Lecture 9 High-Performance Codes

February 6, 2024

JOHN M. CIOffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS4 due, no late. Solutions then distributed
- Midterm on Thursday.

Today

- Continue L8
- Code Performance Analysis
- Random Interleaving
- Iterative Decoding \& Turbo Codes
- Midterm Review

Option \& Feedback

- Trade PS8 for any homework on grade (will give full credit on PS4.1-8.1e to all)
- 11-25 hours
- Thank you for all comments - will help future students as well.
- I keep a running list of future corrections thanks to you all.
- This particular assignment was on material significantly updated or new.
- Notation (not incorrect, just a lot of it)
- We try to avoid "one-variable-corresponding-to-multiple-things" (although ..)
- $N=\bar{N} \cdot \widetilde{N}$ is example (concatenations can confuse).
- Problem statements
- It helps if feedback provides a specific example of how the hmwk was not clear (which problem, what statement). We try to get that in the online feedback.
- Sooner is better - thanks to Marcos B today
- In class examples are simple, but homework requires more work.
- One said HWH not helpful (of course you can ignore).
- Time indexing
- Vectors in communication (most recent usually on left/top)
- Matlab has lowest index on left/top, but reverses this for G(D) octal entries
- But not for convolution, nor convenc (and other similar commands).

PS4 should be less

- PS5 after midterm (probably hardest)
- PS6-8 pretty-established problems from past (other students' comments will help you).
No JC office hours Thursday (after exam)

Soft-Output Viterbi Algorithm SOVA

Section 7.3.2

SOVA

- LOGMAX - approximates a sum-of-products by it's maximum single term.
- Often very true in decoding as one probability (a term) is often much larger than others (wrong decisions) PS4.3.

$$
\ln \left(\alpha_{k+1}, s_{k+1}\right) \approx \max _{\text {branches into } s_{k+1}} \ln \left(\alpha_{k}, s_{k}, \text { branch into }\right)+\ln \left(\gamma_{k}, \text { branch into }\right)
$$

This is the VA in the forward direction. Similarly in the backward direction

$$
\ln \left(\beta_{k}, s_{k}\right) \approx \max _{\text {branches into } s_{k+1}} \ln \left(\beta_{k+1}, s_{k}, \text { branch into }\right)+\ln \left(\gamma_{k}, \text { branch into }\right)
$$

- The path is same as Viterbi
- But now we have 2, one forward and one backward and try to provide better soft information about bit decisions.

$$
\begin{aligned}
L L R \boldsymbol{x}_{k}= & \pm\left[\max _{\text {o branches }}\left\{\ln \left(\alpha_{k}, \text { branch }\right)+\ln \left(\gamma_{k}, \text { branch }\right)+\ln \left(\beta_{k}, \text { branch }\right)\right\}\right. \\
& \left.-\max _{1 \text { branches }} \ln \left(\alpha_{k}, \text { branch }\right)+\ln \left(\gamma_{k}, \text { branch }\right)+\ln \left(\beta_{k}, \text { branch }\right)\right]
\end{aligned}
$$

Forward SOVA Example with Ties

- It's easy without ties - just find other path with other input (0/1) with next lowest survivor metric and
- take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and - sign for 1)
Green color indicates the minimum-metric path is a survivor in forward direction; all
- The local resolution and majority voting appear equivalent to some of what matlab is doing (requires examination/test of source code).
- Probably could be confirmed by someone testing various situations
- Nonetheless, the above is viable Forward-SOVA tie resolution

Forward-Backward SOVA Example

Hagenauer's LLR SOVA update

- Prob of VA sequence error

$$
\begin{aligned}
& \operatorname{Pr}_{M L}\left\{x_{k}=-1\right\}=\operatorname{Pr}\left\{u_{k}=0\right\} \propto e^{-L S_{k}^{*}(0)} \\
& \operatorname{Pr}_{M L}\left\{x_{k}=+1\right\}=\operatorname{Pr}\left\{u_{k}=1\right\} \propto e^{-L S_{k}^{*}(1)}
\end{aligned}
$$

- Magnitude difference of two bit choices is
- $\Delta L S_{k}=L S_{k}^{*}(0)-L S_{k}^{*}(1)$
- $L L R_{k}=x_{k} \cdot \Delta L S_{k}$ (really estimate)
- Linear-code analysis: 0 in numerator:

$$
P_{e, k}=\frac{e^{-L S_{k}^{*}(0)}}{e^{-L S_{k}^{*}(0)}+e^{-L S_{k}^{*}(1)}}=\frac{1}{1+e^{\Delta L S_{k}}}
$$

