

Lecture 9 High-Performance Codes February 6, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- PS4 due, no late. Solutions then distributed
- Midterm on Thursday.

Today

- Continue L8
- Code Performance Analysis
- Random Interleaving
- Iterative Decoding & Turbo Codes
- Midterm Review

Option & Feedback

- Trade PS8 for any homework on grade (will give full credit on PS4.1 8.1e to all)
- 11-25 hours
- Thank you for all comments will help future students as well.
 - I keep a running list of future corrections thanks to you all.
 - This particular assignment was on material significantly updated or new.
- Notation (not incorrect, just a lot of it)
 - We try to avoid "one-variable-corresponding-to-multiple-things" (although ..)
 - $N = \overline{N} \cdot \widetilde{N}$ is example (concatenations can confuse).
- Problem statements
 - It helps if feedback provides a specific example of how the hmwk was not clear (which problem, what statement). We try to get that in the online feedback.
 - Sooner is better thanks to Marcos B today
- In class examples are simple, but homework requires more work.
- One said HWH not helpful (of course you can ignore).
- Time indexing
 - Vectors in communication (most recent usually on left/top)
 - Matlab has lowest index on left/top, but reverses this for G(D) octal entries
 - But not for convolution, nor convenc (and other similar commands).
- PS4 should be less
 - PS5 after midterm (probably hardest)
 - PS6-8 pretty-established problems from past (other students' comments will help you).

L9:2

No JC office hours Thursday (after exam).

Feb 6, 2024

Soft-Output Viterbi Algorithm SOVA

Section 7.3.2

January 30, 2024

SOVA

- LOGMAX approximates a sum-of-products by it's maximum single term.
 - Often very true in decoding as one probability (a term) is often much larger than others (wrong decisions) PS4.3.

$$\ln(\alpha_{k+1}, s_{k+1}) \approx \max_{\text{branches into } s_{k+1}} \ln(\alpha_k, s_k, \text{branch into}) + \ln(\gamma_k, \text{branch into})$$

This is the VA in the forward direction. Similarly in the backward direction

 $\ln(\beta_k, s_k) \approx \max_{\text{branches into } s_{k+1}} \ln(\beta_{k+1}, s_k, \text{branch into}) + \ln(\gamma_k, \text{branch into}) \ .$

- The path is same as Viterbi
 - But now we have 2, one forward and one backward and try to provide better soft information about bit decisions.

$$LLR_{\boldsymbol{x}_{k}} = \pm \left[\max_{0 \text{ branches}} \left\{ \ln(\alpha_{k}, \operatorname{branch}) + \ln(\gamma_{k}, \operatorname{branch}) + \ln(\beta_{k}, \operatorname{branch}) \right\} - \max_{1 \text{ branches}} \ln(\alpha_{k}, \operatorname{branch}) + \ln(\gamma_{k}, \operatorname{branch}) + \ln(\beta_{k}, \operatorname{branch}) \right],$$

2024 Section 7.3.2 (PS4.3)

L9: 4

Forward SOVA Example with Ties

- It's easy without ties just find other path with other input (0/1) with next lowest survivor metric and
 - take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and sign for 1)

	Forward SOVA Example with ties (3-error example revisited)									
k	0	1	2	3	4	5				
$\{LL(0)\}$	{3}	{3}	{3,3}	{3,3}	Ø	{3}				
$\{LL(1)\}$	{3}	{3}	{3 }	{3}	{3,3}	{3}				
ΔLL (dec)	0(?)	0(?)	² / ₃ (0)	² / ₃ (0)	-1 (1)	0 (?)				

Green color indicates the minimum-metric path is a survivor in forward direction; all LL's in units of ln(p).

