
Homework Help - Problem Set 1
Solutions

Capacity Calculation Help (2.15) This problem helps review some EE379A
concepts on capacity, power-spectra (one and two-sided) and PAM/QAM as
real/complex channels.

a. This part refreshes recollection that a flat (constant) power spectral den-
sity (2-sided) is equal to Ēx . Simply writing the two-sided and one-sided
integrals for real baseband and complex baseband reinforces this concept
easily. Recall that a bar over a quantity normalizes it to the number of
real dimensions.

b. This follows by taking the same dimensionality in numerator and denom-
inator for SNR ; One can subtract the noise psd in dBm/Hz from the
transmitted flat psd to obtain the SNR . They both must use the same
number of dimensions.

c. The capacity in bits/real-dimension is 1
2 · log2(1 + SNR). The factor of

1/2 needs to be there for bits/REAL dimension.

d. This part asks you to work backwards from the 18 Mbps equal to ca-
pacity to find the power needed. This calculation follows more easily
by determining first the symbol rate associated with PAM and QAM
(QAM subsymbol rate is 1/2 that of PAM, but has twice as many dimen-
sions/subsymbol). You should get the same power for both, emphasizing
that PAM and QAM are essentially equivalent fundamentally.

e. This part also forces determination of a subsymbol rate for PAM and
QAM, but now with a gap that is nonzero. You should get less than 72
Mbps because it is not a capacity-achieving code.

f. It is not Wi-Fi because the smallest Wi-Fi subsymbol rate is 20 MHz
and your subsymbol-rate answer in the previous part is less than this.
Understand that that real systems must attenuation near the edges of
any channel, potentially by reducing the symbol rate so the spectrum is
slightly narrowed. What kinds of wireless systems might have a symbol
rate close to your answer in the previous part?

Gap Analysis (4.3) Before beginning with the problem itself, some general com-
ments on Gap Analysis:

The gap Γ (in dB, 10 · log10(Γ)) is a design approximation that measures a
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specific AWGN design’s proximity to best Shannon-Capacity performance:

b̄ =
1

2
log2(1 +

SNR

Γ
) , b̄ ≥ 0.5 .

The gap depends on two design choices:

1. The code (class) used Cx

2. The target error probability P̄e .

Thus, specifically, it does not depend on the data rate ( b̄) directly and is
constant if the code and P̄e are given design targets. The gap thus allows
rate calculation, given the gap and SNR. Thus, a designer need not “redesign”
a code for different data rates; instead the designer knows the same code will
work for whatever data rate that the SNR and selected code/P̄e , equivalently
Γ, support. The gap does not work for low data rates ( b̄ < 0.5).

Smaller gap means better code with Γ = 1 (0 dB) as best, but only ap-
proachable bound with infinite implementation delay. For simple “uncoded”
QAM/PAM (students EE379A will recognize), the gap is typically 8.8 dB (so
that means 10.88 if inserted in the formula) if the usual error-probability tar-
get is 10−6 . The gap is 9.5 dB for 10−7 and roughly 5.8 dB for 10−3 . Some
popular codes have gaps for P̄e = 10−6 :

1. Trellis codes, particularly 4D code, has coding gain γc = 4.5 dB, and
reduce the gap to Γ− γc = 8.8− 4.5 = 4.3 dB

2. Turbo Codes, two interleaved 8-state binary codes with BICM, γc = 5.5
dB, so then Γ = 3.3 dB.

3. LDPC codes with block lengths of roughly 1000 or more and BICM,
γc → 7 dB, so Γ = 1.8 dB.

4. “Polar Codes” do not have a constant gap and find successful use only
for low SNR channels where b̄ < 1 and unfortunately do depend heavily
on the selected b̄ .

When b̄ is large, approach to capacity will also require a “shaping” code, which
as in Chapters 1 and 2 can add another up to 1.5 dB to coding gain (or reduce
gap by 1.5 dB). This shaping effect is often not used in practice, but would be
necessary to approach the ideal of a 0 dB gap code.

Examples:

1. A channel has SNR = 13.5 dB and uses uncoded PAM/QAM and P̄e =
10−6 .

b̄ = 0.5 · log2(1 + 101.35−.88) = 1 bit/dimension.

If this channel uses a good code with Γ = 7 dB, then the data rate should
increase

b̄ = 0.5 · log2(1 + 101.35−(.88−.7)) = 2bits/dimension.
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With Trellis code and 4.5 dB

b̄ = 0.5 · log2(1 + 101.35−.43) = 1.6 bit/dimension.