- Another decoder provides

$$
\widehat{L L R}_{k}=\ln \frac{1-\hat{\bar{P}}_{b, k}}{\hat{\bar{P}}_{b, k}}
$$

- Decoder includes soft info through:

- Algebra provides

$$
L L R_{k} \leftarrow \ln \left[\frac{1+e^{\Delta L S_{k}+L \widetilde{L R_{k}}}}{e^{\Delta L S_{k}}+e^{L \widehat{L R} R_{k}}}\right]
$$

- Ignores scaling difference between sequence and bit, so

$$
\begin{aligned}
& \Delta L S_{k} \rightarrow \frac{\left(y_{k}-x_{k}\right)^{2}}{4 \cdot d_{\text {free }} \cdot S N R} \\
& \text { or } \Delta L S_{k} \rightarrow \frac{d_{H}\left(y_{k}, v_{k}\right)}{d_{\text {free }}} \text { for BSC }
\end{aligned}
$$

Code/Decoder Performance Analysis

Section 7.2

MLSD Error Events

- MLSD is ML (maximum likelihood) - error if wrong symbol (codeword) chosen, P_{e}.
- However, note MLSD's add-compare-select is basic Machine-Learning element, so ML 2 ways :).
- The symbol is an entire codeword, which theoretically is infinite-length for CC's.
- An error \rightarrow error event $\epsilon(D)=x(D)-\hat{x}(D) ; \epsilon_{x}(D)$ with $\epsilon_{y}(D)$ are difference between input/output.
- For binary codes, the subtraction is binary (mod-2 or xor).
- So, $\epsilon(D)$'s probability counts either at the time it begins (or ends, the two are equivalent) P_{e}.
- All the corresponding input-bit errors are counted as occurring at that time $\bar{P}_{b} \geq P_{e}$.

Minimum distance \rightarrow distance spectrum

- Union bound includes all the distances:

$$
P_{e, B S C} \leq \sum_{d=d_{f r e e}}^{\infty} N_{d} \cdot[\sqrt{4 p(1-p)}]^{d} \quad \quad P_{e, A W G N} \leq \sum_{d=d_{f r e e}}^{\infty} N_{d} \cdot Q\left(\frac{d}{2 \sigma}\right)
$$

- For individual bit errors, really need counting function $N(b, d)$:

$$
\bar{P}_{b, B S C} \leq \frac{1}{k} \cdot \sum_{d=d_{f r e e}}^{\infty} \sum_{i=1}^{\infty} i \cdot N(i, d) \cdot[\sqrt{4 p(1-p)}]^{d} \quad \bar{P}_{b, A W G N} \leq \frac{1}{k} \cdot \sum_{d=d_{f r e e}}^{\sum_{i=1}^{\infty} i \cdot N(i, d) \cdot Q\left(\frac{d}{2 \sigma}\right)} \underbrace{\infty}_{N_{b}(d)}
$$

- Matlab finds N_{d} for convolutional codes (example 8 -state $r=2 / 3$ code) - also length (not input bit errors).

```
tmin=poly2trellis([3 2],[2 5 5; 3 2 1])
distspec(tmin,5) =
dfree: 4
```


\boldsymbol{d}	$N_{b}(\boldsymbol{d})$	$\left.N_{e}(\boldsymbol{d})\right)$
4	1	1
5	11	5
6	108	24
7	417	71
8	1857	238

Ouch! - next-to-nearest can dominate the union-bound sum

Transfer Function Analysis (mentioned, but archaic)

- Transfer function redraws trellis as single-time state machine.
- Each branch has multivariate transfer function:
- W^{d} collects distance from all zeros as exponent,
- L^{l} collects length as exponent (each branch is L),
- I^{i} collects input errors w.r.t. all zeros as exponent,
- J^{j} collects number of subsymbol differences.

$$
T(W, L, I, J)=\frac{W^{5} \cdot L^{3} \cdot I \cdot J^{3}}{1-W L I J \cdot(L+1)}
$$

Mason's Gain Formula see Section 7.2.2

$$
=W^{5} \cdot L^{3} \cdot I \cdot J^{3} \cdot\left[1+W L I J \cdot(L+1)+(W L I J \cdot(L+1))^{2}+\cdots\right]
$$

