
Lecture 2

Channel Partitioning: Vector Coding & DMT
April 4, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379B – Spring 2024

JOHN M . C IOFF I

April 4, 2024

Announcements & Agenda

§ Announcements
• Problem Set 1 due Wednesday, April 12 @ 17:00
• Most relevant reading – Sections 2.5, 4.4-4.7
• Education Foundation?
• HWH 1 is at web site.

§ Agenda
• RA/MA water-fill flow charts (finish L1)
• Vector Coding in Time-Frequency

• 1+.9D-1 Vector-Code Example

• DMT/OFDM partitioning
• DMT Waterfilling Software
• Vector DMT/OFDM partitioning

L2: 2

April 4, 2024

RA Water-Fill Flow Chart

§ Can start with all channels energized
• Compute 𝐾, test lowest energy
• Reduce number of dimensions

incrementally

L2: 3

§ Can also start with 1 channel energized
• Compute K, test lowest energy
• Increase number of dimensions incrementally

§ The sort is most complex part
• Can use pivots and bi-section
• Avoids sort

Sort subchannels 𝑔! ≥ 𝑔" ≥ ⋯ ≥ 𝑔#

no

Compute WF Energies ̅ℰ! 	 = 𝐾 − ⁄$ %! 	 𝑙 = 1, … , 𝑗 = 𝐿∗

Unsort subchannels /𝑏'	 =
!
" 1 𝑙𝑜𝑔" 1 +

#ℰ!)%!
$ 𝑙 = 1, … , 𝑗 = 𝐿∗

𝑗 = 𝐿	; 	 5𝐾 = ℰ* +7
'+!

#	

8Γ 𝑔'

Check lowest energy ̅ℰ#	 = 𝐾 − &$ %# < 0

𝐾 = ⁄5𝐾 𝑗 j=j-1

yes
Update WF constant
	 5𝐾 = 5𝐾- 8$ %#

Section 4.3.1

Sort subchannels 𝑔! ≥ 𝑔" ≥ ⋯ ≥ 𝑔#

𝑖 = 𝐿	; 	 log" 5𝐾 = 2 1 𝑏	 −7
'+!

#	

log" 𝑔'

Compute WF constant: 	log" 𝐾 = log" Γ + ,-.$ /0
1

Check lowest energy ̅ℰ1 = 𝐾 − ⁄$ %% < 0

log" 5𝐾 = log" 5𝐾 + log" 𝑔1

yes
𝑖	 = 𝑖 − 1

no

Compute WF Energies ̅ℰ' = 𝐾 − ⁄$ %! 	 𝑙 = 1, … , 𝑗 = 𝐿∗

Unsort subchannels $𝑏! 	 =
%
&
' 𝑙𝑜𝑔& 1 +

ℰ!)%!
$

 𝑙 = 1, … , 𝑗 = 𝐿∗

𝛾34* =
ℰ*

∑'+!#∗ ̅ℰ'

Margin Adaptive Flowchart

April 4, 2024 L2: 4

Section 4.3.2

Vector Coding in Time/Frequency
Section 4.6.1

April 4, 2024 5

See PS1.5 (Prob 4.25) (matrix AWGN and vector coding)

April 4, 2024

Scalar Time/Frequency (filtered) AWGN Channel

§ Ideal AWGN channels just have noise, but often filter also:
• Attenuation,
• band-limits, &
• spectrally shaped noise (See Sec 1.3.7).

L2: 6

+

n t()
y t()

§ The ℎG 𝑡 causes interference between successive transmissions – complicates and changes performance;
• see Chapter 3 in EE379A.

§ Sampled equivalent has 𝑇H < 𝑇 is the sample period – generalizes 379A’s “fractional spacing.”

𝑥 𝑡

𝑥! 𝜑 𝑡
D
A
C

"
#$

𝜙 𝑡
A
D
C

"
#$

𝑦!
	

ℎ! ≠ 𝛿!
sampled pulse response

𝑦! = 𝑥! ∗ ℎ! + 𝑛!

ℎ% 𝑡

+

𝑥 𝑡 y 𝑡
𝑛 𝑡

ℎ% 𝑡

Sections 1.3.7.2, 4.5.1.1

April 4, 2024

Guard Periods for frequency-time

§ The guard period (GP) 𝑇𝐻
• lets ISI abate before next symbol.