The best performance would be

b̄ = C̄ = 0.5 · log2(1 + 101.35−0) = 2.3 bits/dimension.

2. Repeating the previous example with SNR = 30 dB yields

>> GAP=[8.8 1.8 4.3 0];

>> SNR=30;

>> b=0.5*log2(1+(10.^(0.1*(SNR - GAP))) =

3.5267 4.6850 4.2706 4.9836 bits/dimension

The gap formula can be solved for required gap in terms of a desired bit rate
b̄

Γ =
SNR

22b̄ − 1
.

or necessary SNR to achieve the desired bit rate

SNR = Γ · (22b̄ − 1) .

resume So, thus the SNR required for 5 bits/dimension with uncoded 1024 QAM
at Γ = 5.8 dB for P̄e = 10−3 is (note here using dB directly since 2b → b·3
dB)

SNR = 10.58 · (22·5 − 1) = 5.8 + 10 · 3 = 35.9 dB .

resume Or for an AWGN channel with 20 dB SNR and a desired 3 bits/dimension,
the code, with whatever P̄e is the target must have a gap

Γ = 20− 6 · 3 = 2 dB .

When the required Gamma is negative, the desired data rate is not achievable
with any code at any (acceptable) error probability.

The margin γm is similar to the gap, but essentially reduces the gap by an
amount that guards against unforeseen noise. The margin holds for the same
P̄e as the gap.

b̄ =
1

2
log2

(
1 +

SNR

Γ · γm

)
, b̄ ≥ 0.5 .

(Γ · γm) could be viewed as one parameter. Negative margin means that the
chosen code for the gap cannot achieve the data rate. We could repeat examples
in items 1 - 2 with any margin desired. For instance, inserting γm = 3 dB will
roughly reduce all the bits/dimension by 1/2. Often the margin is computed
by

γm =
SNR/Γ

22b̄ − 1
.

or the desired SNR with certain safety margin computed as

SNR = Γ · γm · (22b̄ − 1) .
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Thus the margin for a 24 dB SNR AWGN with Γ = 3 dB at P̄e = 10−7 that
attempts 3 bits/dimension is

γm = 24− 3− 6 · 3 = 3 dB .

Equivalently for this rate and a margin of 2 dB, the necessary channel SNR is

SNR = 3 + 2 + 6 · 3 = 23 dB .

Now to the problem:

a. The gap depends on Pe , and is constant over what other design choice?

b. What caused the gap to reduce from EE379A’s various Chapter 8 studies?
(This is a simple 1-2 word answer.)

c. Work with the formula:

γm =
SNR/Γ

2b − 1
.

d. Use again the same formula as last part.

DMT Program Help (4.18) First some general DMT program-use summary:
The DMT programs basically implement water-filling for matrix AWGN chan-
nels describing intersymbol interference. They implement water-filling for the
energy distribution. While SVD or DFT’s would easily identify channel gains
with any matrix, these programs take into account the cyclic-prefix/guard pe-
riod automatically. The channel is thus viewed as a packet of transmitted
samples through (convolved with) a discrete-time channel response, with the
receiver discarding the corresponding guard-period samples.

The first input is the channel, specified as a discrete-time response in a row
vector. The channel starts with it’s left most sample and completes with it’s
rightmost sample. ν is the length of the channel minus 1. The AWGN noise
parameter σ2 is the second input, while the third input is the energy/dimension
transmitted. If both these inputs have the same dimensionality (but not 1,
for instance both are 2 dimensional), the program still works. The 4th input
is the FFT size, or equivalently the symbol length in sampling periods ( minus
ν ). The last input is the gap in dB. With these 5 inputs, the program will
product the overall (unbiased) SNR for the set of channels and the data rate
in bits/dimension.

There are actually 5 outputs total, which provide additional information: The
first output are the channel gains, so basically |Hn|2/σ2 . The 2nd output is
the water-fill energy vector (which necessarily sums to product of the input
energy and the number of dimensions N ) En ; while the 3rd output is the
corresponding water-fill bit distribution b̄n bits/dimension. The 3rd output is
the number of energized dimensions N∗ . The last two outputs are the most
useful for overall analysis in that they are the total bits/symbol and the SNR.
The factor 1/2 is used in the program so the overall bits are divided by N +ν .
For a real channel, that is just N + ν , but for a complex channel, the N input
is really assumed to be N , so the number of complex dimensions. Because the
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program only uses the ratio of the input energy to noise, as long as those two
have the same number of dimensions, it works. In the complex case, the bits
and totals are per-complex-dimension.

