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Announcements & Agenda

= Announcements

= Lattice Cosets and Squaring
= Reed Muller Trellis Descriptions
= Conversion to/from generator
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Lattice Cosets and Squaring

Section 7.2
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Lattices and Cosets (Appendix B)

= Lattices A can be defined over countably infinite fields like Z or Z? ...
= Or as over finite fields like F, = {0,1} or F5 = {00,01, 10, 11}.
= Such lattices can be partitioned by a sublattice A’, so Z? /D, has two subsets (odd squared norms and evens).

= [F3/D, also has two subsets D, = {00,11} and D, + [01] = {01,10} , so IZZ/DZI = |IF%/D2| =2.
e D,=R,-7Z? whereR, = [1 1] where R, is a rotation matrix in F3, also R, = 0 R, R, doubles free distance.
e R,-7*={0000,0011,1100,1111}, a set of 4 members; while Z* is a set of 16 members |Z4/(R4 Y| = 4.

= These subsets are cosets.
* The coset leaders c are also a set ([00] and [01] for D,) that can be added to the sublattice to recreate the entire original lattice.

= The coset leader set is written [Z2/D,] or [F5/D,].

* These coset-leader sets are lattices themselves in in FZ, and in fact characterize RM codes.
*  Unlike 2Z?2 for integer-pair lattices, 2IF5 = {00}, while the former is a lattice with all even integer pairs.
. %(C))Obinargd?ttices, which have 272" as a sublattice, are simply the coset leaders (the RM codes) with binary arithmetic up from 2FF3 =

= Partition Squaring is the double-dimension-size set [4; + ¢,4; + c] where ¢ € [A/A] ,and 41 € A", 25 E A
Cﬁ So when A'= 2Z2", then the squaring construction repeats the coset leader c.
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Reed Muller Trellis Descriptions

Sections 7.2 and 8.1.3
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Reed Muller Code Recursion

c [GRM(r,m—l) GRM(r,m—l) Upper rows are squaring construction [c, c]

RM(r;m) = 0 GrM(r-1,m-1)] Lowerrows are elementsin A’

= Squaring doubles RM codeword length and free distance; Ggp(r,m) adds offsets that are codewords of a
smaller more powerful (double df;..) RM code.

G(r>m,m) — G(r<0,m) =0

G(O,O) == 1

G(m,m) = Ipm

" Gomy =[11 1]

= The repeated lower branch differs only in 1-to-1 mapping from the zeros, by adding A5, — A7 on one side
and zeros on the other (since the codes are linear, this does not change the code).

C_J
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Reed Muller codes

= RM(r, m). = Repetition Code RM(0,m), r ==
e n=2m
_ _ | Grm©,0 GrMm(©0,0) ] _ [ Gi1 Gia ] _
- k=Y, (T:l) Grm0,1) = G1,2 { 0 Grar(-1.0 0 0 [1 1]
" dfree =2mTr

- Augmented Hadamard has r = 1. = Simple Parity Check RM(m — 1,m), D4 Lattice, m = 2

Grma2) = G34= {

1 010
Grma,1 Grma, ] _ { Gao Gap } “lo1o01
0 00 1 1

GRrumo,1) 0 Gipg
Recursively Defined (8.47)
The code RM(m — 1,m) is always a parity-check code with rate r = (2™ — 1)/2™ and
= |nitialize: dfree = 2. Thus,
c G =1;G =0 c & o & 1010
RM(0,0) » GrM(1,0) GRM(12)=G3,4={ Rat(r GRM(m)]:{ 2,2 2,2}: 010 1
. . ’ RM(0,1) 0 Gip 00 1 1
* Gru@>mm) = @; Grm@r<om) = 1) (8.48)
The RM(1,2) code also corresponds to Appendix B’s Schlafli D4 Lattice. Further iteration
leads to
= The RM Recursion [ Grme2) Grme2)
GrMm2,3) =Grg= 2 g
G G ! ' 0 Grm(@,2)
. G __ |YRM(rm-1) RM(r,m—1) i
RM(rm) = 0 G 10001000
RM(r—-1,m-1) 01000100
. 00100010
¢ dfree(r,m) = mln(z : dfree(r,m—l): dfree(r—l,m—l)) = [ GS"‘ g“ } = ]00010001 (8.49)
3 00001010
| 00 0O0O0OT1TQO0T1
Q;T:J (00000011
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Use Table, look at A column

= Section of RM Table

# of states {00,11} D,m = simple parity code

) M(zniddle) - Py o
|l m | on | dfree | M(mm) | 2700 A D, Dym = repetition code
0| o 1 1 1 0 Z

1 Dy A [Z?/D,] = {00,013} = possible cosets (2)
1 1 % 1 1 1 72 A Z*=D, @ [Z%/D,] RM(0,1)
o | 2 1 4 1 2 Df Dy = [D,/0]?
1 2 3 2 2 2 Dy D, = [72/D,]? RM(1,2)
2 2 3 1 1 0 z4

= RM(1,2) or more generally RM(m — 1, m) codes have distance 2 and r = 2m‘l/zm and have one parity bit
* Selects “every other point” (so like 325Q from 645Q, but binary and multidimensional)

I I
Gra=[1111] [Z?/D;]? has 8 (4D) elements G5, = [020 121
C" partition squaring of D, /@ into Dy partition squaring of Z2 /D, into D,
#a repetition code trellis Simple paritv code trellis . .
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Basic D,m Root Trellises & Squaring

