𝜈

Symbol

reindex time in sample periods
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SISO (time-dimension) Case 

§ Simple scalar convolutional matrix channel with guard band

L2: 8

guard period

§ Non-square shift “Toeplitz” matrix for convolution
• More inputs than outputs when 𝜈 ≠ 0

could be anything, 
including 0 or cyclic

𝒚 = 𝐻 𝒙 + 𝒏

Section  4.6.1 

Ignore
-1:-𝜈
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SVD Again for the time-dimension case

L2: 9

§ The vector-coding input construction is:

unique	(real)	singular	values	 ≥0

§ Singular Value Decomposition performs:

𝐹𝐹∗ = 𝐹∗𝐹 = 𝐼
	

()×()

𝑀𝑀∗ = 𝑀∗𝑀 = 𝐼
	

()+, × ()+,

𝑁 = ,𝑁 if real subsymbols and -𝑁 = 1
 𝑁 = 2 0 ,𝑁 if complex subsymbols and -𝑁 = 2

. 	 .	
()+, ×()

Λ=

𝜆 ()-" 0
⋮ ⋱

⋯ 0
⋱ ⋮

0 ⋯
0 ⋯

𝜆" 0
0 𝜆.

.	

/01203
Section  4.6.1 

𝐻 = 𝐹 A ⏟Λ	
()×()

⋮ 𝟎-":-,
	

()×,
A 𝑀∗
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Vector-Coded Time Dimensions Only

§ Channel output processed by matched vectors:

L2: 10

§ Parallel Channels are then: 

Encoders 𝑀
N dimensions 

𝑿
2 9:	possible
messages

N+𝜈 dimensions 

Decoders𝐹∗
𝑁 dimensions 

𝒀
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
message

𝑁 dimensions 

𝑆𝑁𝑅5 =
𝜆56 A ̅ℰ5
𝜎6

§ Vector-coded channel partitioning is :

Yn = λn ⋅Xn +Nn

+

AWGN

H= 𝐹𝛬𝑀∗
𝒙 𝒚

𝒏

" 	

Section  4.6.1 

Noise-Equivalent Channel

𝔼 𝒏 )  𝒏∗ = 𝑅𝒏𝒏 = 𝑅𝒏𝒏
(/* ) 𝑅𝒏𝒏

∗/*

Replaces 𝐻
Section  4.6.1.2 

𝒀 = 𝐹∗ A 𝒚 =
𝒇()-"
∗ A 𝒚
⋮

𝒇.∗ A 𝒚
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Data Rates and Mutual Information

§ For any energies and consequent SNR’s
• If complex baseband, replace 𝜈 with 2𝜈 for /𝑏 calculation.

L2: 11

§ When the gap = 0 dB, this is the “mutual information” , reliable 𝑏	 ≤ I(x;y).
• The mutual information bounds data rate, for (Gaussian) input with given autocorrelation 

𝑅𝒙𝒙 , or any energy distribution (possibly not WF).
• Good scalar-AWGN code applies “outside” the parallel channel set.

§ Maximized SNR, and thus mutual information, occur when energy is water-filling à Capacity.

§ Highest reliable data rate that can be transmitted (Shannon 1948):
• for the given block size 1𝑵 and guard period n.

𝑆𝑁𝑅78 = 269
(I − 1

L𝑏 =
𝑏

𝑁 + 𝜈 =
"
69:;<1 "+=)>23? 	

𝑆𝑁𝑅NO,QRSTUVWXYY = 2ZA𝒞̅ − 1

Section  4.6.1.3 Problems 1.4 (4.18) and  1.5 (4.25)



1+.9D-1 Vector-Code Example
Section 4.6

April 4, 2024 L2:12
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Matlab 1+.9D-1 example returns:
§ Form 𝐻 and do SVD:

L2: 13

f0 f7

m0 m7

>> C=[.9
zeros(7,1)];
>> R=[.9 1 zeros(1,7)];

>> H=toeplitz(C,R)