- The local resolution and majority voting appear equivalent to some of what matlab is doing (requires examination/test of source code).
 - Probably could be confirmed by someone testing various situations
 - Nonetheless, the above is viable Forward-SOVA tie resolution

Section 7.3.2

L9: 5

Forward-Backward SOVA Example

Hagenauer's LLR SOVA update

Prob of VA sequence error

$$\begin{aligned} & Pr_{ML}\{x_k = -1\} = Pr\{u_k = 0\} \propto e^{-LS_k^*(0)} \\ & Pr_{ML}\{x_k = +1\} = Pr\{u_k = 1\} \propto e^{-LS_k^*(1)} \end{aligned}$$

- Magnitude difference of two bit choices is
 - $\Delta LS_k = LS_k^*(0) LS_k^*(1)$
 - $LLR_k = x_k \cdot \Delta LS_k$ (really estimate)
- Linear-code analysis: 0 in numerator:

$$P_{e,k} = \frac{e^{-LS_k^*(0)}}{e^{-LS_k^*(0)} + e^{-LS_k^*(1)}} = \frac{1}{1 + e^{\Delta LS_k}}$$

Another decoder provides

$$\widehat{LLR}_k = \ln \frac{1 - \hat{\bar{P}}_{b,k}}{\hat{\bar{P}}_{b,k}}$$

January 30, 2024

Section 7.3.2

Decoder includes soft info through:

Algebra provides

$$LLR_k \leftarrow \ln\left[\frac{1 + e^{\Delta LS_k + L\widehat{L}R_k}}{e^{\Delta LS_k} + e^{L\widehat{L}R_k}}\right]$$

Ignores scaling difference between sequence and bit, so

$$\Delta LS_k \rightarrow \frac{(y_k - x_k)^2}{4 \cdot d_{free} \cdot SNR}$$

or
$$\Delta LS_k \rightarrow \frac{d_H(y_k, v_k)}{d_{free}}$$
 for BSC

L9: 7

Code/Decoder Performance Analysis

Section 7.2

Feb 6, 2024

MLSD Error Events

- MLSD is ML (maximum likelihood) error if wrong symbol (codeword) chosen, P_e.
 - However, note MLSD's add-compare-select is basic Machine-Learning element, so ML 2 ways ⊖.
- The symbol is an entire codeword, which theoretically is infinite-length for CC's.
 - An error \rightarrow error event $\epsilon(D) = x(D) \hat{x}(D)$; $\epsilon_x(D)$ with $\epsilon_y(D)$ are difference between input/output.
 - For binary codes, the subtraction is binary (mod-2 or xor).

- So, $\epsilon(D)$'s probability counts either at the time it begins (or ends, the two are equivalent) P_e .
 - All the corresponding input-bit errors are counted as occurring at that time $\overline{P}_b \ge P_e$.

Minimum distance \rightarrow distance spectrum

Union bound includes all the distances:

$$P_{e,BSC} \le \sum_{d=d_{free}}^{\infty} N_d \cdot \left[\sqrt{4p(1-p)} \right]^d \qquad P_{e,AWGN} \le \sum_{d=d_{free}}^{\infty} N_d \cdot Q\left(\frac{d}{2\sigma}\right)$$

• For individual bit errors, really need counting function N(b, d):

$$\bar{P}_{b,BSC} \leq \frac{1}{k} \cdot \sum_{d=d_{free}}^{\infty} \sum_{i=1}^{\infty} i \cdot N(i,d) \cdot \left[\sqrt{4p(1-p)}\right]^d \qquad \bar{P}_{b,AWGN} \leq \frac{1}{k} \cdot \sum_{d=d_{free}}^{\infty} \sum_{\substack{i=1\\ N_b}}^{\infty} i \cdot N(i,d) \cdot Q\left(\frac{d}{2\sigma}\right)$$

