

Supplementary Lecture 4B Waveguide Channels

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2026

Announcements & Agenda

- Goals
 - Familiarize, or reacquaint, interested students/researchers to obtain an H(f) for a waveguide
 - Permit construction of real or complex baseband-equivalent channels for analysis.

S4C: Wireless (with antennas)

Topics

- Filtered AWGN
- Waveguide cutoff frequency and model
- Transfer function
- Non-coherent special case
- Coax as 2-port

Finding H(f)

Section 1.3.8

January 15, 2026

Computation of H(f)

• Channel filter $h(t) \leftrightarrow H(f)$ from electromagnetic modelling.

• Noise: AWGN often specifies a PSD, like -174 dBm/Hz

- > This is room temperature noise $k \cdot T$ (Boltzman constant x Kelvin temperature).
- Often ADC quantization and/or background noises lifts this to numbers like -150 dBm/Hz , or "noise figure" in dB increases this level
- ▶ Unrelated radio noises can "color" the noise (must measure $S_{noise}(f)$) and then can model with noise-whitening receiver that changes $H(f) \leftrightarrow S_{noise}^{-1/2}(f) \cdot H(f)$

Waveguides (metallic & fiber)

- Waveguides are intermediate to wireline and wireless.
 - > There is a single ``wire'' (which is not necessarily metal, e.g. fiber).

Cutoff-frequency (wavelength small enough to fit), so high/band-pass!

 $\chi_{m,n}$ is n^{th} root/zero of \mathcal{J}_m , the m^{th} Bessel function; $\chi'_{m,n}$ is derivative's n^{th} root/zero.

Sec 1.3.8

Waveguide Transfer Function (Coherent passband)

$$H(\omega) = e^{-\left(\underbrace{\alpha + \beta(\omega)}_{\gamma}\right) \cdot l}$$

$$\gamma = \alpha + \beta(\omega)$$

- Length is l, γ works same as transmission line formulas, so can sometimes reuse trans-line 2 ports.
- α is attenuation (tabulated for waveguides, like 0.05 dB/m, usually a constant over passband in use (min at 1.55 μ m for fiber).
- β is wave number and is a function of frequency, group distortion (min at 1.3 μm for fiber).

$$\beta_{m,n}(\omega) = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

rectangular waveguide

$$eta_{m,n}(\omega) = rac{\omega}{c} \cdot \sqrt{1 - \left(rac{\omega_{cut}(m,n)}{\omega}
ight)^2}$$

circular waveguide

$$v_g = c \cdot \sqrt{1 - (\omega_c/\omega)^2}$$

January 15, 2026

S4B: 6

Stanford University

Multimode Fiber Channel – noncoherent/baseband

 $h_{nc}(t)$

X(f)

Fiber Chromatic Dispersion

Group Delay: ٠

$$T_g(\omega) \approx L\beta_1 + L\beta_2(\omega - \omega_c) + \cdots$$

- β_1, β_2 : power series coefficients of $\beta(\omega)$
- Focus is primarily on $\lambda = 1270$ nm: ٠
 - $D(1270 \text{ nm}) \approx -4 \text{ ps}/(\text{nm} \cdot \text{km})$ •

Time

Courtesy E. Liang

•
$$D = -\frac{2\pi c}{\lambda^2} \cdot \beta_2$$

- Negative Dispersion \rightarrow Positive β_2 ٠
- With no amplifier, AWGN ٠

Frequency

With optical amplifer, the AWGN gets squared ٠ too.

Intensity

Coax as 2-port transmission line

• Use
$$\gamma = \alpha + j \cdot \beta(\omega)$$

• $Z_0 = \frac{1}{2\pi} \cdot \sqrt{\frac{\mu}{\epsilon}} \cdot \ln\left(\frac{D}{d}\right) = \frac{60\Omega}{\sqrt{\epsilon_r}} \cdot \ln\left(\frac{D}{d}\right)$

$$\Phi_{i} = \begin{bmatrix} \cosh(\gamma_{i} \cdot l_{i}) & Z_{0i} \cdot \sinh(\gamma_{i} \cdot l_{i}) \\ Z_{0i}^{-1} \cdot \sinh(\gamma_{i} \cdot l_{i}) & \cosh(\gamma_{i} \cdot l_{i}) \end{bmatrix}$$

• For fiber, not this easy – model includes optical-electrical conversion.

End Supplementary Lecture 4B

