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Announcements & Agenda
§ Announcements

S9C: 2

§ Lattice Cosets and Squaring
§ Reed Muller Trellis Descriptions
§ Conversion to/from generator



Lattice Cosets and Squaring
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Lattices and Cosets (Appendix B)
§ Lattices Λ can be defined over countably infinite fields like ℤ or ℤ!…

§ Or as over finite fields like 𝔽! = 0,1  or 𝔽!! = 00, 01, 10, 11 .

§ Such lattices can be partitioned by a sublattice Λ’, so ⁄ℤ! 𝐷! has two subsets (odd squared norms and evens).

§ 𝔽!!/𝐷!	also has two subsets 𝐷! = 00, 11   and 𝐷! + [01] = 01, 10   , so ⁄ℤ! 𝐷! = 𝔽!!/𝐷! = 2 .
• 𝐷!= 𝑅! # ℤ!   where 𝑅! =

1 1
1 1  , where 𝑅! is a rotation matrix in 𝔽!!, also 𝑅" =

𝑅! 0
0 𝑅!

.    𝑅! doubles free distance.
• 𝑅"  " ℤ! = 0000, 0011, 1100, 1111 , a set of 4 members;  while ℤ" is a set of 16 members. ⁄ℤ" (𝑅%# ℤ") = 4.

§ These subsets are cosets.  
• The coset leaders 𝒄 are also a set ([00] and [01] for 𝐷!) that can be added to the sublattice to recreate the entire original lattice. 

§ The coset leader set is written ⁄ℤ! 𝐷!  or 𝔽!!/𝐷! .  
• These coset-leader sets are lattices themselves in in 𝔽"", and in fact characterize RM codes. 
• Unlike 2ℤ! for integer-pair lattices, 2𝔽!! = 00 , while the former is a lattice with all even integer pairs. 
• So binary lattices, which have 2ℤ"! as a sublattice, are simply the coset leaders (the RM codes) with binary arithmetic up from 2𝔽!"

!
 = 

00	… . 00 .

§ Partition Squaring is the double-dimension-size set 𝝀'( + 𝒄, 𝝀!( + 𝒄  where 𝒄 ∈ Λ/Λ′  , and 𝝀'( ∈ Λ′ , 𝝀!(  ∈ Λ′.
• So when Λ′= 2ℤ!! , then the squaring construction repeats the coset leader 𝒄.
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Reed Muller Trellis Descriptions
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Sections 7.2 and 8.1.3 
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Reed Muller Code Recursion

§ Squaring doubles RM codeword length and free distance; 𝐺+, -,/  adds offsets that are codewords of a 
smaller more powerful (double 𝑑0-11) RM code.

S9C: 6

𝐺/0 1,2 =
𝐺/0 1,234 𝐺/0 1,234

0 𝐺/0 134,234

Upper rows are squaring construction 𝒄	, 𝒄

Lower rows are elements in Λ′ 

𝐺 +,
-,/
23

𝐺+, -23,/23

𝐺
+,

-,/23

𝐺
+,

-,/23 𝐺 +,
-,/
23

§ The repeated lower branch differs only in 1-to-1 mapping from the zeros, by adding 𝝀45 − 𝝀35  on one side 
and zeros on the other (since the codes are linear, this does not change the code).

§ 𝐺(-7/,/) = 𝐺(-9:,/) = ∅

§ 𝐺(:,:) = 1

§ 𝐺(/,/) = 𝐼4!

§ 𝐺(:,/) = 1 1 ⋯ 1

Section 8.1.3 
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Reed Muller codes
§ RM 𝑟,𝑚 .

• 𝑛 = 2#

• 𝑘 = ∑$%&' 𝑚
𝑖

§ 𝑑)*++ = 2,-*

§ Augmented Hadamard has 𝑟 = 1.