An example might be the real-baseband channel H(D) = 1 + .8D+ .4D2 with
noise .2 and energy/dimension 1:

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,1,8,0)

gn= 24.2000 16.9196 5.0000 1.0804 1.8000 1.0804 5.0000 16.9196

en= 1.3295 1.3117 1.1708 0.4452 0.8152 0.4452 1.1708 1.3117

bn_bar= 2.5260 2.2678 1.3885 0.2833 0.6515 0.2833 1.3885 2.2678

Nstar= 8

b_bar= 1.1057

SNRdmt= 5.6002 dB

Even with zero-dB gap, this channel does not have a very high data rate and
uses all dimensions. Notice the channel appears low pass because bits and
energies near Nyquist (the 5th dimension here, DC is the first on left) are
smaller. Changing the gap to uncoded causes a large loss

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,1,8,8.8)

gn= 24.2000 16.9196 5.0000 1.0804 1.8000 1.0804 5.0000 16.9196

en= 2.1354 2.0005 0.9317 0 0 0 0.9317 2.0005

bn_bar= 1.4829 1.2247 0.3454 0 0 0 0.3454 1.2247

Nstar= 5

b_bar= 0.4623

SNRdmt= 8.3337 dB

The SNR increased (but recall this gets divided by the gap so the argument
of the log is smaller). Only 5 dimensions are used by water-filling in this case.
Bigger gap always leads to reduction (or staying the same) in number of used
dimensions. Suppose the transmit energy doubles:

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,2,8,8.8)

gn= 24.2000 16.9196 5.0000 1.0804 1.8000 1.0804 5.0000 16.9196

en= 3.7354 3.6005 2.5317 0 0 0 2.5317 3.6005

bn_bar= 1.8456 1.5874 0.7081 0 0 0 0.7081 1.5874

Nstar= 5

b_bar= 0.6437

SNRdmt= 10.3859

Well, still not so great. How about more dimensions (use the semicolon or it
will print a lot of numbers)

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,2,128,8.8);

>> Nstar = 81

>> b_bar = 0.7893

>> SNRdmt = 11.7818
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Well, reduce the gap to 3 dB?

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,2,128,3);

>> Nstar = 128

>> b_bar = 1.3594

>> SNRdmt = 10.4685

Ok, we’ll live with this design at 1.3 bits/dimension (or almost 11 bits/symbol).
Best possible for this channel is about 1.8 bits/dimension or 14 bits/symbol,
but hard to realize.

>> [gn,en,bn_bar,Nstar,b_bar,SNRdmt]=DMTra([1 .8 .4],.2,2,1024,0);

>> Nstar= 1024

>> b_bar= 1.7749

>> 8*b_bar= 14.1993

The use of this program with a complex channel is illustrated in Lecture. Di-
mensions then are ”complex” and the symmetry in the bit/energy distributions
about Nyquist (or equivalently about DC if one cyclically shifts the distribu-
tions) can be lost if the channel is not symmetric about its chosen carrier
frequency. The input channel response is the complex baseband-equivalent
channel (see EE379 or Chapter 1).

The student is encouraged to experiment with the MA version of this program,
and an example is provided in class. The DMTLCRA program accepts the
same inputs and outputs and produces bit distributions that are integers on
all dimensions.

Now to PS1.3:

a. This part basically has you repeat and understand the class’ and text’s
1+ .9D−1 channel with a different gap and .9→ .5, so run the DMTra.m
program with these input changes.

b. Form the proper Toeplitz convolution matrix to describe the channel
and do svd in matlab on it. The singular values are the channel gains
(square roots). They are not repeated, while the DMT values. How do
magnitudes compare?

c. The idea here is to see that the singular values start to converge on to
the FFT values for large N for the stationary Toeplitz channel.

Vector Coding/MIMO Help First some general Vector Coding material sum-
mary: Vector Coding uses SVD, providing both the transmitter (M matrix)
and the receiver (F ∗ ) for a matrix AWGN, which becomes a set of inde-
pendent scalar AWGN channels with amplitude multipliers λ` . The data
rate (or bits/symbol b` ) is then the sum of the scalar channels’s data rates,∑

` b` = log2(1 + SNR`). (Put a 1/2 in front of log if a purely real baseband
channel.)
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The transmitter M does not change the energy sum over the scalar channels,
nor does the F ∗ receiver change the noise’s “white-ness.” Prior to vector cod-
ing (which single-user MIMO systems use), the other antennas’ (dimensions’)
signals were viewed as “part of the noise.” Thus, it is instructive to appreci-
ate the large difference between vector coding and those earlier systems. So
perhaps there is a 3× 3 matrix

H =

 H3,3 H3,2 H3,1

H2,3 H2,2 H2,1

H1,3 H1,2 H1,1

 =

>> H =

10 -8 6

5 9 -7

4 -6 8

Maybe with Ēi = 1 and independent on each input (so this means Ei = 2 if the
channel is complex baseband). Further suppose σ2 = 1 on each real dimension
for white noise.