- Only 1 error event has $d_{f r e e}=5:-2$ error events have $d=6$:
- length is 3 , with
- 1 input bit error $(\mathrm{Nb}=1), \&$
- 1 error event ($\mathrm{Ne}=1$).
- lengths are 5 and 6 ,
- both have 2 input bit errors (so $\mathrm{Nb}(\mathrm{d}=6)=4$), \&
- $\operatorname{Ne}(d=6)=2$.
>> t=poly2trellis(3, [7 5]) numlnputSymbols: 2 numOutputSymbols: 4 numStates: 4 nextStates: [4×2 double] outputs: [4×2 double] >> distspec(t,4) dfree: 5
weight: [1 412 32] event: [1 24 8]

Random Interleaving

Section 8.3.1

$(\cdot)_{M}$ means the quantity in brackets modulo M
the part left over after subtracting the largest contained integer multiple of M

Binary Codewords \& Sequences

- Recall BICM.

- Effectively was simple/deterministic interleave (PS3.5)
- Adjacent bits are separated
- π or $\pi(k)$ is periodic with period L.

- π is also an "ordering."

Uniform Random Interleaver π

- $\binom{L}{l}$ possibilities in L encoder-output positions:
- where l channel-bit errors could have occurred.
- True random interleave means they're all equally likely.

Various implementations of random interleavers

- Berrou Glavieux: $L=K \cdot J=2^{i} \cdot 2^{j}$
$r_{0}=(k)_{J}, c_{0}=\left(k-r_{0}\right) / J$ @ time k

$$
\begin{aligned}
& r(k)=\left(p_{m+1} \cdot\left(c_{0}+1\right)-1\right)_{K} \\
& c(k)=\left((K / 2+1) \cdot\left(r_{0}+c_{0}\right)\right)_{J}
\end{aligned}
$$

m	1	2	3	4	5	6	7	8
p_{m}	17	37	19	29	41	23	13	7

$$
\pi(k)=c(k)+J \cdot r(k)
$$

- JPL Block Interleaver: $\quad K \in \mathbb{Z}^{+}$and even $J \in \mathbb{Z}^{+}$, such that $L=K \cdot J$

$$
\begin{aligned}
r(k) & =\left(19 \cdot r_{0}\right)_{\frac{K}{2}} \\
c(k) & =\left(p_{m+1} \cdot c_{0}+21 \cdot(k)_{2}\right)_{J}
\end{aligned}
$$

on is

m	1	2	3	4	5	6	7	8
p_{m}	31	37	43	47	53	59	61	67

$\pi(k)=2 \cdot r(k) \cdot K \cdot c(k)-(k)_{2}+1$
$r_{0}=\left(\frac{i-m}{2}-c_{0}\right)_{J}, c_{0}=\left(\frac{i-m}{2}\right)_{J}$, and $m=\left(r_{0}\right)_{8}$

- Pseudorandom sequence: v bits - visits every v-bit sequence exactly once in $L=2^{v}-1$ period.
- These are generated with rate $r=1,2^{v}$-state $G(D)=1 / P(D)$ encoder.
- Table 8.6 lists the $P(D)$ choices for different v choices or use matlab's prbs.m command.

S-random interleaver - adapts to situation

- $S \leq \sqrt{\frac{L}{2}}$, run loop with largest S that provides enough values for $\pi(k)$.
- There is no best universal choice of random interleaver - it is related to code choice(s).
- Ileaveout $(1: \mathrm{L})=\operatorname{ll}$ eavein $(\mathrm{pi}(1: \mathrm{L}))$; ileavein = ileaveout(piinv(1:L))- for design's pi choice.

Matlab random interleaving

- Matlab has its own function where a state can be selected $0 \leq \operatorname{STATE}<2^{31}$; STATE $\in \mathbb{Z}$

$$
\begin{aligned}
& \text { INTRLVED = randintrlv(DATA, STATE) } \\
& \text { DATA=randintrlv(STATE) }
\end{aligned}
$$

- STATE needs to be the same in both calls. STATE evolves for successive DATA packets:
- Use randi (random integer) or randStream commands for STATE.
- This appears S-random for length of data and seems to approximate the $\binom{L}{l}$ possible patterns for $l \ll L$, - with roughly equal probability (L=length(DATA)).

```
>> data=randi(2,[1,8])-1 =
    1
>> ileaveout=randintrlv(data,1)=
    1
>> randdeintrlv(ileaveout,1) =
    1
```

```
>> data=randi(2,[1,10])-1 =
    0
>> ileaveout=randintrlv(data,1) =
    1
>> randdeintrlv(ileaveout,1) =
    0
```

- PRBS Version:

0
$\gg \operatorname{sum}(\operatorname{prbs}(3,14))=8$
$\gg \operatorname{sum}(\operatorname{prbs}(3,14)=0)=6$

```
                                    >> randperm(7)= }\begin{array}{lllllllll}{6}&{3}&{7}&{5}&{1}&{2}&{4}
```

Nothing Perfectly Random on interleaving.
randperm(L) - used in coming examples.