§ This wastes 𝑇𝐻/𝑇	of resources (time dimensions):
• If 𝑇 >> 𝑇𝐻, then the guard period may be worth it.
• GP may be zeroed or anything the receiver ignores.

α =
TH

T −TH
excess bandwidth

§ A (scalar / SISO) symbol with !𝑁 dimensions (samples) has:
• 𝑇6 = 𝜈 1 𝑇7	 so	up	to	𝜈+1 non-zero samples/dimensions in ℎ8 .
• T𝑁 works for real (5𝑁 = 1) or complex (5𝑁 = 2).

0 TH T T+TH

Guard Period

Free of ISIFree of ISI

ISI

L2: 7Section 4.5.4.1, 4.6.1

0 -𝑁 − 1−𝜈

Symbol

reindex time in sample periods

April 4, 2024

SISO (time-dimension) Case

§ Simple scalar convolutional matrix channel with guard band

L2: 8

guard period

§ Non-square shift “Toeplitz” matrix for convolution
• More inputs than outputs when 𝜈 ≠ 0

could be anything,
including 0 or cyclic

𝒚 = 𝐻 𝒙 + 𝒏

Section 4.6.1

Ignore
-1:-𝜈

April 4, 2024

SVD Again for the time-dimension case

L2: 9

§ The vector-coding input construction is:

unique	(real)	singular	values	 ≥0

§ Singular Value Decomposition performs:

𝐹𝐹∗ = 𝐹∗𝐹 = 𝐼
	

()×()

𝑀𝑀∗ = 𝑀∗𝑀 = 𝐼
	

()+, × ()+,

𝑁 = ,𝑁 if real subsymbols and -𝑁 = 1
 𝑁 = 2 0 ,𝑁 if complex subsymbols and -𝑁 = 2

. 	 .	
()+, ×()

Λ=

𝜆 ()-" 0
⋮ ⋱

⋯ 0
⋱ ⋮

0 ⋯
0 ⋯

𝜆" 0
0 𝜆.

.	

/01203
Section 4.6.1

𝐻 = 𝐹 A ⏟Λ	
()×()

⋮ 𝟎-":-,
	

()×,
A 𝑀∗

April 4, 2024

Vector-Coded Time Dimensions Only

§ Channel output processed by matched vectors:

L2: 10

§ Parallel Channels are then:

Encoders 𝑀
N dimensions

𝑿
2 9:	possible
messages

N+𝜈 dimensions

Decoders𝐹∗
𝑁 dimensions

𝒀
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
message

𝑁 dimensions

𝑆𝑁𝑅5 =
𝜆56 A ̅ℰ5
𝜎6

§ Vector-coded channel partitioning is :

Yn = λn ⋅Xn +Nn

+

AWGN

H= 𝐹𝛬𝑀∗
𝒙 𝒚

𝒏

" 	

Section 4.6.1

Noise-Equivalent Channel

𝔼 𝒏) 𝒏∗ = 𝑅𝒏𝒏 = 𝑅𝒏𝒏
(/*) 𝑅𝒏𝒏

∗/*

Replaces 𝐻
Section 4.6.1.2

𝒀 = 𝐹∗ A 𝒚 =
𝒇()-"
∗ A 𝒚
⋮

𝒇.∗ A 𝒚

April 4, 2024

Data Rates and Mutual Information

§ For any energies and consequent SNR’s
• If complex baseband, replace 𝜈 with 2𝜈 for /𝑏 calculation.

L2: 11

§ When the gap = 0 dB, this is the “mutual information” , reliable 𝑏	 ≤ I(x;y).
• The mutual information bounds data rate, for (Gaussian) input with given autocorrelation

𝑅𝒙𝒙 , or any energy distribution (possibly not WF).
• Good scalar-AWGN code applies “outside” the parallel channel set.

§ Maximized SNR, and thus mutual information, occur when energy is water-filling à Capacity.

§ Highest reliable data rate that can be transmitted (Shannon 1948):
• for the given block size 1𝑵 and guard period n.

𝑆𝑁𝑅78 = 269
(I − 1

L𝑏 =
𝑏

𝑁 + 𝜈 =
"
69:;<1 "+=)>23? 	