• Matlab finds N_d for convolutional codes (example 8-state r = 2/3 code) – also length (not input bit errors).

```
tmin=poly2trellis([3 2], [2 5 5; 3 2 1])
distspec(tmin,5) =
dfree: 4
  weight: [1 11 108 417 1857] % N<sub>h</sub> (d)
  event: [1 5 24 71 238]
                                  % N_{\rho}(d)
```

d	N _b (d)	$N_e(d))$					
4	1	1					
5	11	5					
6	108	24					
7	417	71					
8	1857	238					
Section 7.2.1.1							

Ouch! – next-to-nearest can dominate the union-bound sum

Stanford University

L9:10

Feb 6, 2024

Section 1.2.1.1

Transfer Function Analysis (mentioned, but archaic)

- Transfer function redraws trellis as single-time state machine.
- Each branch has multivariate transfer function:
 - W^d collects distance from all zeros as exponent,
 - L^{l} collects length as exponent (each branch is L),
 - I^i collects input errors w.r.t. all zeros as exponent,
 - I^{j} collects number of subsymbol differences.

• Only 1 error event has $d_{free} = 5$: •

1 input bit error (Nb = 1), &

1 error event (Ne = 1).

length is 3, with

$$T(W,L,I,J) = \frac{W^5 \cdot L^3 \cdot I \cdot J^3}{1 - WLIJ \cdot (L+1)}$$

Feb 6, 2024

Section 7.2.2

Random Interleaving

Section 8.3.1

 $(\cdot)_M$ means the quantity in brackets modulo Mthe part left over after subtracting the largest contained integer multiple of M. Feb 6, 2024

Binary Codewords & Sequences

- Recall BICM.
 - Effectively was simple/deterministic interleave (PS3.5)
- Adjacent bits are separated
 - π or $\pi(k)$ is periodic with period *L*.
 - π is also an "ordering."

Uniform Random Interleaver π

- $\binom{L}{l}$ possibilities in L encoder-output positions:
 - where *l* channel-bit errors could have occurred.
- True random interleave means they're all equally likely.

Adjacent bits are separated

- Ideally by more than codeword length, big L>> N.
- Or > survivor length with Viterbi.
- Receiver de-interleaves/restores original order.
 - Now coming from independent channel uses.
- Real system, L is delay, so not too big.

Feb 6, 2024

Section 8.3.1-2

L9:13

Various implementations of random interleavers

• Berrou Glavieux: $L = K \cdot J = 2^{i} \cdot 2^{j}$ $r_{0} = (k)_{J}, c_{0} = (k - r_{0})/J$ @ time k $r(k) = (p_{m+1} \cdot (c_{0} + 1) - 1)_{K}$ $c(k) = ((K/2 + 1) \cdot (r_{0} + c_{0}))_{J}$

$$\begin{bmatrix} m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ p_m & 17 & 37 & 19 & 29 & 41 & 23 & 13 & 7 \\ \pi(k) = c(k) + J \cdot r(k) \end{bmatrix}$$

JPL Block Interleaver: $K \in \mathbb{Z}^+$ and even $J \in \mathbb{Z}^+$, such that $L = K \cdot J$ $r(k) = (19 \cdot r_0)_{\frac{K}{2}}$ $c(k) = (p_{m+1} \cdot c_0 + 21 \cdot (k)_2)_{I}$ $\mathbf{2}$ 3 4 $\mathbf{5}$ 6 8 1 m $43 \quad 47 \quad 53$ 31375961 67 on is p_m $\pi(k) = 2 \cdot r(k) \cdot K \cdot c(k) - (k)_2 + 1$ $r_0 = \left(\frac{i-m}{2} - c_0\right)_I, c_0 = \left(\frac{i-m}{2}\right)_I, \text{ and } m = (r_0)_8$

- Pseudorandom sequence: ν bits visits every ν –bit sequence exactly once in $L = 2^{\nu} 1$ period.
 - These are generated with rate r = 1, 2^{ν} -state G(D)=1/P(D) encoder.
 - Table 8.6 lists the P(D) choices for different ν choices or use matlab's prbs.m command.