Iterative Decoding \& Turbo Codes

Section 8.3.2

Intrinsic and Extrinsic Soft Information

$$
\boldsymbol{x}_{\boldsymbol{x}_{k} / \boldsymbol{Y}_{0: K-1}} \propto p_{\boldsymbol{x}_{k}, \boldsymbol{Y}_{0: K-1}}=\underbrace{\underbrace{p \boldsymbol{x}_{k}}_{\text {ariori }} \cdot \underbrace{p_{\boldsymbol{y}_{k} / \boldsymbol{x}_{k}}}_{\text {channel }} \cdot \underbrace{p_{\boldsymbol{Y}_{0: k-1}, \boldsymbol{Y}_{k+1: K-1} / \boldsymbol{x}_{k}, \boldsymbol{y}_{k}}}_{\text {extrinsic }}, ~}_{\text {intrinsic }}
$$

$$
\gamma_{k} \quad \alpha_{k}, \beta_{k}
$$

- Intrinsic soft information (at time k):
- includes à priori information (which initially is uniform, but often replaced by another decoder's update).
- includes the channel output (examples squared distance to closest constellation point AWGN, $\ln (p(1-p))$ on BSC).
- Extrinsic soft information (at times $\neq k$):
- Includes everything else from code (and sometimes channel/constellation-mapping) constraints.
- For instance, the MAP decoder's α_{k}, β_{k} that accumulate information for all the other subsymbols in codeword.
- The next à priori becomes the last extrinsic in successive decoding iterations.

Iterative Decoding with LL’s

- Decompose LLs (or often LLRs for bit decoding)

$$
\begin{aligned}
L L_{\boldsymbol{x}_{k}, \boldsymbol{Y}_{0: K-1}} & =L L_{\boldsymbol{x}_{k}}+L L_{\boldsymbol{y}_{k} / \boldsymbol{x}_{k}+L L}^{\boldsymbol{Y}_{0: k-1}, \boldsymbol{Y}_{k+1: K-1} / \boldsymbol{x}_{k}, \boldsymbol{y}_{k}} \\
& =\underbrace{L L_{\text {à priori }}+L L_{\text {channel }}}_{\text {bias accumulation risk }}+L L_{\text {extrinsic }} .
\end{aligned}
$$

Simple at high level, details can be complex

e.g.

Are the LLR's for the encoder input or output bits or both? (it depends)

- Converged if two have same decision (or exceed interation max)

Parallel Code Concatenation

- Parallel Concatenation - usually occurs with $r=1 / n$ codes and systematic encoders.
- Often $g_{1}(D)=g_{2}(D)$ and is called a "Turbo Code."

- Overall rate is $r=1 / 3$, but each is $r=1 / 2$ in the example above.
- If nonsystematic, the efficiency of not repeating the same bit is lost.
- Soft extrinsic information between decoders is for input bits.

$$
\begin{aligned}
& \frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}-\left\{\begin{array}{l}
1 \text { systematic } \\
0 \text { nonsystem }
\end{array}\right. \\
& \text { See footnote in Section } 8.3 \\
& \text { for more on this formula. }
\end{aligned}
$$

- Initial soft intrinsic information is for channel/encoder output bits.

Serial Code Concatenation

- Serial Concatenation - usually occurs with $r=\frac{k}{k+1}$ codes and a systematic encoder.
- sometimes $h_{1}(D)=h_{2}(D)$ and is also called a "Turbo Code."

- Initial soft intrinsic information is for code 2's channel/encoder output bits.

BICM is simple Example,
but can be 2 more complex codes.
So are "turbo equalizers"
and "multiuser soft cancellers."

Albert Guillén i Fàbregas, Alfonso Martinez and Giuseppe Caire (2008), "Bit-Interleaved Coded Modulation",
Foundations and Trends® in Communications and Information Theory: Vol. 5: No. 1-2, pp 1-153.

