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Announcements & Agenda

= Announcements
* Final is Friday at 2pm, get email from Helen helen.niu@stanford.edu

* Due Saturday at 3pm.
* Course evaluation link is open at eval
* Solutions go up early tomorrow morning (Wed).

= Agenda
* CIC Optimization (from Thursday)
e LIC Design
* Research & Machine-Learning/Al Challenges (optional)

piS June 4, 2024
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CIC’s “Optimum” Spectrum Balancing (no GDFEs)

U

= 0SB minimizes weighted energy sum for given b,,;,,. {Rwr;i(ﬂ,n)} X_:lwu'gu

* Thereis no crosstalk cancellation ST : fo_r w=1,..U

0< Ztrace {Rzx(u,n)} < Eumax

= OSBrelates b to R,,(u,n) by:

’ | Huu,n : Ril?:l: (ua n) : H:;u,n + Rnoise(u7 ’I’L) |
bu=log, | Rooise
n notse u? n) |

Rnoise (u» n)=1+ Zi:tu Huln ) Rxx(i» n) - Ht*un

e All other users are crosstalk-noise additions.

Tonal Lagrangian for minPOSB 7
. Minimize each individually, and sum.
*  It's not convex (no sequential-differences’ transformation). L R uU.nN b w 9 — E W, - 8 _ 0 . b
*  The wis determined as an output of optimization. n( T ( ) ) Ll ’ ) u u,n u u,n
*  Optimization can also maximize negative for the maxROSB. u=1




Still has minimum, “inte

_ |ﬁu,u,n'Rxx(u»n)'ﬁﬂ,u,n| bu — Z logz 1 + SNR(U7 n)

= SNR(u,n) =
( ) |Rnoise(u,n)| P
n
= Partition energy range or use discrete integer bit quanta max.,, E(u .
for scalar case: M = AAC) or b =0,1,...,bitcap
* These are integer-programming part. Ag

= Energy or bit step: For each tone, search MU possible energies (or 2V PHaP it quanta) to minimize tonal Lagrangian and add these tonals.
e The users’ energies are weighted, and the weights are optimized (compute £ update to make small),
*  toensure that the energy constraint is met.
e Orequivalently the @ is similarly adjusted if w is given.

= Constraint: External to energy-bit step, Use a descent method to update the 8 or w Lagrange multiplier for rate constraints:

s =w+e-Afor
L= z z Wy Eun— 0y byn L= i< €y max w update is for
. ! admissibility.
u=1n=0 w e 2wy it > &) max

£



this maximizes weighted rate-sum

function [S1, S2, bl, b2] = osb(Hmag_sqg, No, E, theta, mask, ...
gap, bitcap, cb)

osb and also finds wl energy weight for USER 1

>> = 0
A. Chowdhery ~2010 ; Updated by J. Cioffi in 2024. It presently H2=zeros(1,2,2);

handles only 2 users, so U=2. H2(;,;,1) = [ 0.6400 0.2500 ]; % note this is squared mag each term
H2(:,:,2) = [ 0.4900 0.3600 ];
Inputs >>Noise = 1.0e-04*[ 1.0000 1.0000];
) ) ) , . >>Ex=[ 1 1];

Hmag_sq is a N x 2 x 2 where N is FFT size. N inferred from this. _ .
No is a 1 x U white-noise power spectra density matrix. >>mask=[ 1 1];

If Hmag_sq is complex BB, then No should be the one-sided PSD. >>gap= 1,
E is a 1 x U energy vector. >>bitcap=[ 15 15];
theta is a 1 x U user-rate weighting vector. — . :
mask iz an N x U PSD maximum allowed. >>[S1, S2, b1, b2] = osb(H2, Noise, Ex, [0.5 .5], mask, gap, bitcap,2)
gap is the (non-dB) linear gap (so 1 if @ dB gap).
bitcap is a 1 x U maximum number of bits allowed per tone. S1= 0.6398
cb is 2 for real baseband and 1 for cplex bband S2= 0
Outputs bl= 6 % note<6.3forthe GDFE based IC’s maximum L11:16

Subroutines b2= 0
s1 is user 1's Nx1 PSD adiust w >>[S1, S2, b1, b2] = osb(H2, Noise, Ex, [0.01 .99], mask, gap, bitcap,2)
S2 is user 2's Nx1 PSD J S1= 0
bl is user 1's Nx1 bit distribution Values. S2= 0.1419
b2 is user 2's Nx1 bit distribution bl = 0
calls optimize_12.m, which calls optimize_s.m b2= 4.5000<5.9forL11:16

User order is reversed with respect to class convention.

