
Homework Help - Problem Set 3

Coherence Time This problem attempts to familiarize the use of basic fading
parameters for a mobile wireless channel, and build some intuition on moving
receivers.

a. The data rate calculation is the same as always (b/T where b = log2(|M |),
so this should be trivial for you at this point.

b. The average error probability needs to incorporate the average over the
fading distribution. The non-fading Pe is the simple Q-function expres-
sion for SQ QAM for which comfort grows at this point. The other
formula comes from L5:14 or from Section 1.6.2.1 where you should rec-
ognize that Ex,g → κ·SNR , where the κ is the SQ QAM scaling constant.
Your intuition should tell you which one is worst, but get both numbers
and see by how much. Don’t be surprised if it is significant.

side comment: Even though significantly worse, it could well be that
the outage probability (not computed here and depends upon specified
acceptable gain level) might be acceptable with just a little more SNR (or
a reduction of rate to 16 QAM). What this suggests is that time-varying
systems may benefit from an outer concatenation of another code that is
often able to correct any data lost to outages, but may well be working
well (like your no-fading answer) a significant fraction of the time.

c. The max Doppler frequency is the fraction of (vehicle speed/speed of
light) times the carrier frequency. Faster speed, or higher carrier, create
a faster time variation.

d. The coherence time is basically the time that we can trust the channel
to be roughly stationary. There is a formula for this (an approximation)
on L5:17 as well as in Section 1.6. We probably want to have many
transmissions within the coherence time, which then allows us an ability
to learn the roughly stationary channel gain/SNR over that period. That
means wider bandwidth (more symbols per second) can be an advantage
- this ultimately was a component in wireless systems’ increasingly using
more bandwidth per user, although perhaps multiplexing several into a
common wider band in ways that allow each gain to be learned over some
good choice of packet period. Your answers here might suggest why a 6
GHz carrier might uses such a large symbol rate of 300 MHz.

e. This kind of puts your intuition to work. 27 dB = 500. A very rudi-
mentary Chapter 9 has been added to web site. Look at the channel ID

200

section if you want the full theory. However, for here, we should under-
stand that σ2 =

Ex,g
500 on average. Since it varies, we must estimate this

gain. That estimate will be Ex,g +∆Ex,g . The estimate’s offset ∆Ex,g will
basically reduce as Ex,g/L where L is number of measurements of g (see
Section 9.1.1 if you want more complete explanation of gain estimation).
We want Ēx,g/(σ2 + ∆Ex,g) ≥ 102.6 or 26 dB (so less than 1 dB loss).
Approximating σ2 = 10−2.7 · Ēx,g , then basically 1/500 + 1/L ≤ 10−2.6 .
The solution is roughly L = 2000. Now you can compare this to the
coherence time.

f. The first term is kind of a gross gain based on distance and obstacles
through which waves must pass - any movement is caught in the variance
of the fading parameters. This should help you think through it.

g. This is plugging into the formula given for ak .

h. The power delay profile just sums the values in each of the table’s columns.
There is a normalization to a probability-distribution-like quantity, for
which it is ok to use a sum of squared values x probability to get rms
delay spread.

i. if your gut tells you that this should vary over such a wide transmission
bandwidth, it is correct. However, you will need to use the formulas from
L5:17 on rms delay spread and coherence bandwidth to compare to the
300 MHz symbol rate and see how much. Is the coherence bandwidth
less than 300 MHz? If so, this is frequency-selective fading.