L9: 21

Puncturing (parallel case)

- Parity bits here may be for different codes with same input bit(s).
- This restores code rate $r=\frac{1}{3}$ to $\frac{1}{2}$

u_{k}	$p_{1, k}$	p_{4},	u_{k+1}	$p_{\gamma, \ll 1}$	$p_{2, k+1}$

- increases $r=\frac{1}{3}$ to $\frac{2}{3}$

u_{k}	$p_{1, k}$	P4	u_{k+1}	Pr	P\%	u_{k+2}	p/ ${ }^{\text {a }}$	$p_{2, k+2}$	u_{k+3}	p, +3	pra

- Serial case similar - try to distribute deleted bit positions equally throughout

Turbo Codes

- Individual codes are convolutional codes (parallel and serial cases).
- Example analysis for well known 4-state $r=\frac{1}{2}$ code:

$$
G_{1}(D)=\left[\begin{array}{ll}
1 & \frac{1+D+D^{2}}{1+D^{2}}
\end{array}\right]
$$

- An input error event $1+D^{2}$ for $1^{\text {st }}$-code corresponds to output error event $\left[1+D^{2} 1+D+D^{2}\right]$,
- which is the $d_{\text {free }}=5$ error event (or closest codeword to all zeros).
- So there are 2 input-bit errors if an output-bits error event causes decoder to pick wrong codeword.
- But this has to happen for $2^{\text {nd }}$-code also (same code, just a $2^{\text {nd }}$ parity bit);
- so, $d_{\text {free }}=8$ for the concatenated code.
- The new gain is $\gamma=8 / 3$ instead of $5 / 2$, which is roughly only .3 dB improvement; HOWEVER

$$
\begin{aligned}
\operatorname{Prob} \text { both } \operatorname{err}=\binom{L}{2}^{-1}=\frac{2}{L \cdot(L-1)} \quad \bar{P}_{b}\left(d_{\text {free }}\right) & \approx \frac{2}{L-1} \cdot b \cdot \bar{N}_{b}\left(d_{\text {free }}\right) \cdot Q\left(\sqrt{d_{\text {free }} \cdot \mathrm{SNR}}\right) \\
& \approx \frac{4}{L-1} \cdot 1 \cdot Q(\sqrt{8 \cdot \mathrm{SNR}})
\end{aligned}
$$

- So N_{b} reduces by $2 /(L-1)$; if $L=2000$, this is $\sim 2-3 \mathrm{~dB}$ improvement, $\sim 0.2 \cdot \log _{2} L$ in range $10^{-4}-10^{-7}$.
- This basic effect occurs also with more powerful convolutional codes, but still about 1-1.5 dB short of best (capacity).

Matlab's comm.TurboEncoder/Decoder

```
>> tfeed=poly2trellis(3,[7 5],7) =
    numInputSymbols: }
    numOutputSymbols: 4
    numStates: 4
    nextStates: [4 }\times2\mathrm{ double]
    outputs: [4 }\times2\mathrm{ double]
```

>> ileaveorder=randperm(100);
>> turbo = comm.TurboEncoder('TrellisStructure', tfeed, 'InterleaverIndices',
ileaveorder) =
TrellisStructure: [1×1 struct]
InterleaverIndicesSource: 'Property'
InterleaverIndices: [99 32402234 ...]
OutputIndicesSource: 'Auto' \% this deletes the repeated input bit.
>> X=prbs(7,100);
>> $\mathrm{Y}=$ turbo(X^{\prime})' =
001000001 ..
>> $\operatorname{size}(\mathrm{Y})=1308$ \% This equals (1/r) x L plus $2 \times n u \times n$
>> turbodec=comm.TurboDecoder(tfeed,ileaveorder) TrellisStructure: [1×1 struct]
InterleaverIndicesSource: 'Property'
InterleaverIndices: [99 32402234]
InputIndicesSource: 'Auto'
Algorithm: 'True APP'
Numlterations: 6
\gg decmsg=turbodec(2*Y-1); \% takes real numbers with $0 \rightarrow \mathbf{- 1}, 1 \rightarrow+1$
>> (decmsg-X')' =
000
000
0000000000
>\gg> biterr(decmsg, X^{\prime}) = 0
>> error $=[1$ zeros $(1,49) 1$ zeros $(1,49) 1$ zeros $(1,99) 1$ zeros $(1,45) 1$ zeros $(1,61)]$;
>> decmsg=turbodec(2*(+xor(Y,error))-1);
>> (decmsg-X')'
000
000
0000000000
>> biterr(decmsg, X^{\prime}) = 0

- Decode tool default is MAP/APP Decode.
- Options can set max (max) and maxlog (max*).
- Options can increase number of bits also (NumScalingBits) up to 8 (default is 3-bit arithmetic).
- Soft information on p or σ^{2} is consistent within and need not be supplied (only need this for MAP when sending outside this loop).