= The OSB search can be very complex for U > 3.
2" OSB also can have severe numerical issues (cause it to diverge), even in matlab double precision.

May 30, 2024 L17:6 Stanford University



Multitone OSB Example

h=cat(3,[1 .8; -1

He =fft(h, 8, 3);

>>H3=zeros(8,

>> H3( )

>> H3(:,2 1)=H
(

2,2);
e(l
e(2
>>H3(:,2,2)=He(2
e(l

8

l’
l’
2’
>>H3(:,1,2)=He(1,2,:
>> Noise=ones(8,2);
>>mask=ones(8,2);

>>sum(bl)= 30
>>sum(b2)= 24

= osb(H3.*conj(H3), Noise, Ex, theta, mask, gap,

>> Ex=8*EX;
>>theta=[.5.5];
>>[S1,S2, b1, b2]
bitcap,l1);

>>S1'= 0 0
>>S2’= 0.6375 0.
>pl'= 0 0 7
>>p2'= 8 8 0

sum(bl+b2) = 54 % <~116 that MAC, BC, single had for this channel

1],[-9 -.7; 0 1] )*10

% tone index moves
% yes, you could use permute also.

b

; Same 2x2 channel
asin L16, except
now an IC.

);
);
);
);

0.7017 0.8272 0 0.8272 0.7017 0

7469 0 0 0 0 0 0.7469

g 8 g g g OSB solution
is often FDM

= GDFE’s cancellation of crosstalk makes a large difference.

May 30, 2024

L18 later compares this to IW (like SWF,
Except for IC — see last section today).

We could similar have a minPOSB,

Or even admOSB.

Searching for more
Software on OSB and related.

L17:7 Stanford University



CIC Optimization

allow multiple-user decoding

May 30, 2024 _ _ 8
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minPIC = more “optimum”

= minPIC concept allows for each receiver u to cancel i € Du(H, %% b) ; the decodable set.

= QOrder has been restored &.
= The optimization is

Same format, but the energy-to-information relation changes

(i,u) = (RCVR,USER). N1l U U
min Y Y w, - trace Z Ry (i,u,n)
{me (’L,u,n)} n=0 u=1 i=1
Eum

)

ST : bu 2 bmin,u
Rmm(’i,u, n) t 0.

= @ still has U terms, and they determine the U! “sensible” orders II.
= The achievable-region constraint remains convex already (like minPMAC).
= Each receiver may use a GDFE, but precoders are not possible (on IC).

C_J



3-User Order examp

= Given a 0, say for example with 83 > 64 > 6, , they determine all receivers’ order:

|FOR: 6, > 6, > 6, >0| = Any other order is inconsistent with the
Lagrangian multipliers’ interpretation.

{ THESE ARE

(RCVRUSER) (LD@21.02,22)  22,62,23.63  010.610.03.63 |G i

AND CAN BE 0
(3,3) (1,3) (2,3)
A
(1,3 @31 2.1) A = [Han - (E10 + &) + [Hapl - (12 + E22) +1
B £ |Hys?-&+A
(2,3) (1,1) (3,2) A 0
C == |H3,1| '83’1+B
(3.1) @1 1,2) D 2 |Hyul? &2+ C RCVR 3
(3,2) (1,2) (2,2)
b3 = logy(B)—log,(A)
- . — bs1 = logy(C) —logy(B)
I b3z = logy(D) —logy(C)