Section 8.3.1.3-5

S-random interleaver – adapts to situation

- $S \leq \sqrt{\frac{L}{2}}$, run loop with largest S that provides enough values for $\pi(k)$.
- There is no best universal choice of random interleaver it is related to code choice(s).

Section 8.3.1.6

Matlab random interleaving

Matlab has its own function where a state can be selected $0 \leq STATE < 2^{31}$; $STATE \in \mathbb{Z}$

INTRLVED = randintrlv(DATA, STATE) DATA=randintrlv(STATE)

• STATE needs to be the same in both calls. STATE evolves for successive DATA packets:

7

- Use randi (random integer) or randStream commands for STATE.
- This appears S-random for length of data and seems to approximate the $\binom{L}{l}$ possible patterns for $l \ll L$,

PRBS Version:

				$5 \longrightarrow 4$
>> prbs(3,7) = 0 1 0 1	1	1	0	
>> prbs(3,14) =				0 1 0 1 1 1 0 0 1 0 1 1 1
0				\smile
>> sum(prbs(3,14)) = 8				$2 \underbrace{\frown}_{2} 6 \underbrace{\frown}_{1}$
>> sum(prbs(3,14) == 0) = 6	5			5 1
	•		•	

>> randperm(7) = 6 3 7 5 1 2 4

Nothing Perfectly Random on interleaving.

randperm(L) - used in coming examples.

Feb 6, 2024

Not in text

L9: 16

Iterative Decoding & Turbo Codes

Section 8.3.2

Intrinsic and Extrinsic Soft Information

Intrinsic soft information (at time k):

- includes à priori information (which initially is uniform, but often replaced by another decoder's update).
- includes the channel output (examples squared distance to closest constellation point AWGN, ln(p(1-p)) on BSC).
- Extrinsic soft information (at times ≠ k):
 - Includes everything else from code (and sometimes channel/constellation-mapping) constraints.
 - For instance, the MAP decoder's α_k , β_k that accumulate information for all the other subsymbols in codeword.
- The **next** à priori becomes the **last** extrinsic in successive decoding iterations.

Sections 8.3.2, 7.4-5

Iterative Decoding with LL's

Decompose LLs (or often LLRs for bit decoding)

Parallel Code Concatenation

- Parallel Concatenation usually occurs with r = 1/n codes and systematic encoders.
 - Often g₁(D)= g₂(D) and is called a "Turbo Code."

- Overall rate is r=1/3, but each is r=1/2 in the example above.
 - If nonsystematic, the efficiency of not repeating the same bit is lost.
- Soft extrinsic information between decoders is for input bits.
- *Initial soft intrinsic information is for channel/encoder output bits.*

Section 2.4.1

Feb 6, 2024

Section 8.3.2.1 (PS5.1 (8.12)

Serial Code Concatenation

• sometimes $h_1(D) = h_2(D)$ and is also called a "Turbo Code."

Initial soft intrinsic information is for code 2's channel/encoder output bits.

Puncturing (parallel case)

Parity bits here may be for different codes with same input bit(s).

• This restores code rate
$$r = \frac{1}{3} \text{ to } \frac{1}{2}$$
 u_k $p_{1,k}$ p_{k+1} p_{k+1} $p_{2,k+1}$

• increases
$$r = \frac{1}{3} \operatorname{to} \frac{2}{3}$$
 u_k $p_{1,k}$ $p_{2,k}$ u_{k+1} $p_{2,k}$ $p_{2,k+2}$ u_{k+2} $p_{2,k+2}$ u_{k+3} $p_{2,k+3}$ p_{2,k