H =

    0.9000    1.0000         0         0         0         0         0         0         0
         0    0.9000    1.0000         0         0         0         0         0         0
         0         0    0.9000    1.0000         0         0         0         0         0
         0         0         0    0.9000    1.0000         0         0         0         0
         0         0         0         0    0.9000    1.0000         0         0         0
         0         0         0         0         0    0.9000    1.0000         0         0
         0         0         0         0         0         0    0.9000    1.0000         0
         0         0         0         0         0         0         0    0.9000    1.0000

>> [F,L,M]=svd(H)
F =
   -0.1612    0.3030   -0.4082    0.4642   -0.4642    0.4082    0.3030   -0.1612
   -0.3030    0.4642   -0.4082    0.1612    0.1612   -0.4082   -0.4642    0.3030
   -0.4082    0.4082    0.0000   -0.4082    0.4082    0.0000    0.4082   -0.4082
   -0.4642    0.1612    0.4082   -0.3030   -0.3030    0.4082   -0.1612    0.4642
   -0.4642   -0.1612    0.4082    0.3030   -0.3030   -0.4082   -0.1612   -0.4642
   -0.4082   -0.4082   -0.0000    0.4082    0.4082    0.0000    0.4082    0.4082
   -0.3030   -0.4642   -0.4082   -0.1612    0.1612    0.4082   -0.4642   -0.3030
   -0.1612   -0.3030   -0.4082   -0.4642   -0.4642   -0.4082    0.3030    0.1612

L =
    1.8712         0         0         0         0         0         0         0         0
         0    1.7857         0         0         0         0         0         0         0
         0         0    1.6462         0         0         0         0         0         0
         0         0         0    1.4569         0         0         0         0         0
         0         0         0         0    1.2237         0         0         0         0
         0         0         0         0         0    0.9539         0         0         0
         0         0         0         0         0         0    0.6566         0         0
         0         0         0         0         0         0         0    0.3443         0

M =
   -0.0775    0.1527   -0.2232    0.2868   -0.3414    0.3852    0.4153   -0.4214    0.4728
   -0.2319    0.4037   -0.4712    0.4182   -0.2608    0.0428   -0.1748    0.3238   -0.4255
   -0.3583    0.4657   -0.2480   -0.1415    0.4320   -0.4280   -0.1475   -0.1871    0.3830
   -0.4415    0.3099    0.2232   -0.4674    0.1108    0.3852    0.4008    0.0278   -0.3447
   -0.4714    0.0090    0.4712   -0.0208   -0.4705    0.0428   -0.4666    0.1348    0.3102
   -0.4445   -0.2960    0.2480    0.4602    0.0526   -0.4280    0.3140   -0.2812   -0.2792
   -0.3639   -0.4626   -0.2232    0.1806    0.4522    0.3852   -0.0146    0.3936    0.2513
   -0.2395   -0.4127   -0.4712   -0.3975   -0.2097    0.0428   -0.2917   -0.4586   -0.2261
   -0.0862   -0.1697   -0.2480   -0.3187   -0.3794   -0.4280    0.4615    0.4683    0.2035

Section  4.6.1.3 
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Matlab continued
§ Use singular values2 for channel gains:

L2: 14

§ These then are:

§ Water-filling (RA) with 0 dB gap

§ Energies

§ SNRs

SVs = [ 1.87  1.78  1.64  1.45  1.22  .95  .66 .34 ]

𝑔5 =
𝜆56

𝜎6(= .181) = [19.3	 17.6	 15.0	 11.7	 8.3	 5.0	 2.4	 0.66]

𝐾 =
1
7 A 9 +i

5@.

A
Γ
𝑔5

= 1.43

ℰ5 = 𝐾 −
Γ
𝑔5

[ 1.38  1.37  1.36  1.34  1.30  1.23  1.01 0 ]

ℰ5 A 𝑔5[ 26.2  24.2  20.4  15.8  10.6  6.2  2.4  0 ]

Not assigned, but might find Prob 4.17 interesting for look
Section  4.6.1.3 
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Overall performance and rate

§ Product SNR

L2: 15

§ Rate = capacity

>> R=[.9 1 zeros(1,99)];
>> C=[.9 zeros(1,99)];
>> H=(1/sqrt(.181))*toeplitz(C,R);
>> [F,L,M]=svd(H);
>> g=diag(L).*diag(L);

