

Lecture 1 **Introduction & Dimensionality** *April 2, 2024*

J OHN M. C IOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379B – Spring 2024

Announcements & Agenda

■ Announcements

- People Introductions
- Web site https://cioffi-group.stanford.edu/ee379b/
- Chapters 1-8 are used, on-line at class web site (Course Reader)
- Read Chapter 4
- EE379A website is also available for review
	- https://cioffi-group.stanford.edu/ee379a/

Problem Set 1 = PS1 due Wednesday April 12 at 17

Send to kfardi@Stanford.edu with cc to cioffi@St

§ Today

- Course introduction
- The scalar AWGN channel (a foundation)
- The matrix AWGN channel
- Water-filling energy distribution
- Projecting forward

St

Multiuser Communications

April 2, 2024 L1:3

Broadband and Cellular

- § Downlink/stream one to many ("**broadcast**")
- § Uplink/stream many to one ("**multiple access**")
- § Overlapping combinations (Wi-Fi, or cell, or really all) "**interference**"
- § Relay signals ("**mesh**")

Mega MIMO – Translink Convergence ("Xhaul")

- This supports "cell-free.
- "Virtualization" (software modulation, coding too!) moves to data-center/edge.

April 2, 2024

L1: 5

Metaverse Distributed Rendering

■ Remote rendering: Devices (smart phones, glasses/goggles) used to augment current environment

- § Games
- **Education**
	- **Instructions**
- Health
- § **Multiple contributors**

Multiuser Channel Basics (all others are combos)

An Example with Wi-Fi

- § Basic example that uses:
	- IEEE 802.11 Room B model,
	- 3 users,
	- 2 AP antennas, 1 glasses antenna each.
- § Minimum Distributed AR rate
	- 500 Mbps/user in 80 MHz channel
-

EE379B has custom Matlab that optimizes for best wireless performance.

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/fwaoutlook#:~:text=Over%20330%20million%20FWA%20connections%20by%202029,expected%20to%20 be%20over%205G.

April 2, 2024

St

8

Multicarrier Adaptive Transmitters

§ Dynamic adaptation of transmit resource use to the channel situation, "**loading**" or **resource allocation**.

Frequency expands to include spatial dimensions.

Use of Machine/Deep Learning?

- **Transceivers** will use two **basic operations** (unitary Q and triangular-inverse G-1) in real time.
	- **1. Filtering** beamforming, spectrum adjustment (Q)
	- **2. Recursive feedback** (G)
- **Controller** that assigns resources (energy/information/bits), guides Q and G also.

Controller also evolves this way – definitely adaptive optimization is very important – at edge.

July 26, 2022

L1:10

The scalar AWGN channel

(a foundation: Section 1.3, Section 2.1-3 direct: 2.4.1, 2.4.3)

See PS1.1 (Prob 2.15 - capacity) and PS1.2 (Prob 4.3 gap)

Basic Communication (digital)

- The symbol x and messages are in some 1-to-1 relationship.
- Finding the best \hat{x} and designing x well \rightarrow this class (good 1-to-1 assumed).
- Most general channel is represented by the conditional probability $p_{\gamma/x}$.
- Most general source description is p_x together, p_{xy} .
- § Optimum detector (minimizes ave error probability) is Maximum a Posteriori (MAP), max $p_{x/\mathbf{v}}$.
	- When input distribution is uniform \rightarrow ML (maximum likelihood), max $p_{\mathbf{v}/x}$.

April 2, 2024

L1: 12

Communication *Dimensionality*

Even More Dimensions (smaller wavelengths)

- § How do we design these systems for best rates (per energy) use?
- § How adaptive do they need to be?

Simple Additive White Gaussian Noise Channel

Detection Problem First, every T seconds (symbol period)

SNR, QAM, PAM reminders

$$
SNR \triangleq \frac{\bar{\mathcal{E}}_x}{\sigma^2} = \frac{\text{single - sided psd}}{\text{single - sided psd}} = \frac{\text{two - sided psd}}{\text{two - sided psd}}
$$

