

Lecture 2 Channel Partitioning: Vector Coding & DMT

April 4, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379B – Spring 2024

Announcements & Agenda

Announcements

- Problem Set 1 due Wednesday, April 12 @ 17:00
- Most relevant reading Sections 2.5, 4.4-4.7
- Education Foundation?
- HWH 1 is at web site.
- Agenda
 - RA/MA water-fill flow charts (finish L1)
 - Vector Coding in Time-Frequency
 - 1+.9D⁻¹ Vector-Code Example
 - DMT/OFDM partitioning
 - DMT Waterfilling Software
 - Vector DMT/OFDM partitioning

RA Water-Fill Flow Chart

L2:3

April 4, 2024

Section 4.3.1

٠

٠

٠

Margin Adaptive Flowchart

Vector Coding in Time/Frequency Section 4.6.1

See PS1.5 (Prob 4.25) (matrix AWGN and vector coding)

April 4, 2024

Scalar Time/Frequency (filtered) AWGN Channel

- Ideal AWGN channels just have noise, but often filter also:
 - Attenuation,
 - band-limits, &
 - spectrally shaped noise (See Sec 1.3.7).

- The h_c(t) causes interference between successive transmissions complicates and changes performance;
 - see Chapter 3 in EE379A.
- Sampled equivalent has T' < T is the sample period generalizes 379A's "fractional spacing."

Guard Periods for frequency-time

 $-\nu$

()

- This wastes T_H/T of resources (time dimensions):
 - If $T >> T_H$, then the guard period may be worth it.
 - GP may be zeroed or anything the receiver ignores.
- A (scalar / SISO) symbol with \overline{N} dimensions (samples) has:
 - $T_H = \nu \cdot T'$ so up to ν +1 non-zero samples/dimensions in h_k .
 - \overline{N} works for real ($\widetilde{N} = 1$) or complex ($\widetilde{N} = 2$).

reindex time in sample periods

 $\overline{N}-1$

SISO (time-dimension) Case

- Simple scalar convolutional matrix channel with guard band $\begin{bmatrix} h_0 & h_1 & \dots & h_{\nu} & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & h_0 & \ddots & h_{\nu-1} & h_{\nu} & \ddots & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & 0 & 0 & 0 & 0 & h_0 & h_1 & \dots & h_{\nu} \end{bmatrix}$ $x_{\overline{N}-1}$ $\begin{array}{c|c} \vdots \\ x_0 \end{array}$ $y_{\overline{N}-1}$ $n_{\overline{N}-1}$ $y_{\overline{N}-2}$ x_{-1} y_0 n_0 $x_{-\nu}$ Ignore $h_{
 u}$ -1:-v guard period could be anything, including 0 or cyclic Η y X ╋ n
- Non-square shift "Toeplitz" matrix for convolution
 - More inputs than outputs when $\nu \neq 0$

L2:8 Stanford University

SVD Again for the time-dimension case

• Singular Value Decomposition performs:
$$H = F \cdot \begin{bmatrix} \Lambda & \vdots & \mathbf{0}_{-1:-\nu} \\ \overline{N \times N} & \overline{N \times \nu} \end{bmatrix} \cdot M^*$$

$$\underbrace{N = \overline{N} \text{ if real subsymbols and } \overline{N} = 1}_{N = 2 \cdot \overline{N} \text{ if complex subsymbols and } \overline{N} = 2}$$

$$\underbrace{FF^* = F^*F = I}_{\overline{N} \times \overline{N}} \qquad \Lambda = \begin{bmatrix} \lambda_{\overline{N}-1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda_1 & 0 \\ 0 & \cdots & 0 & \lambda_0 \end{bmatrix}}_{\overline{N} \times \overline{N} \times \overline{N}}$$