>> K=(1/89)*(101+sum(ones(1,89)./g(1:89)'))
K = 1.3294
>> K-1/g(89) =  -0.0219

>> K=(1/88)*(101+sum(ones(1,88)./g(1:88)'))
K =  1.3292
>> K-1/g(88) = 0.1627

So N* = 88

>> E=K*ones(1,88)-ones(1,88)./g(1:88)’;

>> snr=E.*g(1:88)';
>> b=(0.5/101)*(1/log(2))*sum(log(ones(1,88)+snr))

b =

    1.5360

1𝑁 	→ ∞, then
1𝑁 + 𝜈
1𝑁

→ 1, so	no	loss	(max	is	1.55)

𝒞̅ = "
B	9i
5@.

A
"
6 A log6 1 + 𝑆𝑁𝑅5 = 1.45	bits/dimension

𝑆𝑁𝑅78 = w
5@.

A

𝑆𝑁𝑅5 + 1

"/B

− 1 = 6.46 = 8.1	𝑑𝐵

Section  4.6.1.3 



DMT/OFDM Partitioning
Section 4.7.1-5

April 4, 2024 16

See PS1.3 (Prob 4.18)
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Cyclic Extension
§ Remember this convolution from vectoring coding?

L2: 17

guard period

§ Let the guard period be such that 𝑥^_	=	𝑥 T̀^_ 	for i=1,…,n  à CYCLIC PREFIX or CYCLIC EXTENSION.
• The channel now appears periodic!

could be anything, 
including 0 or cyclic

𝒚 = z𝐻 𝒙 + 𝒏

Ideally 1𝑁 >> n
So small loss of dimensions

TH

Guard
Period

(ignored by receiver)

Free of ISI

0

repeated

§ In fact, “Toeplitz-distribution” limiting 
results are based on this type of cyclic-
extension concept.

0

Free of ISI

repeated
Section  4.7 
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Cyclic Convolution

§ The matrix expression now uses an N x N circulant matrix:

L2: 18

§ As far as output 𝒚 is concerned, the input is periodic with the same period N as the output.

§ The cyclic prefix is added for each and every symbol.

§ n dimensions are lost (both in terms of energy lost and no new information).

𝒚 = z𝐻 A 𝒙 + 𝒏

*𝐻 is circulant
+𝑁×+𝑁

Section  4.7 Problem 1.5 (4.25)
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Cyclic Convolution and the DFT

L2: 19

§ DFT = Discrete Fourier Transform

§ IDFT = Inverse Discrete Fourier Transform
• Symmetrical form

§ Subsymbol channel 𝑌a = *𝐻a / 𝑋a	(+	𝑁a) 
• Vector coding with 𝑀 = 𝐹∗ = 𝑄, but diagonal can be complex
• And the guard period must be cyclic 
• Still parallel set of subchannels

Xn
2
=

n=0

N−1

∑ xk
2

n=0

N−1

∑

• Normalized (maintains squared norm, 
energy from time ßà frequency)

• 𝑁 or 1𝑁 

z𝐻 = 𝑄 A Λ A 𝑄∗

Λ =
z𝐻)-" 0 0
0 ⋱ 0
0 0 z𝐻.

 = DFT values on diagonal

Section  4.7.1 
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DMT / OFDM Transmission

L2: 20

IDFT
(IFFT)

real is )( if * txXX iiN =-

parallel
to 

serial
&

cyclic
prefix
insert

.

.

.
ℎ𝑐(𝑡) +

D
A
C

A
D
C

x 𝑥(𝑡) 𝑛 𝑡

y(t)(LPF) (LPF)

T
N

T
n+

=
'
1

T
N

T
n+

=
'
1

j(t) f*(-t)

Forces *𝐻	to be cyclic matrix

X0

X1

XN−1

XN−2

serial
to 

parallel
&

cyclic
prefix

remove

DFT
(FFT)

.

.

.

YN−2

YN−1

Y1

Y0

If complex, use size -𝑁
Section  4.7.2 

Heavily used, wireline & wireless
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Product SNR

§ DMT uses 7 subchannels, DC plus 3 two-dimensional QAM subchannels, of a total of 9 dimensions.

L2: 21

§ But no channel-dependent partitioning, and much easier to implement (N log (N) vs N2 ).