- § SNR must have the same number of dimensions in numerator (signal) and denominator (noise).
- Thus, also $SNR \triangleq \frac{\bar{\varepsilon}_x}{\sigma^2} = \frac{2 \cdot \bar{\varepsilon}_x}{\mathcal{N}_0}$ $\frac{\partial \cdot \bar{\mathcal{E}}_x}{\partial \mathcal{N}_0} = \frac{\mathcal{E}_x}{N \cdot \sigma^2}$ where $\bar{\mathcal{E}}_x$ is energy/real-dimension.
- Energy/dimension essentially generalizes the term power/Hz (= energy) so that is why these quantities are related to power-
spectral densities (psd's)
	- 1-sided \rightarrow power is integral over positive frequencies of psd.
	- 2-sided \rightarrow power is integral over all frequencies of psd.
	- These two powers are the same.
	- So -40 dBm/Hz (one-sided) psd over 1 MHz is 20 dBm, or 100 mWatts of power , *practice PS1.1 (Prob 2.15) and Homework Helper 1's first part.*
- PAM is always real baseband. QAM is always complex baseband (2 real dimensions).
	-
	- **When QAM** has only 1 bit (2 points) in constellation, it is called BPSK (not binary PAM).
PAM's positive-frequency bandwidth is [0, 1/2T) x (1 + α) when there is (100 · α) percent excess bandwidth. • PAM's positive-frequency bandwidth is [0, 1/2T) …. $x(1 + \alpha)$ when there is $(100 \cdot \alpha)$ percent excess bandwidth.
	- QAM's positive-frequency bandwidth is $[-1/2T + f_c, 1/2T + f_c)$ …. "
	- The PAM system looks like it uses only 1/2 the bandwidth, but the QAM system is really transmitting two dimensions per symbol (so really like
2 PAM systems in parallel with symbol rate 1/T each), so no wonder it takes twic

Codes and Gaps

Shannon's maximum reliable data rate "capacity" is

 $C = log_2(1 + SNR)$ bits/complex-subsymbol. AWGN Max bits/sub-sym for $P_e \rightarrow 0$ (reliably decodable)

\overline{x}_1	\overline{x}_2	\overline{x}_3	...	$\overline{x}_{\overline{N}}$	codeword (symbol) x	Good Code $\tilde{b} \rightarrow \tilde{c}$ as $\overline{N} \rightarrow \infty$.
subsymbol's	$N = \overline{N} \cdot \widetilde{N} = \#$ subsymbols \times (dim/subsymbol)	Section 2.1.1; also PSL1 (Prob 2.15)				
bits/dim = $\overline{b} = {^b}/{_N}$; bits/subsym = $\tilde{b} = {^b}/{_N} = \widetilde{N} \cdot \overline{b}$	Code construction					

- QAM/PAM operates with given low P_e (10⁻⁶) and at a "SNR gap" ($\Gamma = 8.8$ dB @10⁻⁶) below capacity.
	- See basics in Section 1.3.4 *for practice, see Section 2.4; also PS1.2 (Prob 4.3).*

$$
\tilde{b} = \log_2 \left(1 + \frac{SNR}{\Gamma} \right) \text{bits}/complex-subsymbol \leq \tilde{C}.
$$

For all $\tilde{b} > 1$, simple square QAM constellations have constant gap (= 8.8 dB at $P_e = 10^{-6}$).

 $\frac{3}{2^b-1}$ · $SNR = 13.5$ dB (from $P_e = 10^{-6}$ formula)

Stanford University

It's like noise increased or power decreased for P_e (where Γ approaches 0 dB for best codes) Gap is function of code and of P_e , not \tilde{b} .

L1: 17

Margin

 $\tilde{b} = log_2 \left(1 + \frac{SNR}{R} \right)$ $\Gamma\cdot \gamma_m$ bits/complex-subsymbol $\leq \tilde{C}$.

See also PS1.2 (Prob 4.3)

- The designer wants "margin" protection against possible noise-power increase.
- **MARGIN** γ_m is this protection (usually in dB), $\gamma_m = \frac{(SNR/\Gamma)}{2^{\tilde{b}}-1}$.

Positive margin – means performing well; **Negative margin** – means not meeting design goals.

- AWGN with SNR = 20.5 dB, then $\tilde{C} = log_2(1 + 10^{2.05}) = 7$ bits/subsymbol.
- Suppose that 16-QAM ($\tilde{b} = 4$) is transmitted @ $P_e = 10^{-6}$ (Γ = 8.8 dB), then $\gamma_m = \frac{10^{2.05-.88}}{2^4-1} = 0$ dB.
- Suppose instead QAM with \tilde{b} =5 bits/complex-subsymbol with code of 7 dB gain ($\Gamma \rightarrow 8.8$ -7=1.8 dB). • $\gamma_m = \frac{10^{2.05 - .18}}{2^5 - 1} = 3.8 \text{ dB}.$
- 6 bits/subsymbol with same code? \to 0.7 dB margin just barely below the desired P_e ; $\bar{P}_e = {}^{P_e}/_N$.

