

Supplementary Lecture 4C Wireless Channels

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2026

Stanford University

Announcements & Agenda

- Goals
 - Familiarize, or reacquaint, interested students/researchers to obtain an H(f) for a wireless channel (with antennas)
 - Permit construction of real or complex baseband-equivalent channels for analysis.

S4C: Wireless (with antennas)

То	pics

- Filtered AWGN
- Isotropic and Dipole Antennas
- Antenna arrays
- MIMO Beam forming/steering
- 2D array

Finding H(f)

Section 1.3.8

January 15, 2026

Computation of H(f)

• Channel filter $h(t) \leftrightarrow H(f)$ from electromagnetic modelling.

• Noise: AWGN often specifies a PSD, like -174 dBm/Hz

- > This is room temperature noise $k \cdot T$ (Boltzman constant x Kelvin temperature).
- Often ADC quantization and/or background noises lifts this to numbers like -150 dBm/Hz , or "noise figure" in dB increases this level
- ▶ Unrelated radio noises can "color" the noise (must measure $S_{noise}(f)$) and then the channel model with noise-whitening receiver is $H(f) \leftrightarrow S_{noise}^{-1/2}(f) \cdot H(f)$.

Ideal antennas

Ideal istotropic (monopole)

Isotropic baseband equivalent

$$\varphi(\omega) = E_0 \cdot \frac{e^{+j\omega \cdot \ell/(\ell_o \cdot c)}}{2 \cdot (\ell/\ell_0) \cdot \sqrt{\pi}}$$

•
$$Z_0$$
 free space = $\sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \Omega$

Dipole planar slice wire vertical to plane

- Dipole planar baseband equivalent
 - Has an unnormalized basis function, and
 - Is typically fed with voltage in middle.
 - A cross-dipole supports 2 polarizations, 2nd in vertical disk, so directional

$$\varphi(\omega) = E_{0,dipole} \cdot \frac{e^{+j\omega \cdot \ell/(\ell_o \cdot c)}}{2 \cdot (\ell/\ell_0) \cdot \sqrt{\pi}}$$

- Z_0 dipole = ${}^{377}/_{6\pi} = 73 \Omega$
 - Whence, 75 ohm often used in cable connects.

Stanford University

January 15, 2026

S4C: 5

Antenna Arrays

- For receiver, the inter-antenna delays allow multiple looks.
 - > Noise is uncorrelated if antenna spacing exceeds $^{\lambda}/_{2}$
 - > Largest amplitude is L when $\theta = \pi/2$ with unit gains
- For transmitter, the amplitudes can be set to direct energy in any θ .
- Arrays allow transmitter and receiver to point at one another.

Equal-gain array patterns with L

January 15, 2026

• Equal gains $a_l = 1$

$$|A(heta)| = igg|rac{\sin(L\cdot\psi/2)}{L\cdot\sin(\psi/2)}$$

$$\psi \stackrel{\Delta}{=} \beta \cdot d \cdot \cos(\theta)$$

or beamsteer (rcvr)

S4C: 7

Stanford University

MIMO Beam Forming and Steering

- Each path has $H_{c,k} \cdot \delta(t \tau_k)$.
- MIMO beamform has a linear combination of different symbol-dimensions/antenna.

$$\underbrace{A_{xmit}}_{L_x imes L_x} = \left[egin{array}{c} oldsymbol{a}_1 \ dots \ oldsymbol{a}_{L-1} \end{array}
ight]$$

Each row can steer in its own direction

- Similarly, the receiver can linearly combine (beam steer) $L_x \times L_y A_{rcvr}$.
- Then

$$H_k = A_{rcvr,k} \cdot H_{c,k} \cdot A_{xmit}, k$$

• Reflections are good – "rich scattering."

2D Antenna Array

 Designs adapt array coefficients to create many beam-form or beamsteer possibilities, see Chapters 4 and 5, and EE379B

End Supplementary Lecture 4C