<  SNRvc

§ How can we exploit this?? INCREASE 𝑁 !

§ DMTra and DMTma will help.

Section  4.7.2 
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1+.9D-1 revisited

§ Circulant Channel is 8 x 8 (but wastes 1 dimension in cyclic extension, and loses its energy).

L2: 22

§ Channel FFT (size 8) leads to:

Water-fill (G =0 dB) with ℰD = 8

See PS1.4 (Prob 4.7)

z𝐻 =

§ 3𝑏 = 1.38

Section  4.7.2 
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Partitioning with DFT

§ DFT Partitioning is:

L2: 23

§ DFT creates a set of parallel channels – A “Discrete MultiTone” partitioning.
• Some call it OFDM, but there is a difference in loading (DMT optimizes loaded energy, OFDM fixes equal energy). 

§ Receiver is DFT  (and noise remains white).

Neither is a function of the channel§ Transmitter is IDFT  (no power increase).
Can use efficient “FFT”

𝑄∗ +𝑿
𝒙

𝒏
𝒚

𝒀𝑄*𝐻

𝑆𝑁𝑅5 =
ℰ5 A z𝐻5

6

𝜎6 Noise-Equivalent Channel

𝐻



DMT Water-Filling Software
Subsection 4.7.4

April 4, 2024 24

See PS1.4 (Prob 4.7) and PS1.5 (Prob 4.9)
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Rate Adaptive DMT

§ >> [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,8,0)

§ gn =   19.9448   17.0320   10.0000    2.9680    0.0552    2.9680   10.0000   17.0320
§ en_bar =    1.2415    1.2329    1.1916    0.9547         0    0.9547    1.1916    1.2329
§ bn_bar =    2.3436    2.2297    1.8456    0.9693         0    0.9693    1.8456    2.2297
§ Nstar =     7
§ b_bar =    1.3814
§ SNRdmt =    7.6247 dB

L2: 25

function [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(H,NoisePSD,Ex_bar,N,gap)

sampled
channel

response

energy/
Dimension

or cpx sample

AWGN
variance

FFT
size

G
dB

channel
SNRs

bit
distribution

energy
distribution

# of
Used dim

Total
bits

Prod
SNR

OUTPUTS INPUTS

In using the program,
know if your channel is

truly baseband or complex
baseband equivalent.

In real case, each dimension shown is a real dimension.

Section  4.7.4 Problem 1.3 (4.7)
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Increase N

§ [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,16,0);

• >> SNRdmtSNRdmt =    8.1152

§ [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,1024,0);

• >> SNRdmtSNRdmt =    8.7437

L2: 26

§ Feel free to experiment, PS1.4 goes better if you use this.

Section  4.7.4 
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How about non-zero gap?
§ SNR can look higher, but bit rate is overall lower

L2: 27

>> [gn,En,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,8,8.8)

gn = 19.9448   17.0320   10.0000    2.9680    0.0552    2.9680   10.0000   17.0320

En = 1.7773    1.7123    1.3991         0         0         0    1.3991    1.7123

bn_bar = 1.2521    1.1382    0.7540         0         0         0    0.7540    1.1382

Nstar = 5

b_bar = 0.5596

SNRdmt = 9.4904 dB  (remember this gets divided by the gap)

>> En.*gn = 35.4481   29.1634   13.9907         0         0         0       13.9907  29.1634
                    24.7613   20.9991   11.9163    2.8336     0    2.8336   11.9163   20.9991 (G=0)

>> 10*log10(ans)  = 15.4959   14.6484   11.4584      -Inf      -Inf      -Inf   11.4584   14.6484
      (these subchannel SNR’s also get divided by gap)

Data rate is 
roughly 1/3 of 
before. 

Note SNRdmt 
increase for 
nonzero gap.

Section  4.7.4 
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Suppose 1+.9D-1 were complex baseband?
§ The channel effectively has twice as many dimensions.

• The same results would be for 8 complex dimensions.
• So bbar, ebar are really bits/tone and energy/tone.
• Same values, but the constellations on each tone are two dimensional.

