

Supplementary Lecture 9C Reed Muller Decoders February 3, 2026

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2026

Announcements & Agenda

Announcements

Lattice Cosets and Squaring
Reed Muller Trellis Descriptions
Conversion to/from generator

Lattice Cosets and Squaring

Section 7.2

February 3, 2026

Lattices and Cosets (Appendix B)

- Lattices Λ can be defined over countably infinite fields like \mathbb{Z} or \mathbb{Z}^2 ...
- Or as over finite fields like $\mathbb{F}_2 = \{0,1\}$ or $\mathbb{F}_2^2 = \{00, 01, 10, 11\}$.
- Such lattices can be partitioned by a sublattice Λ' , so \mathbb{Z}^2/D_2 has two subsets (odd squared norms and evens).
- \mathbb{F}_2^2/D_2 also has two subsets $D_2 = \{00, 11\}$ and $D_2 + [01] = \{01, 10\}$, so $|\mathbb{Z}^2/D_2| = |\mathbb{F}_2^2/D_2| = 2$. $D_2 = R_2 \cdot \mathbb{Z}^2$ where $R_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, where R_2 is a rotation matrix $\ln \mathbb{F}_2^2$, also $R_4 = \begin{bmatrix} R_2 & 0 \\ 0 & R_2 \end{bmatrix}$. R_2 doubles free distance.
 - $R_4 \cdot \mathbb{Z}^4 = \{0000, 0011, 1100, 1111\}, \text{ a set of 4 members; while } \mathbb{Z}^4 \text{ is a set of 16 members.} |\mathbb{Z}^4 / (R_4 \cdot \mathbb{Z}^4)| = 4.$
- These subsets are cosets.
 - The coset leaders c are also a set ([00] and [01] for D_2) that can be added to the sublattice to recreate the entire original lattice.
- The coset leader set is written $[\mathbb{Z}^2/D_2]$ or $[\mathbb{F}_2^2/D_2]$.
 - These coset-leader sets are lattices themselves in $\frac{1}{10} \mathbb{F}_{2}^{2}$, and in fact characterize RM codes.
 - ٠
 - Unlike $2\mathbb{Z}^2$ for integer-pair lattices, $2\mathbb{F}_2^2 = \{00\}$, while the former is a lattice with all even integer pairs. So binary lattices, which have $2\mathbb{Z}^{2^m}$ as a sublattice, are simply the coset leaders (the RM codes) with binary arithmetic up from $2\mathbb{F}_2^{2^m} = \{00 \dots 00\}$.

• Partition Squaring is the double-dimension-size set $[\lambda'_1 + c, \lambda'_2 + c]$ where $c \in [\Lambda/\Lambda']$, and $\lambda'_1 \in \Lambda'$, $\lambda'_2 \in \Lambda'$. • So when $\Lambda' = 2\mathbb{Z}^{2^m}$, then the squaring construction repeats the coset leader c.

Reed Muller Trellis Descriptions

Sections 7.2 and 8.1.3

February 3, 2026

Reed Muller Code Recursion

$$G_{RM(r,m)} = \begin{bmatrix} G_{RM(r,m-1)} & G_{RM(r,m-1)} \\ 0 & G_{RM(r-1,m-1)} \end{bmatrix}$$
 Upper rows are squaring construction [*c*, *c*] Lower rows are elements in Λ'

• Squaring doubles RM codeword length and free distance; $G_{RM(r,m)}$ adds offsets that are codewords of a smaller more powerful (double d_{free}) RM code.

• The repeated lower branch differs only in 1-to-1 mapping from the zeros, by adding $\lambda'_2 - \lambda'_1$ on one side and zeros on the other (since the codes are linear, this does not change the code).

Section 8.1.3

Reed Muller codes

- RM(r,m).
 - $n = 2^m$
 - $k = \sum_{i=0}^{r} \binom{m}{i}$
- $d_{free} = 2^{m-r}$
- Augmented Hadamard has r = 1.

Recursively Defined

Initialize:

- $G_{RM(0,0)} = 1$; $G_{RM(1,0)} = \emptyset$
- $G_{RM(r>m,m)} = \emptyset; \ G_{RM(r<0,m)} = \emptyset$
- The RM Recursion

•
$$G_{RM(r,m)} = \begin{bmatrix} G_{RM(r,m-1)} & G_{RM(r,m-1)} \\ 0 & G_{RM(r-1,m-1)} \end{bmatrix}$$

