
Supplementary Lecture 8A
 Equivalent Encoders

January 29, 2026

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2026

JOHN M . C IOFF I

January 29, 2026

Announcements & Agenda
§ Announcements

• This is in Appendix B with worked examples

S8A: 2

§ Today
• Encoder’s Mapping
• Invariant Factors Decomposition & minimal realization
• Example

January 29, 2026

Decoders’ Mappings

§ The invertible 𝐴 𝐷 can sometimes simplify the ML Decoder.

§ The detection of 𝒖′ 𝐷 has same 𝑃! as detection of 𝒖 𝐷

§ The equivalent encoder 𝐴 𝐷 & 𝐺 𝐷 might:
• have fewer states, so the Viterbi/BCJR/SOVA then is simpler,
• be systematic for systems that only want parity bits to differ from input bits, or
• have software/hardware implementation that is already available.

S8A: 3

𝐴 𝐷 𝐺 𝐷 𝑝() /+)
ML Decoder

For 𝑢′ 𝐷
𝒖′ 𝐷 𝒖 𝐷

(𝒖′ 𝐷

(𝒖′ 𝐷 𝐴 𝐷 (𝒖 𝐷

1-to-1

𝒗 𝐷 𝒚 𝐷

The codewords 𝒗(𝑫)
Are the SAME

Invariant Factors
Decomposition

January 29, 2026 S8A:4

Appendix B.4

January 29, 2026

Invariant Factors Decomposition
§ Any polynomial encoder 𝐺 𝐷 = 𝐴 𝐷 % Γ 𝐷 % 𝐵 𝐷 where

• 𝐴 𝐷 and 𝐵 𝐷 are both in 𝐹 𝐷 , so all entries are FIR, unimodular 𝐴 = 𝐵	 = 1 .
• Γ 𝐷 is diagonal (on left) and has all elements in 𝐹" 𝐷

• so IIR with all positive or 0 powers of 𝐷 in numerator and denominator, which is also monic.

§ This is also Smith-Normal Form, BUT in a finite field.
• Matlab does NOT have a program that does this.
• I tried to get ChatGPT to create one, but it was too hard for ChatGPT, which kept making errors.
• Thus, best I know is the process, with several examples I worked by hand in Appendix B.

• If a student wants to attempt this in matlab program – lots of extra credit.

§ The IFD factorization is tedious, but straightforward. Appendix B.4 has examples.
• If the original encoder has feedback, the IVD clears the denominators by multiplying by LCM, then divides again after doing the

factorization. Thus, the IVD only needs to work on FIR matrices.

§ This is one of 2 steps in ensuring a code uses minimal flip flops (smallest number of states) in its encoder.
Since 𝐴 and 𝐵 have inverses and are 1-to-1, the invariant factors and top 𝑘 rows of 𝐵 𝐷 determine all the
codewords. Different encoders have different choices of unimodular 𝐴, 𝐵.

S8A: 5

𝐴(𝐷) ' 𝛤(𝐷) 𝟎 ' 𝑮𝒃𝒂𝒔𝒊𝒄 𝑫
𝑑𝑜𝑛'𝑡	𝑐𝑎𝑟𝑒

January 29, 2026

Minimal Encoder – 2nd step

§ 𝐺)*+,- 𝐷 	is feedback free (and has feedback-free inverse – first 𝑘 columns of 𝐵./ 𝐷)

§ This “basic encoder” may not yet have minimum number of flip flops (smallest number of states).

§ Appendix B lists a second process that forces iteratively the encoder to preserve both delay and
degree (plus 𝜈) of for any input sequence.
• It’s again a series of unimodular 𝐴 𝐷 − 𝑙𝑖𝑘𝑒 operations on the rows of 𝐺()*+, 𝐷 	that do not change the code

(the codewords are the same)

S8A: 6

An Example follows:

January 29, 2026

Parity Code Tables, Feedback, and poly2trellis
§ Poly2trellis has a third input that is feedback – example best 8-state 𝑟 = 2/3 conv code from tables

S8A: 7

𝐻 𝐷 = 17 15 13 = 𝐷- + 𝐷. + 𝐷 + 1 𝐷- + 𝐷. + 1 𝐷- + 𝐷 + 1

𝐻*/* 𝐷 = 𝐷- + 𝐷. + 𝐷0 + 1
𝐷- + 𝐷 + 1

𝐷- + 𝐷. + 1
𝐷- + 𝐷 + 1

	

1 𝐺*/* 𝐷 =
1 0

𝐷- + 𝐷. + 𝐷0 + 1
𝐷- + 𝐷 + 1

0 1
𝐷- + 𝐷. + 1
𝐷- + 𝐷 + 1

	

§ Circuit has 8 states (3 flip flops)

𝐷 + 𝐷 ++

𝑢.,3

𝑣0,3

𝑣4,3𝐷 +

𝑢0,3

𝑣.,3

Section 7.3.3

Maybe we want
feedback,

or maybe not

January 29, 2026

What does Matlab do with this 2/3 code?