Explore Fading Impact This problem starts like the previous one in PS3, but
with 16 QAM. Parts a and b then refer to the previous help.

c. At this point, this problem deviates to simulate no fading and fading and
checks the formulas versus simulation. You may use the comm.ErrorRate
facility. You may need to reset(errrate) if you reuse this label from earlier
assignments. Do not use the awgn.m program. Just set up the Ex and N0
directly and create an AWGN like in L3:26. Same commands basically.

c. The doppler this time requires you to convert units and compute.

c. The Rayleigh command object’s use appears in L5:21 ”To generate Rayleigh
Fading Outputs” slide. Remember to reset(rayleighchan) or whatever
your name for the object when you run simulations that have condi-
tions that have changed. You’ll need to use the qammod function to
generate points and then scale them by the rayleighchan object’s appro-
priate output. I did 10k channel simulations, each with 1000 transmis-
sions. That did not take very long in matlab. Again, you may use the
comm.ErrorRate to help count errors. This should match pretty closely
Part b’s theoretical answer.

c. The doppler frequency follows the formula fd = (vc) · fc . This is easy.

c. Now we repeat Part c but need to make the channel gain random using
the rayleighchan program, so rather than just adding noise we take the
faded output of rayleigh chan and add noise. Try 100k runs instead of

201

10k, this improves the results without taking too much more time. You
should get a match to theory in part b to within ±10 − 15%. More
accuracy requires even longer runs, which would take too much time.

LLR calculation This problem directly minimizes bit-error probability by com-
puting log likelihood ratios for the 3 bits of input in 8 PAM.

a. Start by finding pui,y in terms of the channel distribution py/(u1,u2,u3) ,
recognizing that it is the margin distribution that occurs by summing
py,(u1,u2,u3) over the other two bits possible values. What is the input
distribution if uniform with 8 points? Use that to simplify.

b. Since the detector is for a single bit, then how many values can it have?
(This is that simple.)

c. If we sum over the other two bits, how many possibilities? (This is almost
as simple.)

d. Look at the argument in the given expression’s exponent term? How
many values can there be for this term - compute them. Then add various
combinations thereof to get the values for each bit’s possible values. You
can now see which is largest and implement the MAP/ML detector.

e. The LLRs simply follow from the ratios of the probabilities just computed
for each of the bits. It is possible to have an infinite LLR, which means
confidence is very high for the decision. We are now starting to see not
only a decision, but also soft information about the decision’s reliabliity
for each of the bits.

f. Investigate or thing about these differences in terms of their being expo-
nentiated. What does that mean for some of the terms?

g. This part of the problem is emphasizing the Gray coding’s improvement in
that most errors are because the decoder picked the correct PAM value’s
nearest neighbor.

h. Try to keep in mind that a binary-bit code would correct up to bdfree−12 c
errors - However if the code corrected only symbols and an error was
made, we’re back to the potential of bit errors associated with the PAM
mapping instead of the code.

Mapping QAM to DMC This problem uses your established familiarity with
an AWGN to investigate its after-decoded use in an outer code through sym-
metric DMC modelling.

a. This progresses easily based on the SQ QAM Pe formula that depends
on SNR and constellation size. Clearly the 16QAM has more subsymbol
values and should have a larger Pe if all are used, which is assumed in
this first part.

b. For the QAM system, it is basically uncoded with 4 bits mapped into 16
symbol values. This basically asks how many real dimensions and views
QAM as trivial two-dimensional code. For the bit-level coded system,

202

each bit is a subsymbol so your answers will change, illustrating different
coding views of essentially the same electronics.

c. Redundancy measures the extra bits in a constellation. It’s easy when
viewing the code at bit level. It is possible to also view a series of 16QAM
choices as subsymbols in a code, and then we would get different values
for the redundancy, but that is not what is happening here because the
code extends only over 4 bits.

d. Simple parity forces any codeword to have an even number of 1’s in it,
so what is dfree . Adding an overall parity bit to any code extends it to
be an even code where all codewords have even parity.

e. If this code with described hard ML decoder cannot correct errors, do
you expect it to perform better?

f. This is for the uncoded system, so we count real dimensions for N always,
which should make it easy to see for this one symbol to find values.

g. The previous question’s answer is irrelevant, so this tests if you can see
that the SDMC inner model’s internal parameters are not pertinent to
the outer code in this problem.

