
Homework Help - Problem Set 5

[Turbo Design and Decodingl]

a. The transmit power is Px = Ēx
T or the sum of the two quantities in dB.

Ēx follows from the SNR and the noise power spectral density.

b. The capacity formula in bits per real dimension follows directly from
SNR .

c. What is the gap Γ for Pe = 10−6 . The input constellation is restricted
to b̄ = 1. Reverse the formulas b̄ = 1

2 · log2(1 + SNR/Γ) and C̄ =
1/2
· log2(1 + SNR) to obtain Γ from the known constellation and the

known capacity. Coding gain γ will then be necessary to get that gap,
recalling that coding gain adds fundamental gain and shaping gain. What
is the shaping gain possible at b̄ = 1? (It is much less than 1.53 dB and
in the text and lectures.)

d. You will need the the randi and sign functions as described in the prob-
lem statement directly. Also recommended are these functions: randn.m
for the Gaussian noise; Comm.ErrorRate.m and errorStats.m , and prob-
ably biterr.m to run perhaps on one of the 1003-bit blocks. The AWGN
command is

y= x+sqrt(10^(-SNR))*randn(1,1003);

uhat=0.5*(1+sign(y)); \% this is the ‘‘uncoded’’ decoder

to add noise at correct SNR level uncoded to the ±1 input x. These
functions work in the same way that they did in earlier lecture examples
to track the error probability over many runs. You should have excellent
agreement of theory and simulation result with the rng(7) seed.

e. Don’t forget to release(errrate) to reset the error-rate counter. The SNR
for a rate 1/2 code reduces by 3dB, even though the distance increases in
proportion to dfree . Remember this 3B for your r = 1/2 selection and
then basically rerun the previous simulation, but now with the vitdec.m
replacing the simple “uncoded decoder” and of course using convenc.m
to encode the 1003 input bits into twice as many output bits. You can
compute the theoretical value of the codeword errors by using the correct
Ndfree , Nd=dfree+1, Nd=dfree+2 for your code and of course the 3 smallest
distances. Should be within 10% of each other.

f. Now, we take one step further and apply a rate 1/3 parallel turbo code.
Remember to reset errrate again. You may need to release your turbo

200

code if you are running for a second time. The programs now needed are
comm.TurboEncoder to set the structure and the corresponding comm.TurboDecoder.
An interleaver order is also needed, so use randperm for this. With the
turbo code, the number of input bits needs to be 1008 instead of 1003
(small bandwidth increase penalty that we can ignore. The SNR needs
reduction, but this time corresponding to a rate 1/3 code. Again, if you
use the proper Nb reduction factor for the ideal interleaver, the agreement
between the simulation and the formula is pretty close (I saw roughly 10%
agreement again) but used 100000 runs. More runs should produce yet
tighter agreement, but takes too long. Throughout you should be seeing
the error probability drop at each step and agreeing with theory. How-
ever, the deviation for the turbo code being larger is simply because to
get accurate P̄b estimates for very small values takes a lot of simulation
runs. Don’t be surprised if you get 0 errors on the turbo code.

[Constraints and BICM] This problem attempts to investigate BICM be-
yond the earlier PS4.5’s simple decomposition into multiple parallel indepen-
dent single-output-bit ”AWGN-like” subchannels that essentially recovered the
constellation expansion from uncoded in the corresponding parallel subcodes’
intelligent constellation partitioning. The coding gain of an outer code (in that
case a Hamming (7,4) code - PS3.4 , Text 2.5) essentially was retained with a
square constellation.

a. The point chosen is close to a decision boundary for the surrounding 4
blue points. As long as ε > 0, it’s easy to see what point is closest for
uncoded. However, when ε = 0, there is a tie between 4 points. The
symbol-level detector then just has to guess one of the 4, so what is the
error probability if they’re all equally likely? However, the surrounding
points bits lead to a lower P̄b that you should be able to find. Hint: with
this gray code in this specific situation, all 3 bit-error rates are the same
and less than the symbol error rate.

b. This is straightforward analysis of 8SQ QAM, which is not complex. For
the bit-error rate, you need Nb for this uncoded 8SQ constellation, and
look at the number of bit errors to nearest neighbors for any 8SQ point.
It’s not too difficult, there is a pattern there.

c. For this y and constellation, you should see ML and MAP being the
same.

d. This part recognizes that matlab fails on its own trellis when k > 1, but
there is enough information between Section 8.2 tables and the constel-
lation’s gray mapping on the coded 16SQ constellation to compute this
anyway.

e. This is a bit tedious, and you have to compute 6 values for the 4 adjacent
points. To assist you, one of them has the sample matlab calculation
below is provided for cut-and-paste purposes - you’ll need to change the
values within but not otherwise need to get syntax correct:

p10=(2*pi*sig2)^(-1)*(exp(-((1.9^2+.05^2)/(2*sig2))) +...