𝑆𝑁𝑅NO,QRSTUVWXYY = 2ZA𝒞̅ − 1

Section 4.6.1.3 Problems 1.4 (4.18) and 1.5 (4.25)

1+.9D-1 Vector-Code Example
Section 4.6

April 4, 2024 L2:12

April 4, 2024

Matlab 1+.9D-1 example returns:
§ Form 𝐻 and do SVD:

L2: 13

f0 f7

m0 m7

>> C=[.9
zeros(7,1)];
>> R=[.9 1 zeros(1,7)];

>> H=toeplitz(C,R)

H =

 0.9000 1.0000 0 0 0 0 0 0 0
 0 0.9000 1.0000 0 0 0 0 0 0
 0 0 0.9000 1.0000 0 0 0 0 0
 0 0 0 0.9000 1.0000 0 0 0 0
 0 0 0 0 0.9000 1.0000 0 0 0
 0 0 0 0 0 0.9000 1.0000 0 0
 0 0 0 0 0 0 0.9000 1.0000 0
 0 0 0 0 0 0 0 0.9000 1.0000

>> [F,L,M]=svd(H)
F =
 -0.1612 0.3030 -0.4082 0.4642 -0.4642 0.4082 0.3030 -0.1612
 -0.3030 0.4642 -0.4082 0.1612 0.1612 -0.4082 -0.4642 0.3030
 -0.4082 0.4082 0.0000 -0.4082 0.4082 0.0000 0.4082 -0.4082
 -0.4642 0.1612 0.4082 -0.3030 -0.3030 0.4082 -0.1612 0.4642
 -0.4642 -0.1612 0.4082 0.3030 -0.3030 -0.4082 -0.1612 -0.4642
 -0.4082 -0.4082 -0.0000 0.4082 0.4082 0.0000 0.4082 0.4082
 -0.3030 -0.4642 -0.4082 -0.1612 0.1612 0.4082 -0.4642 -0.3030
 -0.1612 -0.3030 -0.4082 -0.4642 -0.4642 -0.4082 0.3030 0.1612

L =
 1.8712 0 0 0 0 0 0 0 0
 0 1.7857 0 0 0 0 0 0 0
 0 0 1.6462 0 0 0 0 0 0
 0 0 0 1.4569 0 0 0 0 0
 0 0 0 0 1.2237 0 0 0 0
 0 0 0 0 0 0.9539 0 0 0
 0 0 0 0 0 0 0.6566 0 0
 0 0 0 0 0 0 0 0.3443 0

M =
 -0.0775 0.1527 -0.2232 0.2868 -0.3414 0.3852 0.4153 -0.4214 0.4728
 -0.2319 0.4037 -0.4712 0.4182 -0.2608 0.0428 -0.1748 0.3238 -0.4255
 -0.3583 0.4657 -0.2480 -0.1415 0.4320 -0.4280 -0.1475 -0.1871 0.3830
 -0.4415 0.3099 0.2232 -0.4674 0.1108 0.3852 0.4008 0.0278 -0.3447
 -0.4714 0.0090 0.4712 -0.0208 -0.4705 0.0428 -0.4666 0.1348 0.3102
 -0.4445 -0.2960 0.2480 0.4602 0.0526 -0.4280 0.3140 -0.2812 -0.2792
 -0.3639 -0.4626 -0.2232 0.1806 0.4522 0.3852 -0.0146 0.3936 0.2513
 -0.2395 -0.4127 -0.4712 -0.3975 -0.2097 0.0428 -0.2917 -0.4586 -0.2261
 -0.0862 -0.1697 -0.2480 -0.3187 -0.3794 -0.4280 0.4615 0.4683 0.2035

Section 4.6.1.3

April 4, 2024

Matlab continued
§ Use singular values2 for channel gains:

L2: 14

§ These then are:

§ Water-filling (RA) with 0 dB gap

§ Energies

§ SNRs

SVs = [1.87 1.78 1.64 1.45 1.22 .95 .66 .34]

𝑔5 =
𝜆56

𝜎6(= .181) = [19.3	 17.6	 15.0	 11.7	 8.3	 5.0	 2.4	 0.66]

𝐾 =
1
7 A 9 +i

5@.

