
Homework Help - Problem Set 3

This area begins with general help/summary on coded OfDM.
Data-rate computation multiplies the (sub)symbol-rate by the total num-

ber of bits per (sub)symbol. For instance, if the sampling rate (for each of in-
phase and quadrature) of a digital-video broadcast system has T ′ = 109.375
ns with N̄ = 8192 and a cyclic prefix that is 1/4 the FFT size, then the
symbol period is

T = 8192(1 +
1

4
) · T ′ = 10240 · 109.375× 10−9 = 1.12× 10−3

so the symbol rate is then 893 Hz. Thus, a 64 QAM system with no code
(r = 1) would carry, with for example 6000 used tones,

R = 893 · 6 · 6000 ≈ 32 Mbps

Coded-OFDM usually has a limited set of “MCS” (Modulation Coding Scheme)
options that basically are the code rates allowed for a set of constellations.
Thus, the data rates R are basically found by multiplying r (code rate) by
log2(C) (number of bits in constellation) times the number of used tones
times the symbol rate. If there were 4 codes and 5 constellations allowed,
there would be 20 possible data rates.

With the MCS, the code will have certain free distance improvements
that multiply the SNR so SNR → dfree · SNR at the expense of a lower
r for higher dfree . The MCS-style loading knows the distances for each of
the codes, and has measured the SNR . Loading amounts to finding the
code and dfree at this particular SNR that provides largest reliable data
rate. Because there are only a few choices, simple trial-and-error over the
MCS sets is usually sufficient. So for instance, if a Wi-Fi device (like a smart
phone) moves closer to the Wi-Fi router, the channel gain presumably would
improve. Improvement may then lead to a higher-data-rate MCS choice. For
each channel gain g , there will thus be a best MCS choice. So at design
time, a simple table of code/rate versus measured channel gain may suffice
as long as the channel-gain distribution remains constant. In reality, the
channel-gain distribution may vary and so a simple table is not sufficient
and thus calculation of < Pe > and/or Pout with selection of MCS to meet
both criteria improves with respect to single fixed table.

200

Coded OFDM (4.13) This problem attempts a basic MCS loading process.

a. This part needs the symbol rate, number of USED tones per symbol and
then multiplies by the possible number of bits in constellation reduced
by the code rate. There are 9 possibilities.

b. Note r = 1 is not an option (this is uncoded and leaves the wireless
system too susceptible to multipath fading notches). Evaluate a few
options using the 64-state code and its known rates and distances.

c. The 6.3 dB was just enough to increase the data rate, but the granu-
larity of the constellation (6 dB steps roughly) and this margin causes a
significant data-rate loss.

d. This allows a yet higher data rate, but be careful on code choices.

e. Basically we’re looking for the lowest data rate possible so smallest con-
stellation (BPSK) and lowest rate code allowed. What is the data rate
then in safe mode?

Discrete Loading (4.14) This is more elaborate MCS selection with a channel
fading distribution.

a. This first part just asks you to write the g values (try organizing as row
vector in matlab) and compute the average. Try to interpret in terms of
averages and worst case SNRs.

b. The attached code here may be helpful, but you’ll need to understand it
to answer the question.

%% P4.14

clear all;clc;

gbounds = [0 .0105 .0223 .0357 .0511 .0693 .0916 .1204 .1609 .2303 .4];

gs = (gbounds(2:end)+gbounds(1:end-1))/2;

EsN0 = 10^4.3;

%EsN0 = 10^3.3;

% part a

disp(’------ part a ------’)

ave_g = mean(gs);

ave_snr = EsN0*ave_g;

ave_snr_db = 10*log10(ave_snr);

fprintf(’<g>: %.4f, <SNR>: %.4f dB\n’, ave_g, ave_snr_db);

M = [4 16 64];

% if consider the average snr

Pebar = 2*qfunc(sqrt(3*1*ave_snr./(M-1)));

% if consider the worst channel

Pebar = 2*qfunc(sqrt(3*1*gs(1)*EsN0./(M-1)));

% part b

disp(’------ part b ------’)

gaps_db = [9 3];

gaps = 10.^([.9 .3]);

201

for gap_idx = 1:2

gap = gaps(gap_idx);

for m = M

for numG = 10:-1:1

log_Kma_over_gap = 1/numG*(10*log2(m)-sum(log2(gs(11-numG:end))));

if -log2(gs(11-numG))<log_Kma_over_gap

Es = gap*(2^log_Kma_over_gap-1./gs(11-numG:end));

meanEs = sum(Es)/10;

margin=10*log10(EsN0/meanEs);

fprintf(’Gap: %d dB, M: %d, |Gstar|: %d, margin: %.4f dB\n’, gaps_db(gap_idx), m, numG, margin);

break;

end

end

end

end

Ths script produces:

------ part a ------

<g>: 0.0992, <SNR>: 32.9656 dB

------ part b ------

Gap: 9 dB, M: 4, |Gstar|: 8, margin: 18.2580 dB

Gap: 9 dB, M: 16, |Gstar|: 10, margin: 10.2621 dB

Gap: 9 dB, M: 64, |Gstar|: 10, margin: 3.7684 dB

Gap: 3 dB, M: 4, |Gstar|: 8, margin: 24.2580 dB

Gap: 3 dB, M: 16, |Gstar|: 10, margin: 16.2621 dB

Gap: 3 dB, M: 64, |Gstar|: 10, margin: 9.7684 dB

c. Similarly this code may be helpful, but you’ll need to understand it.