3
{Z b bu} — (85 — 61) - 10ga(B) + (601 — 62) - 1ogy(C) + 2 - logy(D)
RCYV R3opt




Do same for other 2 receivers

= RCVR 1 optimization of rate sum = RCVR 2 optimization of rate sum
A
A 2 |HisP (Ea3+Es) + | Hiol 12+ &) +1 A = |Hpsl - (E13+ &) + [Honl? - (E10 + E51) +1
A
B = |His> &3+ A B = |Hp3* &3+ A
A
c 2 |H1?- & +B C = |H2,1|2-82,1+B
D 2 |HP &.+C RCVR 1 D 2 |H,? &+C RCVR 2
b1z = logy(B) —logy(A) baz = logy(B) —log,(A)
by = log,(C) —log,(B) b2 = logy(C) — logy(B)
bio = logy(D) —logy(C) . by = logy(D)—log,(C) .
3 3
{Z Ou - bu} = (03 — 01) - logy(B) + (61 — 02) - logy(C) + 6> - logy (D) {Z Ou - bu} = (03 — 61) - logy(B) + (61 — 02) - logy(C) + 0> - logy (D)
u=1 RCV Rlopt u=1 RCV R2opt

= Six energies repeat — select from each such energy pair, that which has corresponding lowest rate/info.
= Quter 0 loop (e.g., Ellipsoid) remains the same as minPMAC.

[3



Generalize - first order them to simplify

= Create order of users for each of (reordered) users

0y 0. 01
U2\{(1:U,U),(U,1:U — 1)} U2\ {(1:U,u), (u,1:U — 1)} U2\ {(U,1:U),(1,1:U — 1)}
(U,0) (u,U) 1,U-1

: (u, U —u+1) (1,1)
(L,0) (U,u) (U,1)
(U, U -1) : :
: (1,u)
(u,U—u—1)
(U, 1) (u,1) (U,U)

Table 5.2: Generalized of overall decoding order pairs given descending-order 6.

May 30, 2024
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Generalize A,B,C, D

A .. N
Kiu = Zi;éu Hy - (Zj;éi R (7’,9)) HY G+ 1 for b,y
Ko 2 H,(2) - Rpx(u,2U — 3,2) - H: (2" + K1 ,, for by y |
Kuw 2 Hupv—us1(2) - Rea(u,2U0 —u+1(2")) H}, oy —u41(2) + Ky—1,u for by
Kov—2.4 2 H,1(2) - Rpa(u,1(279)) - Hyy 1(2) + Kov-3,u for bu,1

wya s

U
{Z O - bu} = (O —0y-1) -logy(K1,u) + ... + (02 — 01) - logy(Kav—3,u) + 02 - 1ogo (Kov—2,u)
u=1 RC'V Raont

Software awaits

= This is convex in those quantities optimized writing.

= Need the outer subgradient loop on theta to drive IC rate vector to bmin.

a May 30,2024 L17:13 Stanford University
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Iterative WF borrows MAC’s SWF for the IC

= Rate-sum partial derivatives yield:

>\u = Su,n +

Lo? + 3 [Huil® - Ein
|Huu,n|2

IW converges in practice, and theory,

under mild channel conditions (Leshem
—Xtalk not outrageous)

June 4, 2024

i=0;j=0
R, ,(un)=0vVun

FM Waterfill

R, (i,n) is result

Ruoise(@+1,n) =R, (i+1,n) +

Ul=1 Hi+1,l(n) : Rxx(l: n) : Hi*+1,l(n)

I[=£i+1

v
Ifi=U
i=0j=j+1

A

This simplifies
To1ladd, 1sub

No

L18: 15 Stanford University



IW lllustrated for the LIC

User 1 User 2

= Each user “reacts” to others. —
background noise power
W::::jé;]il‘g . Signal Power
Normalized
crosstalk noise power
1 2 3 4 5 n 1 2 3 4 5 n
User 1 \l/ User 2
(1 H H H »
= Others sense the new xtalk. Nash Equilibrium
User 2’s
water—filling
1234571\1/ 1 2 3 4 5 n

User 1 User 2

= They eventually converge.
User I's
water—filling
1 2 3 4 5 n 1 2 3 4 5 n

e Repeat until converged o
A June 4, 2024 L18:16 Stanford University




Wireless Potential Use (Resource Blocks)

1 1 Ng
Channel A Channel B

energy distribution energy distribution

Channel C
energy distribution

SNR SNR . =SNR
geo,B B

geo, A

SNR

geo,C

= SNR

Equivalent
Single Channel B

Equivalent
Single Channel C

Equivalent
Single Channel A

& g5 . %

I
1 N¢

r'e
'
= This could be space and/or frequency.
= |t uses C-OFDM within resource blocks and
8A gB 0 SD
= Vector-Coding among spatial resource blocks.