A
Γ
𝑔5

= 1.43

ℰ5 = 𝐾 −
Γ
𝑔5

[1.38 1.37 1.36 1.34 1.30 1.23 1.01 0]

ℰ5 A 𝑔5[26.2 24.2 20.4 15.8 10.6 6.2 2.4 0]

Not assigned, but might find Prob 4.17 interesting for look
Section 4.6.1.3

April 4, 2024

Overall performance and rate

§ Product SNR

L2: 15

§ Rate = capacity

>> R=[.9 1 zeros(1,99)];
>> C=[.9 zeros(1,99)];
>> H=(1/sqrt(.181))*toeplitz(C,R);
>> [F,L,M]=svd(H);
>> g=diag(L).*diag(L);

>> K=(1/89)*(101+sum(ones(1,89)./g(1:89)'))
K = 1.3294
>> K-1/g(89) = -0.0219

>> K=(1/88)*(101+sum(ones(1,88)./g(1:88)'))
K = 1.3292
>> K-1/g(88) = 0.1627

So N* = 88

>> E=K*ones(1,88)-ones(1,88)./g(1:88)’;

>> snr=E.*g(1:88)';
>> b=(0.5/101)*(1/log(2))*sum(log(ones(1,88)+snr))

b =

 1.5360

1𝑁 	→ ∞, then
1𝑁 + 𝜈
1𝑁

→ 1, so	no	loss	(max	is	1.55)

𝒞̅ = "
B	9i
5@.

A
"
6 A log6 1 + 𝑆𝑁𝑅5 = 1.45	bits/dimension

𝑆𝑁𝑅78 = w
5@.

A

𝑆𝑁𝑅5 + 1

"/B

− 1 = 6.46 = 8.1	𝑑𝐵

Section 4.6.1.3

DMT/OFDM Partitioning
Section 4.7.1-5

April 4, 2024 16

See PS1.3 (Prob 4.18)

April 4, 2024

Cyclic Extension
§ Remember this convolution from vectoring coding?

L2: 17

guard period

§ Let the guard period be such that 𝑥^_	=	𝑥 T̀^_ 	for i=1,…,n à CYCLIC PREFIX or CYCLIC EXTENSION.
• The channel now appears periodic!

could be anything,
including 0 or cyclic

𝒚 = z𝐻 𝒙 + 𝒏

Ideally 1𝑁 >> n
So small loss of dimensions

TH

Guard
Period

(ignored by receiver)

Free of ISI

0

repeated

§ In fact, “Toeplitz-distribution” limiting
results are based on this type of cyclic-
extension concept.

0

Free of ISI

repeated
Section 4.7

April 4, 2024

Cyclic Convolution

§ The matrix expression now uses an N x N circulant matrix:

L2: 18

§ As far as output 𝒚 is concerned, the input is periodic with the same period N as the output.

§ The cyclic prefix is added for each and every symbol.

§ n dimensions are lost (both in terms of energy lost and no new information).

𝒚 = z𝐻 A 𝒙 + 𝒏

*𝐻 is circulant
+𝑁×+𝑁

Section 4.7 Problem 1.5 (4.25)

April 4, 2024

Cyclic Convolution and the DFT

L2: 19

§ DFT = Discrete Fourier Transform

§ IDFT = Inverse Discrete Fourier Transform
• Symmetrical form

§ Subsymbol channel 𝑌a = *𝐻a / 𝑋a	(+	𝑁a)
• Vector coding with 𝑀 = 𝐹∗ = 𝑄, but diagonal can be complex
• And the guard period must be cyclic
• Still parallel set of subchannels

Xn
2
=

n=0

N−1

∑ xk
2

n=0

N−1

∑

• Normalized (maintains squared norm,
energy from time ßà frequency)

• 𝑁 or 1𝑁

z𝐻 = 𝑄 A Λ A 𝑄∗

Λ =
z𝐻)-" 0 0
0 ⋱ 0
0 0 z𝐻.

 = DFT values on diagonal

Section 4.7.1

April 4, 2024

DMT / OFDM Transmission

L2: 20

IDFT
(IFFT)

real is)(if * txXX iiN =-

parallel
to

serial
&

cyclic
prefix
insert

.

.

.
ℎ𝑐(𝑡) +

D
A
C

A
D
C

x 𝑥(𝑡) 𝑛 𝑡

y(t)(LPF) (LPF)

T
N

T
n+

=
'
1

T
N

T
n+

=
'
1

j(t) f*(-t)

Forces *𝐻	to be cyclic matrix

X0

X1

XN−1

XN−2

serial
to

parallel
&

cyclic
prefix

remove

DFT
(FFT)

.