% part c

disp(’------ part c ------’)

for gap_idx = 1:2

gap = gaps(gap_idx);

for numG = 10:-1:1

Kra = (10*EsN0+gap*sum(1./gs(11-numG:end)))/numG;

if Kra>gap/gs(11-numG)

Es = Kra - gap./gs(11-numG:end);

meanEs = sum(Es)/10;

b = 0.1*sum(log2(Kra*gs(11-numG:end)/gap));

fprintf(’Gap: %d dB, |Gstar|: %d, Echeck: %.4f, b: %.4f\n’, gaps_db(gap_idx), numG, meanEs, b);

break;

end

end

end

with output

------ part c ------

Gap: 9 dB, |Gstar|: 10, Echeck: 19952.6231, b: 7.2237

Gap: 3 dB, |Gstar|: 10, Echeck: 19952.6231, b: 9.2014

202

MIMO Loading (4.22) Best Discrete loading adds an extra unit of information,
which for SQ QAM restriction means two bits/tone (one bit in each dimension),
simply adds bits in the positions of next least energy. This is the “greedy
algorithm” that is used by Levin Campello. Thus, the incremental-energy
table is just a way to enumerate how much energy needed for each additional
unit on each tone. The better tones have smaller incremental energy until they
get heavily loaded and each additional bit on them looks less attractive that
putting a few bits on some of the lower-SNR tones.

SQ QAM is pretty easy and basically has (Γ in dB)

E1(2) = 2 · 10Γ/10

gn

(
22 − 1

)
,

and thus

e1(4) = 4 · E1(2)

e1(6) = 4 · e1(4)

e1(8) = 4 · e1(6) ,

and so on. Tables can be created from this and greedy applied.

a. A good way to work problems like this is to divide channels provided into
the least-common divisor channel, replicating the wider bandwidth chan-
nels by repeated instances of a common bandwidth. (Hint, like four 10
MHz wide channels.) Use the general information above for the specifics
of this problem.

b. Execute the Levin-Campello (Greedy) procedure now for RA (until no
more energy can be added without violating the energy constraint).

c. Execute again, but his time for MA at desired data rate.

Binning (4.16) This binning problem 4.16 attempts to be self-explanatory through
steps that lead to comparison of the sampled/learned distribution to random
samples generated from a known distribution. Of course in practice, the dis-
tribution won’t be known for comparison.

a. The inverse Pe = 10−5 expression (any P̄e could be reversed. For in-
stance, 10−6 produces 101.37), so do this generally. Evaluate also at the
given P̄e as the next part needs it.

b. We just use matlab to tabulate the various 3/(M −1) ·SNR values here.
This creates a set of threshold SNRs, using the g found in Part a.

so one can generate g values for potential bin interval endpoints from
such an expression, substituting in the possible constellation sizes. For
instance the matlab commands run through a set of values:

c. The data rates form from r · |C| , running through r values and constel-
lation sizes.

d. The reshape is g=reshape(SNR,[1,20]); Evaluation of the set of g ’s gen-
erated can form a distribution, for instance exponential distribution with

203

pg=[exp(-.1*([0,g]))]-[exp(-.1*(g)),0]

following

pi =

∫ gi+1

gi

e
− x

Eg

Eg
dx = e−gi/Eg − e−gi+1/Eg .

that should sum to 1.

e. compute the various capacities and average them.

f. The cumulative distribution is formed by cumulative sums,F (g) = 1 −
e−g/Eg : Basically plotting this versus the matlab g distribution. They’re
pretty close, but not identical.

g. It gets even closer with more samples.

Wi-FI Loading (4.15) The analog front-end noise of any wireless receiver sim-
ply adds the noise figure to the ambient psd (which at room temperature is -174
dBm/Hz). To find the power over a frequency range, simply add 10 · log10W
to the psd. Wider range (larger W) is larger power. The transmit power is 2
times the energy/real-dimension for complex signals, of course reduced by any
channel attenuation to be used at the channel output.

The rest of Problem 4.15 uses similar calculations to the examples in the notes
and in Problem 4.22.

a. Add the noise figure (in dB) to the thermal noise (-174 dBm/Hz) to get
the actual receiver noise (or N0). Multiply (add in dB) by the bandwidth
(positive freqs only) to get the noise power.

b. This classes SNR uses same bandwidth in numerator and denominator,
or is equivalently a ratio of power-spectral densities. The 40 MHz wide
SNR will be 3dB less than 20 MHz wide IF the POWER is fixed, as it is
in this problem.

c. Take ratio of number of used tones.

d. Recall that g = |h|2
σ2 has a two-sided PSD in the denominator. Thus,

if the PSD’s in this problem are one-sided (so a factor of 2 higher than
Ēx) relative to the two-sided denominator PSD σ2 , so if one-sided noise
psd’s are used, then we need to increase the g value by 3 dB. Essentially,

g = |h|2
N0/2

= 2 · |h|
2

N0
, and then now we can directly multiply by the one-

sided PSD Ẽn to get a tonal SNR . Find the average of the distribution
and set it equal to the Eg , remembering to account for the 3 dB above.

e. This part involves computing performance for several r and dfree values.
You might use the matlab commands like those in L5:12-13. This is
repeating that process with some different numbers.

f. You should get a better use of power for the wider band here, so the 40
MHz solution is significantly higher.

204