Serial case similar – try to distribute deleted bit positions equally throughout

Section 8.3.2.2

Turbo Codes

- Individual codes are convolutional codes (parallel and serial cases).
- Example analysis for well known 4-state $r = \frac{1}{2}$ code:

$$G_1(D) = \left[1 \ \frac{1+D+D^2}{1+D^2}\right]$$

- An input error event $1 + D^2$ for 1st-code corresponds to output error event $[1 + D^2 \quad 1 + D + D^2]$,
 - which is the $d_{free} = 5$ error event (or closest codeword to all zeros).
 - So there are **2** input-bit errors if an output-bits error event causes decoder to pick wrong codeword.
- But this has to happen for 2nd-code also (same code, just a 2nd parity bit);
 - so, $d_{free} = 8$ for the concatenated code.
 - The new gain is $\gamma = 8/3$ instead of 5/2, which is roughly only .3 dB improvement; HOWEVER

Prob both
$$err = {\binom{L}{2}}^{-1} = \frac{2}{L \cdot (L-1)}$$
 $\bar{P}_b(d_{free}) \approx \frac{2}{L-1} \cdot b \cdot \overline{N}_b(d_{free}) \cdot Q(\sqrt{d_{free}} \cdot \text{SNR})$
 $\approx \frac{4}{L-1} \cdot 1 \cdot Q(\sqrt{8 \cdot \text{SNR}})$.

• So N_b reduces by 2/(L-1); if L = 2000, this is ~ 2-3 dB improvement, ~ $0.2 \cdot \log_2 L$ in range $10^{-4} - 10^{-7}$.

This basic effect occurs also with more powerful convolutional codes, but still about 1-1.5 dB short of best (capacity).

Feb 6, 2024

Section 8.3.2.3

L9: 23

Matlab's comm.TurboEncoder/Decoder

	>> turbodec=comm.TurboDecoder(tfeed,ileaveorder)
>> tfeed=poly2trellis(3,[7 5],7) =	TrellisStructure: [1 × 1 struct]
numInputSymbols: 2	InterleaverIndicesSource: 'Property'
numOutputSymbols: 4	InterleaverIndices: [99 32 40 22 34]
numStates: 4	InputIndicesSource: 'Auto'
nextStates: [4 × 2 double]	Algorithm: 'True APP'
outputs: [4 × 2 double]	NumIterations: 6
	>> decmsg=turbodec(2*Y-1); % takes real numbers with 0→ -1, 1→ +1
>> ileaveorder=randperm(100);	>> (decmsg-X')' =
	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
>> turbo = comm.TurboEncoder('TrellisStructure', tfeed, 'InterleaverIndices',	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
ileaveorder) =	000 000 000 0
TrellisStructure: [1 × 1 struct]	>> >> biterr(decmsg,X') = 0
InterleaverIndicesSource: 'Property'	
InterleaverIndices: [99 32 40 22 34]	>> error = [1 zeros(1,49) 1 zeros(1,49) 1 zeros(1,99) 1 zeros(1,45) 1 zeros(1,61)];
OutputIndicesSource: 'Auto' % this deletes the repeated input bit.	<pre>>> decmsg=turbodec(2*(+xor(Y,error))-1);</pre>
	>> (decmsg-X')'
>> X=prbs(7,100);	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
>> Y=turbo(X ')' =	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
001 000 001	000 000 000 0
>> size(Y) = 1 308 % This equals (1/r) x L plus 2 x nu x n	>> biterr(decmsg,X') = 0

- Decode tool default is MAP/APP Decode.
 - Options can set max (max) and maxlog (max*).
 - Options can increase number of bits also (NumScalingBits) up to 8 (default is 3-bit arithmetic).
 - Soft information on p or σ^2 is consistent within and need not be supplied (only need this for MAP when sending outside this loop).

PS6.1 (8.12)

L9: 24

Error Flooring

- Interleaver gain additional gain is $\gamma_{parallel} \cong \log_{10} \left(\frac{L-1}{2} \right) dB$
 - over the range, $\gamma_{parallel}$ < 3 dB.
- γ_{parallel} dominates over operational range where d > d_{min} next-to-nearest counts contribute significantly.
- At large SNR, the d_{min} term in Q-function argument(s) eventually dominates.