unique (real) singular values ≥ 0

The vector-coding input construction is: $\boldsymbol{x} = M \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{0} \\ \vdots \\ \boldsymbol{0} \end{bmatrix} = \underbrace{[\boldsymbol{m}_{\overline{N}-1} \ \boldsymbol{m}_{\overline{N}-2} \ \dots \ \boldsymbol{m}_{1} \boldsymbol{m}_{0} \ \dots \ \boldsymbol{m}_{-\nu}]}_{(\overline{N}+\nu) \times \overline{N}} \underbrace{\begin{bmatrix} \boldsymbol{X}_{\overline{N}-1} \\ \boldsymbol{X}_{\overline{N}-2} \\ \vdots \\ \boldsymbol{X}_{0} \\ \boldsymbol{0} \\ \vdots \\ \boldsymbol{0} \end{bmatrix}} = \underbrace{\sum_{n=0}^{\overline{N}-1} \boldsymbol{X}_{n} \cdot \boldsymbol{m}_{n}}_{Zeroed}$ Section 4.6.1 April 4, 2024

Vector-Coded Time Dimensions Only

- Channel output processed by matched vectors: $Y = F^* \cdot y = \begin{bmatrix} f_{\overline{N}-1}^* \cdot y \\ \vdots \\ f_0^* \cdot y \end{bmatrix}$
- Vector-coded channel partitioning is :

$$\mathbb{E}[\boldsymbol{n} \cdot \boldsymbol{n}^*] = R_{\boldsymbol{n}\boldsymbol{n}} = R_{\boldsymbol{n}\boldsymbol{n}}^{1/2} \cdot R_{\boldsymbol{n}\boldsymbol{n}}^{*/2}$$
Noise-Equivalent Channel
$$\boldsymbol{y} \leftarrow R_{\boldsymbol{n}\boldsymbol{n}}^{-1/2} \boldsymbol{y} = \left(R_{\boldsymbol{n}\boldsymbol{n}}^{-1/2} \cdot H\right) \cdot \boldsymbol{x} + \tilde{\boldsymbol{n}}$$
Replaces H
Section 4.6.1.2

Stanford University

April 4, 2024

L2: 10

Data Rates and Mutual Information

- For any energies and consequent SNR's
 - If complex baseband, replace v with 2v for \overline{b} calculation.

$$\overline{b} = \frac{b}{N+\nu} = \frac{1}{2} \log_2\left(1 + \frac{SNR_{\nu c}}{\Gamma}\right)$$

- When the gap = 0 dB, this is the "mutual information", reliable $b \leq I(x;y)$.
 - The **mutual information** bounds data rate, for (Gaussian) input with given autocorrelation R_{xx} , or any energy distribution (possibly not WF).
 - Good scalar-AWGN code applies "outside" the parallel channel set.

$$SNR_{VC} = 2^{2 \cdot \overline{\perp}} - 1$$

• Maximized SNR, and thus mutual information, occur when energy is water-filling \rightarrow Capacity.

$$SNR_{VC,water-fill} = 2^{2 \cdot \overline{C}} - 1$$

- Highest reliable data rate that can be transmitted (Shannon 1948):
 - for the given block size \overline{N} and guard period ν .

<u>Problems 1.4 (4.18) and 1.5 (4.25)</u>

1+.9D⁻¹ Vector-Code Example Section 4.6

Matlab 1+.9D⁻¹ example returns:

>> [[] | M]_aud/[])

Form <i>H</i> and do SVD:
>> C=[.9
zeros(7,1)];
>> R=[.9 1 zeros(1,7)];

>> H=to	eplit	z(C,R)							
H =										
0.900	01.	.0000	0	0	0	0	0	0	0	
0	0.90	00 1.	0000	0	0	0	0	0	0	
0	0	0.90	00 1.	.0000	0	0	0	0	0	
0	0	0	0.90	00 1	.0000	0	0	0	0	
0	0	0	0	0.90	00 1.	0000	0	0	0	
0	0	0	0	0	0.90	00 1	.0000	0	0	
0	0	0	0	0	0	0.90	00 1.0	0000	0	
0	0	0	0	0	0	0	0.900	0 1.0	000	