.

.

YN−2

YN−1

Y1

Y0

If complex, use size -𝑁
Section 4.7.2

Heavily used, wireline & wireless

April 4, 2024

Product SNR

§ DMT uses 7 subchannels, DC plus 3 two-dimensional QAM subchannels, of a total of 9 dimensions.

L2: 21

§ But no channel-dependent partitioning, and much easier to implement (N log (N) vs N2).

< SNRvc

§ How can we exploit this?? INCREASE 𝑁 !

§ DMTra and DMTma will help.

Section 4.7.2

April 4, 2024

1+.9D-1 revisited

§ Circulant Channel is 8 x 8 (but wastes 1 dimension in cyclic extension, and loses its energy).

L2: 22

§ Channel FFT (size 8) leads to:

Water-fill (G =0 dB) with ℰD = 8

See PS1.4 (Prob 4.7)

z𝐻 =

§ 3𝑏 = 1.38

Section 4.7.2

April 4, 2024

Partitioning with DFT

§ DFT Partitioning is:

L2: 23

§ DFT creates a set of parallel channels – A “Discrete MultiTone” partitioning.
• Some call it OFDM, but there is a difference in loading (DMT optimizes loaded energy, OFDM fixes equal energy).

§ Receiver is DFT (and noise remains white).

Neither is a function of the channel§ Transmitter is IDFT (no power increase).
Can use efficient “FFT”

𝑄∗ +𝑿
𝒙

𝒏
𝒚

𝒀𝑄*𝐻

𝑆𝑁𝑅5 =
ℰ5 A z𝐻5

6

𝜎6 Noise-Equivalent Channel

𝐻

DMT Water-Filling Software
Subsection 4.7.4

April 4, 2024 24

See PS1.4 (Prob 4.7) and PS1.5 (Prob 4.9)

April 4, 2024

Rate Adaptive DMT

§ >> [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,8,0)

§ gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320
§ en_bar = 1.2415 1.2329 1.1916 0.9547 0 0.9547 1.1916 1.2329
§ bn_bar = 2.3436 2.2297 1.8456 0.9693 0 0.9693 1.8456 2.2297
§ Nstar = 7
§ b_bar = 1.3814
§ SNRdmt = 7.6247 dB

L2: 25

function [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(H,NoisePSD,Ex_bar,N,gap)

sampled
channel

response

energy/
Dimension

or cpx sample

AWGN
variance

FFT
size

G
dB

channel
SNRs

bit
distribution

energy
distribution

of
Used dim

Total
bits

Prod
SNR

OUTPUTS INPUTS

In using the program,
know if your channel is

truly baseband or complex
baseband equivalent.

In real case, each dimension shown is a real dimension.

Section 4.7.4 Problem 1.3 (4.7)

April 4, 2024

Increase N

§ [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,16,0);

• >> SNRdmtSNRdmt = 8.1152

§ [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,1024,0);

• >> SNRdmtSNRdmt = 8.7437

L2: 26

§ Feel free to experiment, PS1.4 goes better if you use this.

Section 4.7.4

April 4, 2024

How about non-zero gap?
§ SNR can look higher, but bit rate is overall lower

L2: 27

>> [gn,En,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,8,8.8)

gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320

En = 1.7773 1.7123 1.3991 0 0 0 1.3991 1.7123

bn_bar = 1.2521 1.1382 0.7540 0 0 0 0.7540 1.1382

Nstar = 5

b_bar = 0.5596

SNRdmt = 9.4904 dB (remember this gets divided by the gap)

>> En.*gn = 35.4481 29.1634 13.9907 0 0 0 13.9907 29.1634
 24.7613 20.9991 11.9163 2.8336 0 2.8336 11.9163 20.9991 (G=0)

>> 10*log10(ans) = 15.4959 14.6484 11.4584 -Inf -Inf -Inf 11.4584 14.6484
 (these subchannel SNR’s also get divided by gap)

Data rate is
roughly 1/3 of
before.

Note SNRdmt
increase for
nonzero gap.

Section 4.7.4

April 4, 2024

Suppose 1+.9D-1 were complex baseband?
§ The channel effectively has twice as many dimensions.

• The same results would be for 8 complex dimensions.
• So bbar, ebar are really bits/tone and energy/tone.
• Same values, but the constellations on each tone are two dimensional.