Error Flooring

- Interleaver gain additional gain is $\gamma_{\text {parallel }} \cong \log _{10}\left(\frac{L-1}{2}\right) \mathrm{dB}$ - over the range, $\gamma_{\text {parallel }}<3 \mathrm{~dB}$.
- $\gamma_{\text {parallel }}$ dominates over operational range where $d>d_{\min }$ next-to-nearest counts contribute significantly.
- At large SNR, the $d_{\text {min }}$ term in Q-function argument(s) eventually dominates.

Limits coding gain or equivalently errors may not go to zero when SNR is better than anticipated in design.

The example 4-state code with puncturing

We're almost to \mathcal{C} !

Certain high-rate (see L11, EE387) Reed Solomon byte-wise block codes can, with small overhead, take $\bar{P}_{b}=10^{-6}$ close to zero

The drop in $\bar{P}_{b}=10^{-6}$ becomes very steep, so coding gain becomes less meaningful - high sensitivity to small SNR changes (there is another interleaver outside).

But that gets us close enough to capacity

- The gain at $\bar{P}_{b}=10^{-6}$ is about 8.5 dB ; however $\mathcal{C}=0.5 @ S N R=0 \mathrm{~dB}$ (so still about 2 dB short)
- But roughly 3 dB better than best 16 -state $r=1 / 2$ code!

SOVA / Logmax and error flooring

- SOVA w.r.t. LOGMAP loses about 0.5 dB and both show earlier error flooring.

Good constituent Turbo Codes (Divsilar, JPL)

- Section 8.3 lists many.

2^{ν}	$g_{0}(D)$	$g_{1}(D)$	d_{2}	d_{3}	$d_{\text {free }}$	$d_{2, c a t}$	$d_{3, c a t}$	$d_{\text {free }, c a t}$
4	7	5	5	6	5	8	10	8
8	17	13	6	7	6	10	11	10
16	23	35	7	7	7	12	11	11

Table 8.10: Rate $1 / 2$ constituent (mother) parallel convolutional codes

2^{ν}	$g_{0}(D)$	$g_{1}(D)$	$g_{2}(D)$	d_{2}	d_{3}	$d_{\text {free }}$	$d_{2, c a t}$	$d_{3, c a t}$	$d_{\text {free }, \text { cat }}$
2	3	2	1	4	∞	4	6	∞	6
4	7	5	3	8	7	7	14	11	11
8	13	17	15	14	10	10	26	17	17
16	23	33	37	22	12	12	42	21	21

Table 8.11: Rate $1 / 3$ constituent (mother) parallel convolutional codes.

2^{ν}	$h_{0}(D)$	$h_{1}(D)$	$h_{2}(D)$	d_{2}	d_{3}	$d_{\text {free }}$	$d_{2, \text { cat }}$	$d_{3, \text { cat }}$	$d_{\text {free }, \text { cat }}$
4	7	3	5	4	3	3	6	3	3
8	13	15	17	5	4	4	8	5	5
16	23	35	27	8	5	5	14	7	7
16	45	43	61	12	6	6	22	9	9

Table 8.13: Rate $2 / 3$ constituent (mother) parallel convolutional codes.

Good Punctured Codes \& Patterns (DLM) for Turbo

- The puncturing (as well as interleaver, and of course the 2 together) is at least as important as the code.