Section 8.3.2.3

The example 4-state code with puncturing

- The gain at $\overline{P}_b = 10^{-6}$ is about 8.5 dB; however C = 0.5 @ SNR = 0 dB (so still about 2 dB short)
 - But roughly 3 dB better than best 16-state r = 1/2 code!

Section 8.3.2.3

SOVA / Logmax and error flooring

SOVA w.r.t. LOGMAP loses about 0.5 dB and both show earlier error flooring.

Feb 6, 2024

Section 8.3.2.3

L9: 27

Good constituent Turbo Codes (Divsilar, JPL)

Section 8.3 lists many.

2^{ν}	$g_0(D)$	$g_1(D)$	d_2	d_3	d_{free}	$d_{2,cat}$	$d_{3,cat}$	$d_{free,cat}$
4	7	5	5	6	5	8	10	8
8	17	13	6	7	6	10	11	10
16	23	35	7	7	7	12	11	11

Table 8.10: Rate 1/2 constituent (mother) parallel convolutional codes

2^{ν}	$g_0(D)$	$g_1(D)$	$g_2(D)$	d_2	d_3	d_{free}	$d_{2,cat}$	$d_{3,cat}$	$d_{free,cat}$
2	3	2	1	4	∞	4	6	∞	6
4	7	5	3	8	7	7	14	11	11
8	13	17	15	14	10	10	26	17	17
16	23	33	37	22	12	12	42	21	21

Table 8.11: Rate 1/3 constituent (mother) parallel convolutional codes.

2^{ν}	$h_0(D)$	$h_1(D)$	$h_2(D)$	d_2	d_3	d_{free}	$d_{2,cat}$	$d_{3,cat}$	$d_{free,cat}$
4	7	3	5	4	3	3	6	3	3
8	13	15	17	5	4	4	8	5	5
16	23	35	27	8	5	5	14	7	7
16	45	43	61	12	6	6	22	9	9

Table 8.13: Rate 2/3 constituent (mother) parallel convolutional codes.

L1:28

Stanford University

Fit to design, but probably at best another 1 dB over the earlier example.

Some may be better for BICM outside of Turbo.

Feb 6, 2024

Section 8.3.2.5

Good Punctured Codes & Patterns (DLM) for Turbo

The puncturing (as well as interleaver, and of course the 2 together) is at least as important as the code.

													_
2^{ν}	$\begin{bmatrix} 1 & \frac{g_1}{g_0} \\ 1 & \frac{5}{7} \end{bmatrix}$	d	$N_{e,d}$	$N_{b,d}$	d_2	d_3	2^{ν}	$\begin{bmatrix} 1 & \frac{g_1}{g_0} \\ 1 & \frac{27}{31} \end{bmatrix}$	d	$N_{e,d}$	$N_{b,d}$	d_2	d_3
4	$[1\frac{5}{7}]$	5	1	3	6	5	16	$\begin{bmatrix} 1 & \frac{27}{31} \end{bmatrix}$	7	2	8	12	7
(d_2)		6	2	6			(d_2)	01	8	3	12		
		7	4	14					9	4	16		
		8	8	32					10	16	84		
		9	16	72					11	37	213		
4	$[1\frac{7}{5}]$	5	1	2	5	∞	16	$\left[1 \frac{37}{23}\right]$	6	1	4	12	8
(SNR)		6	2	6			(d_2)	20	8	6	23		
		7	4	14					10	34	171		
		8	8	32					12	174	1055		
		9	16	72					14	930	6570		
8	$\left[1 \frac{15}{13}\right]$	6	2	6	8	6	16	$\left[1 \frac{33}{23}\right]$	7	2	8	12	7
(d_2)	10	8	10	40			(d_2)	20	8	4	16		
		10	49	245					9	6	26		
		12	241	1446					10	15	76		
		14	1185	8295					11	37	201		
8	$\left[1 \frac{17}{13}\right]$	6	1	4	8	7	16	$\begin{bmatrix} 1 & \frac{35}{23} \end{bmatrix}$	7	2	8	12	7
(d_2)	10	7	3	9			(d_2)	20	8	3	12		
		8	5	20					9	4	16		
		9	11	51					10	16	84		
		10	25	124					11	37	213		
8	$\left[1 \frac{15}{17}\right]$	6	1	2	6	∞	16	$\left[1 \frac{23}{35}\right]$	7	2	6	7	∞
(SNR)		7	3	12			(SNR)		8	3	12		
		8	5	20					9	4	20		
		9	11	48					10	16	76		
		10	25	126					11	137	194		
16	$\left[1 \frac{33}{31}\right]$	7	2	8	12	7	32	$\left[1 \frac{71}{53}\right]$	8	3	12	12	∞
(d_2)		8	4	16			(d_3)	00	10	16	84		
		9	6	26					12	68	406		
		10	15	76					14	860	6516		
		11	37	201					16	3812	30620		
16	$\left[1 \frac{21}{37}\right]$	6	1	2	6	∞	32	$\left[1 \frac{67}{51}\right]$	8	2	7	20	8
		7	1	5			$(SNR d_2)$. 01 /	10	20	110		
		8	3	10					12	68	406		
		9	5	25					14	469	3364		
		10	12	56					16	2560	20864		