To compute the data rate with the other signals as noise, say for output 2
computes

b2 = log2

(
1 +

|H2,2|2 · Ē2

σ2 + |H2,1|2 · Ē1 + |H2,3|2 · Ē3

)
=

>> log2(1 + H(2,2)^2 / (1+H(2,1)^2+H(2,3)^2)) = 1.0566

while the signals are well above the noise, the crosstalk dominates and lowers
this number, which is poor if computed for the other two dimensions, each
treating 2 different dimensions as noise, .9928 for the top dimension and 1.1424
for the bottom dimension. (Note the index reversal from text and matlab.). A
linear MMSE estimator will help, but won’t remove all the crosstalk. That is
subject of another section in PS2.

If an SVD is instead done, then

>> [F,Lambda,M]=svd(H)

F =

-0.6818 -0.5508 -0.4815

0.4685 -0.8342 0.2909

-0.5619 -0.0273 0.8268

Lambda =

18.8697 0 0

0 10.4786 0

0 0 2.2657

M =

-0.3563 -0.9341 -0.0235

0.6912 -0.2804 0.6661

-0.6288 0.2211 0.7455
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and the 2nd dimension’s data rate is instead, with one unit of energy on each
dimension

b2 = log2

(
1 +
|Λ2,2|2 · Ē2

σ2

)
= 6.8 .

A big improvement (and similarly so on the other two channels with top di-
mension as 8.48 and bottom dimension as 2.62. The sum is 17.8. Water-filling
will make this yet better sum of rates. The K for rate-adaptive case with
energy 6 is (all dimensions are used for this water-fall)

>> K=(1/3)*(6+sum(diag(inv(Lambda)^2))) = 2.0689

with then energies and consequent bits

>> E3=K-1/((Lambda(1,1))^2) = 2.0661

>> E2=K-1/((Lambda(2,2))^2) = 2.0598

>> E1=K-1/((Lambda(3,3))^2) = 1.8741

>> sum([E1,E2,E3]) = 6 (good way to check)

>> b3=log2(1+E3*Lambda(1,1)^2) = 9.5249

>> b2=log2(1+E2*Lambda(2,2)^2) = 7.8276

>> b1=log2(1+E1*Lambda(3,3)^2) = 3.4088

>> sum([b1,b2,b3]) = 20.7613 > 17.8

The gain in overall sum is the water-filling on top of the vector coding (vector
coding can use any energy distribution, not just water-filling).

For the problem PS1.3:

1. The solution can use the DMTra.m program. This follows the 1 + .9D−1

inverse in class and text, just .5 going where .9 was in terms of affected
program inputs, and the gap is different.

2. The target error probability P̄e .

Thus, specifically, it does not depend on the data rate ( b̄) directly and is
constant if the code and P̄e are given design targets. The gap thus allows
rate calculation, given the gap and SNR. Thus, a designer need not “redesign”
a code for different data rates; instead the designer knows the same code will
work for whatever data rate that the SNR and selected code/P̄e , equivalently
Γ, support. The gap does not work for low data rates ( b̄ < 0.5).

Smaller gap means better code with Γ = 1 (0 dB) as best, but only ap-
proachable bound with infinite implementation delay. For simple “uncoded”
QAM/PAM (students EE379A will recognize), the gap is typically 8.8 dB (so
that means 10.88 if inserted in the formula) if the usual error-probability tar-
get is 10−6 . The gap is 9.5 dB for 10−7 and roughly 5.8 dB for 10−3 . Some
popular codes have gaps for P̄e = 10−6 :

1. Trellis codes, particularly 4D code, has coding gain γc = 4.5 dB, and
reduce the gap to Γ− γc = 8.8− 4.5 = 4.3 dB
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2. Turbo Codes, two interleaved 8-state binary codes with BICM, γc = 5.5
dB, so then Γ = 3.3 dB.