E,=N,-E, forX=4,B,C,D

June 4,2024

Channel D
energy distribution

SNR

geo,D

Equivalent
Single Channel D

Nested loading

L18: 17 Stanford University



Near-Far Example

= Downlink has another transmitter for another IC user closer (the “near” user).

IC Near/Far Near k--
(downlink) | T | TTTe--ll
Hnear—> far o @ Sce--_.
~» NEAR
Hfar—> near
FAR [------s--mmmmmmmmmm e » FAR
Hfar—> far
= Uplink has another transmitter for another IC user closer (the “near” user).
MAC or IC Near/Far
Eamm (uplink)
NEAR Hnear—>far NEAR
&
FAR
< FAR
Hfaro near Hear S far
June 4,2024 L18:18
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Example IC with IWF (near-far)

[ 505 ] _
User 1 Revr 1 ;12] = [iiﬁ] +.9 [iiﬁ]*[ﬁiﬁ]
o] e = Gt a0 [
[ . } o} =02 =0.1 (noises independent)

Rcvr 2

- Energy 1A = Energy 2B =
2.0 2.0

User 2

= Which receiver has near-far issue?
* RCVR 1 in both bands

= Who is near user?
e User?2

June 4,2024 L17:19 Stanford University



Tabular Tracking of IW

Table 2 - Simple IWE L
= User 2 reacts to user 1 crosstalk. A Teende
User 1 e =1 E . =1
= User 1 then counter acts. e a -
. —=.1+(9)=.91 —=1+(1)*=.11
= Further reduction of energy on user 2 814 8
£, +91=E,,+.11
band B. e ve o2
= |W here converges in 2 cycles and £,=6 £,=14
User 1 2 2
* solution looks like FDM. ! —'”(‘6')(2'9) - 2344 L—%—4.936
. . glA 5 ng 5
= This is better than equal energy on both € 12344=¢, 14936
users in both bands. €, +E,=2
E,=2 E,=0
>>Hel [ss] User2 L (9 = L (=
Hel(:,:;,1) = Userlk /,/"/ Reurt 824 o=t Eap o=
0.2500 0.8100 L2 € +12=€, 11
0.2500 0.8100 £ +€,=2
Hel(:,:,2) = E,=.19 §&,=181
0.8100 1.0000 [11] User 1 Remains € ,=2 &,,=0 > IWhas converged;lA = % =1.0156
0.0100 1.0000 Data rates log,(1 +2/1.0156) = 1.5701 |0
>> [b, E] = iw(2, 2, Hel, .1*ones(2,2), [2 2], 0, [0 0], [10 10],1) User 1
1.5701 0.1512 Bata;ates log, (1+.19/1.72)=.15 log, (1+1.81/.1)=4.26
ser
0 4.2555 TotalUser2 | 4.4
= Rate Sum | 6.0 bits
2.0000 0.1900
e o o Same result

a June 4, 2024 L18: 20 Stanford University



er bits like osb.m

function [b, E] = iw_polite(N, df, U, Hmag, No, Ex, mask, gap, mode,
target, bitcap,cb)

Calculates data rates of M users and corresponding bit distributions and

Energy distributions

using iterative waterfilling

N: number of sub-channels

M: number of users

Hmag: squared channel transfer and crosstalk matrix (N x U x U matrix)
Hmag(n,i,j) is the crosstalk transfer function from loop i to j at the

nth bin.