• $d_{free(r,m)} = min(2 \cdot d_{free(r,m-1)}, d_{free(r-1,m-1)})$

 $G_{RM(0,1)} = G_{1,2} = \left| \begin{array}{cc} G_{RM(0,0)} & G_{RM(0,0)} \\ 0 & G_{RM(-1,0)} \end{array} \right| = \left[\begin{array}{cc} G_{1,1} & G_{1,1} \\ 0 & \emptyset \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \end{array} \right]$ Simple Parity Check RM(m-1,m), D4 Lattice, m = 2 $G_{RM(1,2)} = G_{3,4} = \begin{bmatrix} G_{RM(1,1)} & G_{RM(1,1)} \\ 0 & G_{RM(0,1)} \end{bmatrix} = \begin{bmatrix} G_{2,2} & G_{2,2} \\ 0 & G_{1,2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ The code RM(m-1,m) is always a parity-check code with rate $r = (2^m - 1)/2^m$ and $d_{free} = 2$. Thus, $G_{RM(1,2)} = G_{3,4} = \begin{bmatrix} G_{RM(1,1)} & G_{RM(1,1)} \\ 0 & G_{RM(0,1)} \end{bmatrix} = \begin{bmatrix} G_{2,2} & G_{2,2} \\ 0 & G_{1,2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad .$ (8.48)The RM(1,2) code also corresponds to Appendix B's Schlaffi D_4 Lattice. Further iteration leads to

Repetition Code RM(0,m), $r = \frac{1}{2}$

$$G_{RM(2,3)} = G_{7,8} = \begin{bmatrix} G_{RM(2,2)} & G_{RM(2,2)} \\ 0 & G_{RM(1,2)} \end{bmatrix}$$
$$= \begin{bmatrix} G_{4,4} & G_{4,4} \\ 0 & G_{3,4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} .$$
(8.49)

s

February 3, 2026

Section 8.1.3

S9C: 7

Use Table, look at Λ column

Section of RM Table

-,	Jec					# of states		+ $\int_{00}^{00} 11$ $D_{2m} = simple parity code$
	r	m	$rac{k}{n}$	d_{free}	M(r,m)	$\frac{(middle)}{2^{M(r,m-1)}}$	Л	$D_2 \qquad D_2^{\perp} = repetition code$
	0	0	1	1	1	0	Z	
	0	1	$\frac{1}{2}$	2	1	1	D_2	$ \begin{bmatrix} X' & [\mathbb{Z}^2/D_2] = \{00, 01\} = \text{possible cosets}(2) \\ RM(0, 1) \end{bmatrix} $
	1	1	$\frac{2}{2}$	1	1	1	\mathbb{Z}^2	
	0	2	$\frac{1}{4}$	4	1	2	D_4^{\perp}	$D_4^\perp = [D_2/\emptyset]^2$
	1	2	$\frac{3}{4}$	2	2	2	D4	$D_4 = [\mathbb{Z}^2 / D_2]^2 \qquad RM(1,2)$
	2	2	$\frac{4}{4}$	1	1	0	\mathbb{Z}^4	
1			1					

RM(1,2) or more generally RM(m - 1, m) codes have distance 2 and r = ^{2^m-1}/_{2^m} and have one parity bit
 Selects "every other point" (so like 32SQ from 64SQ, but binary and multidimensional)

Basic D₂^m **Root Trellises & Squaring**

16D Trellises

 $\Lambda_{16}^{\perp} = [\mathbb{Z}^4 / D_4 / D_4^{\perp}]^4$

 $= [D_8 / E_8]^2$

 $D_{16}^{\perp} = [D_8^{\perp}/\phi]^2 \quad G_{1,16}$

Section 8.1.3

2 cosets x 1 codeword x 1 codeword $\Lambda_{16} = [E_8/D_8^{\perp}]^2 \quad G_{5,16} \qquad 8 \operatorname{cosets} x \operatorname{2} \operatorname{codewords} x \operatorname{2} \operatorname{codewords}$ $\Lambda_{16}^{\perp} = [D_8/E_8]^2$ $G_{11,16}$ 8 cosets x 16 codewords x 16 codewords $D_{16} = [\mathbb{Z}^8 / D_8]^2$ $G_{15,16}$ 2 cosets x 128 codewords x 128 codewords

 $[RM(1,2)/RM(0,2)/RM(-1,2)]^4$

Stanford University

February 3, 2026 S9C: 10

Major 32 Trellises and RM Codes

- These are 4-stage diagrams, so the blue-crossed boxes need recursive decoding by earlier trellises
 - And their cosets
 - H_{32} has 64 states in middle, but just there, 16 elsewhere

February 3, 2026

Section 8.1.3

S9C: 11

64D and 128D

Can get complex, but not for the low-rate codes or good choice of product code rates to avoid outrageous state counts with iterative decoding.

February 3, 2026

S

Section 8.1.3

S9C: 12

Conversion to/from Generator

Section 8.1.3

February 3, 2026

Relating the generators for decoding

$$G_{RM(r,m)}^{-1} = \begin{bmatrix} G_{RM(r,m-1)}^{-1} & G_{RM(r-1,m-1)}^{-1} \\ 0 & G_{RM(r-1,m-1)}^{-1} \end{bmatrix}$$
$$G_{4,3}^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{4,3}^{-1} = A_{4,3}$$

- Step 1 label the trellis with u' .
- Step 2 find the *G*′
- Step 3 find the unimodular A matrix that converts $G = A \cdot G'$
- Step 4 reverse A on trellis decoded bits $u' \cdot G'^{-1} \cdot A^{-1}$

February 3, 2026

Section 8.1.3

S9C: 14

End Lecture S9C