
Supplementary Lecture 9A
Galois Fields and Arithmetic

February 3, 2026

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2026

JOHN M . C IOFF I

February 3, 2026

Announcements & Agenda
§ Announcements

L9: 2

§ Galois Field Arithmetic
§ Vector spaces over Galois Fields

Galois Field Arithmetic

February 3, 2026 S9A:3

Appendix B.1

February 3, 2026

Finite Field Algebra (Appendix B)
§ group

S9A: 4

§ ring

February 3, 2026

Finite Field Algebra (Appendix B)
§ field

S9A: 5

§ Vector space

February 3, 2026

Galois Field for prime 𝑞
§ 𝐺𝐹 𝑝 = 𝔽! = 0,1,… , 𝑝 − 1

§ Adding is easy, just go around inner white
circle.
• E.g. 2 + 4 ! = 1	;−1 = 4	; 𝑒𝑡𝑐.

§ Multiplication adds exponents
• Blue or orange circles.
• Elements 𝛼" = 1,𝛼#, 𝛼$, … , 𝛼%&$

S9A: 6

0=p=5

1

23

4

+

!"# ==αα

!α

!α

!α

!=α

!=α

!α
!α

!α

1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

×

a a2 a3 a4

2 4 3 1

3 4 2 1

𝐺𝐹 5 = 0	 1	 𝛼	 𝛼!	 𝛼"	

§ For 𝐺𝐹 5 , 𝛼=2 or 3 both work.

§ These are primitive elements that satisfy
• 1 − 𝛼! = 1
• They are roots of 1 in 𝐺𝐹 5 .

January 30, 2024

Galois Field 𝐰𝐢𝐭𝐡	𝑝 = 𝟐𝒎
§ 𝐺𝐹 2! = 0,1, … , 2! − 1 - but elements are viewed as binary polynomials of degree 𝑚.

• Addition/multiplication is modulo a degree-𝑚 prime binary polynomial.
• g 𝐷 = 𝑔" + 𝑔# (𝐷 + ⋯+ 𝑔$%# (𝐷$%# + 𝐷$ has no 𝐺𝐹 2	 factor, but it factors 𝐷'!%# + 1 = 0, a root of 1 in 𝑮𝑭 𝟐𝒎 .

• This 𝐷 is for a binary polynomial.

S9A: 7

𝐺𝐹 23 = 0	 1	 𝛼	 𝛼! 	 …	 𝛼!#4!	

§ So multiply and set 𝑔 𝐷 = 0

§ Multiplication is modulo this prime polynomial.

𝐷	𝑜𝑟	1 + 𝐷

1	 𝛼	 𝛼$	

𝛼$	
𝛼#	

𝛼" = 𝛼$ = 1

×
×	𝛼 	

𝛼 	 = 1 + 𝐷	𝑜𝑟	𝐷
primitive elements

1 + 𝐷	 𝑜𝑟	𝐷

See example multiplication tables in Appendix
B.1, as well as back-up slides

Sec B.1.2

𝑚 = 2 𝑝 = 4
𝑔 𝐷 = 1 + 𝐷 + 𝐷'

or 𝐷' = 1 + 𝐷

𝑥 𝐷 - 𝑦 𝐷 = 𝑑 𝐷 - 𝑔 𝐷 + 𝑟 𝐷

𝑥 𝐷 - 𝑦 𝐷 5 6 = 𝑟 𝐷

February 15, 2024

GF4 Tables (𝑚 = 2)
§ 𝑔 𝐷 = 1 + 𝐷 + 𝐷' is a primitive polynomial in GF(2) of degree 𝑚− 1	on which GF(4) is based” 1 + 𝐷) = 1 + 𝐷 . 1 + 𝐷 + 𝐷' =0

• So, setting 𝑔 𝐷 =0 lead to 𝐷! = 1 + 𝐷 in the previous slide’s example.
• A consequent GF4 primitive element is 𝛼 = 𝐷	 and	𝛼! = 𝐷! = 1 + D; or 𝛼 = 1 + D also works.

S9A: 8Sec B.1.2

February 15, 2024

GF8 Tables: 1 + 𝐷3 = 1 + 𝐷 + 𝐷4 % 1 + 𝐷5 + 𝐷4 % 1 + 𝐷 =0

§ 𝑔 𝐷 = 1 +𝐷 +𝐷/, so 𝐷/ → 1+𝐷
• One easy primitive element choice is 𝛼 = 𝐷.

S9A: 9Sec B.1.2

§ See Appendix B for matlab commands that will generate these tables,

Basic logic circuits
can also implement

+ and x ops,
(“Karnaugh Maps”)
although look-up
table is relatively

small also

Vector Space over 𝑮𝑭 𝟐𝒎

February 3, 2026 S9A:10

Section 7.2

§ So now each subsymbol is in 𝑮𝑭 𝟐𝒎 . So it is kind of finite-field twice!

§ The variable 𝐷 nominally is zeroed, BUT cyclic codes reintroduce it within the block.
• Cyclic codes’ codewords will all be cyclic shifts of one another. Thus, 𝐷 is basically (almost) a cyclic shift.

§ Very high 𝑑1233 is possible, and ML decoders can have reasonable complexity.