§ Initialize:
• 𝐺"# $,$ = 1	 ;	𝐺"# &,$ = ∅	
• 𝐺"# '(),) = ∅;	𝐺"# '*$,) = ∅

§ The RM Recursion

• 𝐺"# ',) =
𝐺"# ',)+& 𝐺"# ',)+&

0 𝐺"# '+&,)+&

• 𝑑,'-- ',) = 𝑚𝑖𝑛 2 1 𝑑,'-- ',)+& , 𝑑,'-- '+&,)+&

Recursively Defined

Section 8.1.3 S9C: 7

§ Repetition Code 𝑅𝑀 0,𝑚  ,  𝑟 = .
/ 

§ Simple Parity Check 𝑅𝑀 𝑚− 1,𝑚  , D4 Lattice, 𝑚 = 2 
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Use Table, look at 𝚲 column
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§ 𝑅𝑀(1,2)	or more generally 𝑅𝑀(𝑚 − 1,𝑚)	codes have distance 2 and 𝑟 = =!(-'
!( and have one parity bit

• Selects “every other point”  (so like 32SQ from 64SQ, but binary and multidimensional) 

§ Section of RM Table

⁄ℤ! 𝐷! = 00	, 01  = possible cosets (2)
ℤ!= 𝐷! ⨁ ⁄ℤ! 𝐷! 𝑅𝑀 0,1

Λ
Λ′

00	, 11

𝐷0

𝐷0# = simple parity code

𝐷0#
1  =  repetition code

⁄ℤ! 𝐷! ! has 8 (4D) elements
00	
, 11

01	, 10 01	,
10

00	, 11
8 codewords

partition squaring of ⁄ℤ! 𝐷! into 𝐷"
Simple parity code trellis  

𝐷7
𝐺)," = 𝐼! 𝐼!

0	0 1	1

00

11	
11

00

2 codewords

𝐷78

partition squaring of ⁄𝐷! ∅ into 𝐷"+
repetition code trellis

𝐺,," = 1	1	1	1

𝐷" = ⁄ℤ! 𝐷! ! 𝑅𝑀 1,2
𝐷"+ = ⁄𝐷! ∅ !

Section 8.1.3 

# of states
(middle)
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Basic 𝑫𝟐𝒎	Root Trellises & Squaring
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00	
, 11

01	, 10 01	, 10

00	, 11

8 codewords

Redrawing	𝐷2 into its 2 cosets of 𝐷0 0 ; 
each contains 4 codewords 

𝑢)-

𝑢!-
𝑢,-

§ Open 𝐷I 

2 cosets x 1 codeword x 1 codeword

𝐷. = 	ℤ"/𝐷" !	
𝐸. = 𝐷"/𝐷"+ !	
𝐷.+ = 𝐷"+/∅ !	

𝐺",.
𝐺/,. 2 cosets x 8 codewords x 8 codewords

4 cosets x 2 codewords x 2 codewords

𝐺,,. = 1	1	1	1	1	1	1	1  

1		1

1		11		1

0		1

0		1

0		1

1		0

1		0
1		0

0		0

0		0

0		0

𝐸3 = 𝐷2/𝐷21 0 = 	ℤ0/𝐷0/ ∅ 2

1		1

1		1 1		1

0		1

0		1

0		1

1		0

1		0
1		0

0		0

0		0

0		0

Viterbi (Trellis) Decode (or BCJR …)
Section 8.1.3 

# of states
(middle)
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16D Trellises

§ Best to go to 4-stage trellis diagrams

§ Low rate RMs have easy trellises
• And large free distance
• Only 8 states (max in middle)

§  Decode each stage’s metrics
• Viterbi at higher level on each

S9C: 10

𝐷,0 = 	ℤ./𝐷. !	

Λ,0 = 𝐸./𝐷.+ !	

𝐷,0+ = 𝐷.+/∅ !	

𝐺,,,,0
𝐺,1,,0 2 cosets x 128 codewords x 128 codewords

8 cosets x 16 codewords x 16 codewordsΛ,0+ = 𝐷./𝐸. !	
𝐺1,,0 8 cosets x 2 codewords x 2 codewords

𝐺,,,0 2 cosets x  1 codeword x 1 codeword

! !,
#

!" 2,4 , &' = $$
$%

Λ!"# = 	ℤ$ ,$⁄ /,$# $

= ,%	//%	 '

!" 2,2 !" 1,2⁄ /!"(0,2) $ !" 1,2 !" 0,2⁄ /!"(−1,2) $

! !
,&

!!,!

