J

STANFORD

Supplementary Lecture 9A

Galois Fields and Arithmetic
February 3, 2026

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A — Winter 2026

Stanford University

Announcements & Agenda

= Announcements

= Galois Field Arithmetic
= Vector spaces over Galois Fields

February 3,2026 L9: 2 Stanford University

Galois Field Arithmetic

Appendix B.1

February 3,2026 S9A:3

Finite Field Algebra (Appendix B

= group Definition B.1.1 [Group| A group S is a set, with a well-defined operation for any
two members of that set, call it addition and denote it by +, that satisfies the following

four properties:
1. Closure VYV s1,s5 € S, the sum s; + s € S.
2. Associative V s1,89,53 €S, s1 + (82 + 83) = (81 + 82) + s3.
3. Identity There exists an identity element 0 such that s+0=0+s=s,VseS.

4. Inverse V s € S, there exists an inverse element (—s) € S such that s + (—s) =
(—s)+s=0.

. i

ring Definition B.1.2 [Ring| A ring R is an Abelian group, with the additional well-defined
operation for any two members of that set, call it multiplication and denote it by - (or
by no operation symbol at all), that satisfies the following three properties:

1. Closure for multiplication V r1,7 € R, the product r1 - r2 € R.

2. Associative for multiplication V ry,73,73 € R, r1 - (12 - r3) = (r1 - 72) - 3.

3. Distributive V 1,792,735 € R, we have r1-(ro+r3) = ri-re+ri1-r3 and (r1+rg)-rg =
T1 '7"3—|-7"2 *T3.

F)
[L--J February 3,2026 S9A: 4 Stanford University

= field

= \ector space

Finite Field Algebra (Appendix B

Definition B.1.3 [Field] A field F is a ring, with the additional operation of division,
the inverse operation to multiplication, denoted by /. That is for any fi, fo € F, with
f2#0, then fi/fa=fs € F, and f3- f2 = fi1.

Definition B.1.4 [Vector Space| An n-dimensional Vector Space V' over a field F
contains elements called vectors v = [vp—1, ..., 0], each of whose components v; i =
0,...,n —1 is itself an element in the field F'. The vector space is closed under addition
(because the field is) and also under scalar multiplication where f;-v € V' for any element
fi € F where

fiv=1[fi - vn_1,..., fi - vo)] . (B.1)

The vector space captures the commutativity, associativity, zero element (vector of all
zero components), and additive inverse of addition and multiplication (by scalar of each

element) of the field F. Similarly, the mulitplicative identity is the scalar f; = 1. A set
of J wvectors is linearly independent if

J
ij . ’Uj =0 (B2)
Jj=1

necessarily implies that

=0V . (B.3)

February 3, 2026 S9A: 5

Stanford University

Galois Field for prime q

« GF(p) =F, ={01,..,p—1} GF(5)={01a a* a”}

= Adding is easy, just go around inner white
circle.

* Eg.(24+4):=1;-1=4;etc.

2 |2 1
= Multiplication adds exponents 3 (31 (a4
* Blue or orange circles.
e Elements{a® =1,al,a?,...,a?7%} 4 14 (312 |1
* For GF(5), a=2 or 3 both work. w2 a7 | af

= These are primitive elements that satisfy
e 1—-a*=1
e They are roots of 1in GF(5).

Cﬁ

pis February 3,2026 S9A: 6 Stanford University

Galois Field with p = 2™

= GF(2™) ={0,1,...,2™ — 1} - but elements are viewed as binary polynomials of degree m.
* Addition/multiplication is modulo a degree-m prime binary polynomial.
« gD)=go+g, D+ -+ gm_q D™+ D™ hasno GF(2) factor, but it factors D"~ + 1 = 0, a root of 1 in GF(2™).

* This D is for a binary polynomial. . >
m=2(p=4) ZE=l
g(D)=1+D + D?
GF2™) ={01a a? .. a?" "2} orD? = 14D
o o | (1 a a?} e
= Multiplication is modulo this prime polynomial. 2 =1+DorD
primitive elements
= So multiply and set g(D) =0 a? 4
1+D orD Dor1+D
x(D)-y(D) =d(D)-g(D)+r(D)
(x(D)) y(D))g(D) = r(D) See example multiplication tables in Appendix

B.1, as well as back-up slides

C_J

pis January 30, 2024 SecB.1.2 S9A: 7 Stanford University

GF4 Tables (m = 2

= g(D) =1+ D + D?is a primitive polynomial in GF(2) of degree m — 1 on which GF(4) is based” 1+ D3 = (1 + D) - (1 + D + D?)=0
So, setting g(D) =0 lead to D? = 1+ D in the previous slide’s example.

A consequent GF4 primitive elementisa = D and a? = D> =1+ D; ora = 1 + D also works.

piS February 15,2024

D 0 1 D 14D
0 0 1 D 1+D
1 1 0 1+D D
D D 14D 0 1
1+D | 14D D 1 0
GF)®|]0 1 D 14D
0 0 0 0 0
1 0 1 D 1+D |or (Isb first)
D 0 D 1+D 1
14D 0 14D 1 D

0 1 2 3
o]0 1 2 3
171 0 3 2
212 3 0 1
313 2 1 0
Fs® | 00 10 01 11
00 00 00 00 00
10 00 10 01 11
01 00 01 11 10
11 00 11 10 01
SecB.1.2

or (Isb last)