Section 2.4.1 April 2, 2024

EE 379B

- The simple single-dimension AWGN is fundamental to most all designs.
- § All subsequent designs will depend on good codes (small or 0 dB gap) re-use on those single dimension AWGNs.
- § Designs can be optimized to get highest possible data rates for Gaussian noise:
	- single user (of course),
	- **all multiuser,**
	- channels with interference between dimensions, which includes
		- intersymbol interference (temporal),
		- crosstalk (spatial), &
		- modal (electromagnetic information theory near field).
	- Designs are for many users with many antennas, high/low data rates, crosstalking wires, and different locations.
- § The gains can be enormous (particularly with respect to EE379A coding gains).

Gap Plot & Example

■ The gap is constant, independent of the bits/dimension – greatly simplifies "loading" (adapting transmission codes to the channel).

The Matrix AWGN Channel *Section 2.3.5*

April 2, 2024 L1:21

Generating Parallel AWGNs

- § Methods from EE379A?
- An "equalizer" is one choice and
	- creates parallel channels in time.
	- $z_k = x_k e_k.$

- Another?
- § Multicarrier is another choice and
	- creates parallel channels in frequency.

$$
Y_n \cong H_n \cdot X_n \quad (+N_n)
$$

Sections 1.3.8 and 4.2.1

April 2, 2024

L1: 22 **Stanford University**

In general, a matrix AWGN channel

Geometric Equivalent Channel

- § Vector Coding uses SVD to translate matrix AWGN to set of equivalent parallel AWGN's.
	- Each can be individually encoded like AWGN (they are independent).
- Geometric-equivalent channel is used L times,
	- any H and R_{nn} , &
	- any set of input energies (that sum to allowed energy).

Section 4.2 April 2, 2024

Stanford University

L1: 24

The Detection/Communication Issue

• **Generally,** MAP/ML receiver/detector implementation can be very complex.

• *Decomposing into multiple channels can simplify design!*

- \triangleright Multiple dimensions are the key to this simplification.
- \triangleright And today, used throughout digital communication (wires, wireless, soon fiber).
- \triangleright And, with proper design, there is no loss in so doing.

The Water-Filling Energy Distribution

Sections 2.3.5, 4.1-4.3 **also supplementary lecture S1A**

See PS1.3 (Prob 4.18), PS1.4 (Prob 4.7), and PS1.5 (Prob 4.25)

Rate Maximization and Dual

• Transmitter chooses energy and bit allocation to maximize sum data rate over the dimensions $g_l = \frac{[H_l]^2}{\sigma^2}$.

■ Solution (basic calculus – see Section 4.2) ; see also matlab "waterfill.m" at web site to save hand calcs.

$$
\bar{\mathcal{E}}_l + \frac{\Gamma}{g_l} = constant.
$$
 WATER-FLLING
(Shannon 1948)

Neither energies allocated nor bits allocated can be negative.

Water-filling Illustrated

• note re-indexed 0 (DC) to 5.

RA: until all energy used. MA: until target bit rate attained.

$$
\tilde{b}_l = log_2 \left(1 + \frac{SNR_l}{\Gamma} \right)
$$
 where $SNR_l = \bar{\mathcal{E}}_l \cdot g_l$.

Rate Adaptive Solution

$$
g_1 \ge g_2 \ge \dots \ge g_L \qquad \qquad \varepsilon_1 + \Gamma /
$$

■ Write and sum energy constraints:

$$
\mathcal{E}_1 + \frac{\Gamma}{g_1} = K
$$

\n
$$
\mathcal{E}_2 + \frac{\Gamma}{g_2} = K
$$

\n
$$
\vdots
$$

\n
$$
\mathcal{E}_L + \frac{\Gamma}{g_L} = K
$$

$$
\sum_{l=1}^{L} \mathcal{E}_l + \Gamma \cdot \sum_{l=1}^{L} \frac{1}{g_l} = L \cdot K
$$

■ Solve for Water-Fill Constant:

$$
K = \frac{\mathcal{E}_x}{L^*} + \frac{\Gamma}{L^*} \cdot \sum_{l=1}^{L^*} \frac{1}{g_l}
$$

 L^* is largest L such that $\mathcal{E}_l > 0$ for all $l = 1, ..., L^*$.