201

exp(-((.1^2+1.95^2)/(2*sig2))) + exp(-((2.1^2+.05^2)/(2*sig2)))) *.5;

p11=(2*pi*sig2)^(-1)*(exp(-((.1^2+2.05^2)/(2*sig2))))*0.5;

LLR1=log(p10/p11)

f. For the gamma values - they exist only for each constellation point, so
recognize there is much duplication here of γ values. You need compute
only 4 values here and commands similar to the one in previous question
are useful to copy/edit again. One should be much larger than the other
3.

g. This is fairly simple to do, but recognizes that the likelihood ratio is
affected when the inputs are not equally likely. In this case, one of the
extrinsics is sufficiently large to reverse the weakest single-bit decision.

[LDPC Use]

a. This follows from a graph in Section 8.3 pretty easily.

b. This is k
n ·

1
T , so find all 3 quantities and compute.

c. For this, the class web site’s get h matrix.m command is needed. You will
need to provide proper inputs to the command in terms of parity, tr , tc ,
and the generic index value. Matlab’s ldpc encoder and decoder programs
need the last n − k columns to be full rank, so the nonsinglastnk.m
program at the web site needs to run on the output of the get h matrix
program to ensure this result. You might use the command

H(end-9:end,end-9:end)

simply to ensure yourself that the submatrices look like shift matrices.

d. This part proceeds to encoding an input, which your can do using matlabs
prbs(10,length) command. While the 462 input bits are divisible by 6,
unfortunately it is the 529 output bits that need mapping onto 64SQ,
so the extra 1 bit forces an almost dummy symbol that will use only
two of its values (those two can be in one of the 32 subsets formed by
partitioning the 64SQ.) You don’t have to get fancy here with special last
symbol - just treat it like the others except some of its bits are dummies
- sometimes also known as “frozen” bits, not transmitted and known to
the receiver.

e. The coding gain provided in Section 8.3’s tables is actually for P̄b so you
can apply that to the formula Q(

√
SNR) directly. You can assume 1/2

the bits in the detected codeword are incorrect if one of them is in error
as a worst case, so multiply by n/2 the bit-error rate.

f. The solutions use the rng(7) seed for all, but the agreement here is very
close to theory. L10 has examples of the sequence of commands necessary
to do this run.

Subsymbol- versus Symbol-Level Deterministic Interleaving This prob-
lem attempts to familiarize you with deterministic interleaving, which is used
at the outer-most levels in concatenated coding systems.

202

a. The G(Dss) is easily as a diagonal with D
J−1)·i
ss entries. For the G(D),

follow Section 8.6.1’s examples to see where the various powers of D go.

b. The inverse needs to have nonegative powers of D to realize, so essentially
the powers of D on any path all-the-way-through must add to a constant
for a triangular interleaver.

c. Follow Section 8.6’s examples. The delay should be constant at (J − 1) ·
(L− 1) subsymbols. The subsymbol-based interleaver and de-interleaver
are easier to draw and this part’s focus.

d. Now, the more involved symbol-based interleaver. Follow Section 8.6’s
examples.

e. There is a slight difference between the two interleavers. G(D) has the
longer delay.

f. You should know that deterministic interleaving multiplies dfree by the
depth.

Wireless Hard-Soft Challenge

a. This first part is uncoded so data rate is R = b/T .

b. This is direct application (in nominal state) of the well-known QAM Pe

formula.

c. 99.9% of the time, it is the answer to the previous question, and .1% of
the time it is the same formula application but with a very low SNR, but
remembering that at some point random selection of an input creates an
upper bound on the symbol-error probability.

d. Basically think how long the burst is and how many bits are then in error.
It’s clear the fading dominates, so this part is simple.

e. Here remember your bandwidth expansion - can you use it here for the
unfaded state to basically ensure very low error rate for that part? Now,
worst case look at the bursts and a simple code (like the 4-state 1/2
code) in terms of say a worst case in fading case of just hard decisions
and correcting them. How long does the burst last, and how long is your
survivor length in the code (which is equivalent to a block length). How
many bits can you correct over this survivor length. Divide the survivor
length into interburst period (and knowing your dfree) can lead to zero
errors from the burst effectively and a low Pe on the remaining non burst.

203