Table 8.15: Best 4/8/16/32-state r = 1/2 constituent (mother) convolutional codes with puncturing. $N_{e,d} = N_{d-d_{free}}$ and $N_{b,d} = \sum_b N(b,d)$ in this table.

	-			
n-1	4 states	8 states	16 states	32 states
2	$[1\frac{5}{7}]$	$\left[1 \ \frac{15}{13} \right]$	$\left[1 \ \frac{37}{23} \ \right]$	$\left[1 \ \frac{67}{51} \right]$
$^{2}/_{3}$	13 (3,1,3)	13 (4,3,10)	13 (4,2,6)	13(5,2,7)
13	$d_2 = 4$, $d_3 = 3$	$d_2 = 5$, $d_3 = 4$	$d_2 = 7$, $d_3 = 4$	$d_2 = 9$, $d_3 = 5$
3	$[1\frac{5}{7}]$	$\left[\begin{array}{cc} 1 & \frac{15}{13} \end{array}\right]$	$\left[1 \ \frac{37}{23} \ \right]$	$\left[1 \ \frac{67}{51} \ \right]$
$^{3}/_{4}$	56(3,4,10)	53(3,2,5)	53(3,1,3)	53(4,2,7)
/ T	$d_2 = 3$, $d_3 = 3$	$d_2 = 3$, $d_3 = 3$	$d_2 = 4$, $d_3 = 3$	$d_2 = 7$, $d_3 = 4$
4	$[1\frac{5}{7}]$	$[1 \frac{15}{13}]$	$\left[\begin{array}{cc} 1 & \frac{37}{23} \end{array}\right]$	$\left[1 \ \frac{67}{51} \right]$
$^{4}/_{5}$	253(2,1,2)	253 (3, 9, 24)	253 (3,3,9)	253 (3,1,3)
15	$d_2 = 2$, $d_3 = 3$	$d_2 = 3$, $d_3 = 3$	$d_2 = 4$, $d_3 = 3$	$d_2 = 5$, $d_3 = 3$
5	$\begin{bmatrix} 1 \frac{5}{7} \end{bmatrix}$	$\left[1 \frac{17}{13} \right]$	$\left[1 \frac{27}{31} \right]$	$\left[1 \ \frac{71}{53} \right]$
⁵ / ₆	1253(2,2,4)	1253 (3, 15, 40)	1272(3,2,6)	1272 (4,108,406)
/6	$d_2 = 2$, $d_3 = 3$	$d_2 = 3$, $d_3 = 3$	$d_2 = 4$, $d_3 = 3$	$d_2=4$, $d_3=\infty$
6	$\begin{bmatrix} 1 \frac{5}{7} \end{bmatrix}$	$\left[1 \frac{17}{13}\right]$	$\left[1 \frac{27}{31}\right]$	$\left[1 \frac{71}{53}\right]$
$^{6}/_{7}$	5352 (2,22,44)	5253(2,1,2)	5253 (3, 12, 33)	5253(3,3,6)
• 7	$d_2 = 2$, $d_3 = 3$	$d_2 = 2$, $d_3 = 3$	$d_2 = 3$, $d_3 = 3$	$d_2=3$, $d_3=\infty$
7	$[1\frac{5}{7}]$	$\left[1 \ \frac{15}{17} \right]$	$\begin{bmatrix} 1 & \frac{33}{23} \end{bmatrix}$	$\left[1 \ \frac{67}{51} \right]$
⁷ /8	25253 (2,7,14)	25253 $(2,7,14)$	25253 $(2,1,2)$	25253(2,1,2)
,0	$d_2 = 2$, $d_3 = 3$	$d_2=2$, $d_3=\infty$	$d_2 = 2$, $d_3 = 3$	$d_2 = 3, d_3 = 3$
8	$\begin{bmatrix} 1 \frac{5}{7} \end{bmatrix}$	$\left[1 \ \frac{15}{13} \right]$	$\begin{bmatrix} 1 & \frac{37}{23} \end{bmatrix}$	$\left[1 \frac{67}{51}\right]$
⁸ /9	125253 (2,9,18)	125253 (2,4,8)	125253(2,1,2)	125253 (3,17,49)
/9	$d_2 = 2$, $d_3 = 3$	$d_2 = 2$, $d_3 = 3$	$d_2 = 2$, $d_3 = 3$	$d_2 = 3, d_3 = 3$