->[r,∟,₩] F=	j-svu(n)							
-0.1612	0.3030	0 -0.4082	0.464	2 -0.46	642	0.4082	0.3030	-0.1612	
-0.3030	0.4642	2 -0.4082	0.161	2 0.16	512	-0.4082	-0.4642	0.3030	
-0.4082	0.4082	2 0.0000	-0.408	2 0.40)82	0.0000	0.4082	-0.4082	
-0.4642	0.1612	0.4082	-0.303	0 -0.30	030	0.4082	-0.1612	0.4642	
-0.4642	-0.1612	2 0.4082	0.303	0 -0.30	030	-0.4082	-0.1612	-0.4642	
-0.4082	-0.4082	2 -0.0000	0.408	2 0.40	082	0.0000	0.4082	0.4082	
-0.3030	-0.4642	2 -0.4082	-0.161	2 0.1	612	0.4082	-0.4642	-0.3030	
-0.1612	-0.303	0 -0.4082	-0.464	2 -0.4	642	-0.4082	0.3030	0.1612	
f_{0}								f ₇	
L =									
1.8712	0	0 0	0	0	0	0 0)		
01.	7857	0 0	0	0	0	0 0)		
0	0 1.64	162 0	0	0	0	0 0)		
0	0 0	1.4569	0	0	0	0 0)		
0	0 0	0 1.	2237	0	0	0 0)		
0	0 0	0	0 0.95	539	0	0 0)		
0	0 0	0	0 0	0.656	56	0 0)		
0	0 0	0	0 0	0	0.34	443 0)		
M =	0 4 5 0 5		0.000			0 0050	0 44 50		0 4700
-0.0775	0.152	-0.2232	0.286	8 -0.34	414	0.3852	0.4153	-0.4214	0.4728
-0.2319	0.403	1 -0.4/12	0.418	2 -0.26	800	0.0428	-0.1748	0.3238	-0.4255
-0.3583	0.465	(-0.2480	-0.141	5 0.4	320	-0.4280	-0.1475	-0.18/1	0.3830
-0.4415	0.3095	0.2232	-0.467	4 0.11		0.3852	0.4008	0.0278	-0.3447
-0.4/14	0.0090	0.4/12	-0.020	8 -0.4	105	0.0428	-0.4666	0.1348	0.3102
-0.4445	-0.290	0.2460	0.460	Z 0.03	520	0.2052	0.3140	0.2026	-0.2792
-0.3039	-0.4020	0 -0.2232	0.100	0 0.4	007	0.3052	-0.0146	0.3930	0.2213
-0.2395	-0.412	1 -0.4112 7 -0.2480	-0.397	0.2 0.2	794	-0.0428	-0.2917	-0.4586	-0.2261
-0.0002	-0.105	1 -0.2400	-0.510	JI -0.J		-0.4200	0.4015	0.4005	0.2055
\boldsymbol{m}_{0}								m_7	

L2: 13

Matlab continued

- Use singular values² for channel gains: SVs = [1.87 1.78 1.64 1.45 1.22 .95 .66 .34]
- These then are: $g_n = \frac{\lambda_n^2}{\sigma^2(=.181)} = [19.3 \ 17.6 \ 15.0 \ 11.7 \ 8.3 \ 5.0 \ 2.4 \ 0.66]$

Water-filling (RA) with 0 dB gap

$$K = \frac{1}{7} \cdot \left(9 + \sum_{n=0}^{6} \frac{\Gamma}{g_n}\right) = 1.43$$

[1.38 1.37 1.36 1.34 1.30 1.23 1.01 0]

SNRs

Energies

 $[26.2 \ 24.2 \ 20.4 \ 15.8 \ 10.6 \ 6.2 \ 2.4 \ 0] \qquad \mathcal{E}_n \cdot g_n$

Not assigned, but might find Prob 4.17 interesting for look

April 4, 2024

L2: 14

Stanford University

 $\mathcal{E}_n = K - \frac{1}{q_n}$

Overall performance and rate

• Product SNR
$$SNR_{VC} = \left[\prod_{n=0}^{6} (SNR_n + 1)\right]^{1/9} - 1 = 6.46 = 8.1 \, dB$$