L2: 28

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9 1],.181,2,8,0)

gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320

En = 2.3843 2.3758 2.3345 2.0976 0 2.0976 2.3345 2.3758

bn = 2.8008 2.6869 2.3028 1.4266 0 1.4266 2.3028 2.6869

Nstar = 7

b = 1.7370

SNRdmt = 10.0484 dB

>> sum(En) = 16.0000 ; >> sum(bn) = 15.6332

§ The bits/tone though is slightly larger.
• 1.73 > 1.38

§ What happened?

§ The “DC” tone is now complex and has
an additional good dimension.

Section 4.7.4

April 4, 2024

Suppose 1+.9jD-1 - must be complex baseband
§ The channel definitely has twice as many real dimensions

L2: 29

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9*i 1],.181,2,8,0)

gn = 10.0000 17.0320 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680

En = 2.3345 2.3758 2.3843 2.3758 2.3345 2.0976 0 2.0976

bn = 2.3028 2.6869 2.8008 2.6869 2.3028 1.4266 0 1.4266

Nstar = 7

b = 1.7370

SNRdmt = 10.0484

>> sum(En) = 16.0000 ; >> sum(bn) = 15.6332

This channel rotates the earlier one in time,
so circular shift in frequency

Section 4.7.4

April 4, 2024

Margin Adaptive DMT

§ function [gn,en,bn,Nstar,b_bar_check,margin]=DMTma(H,NoisePSD,Ex_bar,b_bar,N,gap)

L2: 30

sampled
channel

response

energy/
Dimension

Or cpx sample

AWGN
Variance/

Dimension
Or cpx sample

FFT
size

G
dB

channel
SNRs

bit
distribution

energy
distribution

of
Used dim

OUTPUTS INPUTS

target
bbar

Margin
dB

target
bbar

§ >> [gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,0)
§ gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320
§ en = 0.6043 0.5958 0.5545 0.3175 0 0.3175 0.5545 0.5958
§ bn = 1.8532 1.7393 1.3552 0.4790 0 0.4790 1.3552 1.7393
§ Nstar = 7
§ b_bar_check = 1
§ margin = 3.5410

It works real or complex,
but (again) be areful.

Section 4.7.4

April 4, 2024

Continuing

§ >> [gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,8.8)
§ gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320
§ en = 4.5844 4.5193 4.2061 2.4088 0 2.4088 4.2061 4.5193
§ bn = 1.8532 1.7393 1.3552 0.4790 0 0.4790 1.3552 1.7393
§ Nstar = 7
§ b_bar_check = 1.0000
§ margin = -5.2590

L2: 31

Negative margin – can’t do it!

[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,16,0);

>> margin = 4.1445
[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,1024,0);

>> margin = 4.7267

Section 4.7.4

Vector DMT/OFDM
Section 4.7

32April 4, 2024

April 4, 2024

Vector DMT/OFDM Transmitter

L2: 33

Ly×Lx

NLx
2 +LxN log2 N()<< LxN()2

IFFT 1

IFFT 2

IFFT Lx

Vector
Xmit
Each
Tone
Mn

bits

cycle
Each tone

Lx×Lx

N
encoders

Xn ,k Cyclic pre &
Analog driver

Cyclic pre &
Analog driver

Cyclic pre &
Analog driver

.
 .
 .

xk

On each
tone

crosstalking
Channel

Section 4.7.3

April 4, 2024

Vector DMT/OFDM Receiver

§ Just much larger number of dimensions, each a scalar AWGN, 𝐿 = 𝑚𝑖𝑛 𝐿5, 𝐿6
§ 𝐿 + 𝑁	dimensions
§ Can water-fill over them all (if total energy constraint, which is common)

L2: 34

NLy
2 +LyN log2 N()<< LyN()2

Analog Convert
& cyclic strip

Analog Convert
& cyclic strip

Analog Convert
& cyclic strip

Crosstalking
channel
Ly×Lx

FFT 1

FFT 2

FFT Ly

Vector
Filter
Each
tone
Fn

cycle
each tone

bits

.
 .
 .

Ly×Ly

yk

Yn ,k

N
decoders

z𝐻5 = 𝐹5 A Λ5 A 𝑀5
∗

Section 4.7.3

End Lecture 2

