
Homework Help - Problem Set 4

The first 2 problems take more effort than the latter 3 this week

[4.1 Extended Example] This encoder is the same as in the examples in class
and in the text, but for an extra input bit that simply passes through and in-
verts the other two bits. Basically it attempts to gain familiarity with circuits,
generators, and trellises by asking simple questions, and then provides short
decoding effort with Viterbi detector. There is nothing particularly difficult
here, just basics to get you comfortable by doing what you saw in lecture.

a. The code rate r is simply the number of input bits k (on left in circuit
diagram) divided by the number of output bits on the right. This is
simple.

b. Start by looking at bit u2 ’s path through the circuit diagram as the upper
left entry of the 2 × 3 generator G(D). How many delays does it incur
on the way to the upper output bit. Is anything added to it? This is the
same code in the example in text as top row, but there will be a 0 for
the new output bit. The lower row of G(D) again sees if this input bit
affects any (some, or all) output bits. As given in the problem, it passes
through no delays so there should be no D ’s in the bottom row.

The parity matrix essentially must add another column to the one for the
text’s example. What is the value in that new column? you must satisfy
G(D) ·Ht(D) = 0 for both rows of G(D) and the single row of H(D).
The first two entries can be those for the text’s example. Thus, you have
only one entry to find, the last one on right in H(D). This should be
easy - remember in GF (s0 that any x+ x = 0, no matter what the x is
(that is even if it includes powers of D).

c. It may be simplest here to use the matlab commands. See the poly2trellis
command and its use in L7’s Binary Code Use section, and also plot-
nextsates. Note that matlab’s constraint length is the text’s plus 1 for
the poly2trellis inputs. The commands from there can be reused as long
as you get the right poly2trellis (even if you want to reproduce the con-
ventional trellis, which is not asked by this question). The output labeling
is a little tricky in that matlab’s trellis.outputs essentially provides the
input bits in reversed order, so in each row the stack corresponding to
bit u1 being 0 and 1 (when u2 = 0 respectively correspond to the first
and third trellis.outputs values. Similarly the second stack for u2 = 1

200

contains the second and fourth entries. When using plotnextstates, re-
member the input is trellis.nextStates, not trellis.

d. It’s fun to look at the trellis and get the dfree , which you can easily do,
but since this code has parallel transitions (so each branch has one of
two values), they must also be considered. Matlab’s distspec program
actually will take this into account, so it is a simply run to simply call
distspec(trellis,1) where the 1 causes this program to produce only the
dfree output.

e. You can use the convenc function for the given input to produce the 9
output bits. Start in state zero, and it will end in state zero also. You
should find that these two paths differ by the free distance, and they can
never differ by less than that. Thus, what do you think about these two
paths (all zeros is other path) relative to the ensemble set of paths that
could be compared against all zeros - are some of them further away?

f. The easiest way to work this is to use Viterbi decoding, and in particular
the example vitdec examples in L8, to find the ML estimate. This is a
relatively short span of bits compared to a survivor length of 5ν or longer,
thus it is possible that the 1 bit error cannot yet be corrected. There is
a way for you to verify this using the ’cont’ program input instead of the
’hard’ input.

g. Basically we fix the previous question’s issue here. You can put extra
zeros in to fix the problem, so the survivor lengths are longer. You may
want to review “tail biting” for this question to finish, but even that
might not help. Think in terms of packet length of how to make this
bandwidth loss small.

[4.2 Systematic Encoder] This problem continues your familiarity with convo-
lutional codes by looking at systematic implementations, which are very often
used in the field because if the decoder outputs the bits vi,m , then it is simple
to find the input bits (no inversion of a generator’s sub matrices is necessary
because they equal the input bits). It also explores how two different encoders
(if over properly terminated sequences so all end in same state) produce the
same ML sequence estimate that soft information/confidence can differ.

a. Are k input bits equal to k output bits? (If not, the encoder is not sys-
tematic.) The rest follows easily by counting inputs and outputs to find
the rate. Remember the number of states is equal to 2number of delay elements .

b. The parity matrix is a little more challenging because it has two rows
this time. Gmin(D)’s first and third terms are almost equal so if you add
them, only one term remains, but it’s not quite equal to the middle term
yet. However, supposed you multiple the first and third by D and add
them? Does it look easy for one row possibly now? Repeat this trick now
by looking at the 2nd and 3rd terms, suppose you add them, what is left?
You may note that in GF (2) that 1 +D2 = (1 +D) · (1 +D).

I don’t ask you to check this, but this encoder is indeed minimal at 4 states
(it cannot be produced with less than 4 states), If you are interested in
how to check this, see Appendix B.

