
Homework Help - Problem Set 6

[Stanford EE379 Channel Model]

a. The solution is the convolution of the (normalized) transmit filter (or
basis function), ϕ(t), and the channel impulse response hc(t).

b. Use the the Parseval’s like relationships or simply note the integral of
the basis function has unit value. ϕh(t) normalizes the pulse response to
have unit norm.

c. The solution convolves the normalized pulse response with itself (conju-
gated) and reversed in time to create q(t), which is a channel autocor-
relation with q(0) = 1. Your answer should have (conjugate) symmetry
about t = 0.

d. This last part allows you to see the ISI in discrete time.

e. The peak distortion finds the maximum 8 PAM value for d = 1 (not
d = 2 so divide the usual values for PAM by 2), times ‖h‖ (note not
‖h‖2 ) and the summed absolute values of the discrete time ISI values.

f. This part simply computes the MS distortion so you can compare. You
need a square root on MS distortion to make a sensible comparison with
peak distortion.

g. The AWGN power-spectral density is a variable σ2 , so it needs to be
added to MS distortion before the square-root of the sum is take with
MS analysis. Otherwise, it is plugging into the PAM formula, or you may
find it easier to just use d/2 times the inverse square root of this sum.

[Bias and SNR]

a. The receiver is unbiased if E[α · yk/xk] = xk . Split the convolution of
‖h‖ ·

∑
m xm · qk−m into two parts for when m = k and m 6= k . The bias

should now be clear because the average of any value of xk−m for m 6= 0
is zero. You may now insert values from Problem 3.3 (PS5.1). This value

b. Recall xk and nk are independent. Basically, you need to square α ·yk−
xk and take the mean. Simplify and you should see the DMS in your
expressions as you do. You can plug in values then, and divide the result
into Ex to get the unbiased SNR for the value of α you found in Part a.
No one said the value in Part a provides a good SNR yet, which is the
subject of the next part.
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c. Differentiate with respect to α the answer for Part b and set to zero. This
is a maximum for a single scalar α and the new SNR should be higher
than the answer in Part b. You should see the familiar SNR = SNRu+1
arising if you do this correctly, albeit in a slightly different way than
lecture or text.

d. Specifically, look at E[α · yk/xk] and show it is not equal to xk .

e. This is straightforward and you should know by heart the SNRMMFB

calculation formula.

f. There is a strange result on ISI-free channels that the biased SNR exceeds
the SNRMFB , which simply reinforces that SNRu is the one to use. The
actually SNRMMSE is often close if SNRu = SNRMMSE − 1 is large
and the 1 can be ignored, and the latter can never exceed the matched-
filter bound. There will be a new SNR later that actually can be achieved,
but you don’t need to know that here. It can be less than SNRMFB but
always no less than SNRu and often considerably higher.

[Noise Enhancement] This problem explores the linear equalizers’ difference
as the ISI becomes more severe (larger |a|)

a. This is straightforward algebra on the ZFE and MMSE-LE formulas in
lecture and text. Don’t forget congugates if the channel might be complex
baseband.

b. Using the results of the previous part to plot and you should see that the
ZFE gets really bad for severe ISI while not far off for mild ISI, from the
always better MMSE-LE.

c. This is algebra and quadratic equation, but tries to cause thought about
the channel zeros size relative to SNR.

d. The equalizer basically cancels the channel’s roots with high SNR and
that should be dvident in your results.

e. The center tap should always be the largest here, and you are finding it’s
value as a function of ‖h‖ , a , and SNR . You may want to go back to
time domain after a partial-fraction expansion of the equalizer.

f. This part has you evaluating how the MMSE and ZF approaches deviate
as ISI becomes more severe.

[ISI Quantificaton]

a. This channel is studied in class and in the text, so much of the work is
done already. For Dp , find the qk and note it has only 3 values. Only 2
contribute to peak distortion along wiht ‖h‖ and |x|max , which you can
determine from constellation and from energy.

b. Here, the peak distortion includes the worst-case ISI from the two con-
tributing terms and evaluates Pe (uncoded). It’s almost a coin flip, so
illustrates how bad peak distortion is as a measure on a simple channel.

c. The mean-square distortion is much less and your Pe will be under 0.1
now, still not good but 9 out of 10 bits getting through ok.
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d. Neither system is very good yet, but the MS distortion is better.

Eventually, as you progress in this class, you will be able to make this channel
play very well with no rate loss, even though it appears hopeless at this point.

[Peak Distortion] This is an easy question, so avoid complicating it. It basically
shows the peak-distortion measure is not so bad as the ISI reduces from the
0.9 value to 0.5
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