No: noise energy/sample

Ex: signal energy/SYMBOL

mask: PSD mask - largest value N x U

gap: gap (not in dB)

mode: (U x 1 vector) each value is one of the followings
0 - rate adaptive

1 - fixed margin (power minimization)

2 - margin adaptive

b_target: target bits on 1 DMT symbol for modes 1 and 2
bitcap: maximum possible number of bits at each frequency bin
cb =1 for cplx BB and =2 for real BB

Outputs
b: bit distribution (N x U matrix)
E: energy distribution (N x U matrix)

Remarks
Iterate waterfiling for each user 10 times
Youngjae(Sean) Kim — modified J. Cioffi, April 2024

>> [b, E] =iw_polite(8, 2, H3.*conj(H3), Noise, [8 8],
mask, gap, zeros(8,1), [5 5], bitcap,1)

b:
0 8.0000 >> (b1 b2] %(osb)
0  8.0000 0 8
2.0264 1.0000 0 8
8.0000 0 70
8.0000 0 8 0
8.0000 0 0 0
2.0264 1.0000 8 0
0 80000 Y
0 8
EE >>[S1 S2] = %(osb)
0 0.6375 0 0.6375
0 0.7469 0 0.7469
0.6300 0.3609 0.7017 0
0.8272 0 0.8272 0
0.7064 0 0 0
0.8272 0 0.8272 0
0.6300 0.3609 0.7017 0
0 0.7469 0 0.7469
>>sum(b) = 28.0529 26.0000

>>sum([blb2])= 30 24 % both OSB/IW add to 54

=  Sum is same, user 1 is better in osb.
= With continuous bit distribution, osb would be slightly better.

May 30, 2024

Energies < 8 because iw calls campello.m,
which allows only integer bits (like osb.m).

L17:21
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IW.m (non-integer) — not in text, but at website

>> =i k i i
function function [b, E] = iw(N, U, Hmag, No, Ex, gap, mode, b_target,cb) [b, E] = iw(8, 2, H3."conj(H3), Noise, [8 8], gap, zeros(8,1), [5 51,1)
Calculates data rates of M users and corresponding bit distributions and b=
Energy distributions 0,
using iterative waterfilling. 0 9.5897 >> [bl b2] /O(OSb)
0 9.3612 0 8
fnputs 1.4972 1.4479 0 8
N: number of sub-channels 9.2050 0 70
U: number of users 9.4329 0 8 0
Hmag: squared channel transfer and crosstalk matrix (N x U x U matrix) ’ 0 0
Hmag(n,i,j) is the crosstalk transfer function from loop i to j 9.2050 0
at the nth bin. 1.4972 1.4479 8 0
No: noise power spectrum per tone (N x U)
Ex: signal energy/SYMBOL 0 9.3612 70
mask: PSD mask - largest value N x U E= 0 8
gap: gap in dB
mode: (U x 1 vector) each value is one of the followings 0 1.9238

0 - rate adaptive 0 1.9233 >>[S1 S2] = %(osb)

1 - fixed margin (power minimization)

2 - margin adaptive 1.1329 1.1148 0 0.6375
b_target: target bits on 1 DMT symbol for modes 1 and 2 1.9112 0 0 0.7469
bitcap: maximum possible number of bits at each frequency bin 1.9118 0 0.7017 0
cb =1 for cplx BB and =2 for real BB :

1.9112 0 0.8272 0
Outputs 1.1329 1.1148 0 0
b: bit distribution (N x U matrix) 0 1.9233 0.8272 0
E: energy distribution (N x U matrix) 0.7017 0
S >>sum(b) % = 30.8374 31.2079 (62>54!! 0  0.7469
Iterate waterfiling for each user 10 times >>sum(E) %= 8 8
Youngjae(Sean) Kim — modified J. Cioffi, April 2024

Energies = 8 now with fractional bits

May 30, 2024 L17:22 Stanford University



More sophisticated situation (IC of MAC & BC

25 bi-directional users (so really 50 users if they all share same band — each echo cancels itself only.)

Otherwise, there is no GDFE xtalk cancellation in this simulation, only IW.

=  Turn on MA WF for them all and let them run versus fixed spectrum with (PAM) b = 6 bits/Hz,
* which was state of art prior to IW

25 MDSL loops with the same loop length
50 ! T T T T T

T
1 1 1 = oo
45 PN frosessbess bl e B4PAM [T

35

te (Mbps)

Data rate
[

S
0 S S S S S i e
1000 2000 3000 4000 5000 6000 7000 8000 9000
[3 Loop length (ft)

June 4,2024 L17:23
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Multi-Level Water-fill lllustration

DSM
Regulator
(cut-offs &

PSDs)

A

Channel

v v SlOW,U |
User 1 User 2 User U
3 A 4
I e e e e — J:. ______________ i___________________________[Cy_tiq ___________ E

=  MLIW runs IW, but with different water-levels (a bit like SWF) — must find cut-off frequency(ies).