• Rate = capacity
$$\bar{C} = \frac{1}{9} \cdot \sum_{n=0}^{6} \frac{1}{2} \cdot \log_2(1 + SNR_n) = 1.45 \, \text{bits/dimension}$$

$$\stackrel{>> \text{R=}[.9 \, 1 \, \text{zeros}(1,99]];}{>> \text{C}=[.9 \, \text{zeros}(1,99]];} \\ >> \text{C}=[.9 \, \text{zeros}(1,99]];} \\ >> \text{C}=[.9 \, \text{zeros}(1,99]];} \\ >> \text{K}=(1/89)^*(101 + \text{sum}(\text{ones}(1,89) \cdot /g(1:89)'))} \\ \times \text{K}=(1/89)^*(101 + \text{sum}(\text{ones}(1,89) \cdot /g(1:89)'))} \\ \times \text{K}=(1/88)^*(101 + \text{sum}(\text{ones}(1,88) \cdot /g(1:88)'))} \\ \times \text{K}=(1/88)^*(101 + \text{sum}(\text{ones}(1,88) \cdot /g(1:88)')))} \\ \times \text{K}=(1/88)^*(101 + \text{sum}(\text{ones}(1,88) \cdot /g(1:88)'))) \\ \times \text{K}=(1/88)^*(101 + \text{sum}(\text{ones}(1,88) \cdot /g(1:88)')) \\ \times \text{K}=(1/88)^*(101 + \text{sum}(\text{ones}(1,88) \cdot /g(1:88)'))) \\ \times \text{K}= 1.3292} \\ \Rightarrow \text{K}-(1/g(88) = 0.1627) \\ \text{So N}^* = 88$$

$$\overline{N} \rightarrow \infty, \text{then } \frac{\overline{N} + \nu}{\overline{N}} \rightarrow 1, \text{ so no loss (max is 1.55)}$$

April 4, 2024

|N|

L2:15

DMT/OFDM Partitioning Section 4.7.1-5

See PS1.3 (Prob 4.18)

April 4, 2024

Cyclic Extension

Cyclic Convolution

• The matrix expression now uses an *N* x *N* circulant matrix:

$$\begin{bmatrix} y_{\overline{N}-1} \\ y_{\overline{N}-2} \\ \vdots \\ y_0 \end{bmatrix} = \begin{bmatrix} h_0 & h_1 & \dots & h_{\nu} & 0 & \dots & 0 \\ 0 & h_0 & \ddots & h_{\nu-1} & h_{\nu} & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & h_0 & h_1 & \dots & h_{\nu} \\ h_{\nu} & 0 & \dots & 0 & h_0 & \dots & h_{\nu-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ h_1 & \dots & h_{\nu} & 0 & \dots & 0 & h_0 \end{bmatrix} \begin{bmatrix} x_{\overline{N}-1} \\ \vdots \\ x_0 \end{bmatrix} + \begin{bmatrix} n_{\overline{N}-2} \\ n_0 \end{bmatrix} \begin{bmatrix} \widetilde{H} \text{ is circulant} \\ \overline{N} \times \overline{N} \end{bmatrix}$$
$$\mathbf{y} = \widetilde{H} \cdot \mathbf{x} + \mathbf{n}$$

- As far as output **y** is concerned, the input is periodic with the same period N as the output.
- The cyclic prefix is added for each and every symbol.
- v dimensions are lost (both in terms of energy lost and no new information).