h. You may use the symbol rule that P̄b ' b · Pe for this part.

i. The original system has 6 information bits per byte, so this will limit
the redundancy that the outer system can use. Clearly smaller N in
the outer system with a large P that does not cause the data rate to
decrease.

j. We can try a few N ’s with implied P ′s for maximum correct, but not
exceeding the redundancy limit. I was able to get close in 4 guesses
by just using the function provided. Try a few values and evaluate the
Pe . Nearest neighbors are important, which is why the matlab routine is
suggested. You may want to visit the expressions in Section 2.2.2.2 for
the nearest neighbors Ne = N0 of an MDS code - just use first term here.
(Probably using additional terms increases the Pe somewhat although
distances are increasing and reduce those additional terms also, but we
ignore that in this problem.)

k. The data rate can be increased by increasing the codeword length by
more than 4/3 times the parity increase. Try large N and P = 16, see
what you get.

Bandwidth Expansion This problem tests the trade between equal factor in-
creases in energy versus bandwidth, as well as design with QAM on AWGN.

a. The problem statement’s hint almost gives away what we want you to do
already.

b. Compare to BPSK with larger symbol rate. You should get a much better
design because there is no bandwidth limit, even though the power is
limited.

c. We just ask here for you to compare the BPSK data rate to the 128SQ
data rate.

203

d. This just restates the rule that you should be by now well understanding.

e. The G matrix is always k × n , so this should be easy and it is the
Hamming code you’ve seen in class as an example.

f. The dfree calculation for this code is in Lecture 7.

g. Since this code is being used with a binary system, we will need to expand
the clock rate. You may presume the BPSK system is running at some
symbol rate. Use of the unused quadrature dimension would reduce the
dmin by

√
2 so it is equivalent to doubling the bandwidth if the distance

is maintained. In other words, coding gain r · dfree applies directly to
BPSK. Thus, since we have more output bits than input bits, how much
does this sampling rate have to increase if we maintain the same data
rate R? This is easy, it is n/k for any binary code.

h. At constant power, the energy is spread over wider frequency band so the
loss is 10 · log10(r).

i. Fortunately the coding gain more than offsets this in that d−free > 1/r
for this code. That is γ = r · dfree > 1.

j. We’re looking for the simple understanding here that it must be possible
to increase the clock rate - that is, the extra bandwidth is available for
use.

k. This question causes thought on how far can we extend this “free band-
width” concept. You know r for any code must not exceed the C̄ , and as
we increase bandwidth sufficiently even C̄ < 1. However, R is increasing
linearly with 1/T = 2W while loss of data rate is only logarithmic with
reduced power (SNR). Write the Ēx in terms of C̄ and σ2 , and divide
by C̄ - this is lowest energy/bit possible. Let C̄ → 0 as the bandwidth
increases to infinity. This will be a finite limit of how much energy must
be spent to send a bit.

l. There are 7 output bits on this code, so we use 128SQ. Unfortunately,
the gray code does not work for odd SQ constellations, but the “ideally”
here means that the nearest neighbor count can be assumed to be 1-bit
error. It can be made close to this, but not actually achieve in practice,
but I don’t want that detail to get in the way of this problem’s analysis.
This problem instead wants to make you think, which 16 point subset
might the design pick? How much does their intra-set distance increase?
It’s ok to subtract any nonzero mean from any such subset. What are we
left with as best choice? If you are not finding any advantage, then you
are on the right track. Just explain it.

m. Now, you are an interleaver designer. The Gray Coding has a shot now
because of the 3 independent codes.

n. Basically, the entire coding gain of the Hamming code should be possible
if we can truly make each use equal to an AWGN. There is still an energy
loss from using 128-point constellations, but we are effectively designing
a different type of code with the interleaving that indeed can obtain in
the limit the 2.4 dB. Even better binary codes can gain more with BICM.

204