Table 8.16: Best puncturing patterns for given high-rate parallel turbo codes. The triplets listed are $(d_i, N_{d-d_{free}}, \sum_b N(b, d))$.

0 meaning puncture that parity bit. For instance 5352 means 101 011 101 010 so and corresponds to (letting i_k be an information bit and p_k be the corresponding parity bit)

Feb 6, 2024

Section 8.3.2.6

 $(i_1, p_1, i_2, p_2, i_3, p_3, i_4, p_4, i_5, p_5, i_6, p_6) \rightarrow (i_1, i_2, i_3, p_3, i_4, i_5, i_6)$.

L9: 29

(8.66)

Serial Concatenation

- It may be easier to concatenate with an existing system serially.
 - Use when necessary (essentially pass-through when SNR is above minimum necessary systematic, no decode).
- Analysis is more complex, see Section 8.3.

$$\bar{P}_{b} \approx L \left(\begin{array}{c} L \\ \left\lceil \frac{d_{free}^{out}}{2} \right\rceil \end{array} \right)^{-1} \cdot \frac{\bar{N}_{b}(d_{free}^{in}) \cdot \bar{N}_{b}(d_{free}^{out})}{b} \cdot Q \left(\sqrt{\left\{ \left\lceil \frac{d_{free}^{out}}{2} - 3 \right\rceil \cdot d_{2}^{in} + d_{w}^{in} \right\} \cdot \text{SNR}} \right) , \quad (8.64)$$
This analysis does not require the outer encoder to be systematic, nor even use feedback. The interleaving gain thus is
$$\gamma_{serial} = \log_{10} \left(\frac{L!}{\left\lceil \frac{d_{free}^{out}}{2} \right\rceil !} \right) \text{ dB} \qquad (8.65)$$

Which is better, parallel or serial? Really depends on situation, exact SNR. Turbo codes have largely yielded to LDPC codes in recent years (next lecture).

Section 8.3.2.4

Midterm Review

Feb 6, 2024

End Lecture 9