L2: 28

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9 1],.181,2,8,0)

gn =  19.9448   17.0320   10.0000    2.9680    0.0552    2.9680   10.0000   17.0320

En = 2.3843    2.3758    2.3345    2.0976         0    2.0976    2.3345    2.3758

bn = 2.8008    2.6869    2.3028    1.4266         0    1.4266    2.3028    2.6869

Nstar = 7

b = 1.7370

SNRdmt = 10.0484 dB

>> sum(En) = 16.0000       ;      >> sum(bn) =   15.6332

§ The bits/tone though is slightly larger.
• 1.73 > 1.38

§ What happened?

§ The “DC” tone is now complex and has 
an additional good dimension.

Section  4.7.4 
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Suppose 1+.9jD-1  - must be complex baseband
§ The channel definitely has twice as many real dimensions

L2: 29

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9*i 1],.181,2,8,0)

gn = 10.0000   17.0320   19.9448   17.0320   10.0000    2.9680    0.0552    2.9680

En = 2.3345    2.3758    2.3843    2.3758    2.3345    2.0976         0    2.0976

bn = 2.3028    2.6869    2.8008    2.6869    2.3028    1.4266         0    1.4266

Nstar = 7

b = 1.7370

SNRdmt = 10.0484

>> sum(En) = 16.0000       ;      >> sum(bn) = 15.6332

This channel rotates the earlier one in time, 
so circular shift in frequency

Section  4.7.4 
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Margin Adaptive DMT

§ function [gn,en,bn,Nstar,b_bar_check,margin]=DMTma(H,NoisePSD,Ex_bar,b_bar,N,gap)

L2: 30

sampled
channel

response

energy/
Dimension

Or cpx sample

AWGN
Variance/

Dimension
Or cpx sample

FFT
size

G
dB

channel
SNRs

bit
distribution

energy
distribution

# of
Used dim

OUTPUTS INPUTS

target
bbar

Margin
dB

target
bbar

§ >> [gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,0)
§ gn =   19.9448   17.0320   10.0000    2.9680    0.0552    2.9680   10.0000   17.0320
§ en =    0.6043     0.5958     0.5545      0.3175         0         0.3175    0.5545     0.5958
§ bn =    1.8532    1.7393      1.3552      0.4790         0         0.4790    1.3552    1.7393
§ Nstar =     7
§ b_bar_check =     1
§ margin =    3.5410

It works real or complex,
but (again) be areful.
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Continuing

§ >> [gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,8.8)
§ gn =   19.9448   17.0320   10.0000    2.9680    0.0552    2.9680   10.0000   17.0320
§ en =    4.5844    4.5193    4.2061    2.4088         0    2.4088    4.2061    4.5193
§ bn =    1.8532    1.7393    1.3552    0.4790         0    0.4790    1.3552    1.7393
§ Nstar =     7
§ b_bar_check =    1.0000
§ margin =   -5.2590

L2: 31

Negative margin – can’t do it!

[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,16,0);

>> margin =    4.1445
[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,1024,0);

>> margin =    4.7267
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Vector DMT/OFDM Transmitter

L2: 33

Ly×Lx

NLx
2 +LxN log2 N( )<< LxN( )2

IFFT 1

IFFT 2

IFFT Lx

Vector
Xmit
Each
Tone
Mn

bits

cycle
Each tone

Lx×Lx

N
encoders

Xn ,k Cyclic pre &
Analog driver

Cyclic pre &
Analog driver

Cyclic pre &
Analog driver

.
  .
    .

xk

On each 
tone

crosstalking
Channel
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Vector DMT/OFDM Receiver

§ Just much larger number of dimensions, each a scalar AWGN,  𝐿 = 𝑚𝑖𝑛 𝐿5, 𝐿6
§ 𝐿 + 𝑁	dimensions
§ Can water-fill over them all (if total energy constraint, which is common)

L2: 34

NLy
2 +LyN log2 N( )<< LyN( )2

Analog Convert
& cyclic strip

Analog Convert
& cyclic strip

Analog Convert
& cyclic strip

Crosstalking
channel
Ly×Lx

FFT 1

FFT 2

FFT Ly

Vector
Filter
Each 
tone
Fn

cycle
each tone

bits

.
  .
    .

Ly×Ly

yk

Yn ,k

N
decoders

z𝐻5 = 𝐹5 A Λ5 A 𝑀5
∗
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