April 4, 2024

Problem 1.5 (4.25)

Cyclic Convolution and the DFT

- DFT = Discrete Fourier Transform
 - Normalized (maintains squared norm, energy from time ←→ frequency)
 - $N \text{ or } \overline{N}$

- IDFT = Inverse Discrete Fourier Transform
 - Symmetrical form

$$X_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_k e^{-j\frac{2\pi}{N}kn} \quad \forall \ n \in [0, N-1]$$

$$x_{k} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} X_{n} e^{j\frac{2\pi}{N}kn} \quad \forall \ k \in [0, N-1]$$

- Subsymbol channel $Y_n = \tilde{H}_n \cdot X_n (+ N_n)$
 - Vector coding with $M = F^* = Q$, but diagonal can be complex
 - And the guard period must be cyclic
 - Still parallel set of subchannels

$$\widetilde{H} = Q \cdot \Lambda \cdot Q^*$$

$$\Lambda = \begin{bmatrix} \widetilde{H}_{N-1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \widetilde{H}_0 \end{bmatrix} = \text{DFT values on diagonal}$$

$$L2: 19 \text{ Stanford University}$$

DMT / OFDM Transmission

Product SNR

DMT uses 7 subchannels, DC plus 3 two-dimensional QAM subchannels, of a total of 9 dimensions.

$$SNR_{DMT} = \left[\prod_{n=0}^{6} (1 + SNR_n)\right]^{1/9} - 1 = 7.6 \text{ dB} < SNR_{vc}$$

But no channel-dependent partitioning, and much easier to implement (N log (N) vs N²).

How can we exploit this??
INCREASE N !

• DMTra and DMTma will help.

L2: 21

1+.9D⁻¹ revisited

Circulant Channel is 8 x 8 (but wastes 1 dimension in cyclic extension, and loses its energy).

Channel FFT (size 8) leads to:

	\overline{b}	=	1.38
--	----------------	---	------

See PS1.4 (Prob 4.7)

Water-fill (Γ =0 dB) with $\mathcal{E}_{\chi} = 8$

n	$\lambda_n = P_n $	$g_n = \frac{ P_n ^2}{181}$	\mathcal{E}_n	SNR_n	b_n
0	1.90	20	1.24	24.8	2.34
1	1.76	17	1.23	20.9	2.23
6	1.76	17	1.23	20.9	2.23
2	1.35	9.8	1.19	11.7	1.85
5	1.35	9.8	1.19	11.7	1.85
3	.733	3	.96	2.9	.969
4	.733	3	.96	2.9	.969
7	.100	.05525	0	0	0

L2:22

Partitioning with DFT

DFT Partitioning is:

- DFT creates a set of parallel channels A "Discrete MultiTone" partitioning.
 - Some call it OFDM, but there is a difference in loading (DMT optimizes loaded energy, OFDM fixes equal energy).

$$SNR_n = \frac{\mathcal{E}_n \cdot \left| \widetilde{H}_n \right|^2}{\sigma^2}$$

Noise-Equivalent Channel

$$E\left[{m n} {m n}^*
ight] = R_{nn} \sigma^2 = R_{nn}^{1/2} R_{nn}^{-1/2} \sigma^2$$

$$\boldsymbol{y} \leftarrow R_{nn}^{-1/2} \boldsymbol{y} = \left(R_{nn}^{-1/2} \boldsymbol{H}\right) \boldsymbol{x} + \tilde{\boldsymbol{n}}$$

Neither is a function of the channel

Can use efficient "FFT"

April 4, 2024

Receiver is DFT (and noise remains white).

Transmitter is IDFT (no power increase).

L2: 23

DMT Water-Filling Software Subsection 4.7.4

See PS1.4 (Prob 4.7) and PS1.5 (Prob 4.9)

April 4, 2024

Rate Adaptive DMT

Section 4.7.4

April 4, 2024

Problem 1.3 (4.7)

L2: 25

Increase N

- [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,16,0);
 - >> SNRdmtSNRdmt = 8.1152
- [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,1024,0);
 - >> SNRdmtSNRdmt = 8.7437
- Feel free to experiment, PS1.4 goes better if you use this.

How about non-zero gap?