Λ!" = ,$ ,$#⁄ /∅ $

= /%	/!%	 ℤ% '

!" 1,4 ,&' = '
$%

! !
,#

!!,&

! !,
(

4 bits 3 bits 3 bits 1 bit 3 bits 1 bit 1 bit 0 bits

Section 8.1.3 

# of states
(middle)
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Major 32 Trellises and RM Codes

S9C: 11

! !
,#

!" 3,5 , &' = $%
&$

)!" = 	ℤ# ,#⁄ //# $

= ,%&	/0 %&	 "

!" 3,3 !" 2,3⁄ /!"(1,3) $

!!,!

! !
,'

12 bits 5 bits 5 bits 4 bits

! !
,(

!" 2,5 ,&' = )%
&$

0!" = ,# /#⁄ /,#( $

= 0%&	/Λ %&	 "

!" 2,3 !" 1,3⁄ /!"(0,3) $

!!,'

! !
,#

7 bits 4 bits 4 bits 1 bits

! !
,*

!" 2,5 ,&' = %
&$

Λ!" = /# ,#(⁄ /∅ $

= Λ %&	 /,%&( "

!" 1,3 !" 0,3⁄ /!"(−1,3) $

!!,#

! !
,(

4 bits 1 bit 1 bit 0 bits

§ These are 4-stage diagrams, so the blue-crossed boxes need recursive decoding by earlier trellises
• And their cosets
• 𝐻40 has 64 states in middle, but just there, 16 elsewhere

Section 8.1.3 
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64D and 128D

§ Can get complex, but not for the low-rate codes or good choice of product code rates to avoid outrageous state counts with iterative decoding.

S9C: 12Section 8.1.3 

! !
",!

!" 2,6 , &' = $$
%&

)!" = Λ#!$ Λ#!⁄ /!#!ℤ#! "
= )%&	/Λ%& &

!" 2,4 !" 1,4⁄ /!"(0,4) "

!!",!!

! !
",'

11 bits 5 bits 5 bits 1 bit

! !
",(

!" 1,6 , &' = )
%&

Λ!" = Λ#! 4#!$⁄ /∅ "

= Λ %&	 /4%&$ &

!" 1,4 !" 0,4⁄ /!"(−1,4) "

!!",'

! !
",!

5 bits 1 bits 1 bit 0 bits

! !
",'

!" 3,6 ,	&8 = &$
%&

9!" = 4#! Λ#!$⁄ /Λ#! "
= 9%&/)%& &

!" 3,4 !" 2,4⁄ /!"(1,4) "

!!",!'

! !
",!
!

15 bits 11 bit1 11 bits 5 bits

! *
+,!

!" 2,7 , &' = $,
-$.

)#&( = )%& Λ#!⁄ /!%&ℤ%& "

= )!"	/Λ!" &

!" 2,4 !" 1,4⁄ /!"(0,4) "

!*+,!"

! *
+,"

16 bits 6 bits 6 bits 1 bit

! *
+,(

!" 1,7 , &' = .
-$.

Λ#&( = Λ%& 4%&$⁄ /∅ "

= Λ !"	 /4!"$ &

!" 1,4 !" 0,4⁄ /!"(−1,4) "

!*+,"

! *
+,!

6 bits 1 bits 1 bit 0 bits

! *
+,"

!" 3,7 ,	&8 = %&
-$.

9#&( = 9%& )%&⁄ /Λ#! "

= 9!"/)!" &

!" 3,5 !" 2,5⁄ /!"(1,5) "

!*+,+"

! *
+,!
"

26 bits 16 bit1 16 bits 6 bits



Conversion to/from Generator
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Section 8.1.3 
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Relating the generators for decoding

§ Step 1 – label the trellis with 𝒖′ .

§ Step 2 – find the 𝐺′

§ Step 3 – find the unimodular 𝐴 matrix that converts 𝐺 = 𝐴 " 𝐺′

§ Step 4 – reverse 𝐴  on trellis decoded bits 𝒖′ " 𝐺$%& " 𝐴%&

S9C: 14Section 8.1.3 

00	
, 11

01	, 10 01	, 10

00	, 11

8 codewords𝑢)-

𝑢!-
𝑢,-

𝐴7,934 = 𝐴7,9
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