201

c. Since this is a rate 1/n code, creating of a systematic encoder is easy.
Just divide all elements by any, but best to divide by minimal polynomial
that cannot be factored - for this code that appears on the right instead
of left; however, without changing any code properties, we can reindex
the subsymbol bits’ order and swap 1 ↔ 3 positions. Fortunately, as in
class, matlab’s bug does not affect r = 1/n codes. The k > 1 for matlab
to fail.

d. Note that matlab has a convention that requires reading the nextStates
information field to understand the outputs field. Because the next-state
label swaps, for instance from 0 2 to then 2 0, this means for the sec-
ond state on the left that the output corresponding to an input bit of 0
goes to the LOWER state. With this in mind, feel free now to use the
plotnextstates.

e. Try clearing the denominators of the two systematic entries in A(D), and
we’re left with 1 in summing those two terms. The last can be zeored.

f. You should use convenc.m with the two encoders Gmin and Gsys . They
will not produce the same output. Why? Remember being the same code
only applies that the overall sets of codewords are the same, whatever the
mapping of input bits to codewords.

g. You will need BSJR BSC for this. The error can be

[0 0 0 0 1 0 0 0 0 0 1 0 zeros(1,18)].

The error can be added to the convenc output using the xor function.
You can convert soft output to hard decisions basically by

−sign (BCJR soft +1)/2 .

Two different codewords may correspond to the same inputs for different
encoders, but when decoded, they should produce the same (hard) input
decision from the same error pattern on the two different outputs; if
one is correct, the other should be also. Soft information, however, can
be different. So in one of these finite-length input soft decisions (so not
really the full codeword as that has semi-infinite length) can provide more
confidence than the other because BSJR minimizes bit-error probability.
If there were decoding errors made, the confidence levels for different bits
may be different in the two decoders for same bit. That does not happen
in this problem.

h. Here repeat the same encoder as a block-diagonal matrix with the correct
two columns deleted, one from each. The rate of the code should be
higher, and this is simple. You can use matlab and should expect free
distance to reduce. You can do this for either Gmin or Gsys . The solution
does both.

i. With the punctured code repeated, you’ll need twice as many zeros as
before to force all to zeros state. The decoder may be in trouble now
with reduced free distance. Thus the BCJR outputs can disagree. The
confidence where they differ may be helpful to note.

202

[4.3 No Free Lunch] This problem illustrates the fallacy of rate 1 binary codes.

a. You should be good at this by now after first two problems, just no
redundancy this time.

b. As it turns out, the matlab programs will produce a trellis for the correct
G(D) inputs. Recall that the constraint length is specified for each row
(kind of a bug, but no feedback here so ok, in matlab). Thus a power of
D in a row of G(D) corresponds in matlab to an input of 2 for that row.

c. Yes, this coding gain really is greater than 0 dB. So far so good, but you
are right to be worried, it’s coming.

d. semi-infinite sequence of 1’s that starts at time 0, which has transform
1/(1 + D). Try on either or both inputs. What happens? This is not
good and it is called a catastrophic encoder. The catastrophy is finite
errors on output lead to infinite input errors.

e. It should be obvious at this point that an infinite Nb means the Pe is
so high that the Q function no longer matters, thus the coding gain is
meaningless for a catastrophic encoder.

f. Adding the extra independent bit basically causes the infinite-length in-
put sequence now to force an infinite-length output sequence, so the catas-
trophe has been averted at the expense of a bandwidth loss. A hint here
also is the rate has dropped below 1. However, even with r < 1, it is pos-
sible to have catastrophic encoders (they have too many states in them
- incidentally, this is what matlab bug produces on the k > 1 encoders
with feedback, a catastrophic encoder, which matlab’s distspec program
proceeds to inform you on the code matlab just designed itself, which is
ironic.)

g. Additionally, by looking at the new trellis, which is not required to draw
but will help you, there are more output levels so it should be also clear
there that this is a better code.

4.4 Exploring Power Bandwidth (again) We’re pounding home now two
weeks in a row the power-bandwidth concept. This is widely misunderstood
by many practicing engineers (even some famous ones), so we’re trying to
ensure those through this class have it firmly understood.

a. This is back to your basic Pe = Q(
√
SNR) calculation. A low SNR

should correspondingly not have great uncoded Pe .

b. Basically, for no more than 64 states, this asks you to read the Tables in
Section 8.2. The correct table should have a code rate that corresponds
to the doubling here.

c. These tabulated codes are guaranteed to be minimal and non catas-
trophic, so indeed they have gains shown. The whopping reduction in
Pe is real.

d. So, the bandwidth power tradeoff is still good IF YOU CAN GET THE
EXTRA BANDWIDTH, even when b̄ < 1.

203

4.5 Satellite This is a simpler basic design problem. The idea is that satellite
channels are basically AWGNs and may allow bandwidth expansion by

a. Basically, you get to increase the symbol rate but retain the same con-
stellation. Thus, there is redundancy for coding at the higher symbol
rate, but a loss in SNR. What is that loss as a function of r .

b. This is standard QAM formula plugging here. It should be easy for you
now.

c. We will need coding gain to offset any SNR loss and indeed much of it
to overcome the SNR loss and reduce the error probability. This is the
r · dfree but now exploiting Gray Coding.

d. Fortunately, the original SNR was not that deficient so a relatively small
number of states and good code selection should work. Try 50% band-
width expansion and there is a well-developed code in the lectures that
should do it.

e. You should be able to label the gray coding independently in the two
dimensions of a QAM signal, so this should be easy. The circuit follows
directly from the G(D) that you chose.

204