[3

wl

0| 2 1 4 1 2 Dy
1 2 3 2 2 2 Dy
2 | 2 + 1 1 0 z4 Gig=1[11111111]
0 3 L 8 1 2 D¢ D = [Di/9]? - 2 cosets x 1 codeword x 1 codeword
1 3 2 4 3 4 Eg Eg = [D,/Di]*> Gag 4 cosetsx2 codewords x 2 codewords
7 _[74 2
21 3 8 2 3 2 Ds | Dg =[Z%/D4]* G788 2 cosetsx 8 codewords x 8 codewords
3 3 8 1 1 0 z8
# of states
(middle)
= Open Dy

Redrawing D, into its 2 cosets of (D,)?;

[0 0]

[0 O]
[o
Eg = [D4/DF? = [ 72/D5/ 01* R
N8

[t o]

[0 1]

each contains 4 codewords

Viterbi (Trellis) Decode (or BCJR ...)

February 3, 2026
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16D Trellises

0| 3 5 8 1 2 Dg 1
1| 3 s 4 3 4 Eg 3
2 | 3 z 2 3 2 Dg 1
3| 3 8 1 1 0 78 0 . Lo
o | 4| & 16 . ) D . Dis = [Dg/®]° G116  2cosetsx 1codeword x 1 codeword

_ 172
1| 4 5 8 4 8 A1g 1 Mg = [Eg/Dg]° Gsi16 8 cosetsx2 codewords x 2 codewords

L
2| 4 16 4 6 8 Atg 2 Ate = [Dg/Eg]®> Gi116 8 cosetsx 16 codewords x 16 codewords
15
i 16 2 4 2 P1e ! Dig = [Z8/Dg]* Gy516 2 cosetsx 128 codewords x 128 codewords
4 | 4 16 1 1 0 216 0
# of states [RM(2,2)/RM(1,2) /RM(0,2)]* [RM(1,2)/RM(0.2) /RM(~1.2)]"
(middle)

= Best to go to 4-stage trellis diagrams

= Low rate RMs have easy trellises
* And large free distance
* Only 8 states (max in middle)

= Decode each stage’s metrics
* Viterbi at higher level on each

4 bits 3 bits 3 bits 1 bit 3 bits 1 bit 1bit 0 bits

Cﬁ
4 AJ{s =[2z*/D, /Dzﬂ4 Ay = [D4/Di /0]* . .
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Major 32 Trellises and RM Codes

= These are 4-stage diagrams, so the blue-crossed boxes need recursive decoding by earlier trellises
* And their cosets
* Hs, has 64 states in middle, but just there, 16 elsewhere

[RM(3,3)/RM(2,3) /JRM(1,3)]* [RM(2,3)/RM(1,3) /RM(0,3)]* [RM(1,3)/RM(0,3) /RM(—1,3)]*

v A B :

97 V
RM(35),b=2% o RM(25),b = 3 Go RM(2,5),b = &

7 E 7 E -7
N

&

12 bits 7 bits 4 bits 4 bits 1 bits 4 bits 1 bit 1 bit 0 bits
X5z = [7%/Ds /Eg]* Hs2 = Do/ g /D5 I Asz = [Ea/ D3 [0]*
=[D16 /H 16]* =[Hie /A 16 =[A 16/Df'6]2
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64D and 128D

[RM(3,4)/RM(2,4) /RM(14)]* [RM(2,4)/RM(1,4) /RM(0,4)]* [RM(1,4)/RM(0,4) /RM (=1,4)]*

./ NV )

A
4 <

RM(3,6), b =2

N
Am//

RM(2,6),b =% RM(1,6),b=Z

M\/\ // §Gi\/\/77
<X X

15 bits 11 bit1 11 bits 11 bits 5 bits 5 bits 1bit 5 bits 1bits 1 bit 0 bits
Xea = [D16/ M6 /A16]* Heyq = [Af6/Ar6 /Ri6Z'*]* Ags = [A16/Di% /0]*
= [X32/Hs,? “ . [H;Z /A1362] * o = [AI;/D?Z{Z
[RM(3,5)/RM(2,5) /RM(1,5)]* [RM(2,4)/RM(1,4) /RM(0,4)]* [RM(1,4)/RM(0,4) /RM(~1,4)]*

7 D

N 78N X

: -/ N

RM(3,7),b = \ RM(2,7),5 = 2 RM(L7),b =
A‘m// Am// nmnm//
26 bits 16 bit1 16 bits 16 bits 6 bits 1 bits. 1bit 0 bits
X128 = [X32/Hzz [A16]* Hypg = [Haz/A16 /R32Z3%]* Aizg = [A32/D3 /0]*
= [X64/Hea)? =[Heq /A6al? = [A 64/Dg4]?

[j = Can get complex, but not for the low-rate codes or good choice of product code rates to avoid outrageous state counts with iterative decoding.
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Conversion to/from Generator

Section 8.1.3
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97 101,10}

piS February 3,2026

Step 1 — label the trellis with u’ .

Step 2 — find the G’

Step 3 — find the unimodular A matrix that converts G = A - G’

Step 4 —reverse A on trellis decoded bitsu’ - G'~1 - A~

Section 8.1.3

S OO+

SO O = O

O = O -

RM (r,m—1)

-1
RJl\J('r'—l,m—l)

RM(r—1,m—1)

-1 _
Ayz = Asg
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