2^{ν}	$\left[\begin{array}{ll}1 \frac{g_{1}}{90}\end{array}\right]$	${ }^{\text {d }}$	$N_{e, d}$	$N_{b, d}$	d_{2}	d_{3}	2^{ν}	[$\left.\begin{array}{l}1 \frac{91}{90} \\ g_{0}\end{array}\right]$	${ }^{\text {d }}$	$N_{e, d}$	$N_{b, d}$	d_{2}	d_{3}
$\begin{gathered} 4 \\ \left(d_{2}\right) \end{gathered}$	$\left[\begin{array}{ll}1 & \left.\frac{5}{7}\right]\end{array}\right.$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	1 2 4 8 16	3 6 14 32 72	6	5	$\begin{gathered} 16 \\ \left(d_{2}\right) \end{gathered}$	[1 $\left.1 \frac{27}{31}\right]$	7 8 8 10 10 11	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 16 \\ 37 \end{array}$	8 12 16 84 213	12	7
$\stackrel{4}{4}$	[$1 \frac{7}{5}$]	$\begin{aligned} & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	1 2 4 8 16	2 6 14 32 72	5	∞	$\begin{gathered} 16 \\ \left(d_{2}\right) \end{gathered}$	$\left[1 \frac{37}{23}\right]$	$\begin{array}{r} 6 \\ 8 \\ 8 \\ 10 \\ 12 \\ 14 \\ \hline \end{array}$	1 6 34 174 930	4 23 171 1055 6570	12	8
$\begin{gathered} 8 \\ \left(d_{2}\right) \end{gathered}$	$\left[\begin{array}{ll}\left.1 \frac{15}{13}\right]\end{array}\right.$	$\begin{array}{r} 6 \\ 8 \\ 8 \\ 10 \\ 12 \\ 14 \\ \hline \end{array}$	2 10 49 241 1185	$\begin{array}{r} 6 \\ 40 \\ 245 \\ 1446 \\ 8295 \\ \hline \end{array}$	8	6	$\begin{gathered} 16 \\ \left(d_{2}\right) \end{gathered}$	$\left[1^{\frac{33}{23}}\right]$	7 8 9 10 11	2 4 6 15 37	$\begin{array}{r} 8 \\ 16 \\ 26 \\ 76 \\ 201 \end{array}$	12	7
$\begin{gathered} 8 \\ \left(d_{2}\right) \end{gathered}$	[1 $\left.1 \frac{17}{13}\right]$	$\begin{array}{r} 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$	1 3 5 11 25	4 9 20 51 124	8	7	$\begin{gathered} 16 \\ \left(d_{2}\right) \end{gathered}$	$\left[1{ }^{\frac{35}{23}}\right]$	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \end{array}$	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 16 \\ 37 \end{array}$	$\begin{array}{r} 8 \\ 12 \\ 16 \\ 84 \\ 213 \\ \hline \end{array}$	12	7
$\begin{gathered} 8 \\ \text { (SNR) } \end{gathered}$	$\left[\begin{array}{ll}1 & \left.\frac{15}{17}\right]\end{array}\right.$	6 7 8 9 10	1 3 5 11 25	2 12 20 48 126	6	∞	$\begin{gathered} 16 \\ (\mathrm{SNR}) \end{gathered}$	$\left[1 \frac{23}{35}\right]$	7 8 9 10 11	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 16 \\ 137 \\ \hline \end{array}$	6 12 20 76 194	7	∞
$\begin{gathered} 16 \\ \left(d_{2}\right) \end{gathered}$	$\left[1 \frac{33}{31}\right]$	7 8 9 10 11	2 4 6 15 37	8 16 26 76 201	12	7	$\begin{gathered} \hline 32 \\ \left(d_{3}\right) \end{gathered}$	[1 ${ }^{\frac{71}{53} \text {] }}$	$\begin{array}{r} 8 \\ \hline 8 \\ 10 \\ 12 \\ 14 \\ 16 \end{array}$	$\begin{array}{r} 3 \\ 16 \\ 68 \\ 860 \\ 3812 \end{array}$	12 84 406 6516 30620	12	∞
16	[1 $1 \frac{21}{37}$]	6 7 8 9 10	1 1 3 5 12	2 5 10 25 56	6	∞	$\begin{gathered} 32 \\ \left(\text { SNR } d_{2}\right) \end{gathered}$	[1 $\left.1 \frac{67}{51}\right]$	8 10 12 14 16	$\begin{array}{r} 2 \\ 20 \\ 68 \\ 469 \\ 2560 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 110 \\ 406 \\ 3364 \\ 20864 \end{array}$	20	8

Table 8.15: Best 4/8/16/32-state $r=1 / 2$ constituent (mother) convolutional codes with puncturing. $N_{e, d}=N_{d-d_{f r e e}}$ and $N_{b, d}=\sum_{b} N(b, d)$ in this table.