Cj = Very low complexity (same as IW), but central control distributes (learns) users’ cut-off frequencies fey¢q. .
June 4. 2024 L17: 24 Stanford University
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Near-Far Example

Wi-Fi’s “pods” - if on same/overlapping channels

User1

A

A

FAR Users User 2
Transmitter| 2-5
User 3
NEAR
Transmitters
User 4
User 5

= Near-Far can arise with RIS (reflective intelligent surfaces) for adjacent bands of RIS.
= Near-Far can occur in wireline also — “remote terminals” or “distribution units.”
= Adjacent cells in cellular (or Wi-Fi).
a June 4,2024 L17:25 Stanford University



Achievable Region Comparison
U= 25,N = 4096

= |W better than fixed, but not so good 16
1.4 i fhx

= This plots 25 users with ML IW and with ' \

* See upper right
* Blue curves allow for margin on ML IW.

= ML IW is pretty close to

N \

_,__.f
74/
/

Far Data Rate

/

|

—8—  Multi-level IWF \

0SB (PSDM ASK imposition with no tderance)

Working to locate \g
better IW and ML-IW, 04 | 0 ¢ comask impoction it 1268 oo J i\&
u] 1

o S B —»— P SDMASK imposition with 18cB tolerance
° —— P SDMASK imposttion with 24cB tolerence

0.2 b —@—PSDMASK imposition with 30¢B tolersnce
G terative Water-iling

0 |

0 2 4 6 g 1

[’D Near Data Rate

2
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= Use minPmac/bc on node channels

Use ML Water-Fill between nodes

= Efficient Algorithms?

How/where to update?

June 4, 2024

(()(())) BC .
‘ ~ DR

a) radio node edge
(base station or
Access point)

b) two subnetworks
Down (BC) and up (MAC)
IC network between them

¥
\. MAC

Intelligent

controller Ny /v
“d

c) three nested IC: (BC, MAC)
' Like those in b), nested into

3x3 IC network

Stanford University



Al (“machine learned”) Approximations?

Specify b =[b, - b, - byl wo=[w, " Wuo ot owy] Weight user
desired rates { i energies
Min Energy crosstalk
i_ ______________________________________________________ » Sum <_"""_""_"""_""_"""_""""""""""""i
‘ . £ ‘
I
0=1[0; 0., 0y] E=[& Eu €yl
0;—» MaxRate | —* b, 0, > MaxRate |[—> b, 0y, —> MaxRate [ by
Sum Sum Sum
E,— 06,-by [—w, E, " Oy-by |—wy, Ey—* Oy-by 7wy

= Each of these “boxes” (subnetworks) can be intense calculation

= The overall recursive cycling is actually then more intense
[3
uh Sec2.10 June 4,2024 L11:30 Stanford University



Machine learned “minPxx”

= minPMAC (and minPIC) optimize, but may have long run-times and numerical issues
* They accept channel+noise and data rates (and maybe energy in admxx)

white

minPxx
generates
training
data

I trainer

______________________

o
S
=
S
:
=
—~—
)
S
——

= Extended to nesting, complex networks

June 4, 2024

probably reccurrent
and/or convolutional
neural net with a
few layers
With also
Reinforcement-learning
Over time

i |
tn
&
=
S
(S
S
S
D
S
N e’

L18:31 Stanford University



Where, and from what, to compute precoders?

T

Receivers estimate channels today ~?, computing
* filters/matrices t , (Wli'gfei g

. . . . compute precoaders ice |
* bit distributions PR P DA Device 3

compute only
errors here

T x ¥
* energy distributions
. erroir= received pilot - known pilot
= This generates large overhead bandwidth o reduces feedback bandwith
* (even with "indexing” schemes) Y allows precoder calculation at edge

Return only errors for pilots/sounding sequences

Compute instead at edge or at the site where constellations are N ...
generated Lo o

* Need error signals from pilots/sounding

Algorithms (ML/AI) based on digital twin of this to update precoders ?

