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Announcements & Agenda
§ Announcements

L9: 2

§ Galois Field Arithmetic
§ Vector spaces over Galois Fields



Galois Field Arithmetic

February 3, 2026 S9A:3

Appendix B.1
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Finite Field Algebra (Appendix B)
§ group

S9A: 4

§ ring
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Finite Field Algebra (Appendix B)
§ field

S9A: 5

§ Vector space
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Galois Field for prime 𝑞
§ 𝐺𝐹 𝑝 = 𝔽! = 0,1,… , 𝑝 − 1

§ Adding is easy, just go around inner white 
circle.
• E.g. 2 + 4 ! = 1	;−1 = 4	; 𝑒𝑡𝑐.

§ Multiplication adds exponents
• Blue or orange circles.
• Elements 𝛼" = 1,𝛼#, 𝛼$, … , 𝛼%&$
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§ For 𝐺𝐹 5  , 𝛼=2  or 3 both work.

§ These are primitive elements that satisfy
• 1 − 𝛼! = 1
• They are roots of 1 in 𝐺𝐹 5 .



January 30, 2024

Galois Field 𝐰𝐢𝐭𝐡	𝑝 = 𝟐𝒎
§ 𝐺𝐹 2! = 0,1, … , 2! − 1  - but elements are viewed as binary polynomials of degree 𝑚.

• Addition/multiplication is modulo a degree-𝑚 prime binary polynomial.
• g 𝐷 = 𝑔" + 𝑔# ( 𝐷 + ⋯+ 𝑔$%# ( 𝐷$%# + 𝐷$  has no 𝐺𝐹 2	 factor, but it factors 𝐷'!%# + 1 = 0, a root of 1 in 𝑮𝑭 𝟐𝒎 .

• This 𝐷 is for a binary polynomial.
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𝐺𝐹 23 = 0	 1	 𝛼	 𝛼! 	 …	 𝛼!#4!	

§ So multiply and set 𝑔 𝐷  = 0 

§ Multiplication is modulo this prime polynomial. 

𝐷	𝑜𝑟	1 + 𝐷

1	 𝛼	 𝛼$	

𝛼$	
𝛼#	

𝛼" = 𝛼$ = 1

×
×	𝛼 	

𝛼 	 = 1 + 𝐷	𝑜𝑟	𝐷
primitive elements

1 + 𝐷	 𝑜𝑟	𝐷

See example multiplication tables in Appendix
B.1, as well as back-up slides

Sec B.1.2

𝑚 = 2 𝑝 = 4
𝑔 𝐷 = 1 + 𝐷 + 𝐷'

or 𝐷' = 1 + 𝐷

𝑥 𝐷 - 𝑦 𝐷 = 𝑑 𝐷 - 𝑔 𝐷 + 𝑟 𝐷

𝑥 𝐷 - 𝑦 𝐷 5 6 = 𝑟 𝐷
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GF4 Tables (𝑚 = 2)
§ 𝑔 𝐷 = 1 + 𝐷 + 𝐷' is a primitive polynomial in GF(2) of degree 𝑚− 1	on which GF(4) is based” 1 + 𝐷) = 1 + 𝐷 . 1 + 𝐷 + 𝐷' =0

• So, setting 𝑔 𝐷 =0  lead to 𝐷! = 1 + 𝐷 in the previous slide’s example.
• A consequent GF4 primitive element is 𝛼 = 𝐷	 and	𝛼! = 𝐷! = 1 + D;  or 𝛼 = 1 + D also works.

S9A: 8Sec B.1.2
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GF8 Tables:   1 + 𝐷3 = 1 + 𝐷 + 𝐷4 % 1 + 𝐷5 + 𝐷4 % 1 + 𝐷   =0

§ 𝑔 𝐷 = 1 +𝐷 +𝐷/, so 𝐷/ → 1+𝐷
• One easy primitive element choice is 𝛼 = 𝐷.

S9A: 9Sec B.1.2

§ See Appendix B for matlab commands that will generate these tables, 

Basic logic circuits 
can also implement 

+ and x ops,
(“Karnaugh Maps”) 
although look-up 
table is relatively 

small also 



Vector Space over 𝑮𝑭 𝟐𝒎
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Section 7.2 



§ So now each subsymbol is in 𝑮𝑭 𝟐𝒎 .  So it is kind of finite-field twice!