SNR can look higher, but bit rate is overall lower

>> [gn,En,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([.9 1],.181,1,8,8.8) gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320 En = 1.7773 1.7123 1.3991 0 0 0 1.3991 1.7123 bn_bar = 1.2521 1.1382 0.7540 0 0 0 0.7540 1.1382

Nstar = 5

b_bar = 0.5596

SNRdmt = 9.4904 dB (remember this gets divided by the gap)

>> En.*gn = 35.4481 29.1634 13.9907 0 0 0 13.9907 29.1634 24.7613 20.9991 11.9163 2.8336 0 2.8336 11.9163 20.9991 (Γ=0)

>> 10*log10(ans) = 15.4959 14.6484 11.4584 -Inf -Inf 11.4584 14.6484 (these subchannel SNR's also get divided by gap)

Data rate is roughly 1/3 of before.

Note SNRdmt increase for nonzero gap.

Suppose 1+.9D⁻¹ were complex baseband?

- The channel effectively has twice as many dimensions.
 - The same results would be for 8 complex dimensions.
 - So bbar, ebar are really bits/tone and energy/tone.
 - Same values, but the constellations on each tone are two dimensional.

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9 1],.181,2,8,0)

gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320 En = 2.3843 2.3758 2.3345 2.0976 0 2.0976 2.3345 2.3758 bn = 2.8008 2.6869 2.3028 1.4266 0 1.4266 2.3028 2.6869

Nstar = 7

b = 1.7370

SNRdmt = 10.0484 dB

>> sum(En) = 16.0000 ; >> sum(bn) = 15.6332

April 4, 2024

- The bits/tone though is slightly larger.
 - 1.73 > 1.38
- What happened?
- The "DC" tone is now complex and has an additional good dimension.

Suppose 1+.9jD⁻¹ - must be complex baseband

The channel definitely has twice as many real dimensions

>> [gn,En,bn,Nstar,b,SNRdmt]=DMTra([.9*i 1],.181,2,8,0)

gn = 10.0000 17.0320 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680

En = 2.3345 2.3758 2.3843 2.3758 2.3345 2.0976 0 2.0976

bn = 2.3028 2.6869 2.8008 2.6869 2.3028 1.4266 0 1.4266

Nstar = 7

b = 1.7370

SNRdmt = 10.0484

>> sum(En) = 16.0000 ; >> sum(bn) = 15.6332

This channel rotates the earlier one in time, so circular shift in frequency

Margin Adaptive DMT

function [gn,en,bn,Nstar,b_bar_check,margin]=DMTma(H,NoisePSD,Ex_bar,b_bar,N,gap)

- >> [gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,0)
- gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320
- en = 0.6043 0.5958 0.5545 0.3175 0 0.3175 0.5545 0.5958
- bn = 1.8532 1.7393 1.3552 0.4790 0 0.4790 1.3552 1.7393
- Nstar = 7
- b_bar_check = 1
- margin = 3.5410

L2: 30

It works real or complex,

but (again) be areful.

Continuing

- >[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,8,8.8)
- gn = 19.9448 17.0320 10.0000 2.9680 0.0552 2.9680 10.0000 17.0320
- en = 4.5844 4.5193 4.2061 2.4088 0 2.4088 4.2061 4.5193
- bn = 1.8532 1.7393 1.3552 0.4790 0 0.4790 1.3552 1.7393
- Nstar = 7
- b_bar_check = 1.0000
- margin = -5.2590 Negative margin can't do it!

[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,16,0);

>> margin = 4.1445

[gn,en,bn,Nstar,b_bar_check,margin]=DMTma([.9 1],.181,1,1,1024,0);

>> margin = 4.7267

Section 4.7.4

April 4, 2024

L2: 31

Vector DMT/OFDM Section 4.7

April 4, 2024

Vector DMT/OFDM Transmitter

April 4, 2024

L2: 33

Vector DMT/OFDM Receiver

- Just much larger number of dimensions, each a scalar AWGN, $L = min(L_x, L_y)$
- $L \cdot N$ dimensions
- Can water-fill over them all (if total energy constraint, which is common)

End Lecture 2