[3

A June 4, 2024 L18:32 Stanford University



O-RAN/Xhaul split 7.2 (over) simplified

rest of Baseband equivalent i
network (I/Q~ “complex” signals)

1
1
1
1
1
1
1
&(((\ I
1
1
1
1
1
1
1
1
1
1
1
1

tuner

DU = distributed unit Radio Unit (RU) .

RIC =radio intelligent controller ~ ~~7-7777 7=~ =77777"
! 1
: ' RU !
= Share servers for calculations when needed L]
. . . [
= Coordinate the messages/signals , space, time, frequency RU !
1

= This where the Al will become really helpful

[3

A June 4,2024 33 Stanford University



= Calls to IT/ISP

Correlate Design choices with User Reaction

= Thumbs down _\%

EX|t score

Group success rate

Repair/Intervention

counts

[
PP

AN y

June 4, 2024

Diagnostics & Analytics
Learn the reward function V
employee feedback and link data

Feedback Data
Thumbs down
Exit Score
Project complete
Complelaycalls

Chat-box contacts
reviews

other

MACHINE LEARN A &
Est User Service

Supervised
Learning

Link Data, [ R,,]
Also throughput, time, P, retrains. pg,
state
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Optimize QoE (value

Optimization (management)

= Use analytics to derive Objective is to improve service to “green

* Priorities (orders, weights)
= Optimize accordingly V.or U
k k

/ next profile/state l
Data | Calculation (est LLR) <

State component of
current profile
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A Network State Machine: Reinforcement Learning

P1/, Pz, P3/,

Variations P1/,
. Policies become
JIU mj lA| = 4 B, tate dependent
Oa —
Learn the states and P,

= Network user/link may be in a state or profile

Some are ok (user happy or green) ; amber on the edge ; _p3/3 p3/2 0 0_
Red — very likely unhappy pZ 0
0 0 /1
= Markov (state-machine) models Pa = 0 0
1 1
p1/, P1/,

= Learn the profile, apply appropriate design for each state

Objective is move to green state with profile change _pO/ O 0 pO/O_

m =P, -m Markov (stationary) distribution

[3
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A Network State Machine: Reinforcement Learning

= Determines Next Action (State)
Profile {R,,(uw), by ,[G, Wy}, u=1,..,U

Good rate
Or QoE
Marginal rate
Or QoE

Lowest rate

= GYR
* Try to get to better states
* But this depends on cost of doing so

= Markov (state-machine) models

Or QoE

Can include, MCS, number of spatial streams, channel,
spectrum, priority (weights [w 0]), etc

F)
(@ June 4,2024 37 Stanford University



Estimating the probabilities and States

Better on-line/real-time “fading” distributions

While all the “Raleigh, Ricean, log-normal, angle-spread, delay-spread ......... “’models create
simulation environments that range through many situations, they’re not specific to situation

Each channel/user may need to estimate probability distributions for “fading/xtalk”
* How do do this well
* Ergodic state machines (Markov models) or slowing varying
* Digital Twins?
* Know the settings for each in advance?

Then identify which state and associated pre-computed design?
* Would this save a lot of computing energy?

Are Pe and data-rates the right measures? -> Quality of Experience (QoE)
¢ Learned from user “feedback” & or

Reinforcement Learning? (Recurrent Neural Net as base?)
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Reflective Intelligent Surfaces (RIS)

Posed Project/Research
“maxRIS” or “minRIS”

Hlos Nios
== X +
Y [ Hout : QH : Hzn ] |: Nout + QH *Nin X
H;,IS 'n;s

The RIS matrix Qy satisfies ||Qy||% < Gy , the RIS gain — it may also satisfy

* (Qp is unitary matrix (preserves energy)
* Qp is diagonal, and usually also unitary, to be phase/gain-only adjustment on each antenna port (in-to-out)

* Qg has individual elements restricted

For a given Ry, , maximize over Qg Z(y;x) = log, |Rn.r1s + Hris - Rex - Hp s
For a given Q , maximize the same over R, R [ Rnn 0
nn,RIS 0 Rnn,ou+ Q= Rnnin- Q%

lterate
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