3. LDPC codes with block lengths of roughly 1000 or more and BICM,
γc → 7 dB, so Γ = 1.8 dB.

4. “Polar Codes” do not have a constant gap and find successful use only
for low SNR channels where b̄ < 1 and unfortunately do depend heavily
on the selected b̄ .

When b̄ is large, approach to capacity will also require a “shaping” code, which
as in Chapters 1 and 2 can add another up to 1.5 dB to coding gain (or reduce
gap by 1.5 dB). This shaping effect is often not used in practice, but would be
necessary to approach the ideal of a 0 dB gap code.

Examples:

1. A channel has SNR = 13.5 dB and uses uncoded PAM/QAM and P̄e =
10−6 .

b̄ = 0.5 · log2(1 + 101.35−.88) = 1 bit/dimension.

If this channel uses a good code with Γ = 7 dB, then the data rate should
increase

b̄ = 0.5 · log2(1 + 101.35−(.88−.7)) = 2bits/dimension.

With Trellis code and 4.5 dB

b̄ = 0.5 · log2(1 + 101.35−.43) = 1.6 bit/dimension.

The best performance would be

b̄ = C̄ = 0.5 · log2(1 + 101.35−0) = 2.3 bits/dimension.

2. Repeating the previous example with SNR = 30 dB yields

>> GAP=[8.8 1.8 4.3 0];

>> SNR=30;

>> b=0.5*log2(1+(10.^(0.1*(SNR - GAP))) =

3.5267 4.6850 4.2706 4.9836 bits/dimension

The gap formula can be solved for required gap in terms of a desired bit rate
b̄

Γ =
SNR

22b̄ − 1
.

or necessary SNR to achieve the desired bit rate

SNR = Γ · (22b̄ − 1) .

resume So, thus the SNR required for 5 bits/dimension with uncoded 1024 QAM
at Γ = 5.8 dB for P̄e = 10−3 is (note here using dB directly since 2b → b·3
dB)

SNR = 10.58 · (22·5 − 1) = 5.8 + 10 · 3 = 35.9 dB .
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resume Or for an AWGN channel with 20 dB SNR and a desired 3 bits/dimension,
the code, with whatever P̄e is the target must have a gap

Γ = 20− 6 · 3 = 2 dB .

When the required Gamma is negative, the desired data rate is not achievable
with any code at any (acceptable) error probability.

The margin γm is similar to the gap, but essentially reduces the gap by an
amount that guards against unforeseen noise. The margin holds for the same
P̄e as the gap.

b̄ =
1

2
log2

(
1 +

SNR

Γ · γm

)
, b̄ ≥ 0.5 .

(Γ · γm) could be viewed as one parameter. Negative margin means that the
chosen code for the gap cannot achieve the data rate. We could repeat examples
in items 1 - 2 with any margin desired. For instance, inserting γm = 3 dB will
roughly reduce all the bits/dimension by 1/2. Often the margin is computed
by

γm =
SNR/Γ

22b̄ − 1
.

or the desired SNR with certain safety margin computed as

SNR = Γ · γm · (22b̄ − 1) .

Thus the margin for a 24 dB SNR AWGN with Γ = 3 dB at P̄e = 10−7 that
attempts 3 bits/dimension is

γm = 24− 3− 6 · 3 = 3 dB .

Equivalently for this rate and a margin of 2 dB, the necessary channel SNR is

SNR = 3 + 2 + 6 · 3 = 23 dB .

Now to PS1.4

a. The gap depends on Pe , and is constant over what other design choice?

b. What caused the gap to reduce from EE379A’s various Chapter 8 studies?
(This is a simple 1-2 word answer.)

c. Work with the formula:

γm =
SNR/Γ

2b − 1
.

d. Use again the same formula as last part.

Partitioning For PS1.5

a. This channel is highly symmetric so all the users should look the same.
This simplifies the amount of computation to respond.

b. You may want to review what a circulant matrix is, even though this is
not a temporal convolution situation.
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c. This is pretty easy recognizing that each user (since wireless) is using a
QAM signal necessarily.

d. The spatial matrix can sometimes be an FFT matrix or have that charac-
ter, even if spatial patterns may not always conform to this pattern. The
special structure makes this problem similar to a DMT problem, even
though the crosstalk is spatial.

e. You can analyze 3x3 water filling pretty easily by hand, but you could
use the programs also - however, there is NO cyclic prefix penalty here
in space time, so you would need to adjust those programs accordingly.

f. The answer to this part is a lot larger data rate than in Part a, demon-
strating basic MIMO gain again.
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