§ BCH Codes are cyclic; the most famous are Reed Solomon codes (attain the Singleton Bound)
• Essentially best ball packing in the 𝑁−dimensional vector space of codewords with subsymbols in 𝑮𝑭 𝟐𝒎

February 3, 2026

𝑮𝑭 𝟐𝒎 	Code Revisited

S9A: 11

ML
detect

6𝒗 𝐺&# ;𝒗 6𝒖
	

789:78;

Generator
(encoder)
𝐺(𝒖)

𝒖 = 𝑢4 ⋯ 𝑢# 𝒗 = 𝑣5 ⋯ 𝑣#

∈ 𝔽!#
<

𝑀 = 2" messages

Map
𝒙	

Mod
𝑥(𝑡)	 Chan/

Demod
𝒚	

𝐶 has 𝑁 dimensions

∈ 𝔽!#
=

February 3, 2026

Conjugacy Classes

§ Let 𝑞 be prime and arithmetic be in 𝐺𝐹 𝑞 .

§ 𝛼! + 𝛽! = 𝛼 + 𝛽 ! (proof is easy, see Appendix B.1).

§ Conjugates of 𝛼 are 𝛼!8 for 𝑖 = 1: 𝑟 , where 𝑟 is lowest 𝑖 ∋ 𝛼!8=1.

§ Further 𝛼!8 + 𝛽!8 = 𝛼 + 𝛽 !8.

§ If 𝛼 is root of 𝑔 𝐷 , then so are its conjugates.

§ Conjugacy classes:

S9A: 12

February 3, 2026

Encoder Circuit

§ Systematic realization (has feedback), appends the remainder in past 𝑝 positions.

§ Same as for binary BCH codes, but the multiplication by 𝑔4	is in 𝐺𝐹 29 .

S9A:13

𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

0𝑙𝑎𝑠𝑡	𝑛 − 𝑘

+

𝑓𝑖𝑟𝑠𝑡	𝑘

𝑙𝑎𝑠𝑡	𝑛 − 𝑘

𝑓𝑖𝑟𝑠𝑡	𝑘
𝑢"	 𝑢# 	 ⋯	𝑢4&#

𝑔" = 1 𝑔# 𝑔5&4&#

𝑟"	 𝑟# 	 ⋯	𝑟:&#

𝑣" 	 ⋯	𝑣*%# =
𝑟"	 𝑟# 	 ⋯	𝑟+%# 𝑢"	 𝑢# 	 ⋯	𝑢,%#

𝑣 𝐷 = 𝐷*%, . 𝑢 𝐷 + 𝐷*%, . 𝑢 𝐷
- .

February 3, 2026

Syndrome Calculation

§ Almost the same as encoder, except it essentially adds the remainder back (if no errors, 𝑠 𝐷 = 0)

S9A:14

𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

0𝑙𝑎𝑠𝑡	𝑛 − 𝑘

+

𝑓𝑖𝑟𝑠𝑡	𝑘

𝑙𝑎𝑠𝑡	𝑛 − 𝑘

𝑓𝑖𝑟𝑠𝑡	𝑘
𝑦"	 𝑦# 	 ⋯	𝑦5&#

𝑔" = 1 𝑔# 𝑔5&4&# = 1

𝑠"	 𝑠# 	 ⋯	𝑠:&#

computes syndrome

𝑠 𝐷 = 𝑠" +⋯+ 𝑠+%# . 𝐷+%#

0

𝐷

+

𝐷

+

⋯

×× ×
𝐹𝑖𝑟𝑠𝑡	𝐾

𝑠"	 𝑠# 	 ⋯	𝑠:&#
ℎ4 = 1ℎ#ℎ" = 1 Find,

subtract
𝑒 𝐷

K𝑢 𝐷0

𝑦 𝐷

Last n−𝑘

𝐷

OR

February 3, 2026

Binary vs Non-Binary BCH Codes
§ Binary BCH codes choose the generator 𝑔 𝐷 to be a product of primitive polynomials in 𝐺𝐹 2 .

• These are in L9:12 in main lecture, their (maximum) length is 𝑛 = 2$%# bits
• (Nontrivial) Binary BCH codes do not meet the Singleton Bound.
• Their encoders and syndrome computations use binary arithmetic, but the ML decoder uses 𝐺𝐹 2$ arithmetic.

• Using the primitive polynomials roots in 𝐺𝐹 2" .

§ Non-Binary Reed Solomon (⊆ BCH) codes have length 𝑁 = 2! − 1	 subsymbols, each ss in 𝐺𝐹 2! .
• The generator is a product of polynomials (not necessarily primitive) with coefficients in 𝐺𝐹 2$.
• All the arithmetic, including ML decoder, is in 𝐺𝐹 2$.
• See L12

§ The conjugacy classes of roots in 𝐺𝐹 2! that all are roots of a specific primitive binary polynomial in
𝐺𝐹 2	 are not necessary in the Reed Solomon codes.

§ The “Y” values (error magnitudes) are easy in binary, but nontrivial in RS
• But there are algorithms for finding these error magnitudes.

§ These will be discussed in later supplementary lecture for Lecture 12.

S9A: 15

End Lecture S9A