April 2, 2024

Section 4.3.1 Problems 1.3 (4.7) and 1.4 (4.18)

L1: 29

2 x 2 Antenna System with 0 dB gap

- **There is crosstalk between dimensions and** $\mathcal{E}_x=2$ **.**
	- Kind of sounds like a problem then, right?

```
>> H=[10 4
2 1;
>> [F , Lambda , Mstar]=svd(H);
>> Lambda =
  10.9985 0
     0 0.1818
\gg g2=Lambda(1,1)^2 = 120.9669
\gg g1=Lambda(2,2)^2 = 0.0331
\ge K=1+0.5*(1/g1+1/g2) = 16.1250
>> E2=K-1/g2 = 16.1167
>> E1=K-1/g1 = -14.1167 < 0 (whoops)
```
Just use dimension $2 \rightarrow \tilde{b} = \log_2(1 + 2 * g_2) = 6.93$ bits/subsymbol.

In this case water-fill simply puts all energy on the best dimension (returns to scalar/SISO if that is best).

April 2, 2024

L1:30

2 x 2 Antenna System

- There is stronger crosstalk between dimensions.
	- Maybe worse, right? ???

```
>> H=[10 9
-8 10];
>> [F , Lambda , Mstar]=svd(H);
>> Lambda =
  13.6244 0
     0 12.6244
\gg g2=Lambda(1,1)^2 = 185.6244
\gg g1=Lambda(2,2)^2 = 159.3756
\ge K=1+0.5*(1/g1+1/g2) = 1.0058
>> E2=K-1/g2 = 1.0004
>> E1=K-1/g1 = 0.9996\Rightarrow btilde = log2(1+E2*g2)+log2(1+E1*g1) = 14.8693
```
Actually this is close to 2x the data rate for the previous case. Clearly, the use of both dimensions, and somewhat stronger crosstalk and signal **improves the best rate.**

In general, the increase is roughly a factor of L in data rate if H has rank L .

April 2, 2024

Section 4.2.1 Example is PS1.5 (Prob 4.25) – large MIMO gain

L1:31

Energy-minimizing Margin-Adaptive Solution

$$
g_1 \ge g_2 \ge \dots \ge g_L
$$

■ Energy and sum-bit constraints

$$
\bar{\mathcal{E}}_l = K - \Gamma / g_l
$$
\n
$$
\tilde{b} = \sum_{l=1}^{L} \tilde{b}_l = \sum_{l=1}^{L} \log_2 \left(1 + \frac{\bar{\mathcal{E}}_l \cdot g_l}{\Gamma} \right)
$$
\n
$$
= \sum_{l=1}^{L} \log_2 \left(\frac{K \cdot g_l}{\Gamma} \right)
$$
\n
$$
= \log_2 \left(\prod_{l=1}^{L} \frac{K \cdot g_l}{\Gamma} \right)
$$

■ Solve for Water-Fill Constant

$$
K = \Gamma \cdot \left(\frac{2^{\tilde{b}}}{\prod_{l=1}^{L^*} g_l}\right)^{1/2}
$$

 L^* is largest L such that $\bar{\mathcal{E}}_l > 0$ for all $l = 1, ..., L^*$.

2 x 2 Antenna System with MA

Attempt $\tilde{b} = 14 \frac{\text{bits}}{\text{Hz}}$; The use of 2 antennas exploited channel's crosstalk,

• Without the crosstalk, this channel supports only 7 bits/Hz (either channel has then SNR = 10).

 $>> H=[109$ -8 10]; \Rightarrow K=sqrt((2^14)/(g1*g2)) = 0.7442 $>> E2=K-1/g2 = 0.7388$ $>> E1=K-1/g1 = 0.7379$ \Rightarrow margin = 10*log10(2/(E1+E2)) = 1.3 dB

This effect magnifies as long as most of the singular values are "decent."

RA Water-Fill Flow Chart

Stanford University

L1: 34

April 2, 2024

Section 4.3.1

Margin Adaptive Flowchart

End Lecture 1