S9A: 8

O O O OO
W N = Ol
=W N OIN
N = W OoOWw

w N~ o

Stanford University

GF8Tables: 1+D’ " ={1+D+D3-(1+D?*+D3)-(1+D) =0

@ 0 1 D D2 1+ D D + D2 1+ D + D2 1+ D2
0 0 1 D D2 1+ D D + D2 14+ D + D2 1+ D2
1 1 0 1+ D 1+ D2 D 1+ D+ D2 D + D2 D2
D D 1+ D 0 D + D2 1 D2 1+ D2 1+ D + D2
D2 D2 14 D2 D + D2 0 14+ D + D2 D 1+ D 1
1+ D 1+ D D 1 14+ D + D2 0 1+ D2 D2 D + D2
D + D2 D + D2 1+ D + D2 D2 D 1+ D2 0 1 1+ D
1+ D+ D2 14+ D + D2 D + D2 1+ D2 1+ D D2 1 0 D
1+ D2 14 D2 D2 1+ D + D2 1 ‘>D+D2 1+ D D 0
= glD)=1+D+D3soD3—->1+D
gDy =1+D+ Lt &0 1 2 4 6 3 7 5
* One easy primitive element choiceis @ = D.
i GF(8) element Oo/]0 1 2 4 6 3 7 5 Basic logic circuits
ot Isb first | lsb last
o0 0 000 0 1y1 0 3 5 2 7 6 4 can also implement
0 1 100 1 2 2 3 O 6 4 1 5 7 + and x ops,
1 D 010 2 4 14 5 6 0 7 2 3 1 (“Karnaugh Maps”)
2 5
2 D 001 4 6 6 2 1 7 0 5 4 6 aIth0|.1gh Ioo.k up
3 1+D 011 6 4 table is relatively
4 | D+D? 110 3 313 7 2 5 0 1 3 small also
5 1+ D+ D? 111 7 7 7 6 5 3 4 1 0 2
6 1+ D? 010 5
ks 5/!5 4 7 1 6 3 2 0

See Appendix B for matlab commands that will generate these tables,
February 15, 2024 SecB.1.2 S9A: 9 Stanford University

Vector Space over GF(2™)

Section 7.2

February 3,2026 S9A:10

M = 2¥ messages

= So now each subsymbol is in GF(2™). So it is kind of finite-field twice!

Generator

(encoder)
G(w)

Map —» Mod

x(t)‘

|C| has N dimensions

Chan/
Demod

ML
detect

L <)

G'(@)

I

The variable D nominally is zeroed, BUT cyclic codes reintroduce it within the block.

decoder

* Cyclic codes’ codewords will all be cyclic shifts of one another. Thus, D is basically (almost) a cyclic shift.

Very high dgye, is possible, and ML decoders can have reasonable complexity.

BCH Codes are cyclic; the most famous are Reed Solomon codes (attain the Singleton Bound)

* Essentially best ball packing in the N —dimensional vector space of codewords with subsymbols in GF(2™)

C_J

w February 3, 2026

S9A: 11

Stanford University

Let g be prime and arithmetic be in GF(q).

aP + BP = (a + B)P (proofis easy, see Appendix B.1).

Conjugates of « are aP' for i = [1:7], where 7 is lowest i 3 aP'=1.

Further aP" + /)’pi = (a + B)pi.

If a is root of g(D), then so are its conjugates.

Conjugacy classes:

February 3, 2026

S9A: 12

Conjugacy Classes

Stanford University

Encoder Circuit

lastn—k’,»'<—0

&--- 0«
firstk [170 vn_l] =
[fo "1 = Tp—1 Up Up *** Ug—_1]
go=1— g1 —» In-k-1
v(D) = D"* - u(D) + (D"* - u(D))
9(D)
D D—--—D D + To 71 " Tpo1
lastn —k
Ug Up " Ug—1 :.—---\-‘—>
firstk

= Systematic realization (has feedback), appends the remainder in past p positions.

= Same as for binary BCH codes, but the multiplication by g; is in GF(2™).

[3

Syndrome Calculation

= Almost the same as encoder, except it essentially adds the remainder back (if no errors, s(D) = 0)

lastn—k _-@«1— 0

-

gozl——f

v

D

v

D

o]

Yo Y1

Yn-1

___.‘4_

&
firstk
In-k-1=1 a’é)

computes syndrome

s(D) =so+ -+ 5p_q - DP71

lastn — k

N

O"“‘\"—> So S1 " Sp-1

firstk

+
Lastn k
OR hy=1 —» h,— Find, 2D
T j First K subtract)
a (D) D p ..ol p e(D)

ul

Binary vs Non-Binary BCH Codes

Binary BCH codes choose the generator g(D) to be a product of primitive polynomials in GF (2).
+ These are in L9:12 in main lecture, their (maximum) length is n = 2™~1 bits
* (Nontrivial) Binary BCH codes do not meet the Singleton Bound.

* Their encoders and syndrome computations use binary arithmetic, but the ML decoder uses GF (2™) arithmetic.
e Using the primitive polynomials roots in GF (2™).

Non-Binary Reed Solomon (S BCH) codes have length N = 2™ — 1 subsymbols, each ssin GF(2™).
* The generator is a product of polynomials (not necessarily primitive) with coefficients in GF(2™).
* All the arithmetic, including ML decoder, is in GF (2™).
* Seell2

The conjugacy classes of roots in GF(ZmI) that all are roots of a specific primitive binary polynomial in
GF(2) are not necessary in the Reed Solomon codes.

The “Y” values (error magnitudes) are easy in binary, but nontrivial in RS
* But there are algorithms for finding these error magnitudes.

These will be discussed in later supplementary lecture for Lecture 12.

February 3,2026 S9A: 15 Stanford University

STANFORD

End Lecture S9A