§ I could find no way to use this command other than the above valid (but nonminimal trellis).
§ The matlab page examples do the same thing – increase number of states excessively.
§ This is NOT a problem if code is 𝑟 = ⁄/ 0 , then number of states is preserved.
§ Here it was square of number of states (64), for rate ¾, it would cube number of states.

L8: 8

>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])

tfeed =

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 64 OUCH!
 nextStates: [64×4 double]
 outputs: [64×4 double]

But IFD provides a fix!

Section 7.3.3

January 29, 2026

Work-Around uses IFD & minimal encoder
§ See Appendix B that details step-by-step the IFD for this rate 2/3 systematic encoder

• This produces:

S8A: 9

𝐺*/* 𝐷 = 1 + 𝐷 + 𝐷. + 𝐷- 1 + 𝐷 + 𝐷.
1 + 𝐷. + 𝐷- 𝐷 + 𝐷.

	
,

, -.

'
1

𝐷- + 𝐷 + 1
0

0 1
	
/

/ 01

' 𝐷 1 + 𝐷. 1 + 𝐷.
1 + 𝐷 𝐷 1	

2!"#())

§ The first two matrices are 1-to-1, so only remap all possible binary inputs to the SAME codewords.
• They do not affect the set of codewords (or the code).

§ Minimal 8-state feedback-free encoder is 𝐺$%& 𝐷 = 𝐷 1 + 𝐷' 1 + 𝐷'
1 + 𝐷 𝐷 1	

.

§ Encode with 𝐺)*) 𝐷 convenc.m has no issues (even though it uses 64 states) or just encode with 8 state
circuit on L8:27; the codewords are the same (so MLSD will find closest codeword).

§ Decoder assumes 𝐺#$% 𝐷 and finds 5𝑢#$% 𝐷 ; then ,𝑣$%& 𝐷 = ,𝑢$%& 𝐷 % 𝐺#$% 𝐷 - re-encodes the decoded.
§ 5𝑢&'& 𝐷 = 5𝑣(,#$%(𝐷) 5𝑣*,#$%(𝐷) because the original encoder was systematic – ignore ,𝑣+,$%&(𝐷).

• Further, any finite number of output errors only cause a finite (possibly less, but not more) number of input bit errors.

Sections 7.3.3 and B.7

January 29, 2026

Example: 8-state rate 2/3 code
§ Saving commands

L7: 10

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 8
 nextStates: [8×4 double]
 outputs: [8×4 double]

>> tmin.nextStates
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7

>> tmin.outputs
 0 6 3 5
 3 5 0 6
 4 2 7 1
 7 1 4 2
 5 3 6 0
 6 0 5 3
 1 7 2 4
 2 4 1 7
>> outmin=convenc([0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1],tmin)
 000 000 000 011 001 100 110 110
>> plotnextstates(tmin.nextStates)

Section 7.3.3

N|N+1 N|N+1
State Transition

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)

0365

3056

4721

7412

5630

6503

1274

2147

January 29, 2026

8-state decode
§ Minimal Direct Works – dfree = 6

L8: 11

>> vitdec(outmin,tmin,6,'trunc','hard’)
 00 00 00 10 11 01 00 01
>> inmin=
 00 00 00 10 11 01 00 01];

error2 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]; % 2 errors introduced
>> vitdec(+xor(outmin,error2),tmin,6,’trunc’,’hard’)

 00 00 00 10 11 01 00 01

Have to leave spaces in
matlab, but it looks better

without them here

§ Systematic feedback encoder – different output

>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])
 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 64
 nextStates: [64×4 double]
 outputs: [64×4 double]
>> outfeed=convenc([0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1],tfeed)
 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 %systematic
>> informin=vitdec(outfeed,tmin,6,'trunc','hard')
 00 00 00 11 01 11 00 00 % map differs
>> vmin = convenc(informin,tmin) =
 000 000 000 101 111 011 001 011

>> informin2=vitdec(+xor(outfeed,error2),tmin,6,'trunc','hard’)
 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
>> vmin2 = convenc(informin2,tmin)

000 000 000 101 111 011 001 011

>> outfeed % check
000 000 000 101 111 011 001 011

% So, this fixes matlab’s high-complexity-trellis problem with 8-state decoder

This works for any decoder,
But, of course, most helpful

With matlab poly2trellis issues

Section 7.3.3

End Lecture 8
See S8a for Invariant Factors Theorem