§ The variable 𝐷 nominally is zeroed, BUT cyclic codes reintroduce it within the block.
• Cyclic codes’ codewords will all be cyclic shifts of one another.  Thus, 𝐷 is basically (almost) a cyclic shift.

§ Very high 𝑑1233 is possible, and ML decoders can have reasonable complexity.

§ BCH Codes are cyclic; the most famous are Reed Solomon codes (attain the Singleton Bound)
• Essentially best ball packing in the 𝑁−dimensional vector space of codewords with subsymbols in 𝑮𝑭 𝟐𝒎

February 3, 2026

𝑮𝑭 𝟐𝒎 	Code Revisited
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Conjugacy Classes

§ Let 𝑞 be prime and arithmetic be in 𝐺𝐹 𝑞 .

§ 𝛼! + 𝛽! = 𝛼 + 𝛽 !  (proof is easy, see Appendix B.1).

§ Conjugates of 𝛼 are 𝛼!8 for 𝑖 = 1: 𝑟 , where 𝑟 is lowest 𝑖 ∋ 𝛼!8=1.

§ Further 𝛼!8 + 𝛽!8 = 𝛼 + 𝛽 !8.

§ If 𝛼 is root of 𝑔 𝐷 , then so are its conjugates.

§ Conjugacy classes:
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Encoder Circuit

§ Systematic realization (has feedback), appends the remainder in past 𝑝 positions.

§ Same as for binary BCH codes, but the multiplication by 𝑔4	is in 𝐺𝐹 29 .
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𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

0𝑙𝑎𝑠𝑡	𝑛 − 𝑘

+

𝑓𝑖𝑟𝑠𝑡	𝑘

𝑙𝑎𝑠𝑡	𝑛 − 𝑘

𝑓𝑖𝑟𝑠𝑡	𝑘
𝑢"	 𝑢# 	 ⋯	𝑢4&#

𝑔" = 1 𝑔# 𝑔5&4&#

𝑟"	 𝑟# 	 ⋯	𝑟:&#

𝑣" 	 ⋯	𝑣*%# =
𝑟"	 𝑟# 	 ⋯	𝑟+%# 𝑢"	 𝑢# 	 ⋯	𝑢,%#

𝑣 𝐷 = 𝐷*%, . 𝑢 𝐷 + 𝐷*%, . 𝑢 𝐷
- .
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Syndrome Calculation

§ Almost the same as encoder, except it essentially adds the remainder back (if no errors, 𝑠 𝐷 = 0)
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𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

0𝑙𝑎𝑠𝑡	𝑛 − 𝑘

+

𝑓𝑖𝑟𝑠𝑡	𝑘

𝑙𝑎𝑠𝑡	𝑛 − 𝑘

𝑓𝑖𝑟𝑠𝑡	𝑘
𝑦"	 𝑦# 	 ⋯	𝑦5&#

𝑔" = 1 𝑔# 𝑔5&4&# = 1

𝑠"	 𝑠# 	 ⋯	𝑠:&#
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Binary vs Non-Binary BCH Codes
§ Binary BCH codes choose the generator 𝑔 𝐷  to be a product of primitive polynomials in 𝐺𝐹 2 .

• These are in L9:12 in main lecture, their (maximum) length is 𝑛 = 2$%# bits
•  (Nontrivial) Binary BCH codes do not meet the Singleton Bound.
• Their encoders and syndrome computations use binary arithmetic, but the ML decoder uses 𝐺𝐹 2$  arithmetic.

• Using the primitive polynomials roots in 𝐺𝐹 2" . 

§ Non-Binary Reed Solomon (⊆ BCH) codes have length 𝑁 = 2! − 1	 subsymbols, each ss in 𝐺𝐹 2! .
• The generator is a product of polynomials (not necessarily primitive) with coefficients in 𝐺𝐹 2$ .
• All the arithmetic, including ML decoder, is in 𝐺𝐹 2$ .
• See L12

§ The conjugacy classes of roots in 𝐺𝐹 2!  that all are roots of a specific primitive binary polynomial in 
𝐺𝐹 2	 are not necessary in the Reed Solomon codes. 

§ The “Y” values (error magnitudes) are easy in binary, but nontrivial in RS
• But there are algorithms for finding these error magnitudes.  

§ These will be discussed in later supplementary lecture for Lecture 12.
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