$n-1$	4 states	8 states	16 states	32 states
2	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{15}{13}\right]$	$\left[11 \frac{37}{23}\right]$	$\left[1 \frac{67}{51}\right]$
$2 / 3$	$13(3,1,3)$	$13(4,3,10)$	$13(4,2,6)$	$13(5,2,7)$
$d_{2}=4, d_{3}=3$	$d_{2}=5, d_{3}=4$	$d_{2}=7, d_{3}=4$	$d_{2}=9, d_{3}=5$	
3	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{15}{13}\right]$	$\left[1 \frac{37}{23}\right]$	$\left[1 \frac{67}{51}\right]$
$3 / 4$	$56(3,4,10)$	$53(3,2,5)$	$53(3,1,3)$	$53(4,2,7)$
$d_{2}=3, d_{3}=3$	$d_{2}=3, d_{3}=3$	$d_{2}=4, d_{3}=3$	$d_{2}=7, d_{3}=4$	
4	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{15}{13}\right]$	$\left[1 \frac{37}{23}\right]$	$\left[1 \frac{67}{51}\right]$
$4 / 5$	$253(2,1,2)$	$253(3,9,24)$	$253(3,3,9)$	$253(3,1,3)$
5	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{17}{13}\right]$	$\left[1 \frac{27}{31}\right]$	$\left[1 \frac{71}{53}\right]$
$5 / 6$	$1253(2,2,4)$	$1253(3,15,40)$	$1272(3,2,6)$	$1272(4,108,406)$
$d_{2}=2, d_{3}=3$	$d_{2}=3, d_{3}=3$	$d_{2}=4, d_{3}=3$	$d_{2}=4, d_{3}=\infty$	
6	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{17}{13}\right]$	$\left[1 \frac{27}{31}\right]$	$\left[1 \frac{71}{53}\right]$
$6 / 7$	$5352(2,22,44)$	$5253(2,1,2)$	$5253(3,12,33)$	$5253(3,3,6)$
	$d_{2}=2, d_{3}=3$	$d_{2}=2, d_{3}=3$	$d_{2}=3, d_{3}=3$	$d_{2}=3, d_{3}=\infty$
7	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{15}{17}\right]$	$\left[1 \frac{33}{23}\right]$	$\left[1 \frac{67}{51}\right]$
$7 / 8$	$25253(2,7,14)$	$25253(2,7,14)$	$25253(2,1,2)$	$25253(2,1,2)$
$d_{2}=2, d_{3}=3$	$d_{2}=2, d_{3}=\infty$	$d_{2}=2, d_{3}=3$	$d_{2}=3, d_{3}=3$	
8	$\left[1 \frac{5}{7}\right]$	$\left[1 \frac{15}{13}\right]$	$\left[1 \frac{37}{23}\right]$	$\left[1 \frac{67}{51}\right]$
$8 / 9$	$125253(2,9,18)$	$125253(2,4,8)$	$125253(2,1,2)$	$125253(3,17,49)$
$d_{2}=2, d_{3}=3$	$d_{2}=2, d_{3}=3$	$d_{2}=2, d_{3}=3$	$d_{2}=3, d_{3}=3$	

Table 8.16: Best puncturing patterns for given high-rate parallel turbo codes. The triplets listed are $\left(d_{i}, N_{d-d_{\text {free }}}, \sum_{b} N(b, d)\right)$.

0 meaning puncture that parity bit. For instance 5352 means 101011101010 so and corresponds to (letting i_{k} be an information bit and p_{k} be the corresponding parity bit)

$$
\begin{equation*}
\left(i_{1}, p_{1}, i_{2}, p_{2}, i_{3}, p_{3}, i_{4}, p_{4}, i_{5}, p_{5}, i_{6}, p_{6}\right) \rightarrow\left(i_{1}, i_{2}, i_{3}, p_{3}, i_{4}, i_{5}, i_{6}\right) \tag{8.66}
\end{equation*}
$$

Serial Concatenation

- It may be easier to concatenate with an existing system serially.
- Use when necessary (essentially pass-through when SNR is above minimum necessary - systematic, no decode).
- Analysis is more complex, see Section 8.3.

$$
\begin{equation*}
\bar{P}_{b} \approx L\binom{L}{\left\lceil\frac{d_{f r r e}^{\text {out }}}{2}\right\rceil}^{-1} \cdot \frac{\bar{N}_{b}\left(d_{\text {free }}^{\text {in }}\right) \cdot \bar{N}_{b}\left(d_{\text {free }}^{\text {out }}\right)}{b} \cdot Q\left(\sqrt{\left\{\left\lceil\frac{d_{\text {free }}^{\text {out }}-3}{2}\right\rceil \cdot d_{2}^{\text {in }}+d_{w}^{\text {in }}\right\} \cdot \operatorname{SNR}}\right), \tag{8.64}
\end{equation*}
$$

This analysis does not require the outer encoder to be systematic, nor even use feedback. The interleaving gain thus is

$$
\begin{equation*}
\gamma_{\text {serial }}=\log _{10}\left(\frac{L!}{\left\lceil\frac{\left.d_{r \text { fee }}^{\text {opt }}\right\rceil}{2}\right\rceil}\right) \mathrm{dB} \tag{8.65}
\end{equation*}
$$

[^0]
Midterm Review

End Lecture 9

[^0]: Which is better, parallel or serial?
 Really depends on situation, exact SNR.
 Turbo codes have largely yielded to LDPC codes in recent years (next lecture).

