
Lecture 9
High-Performance Codes

February 6, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

JOHN M . C IOFF I

Feb 6, 2024

Announcements & Agenda
§ Announcements

• PS4 due, no late. Solutions then distributed
• Midterm on Thursday.

L9: 2

§ Today
• Continue L8
• Code Performance Analysis
• Random Interleaving
• Iterative Decoding & Turbo Codes
• Midterm Review

§ Option & Feedback
• Trade PS8 for any homework on grade (will give full credit on PS4.1 - 8.1e to all)
• 11-25 hours
• Thank you for all comments – will help future students as well.

• I keep a running list of future corrections thanks to you all.
• This particular assignment was on material significantly updated or new.

• Notation (not incorrect, just a lot of it)
• We try to avoid “one-variable-corresponding-to-multiple-things” (although ..)
• 𝑁 = #𝑁 $ %𝑁 is example (concatenations can confuse).

• Problem statements
• It helps if feedback provides a specific example of how the hmwk was not clear

(which problem, what statement). We try to get that in the online feedback.
• Sooner is better – thanks to Marcos B today

• In class examples are simple, but homework requires more work.
• One said HWH not helpful (of course you can ignore).
• Time indexing

• Vectors in communication (most recent usually on left/top)
• Matlab has lowest index on left/top, but reverses this for G(D) octal entries
• But not for convolution, nor convenc (and other similar commands).

§ PS4 should be less
• PS5 after midterm (probably hardest)
• PS6-8 pretty-established problems from past (other students’ comments will help

you).
§ No JC office hours Thursday (after exam).

Soft-Output Viterbi Algorithm
SOVA

January 30, 2024 L7:3

Section 7.3.2

January 30, 2024

SOVA
§ LOGMAX – approximates a sum-of-products by it’s maximum single term.

• Often very true in decoding as one probability (a term) is often much larger than others (wrong decisions) PS4.3.

L9: 4

§ The path is same as Viterbi
• But now we have 2, one forward and one backward and try to provide better soft information about bit decisions.

Section 7.3.2 (PS4.3)

𝛼! 𝑠!,# # 𝛾#→# +⋯+ 𝛼! 𝑠!,% # 𝛾%→#

𝛼! 𝑠!,%

𝛼! 𝑠!,#

⋱

𝛾#→#

𝛾%→#

January 30, 2024

Forward SOVA Example with Ties
§ It’s easy without ties – just find other path with other input (0/1) with next lowest survivor metric and

• take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and – sign for 1)

L9: 5

Forward SOVA Example with ties (3-error example revisited)

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3 3 3,3 3,3 ∅ 3

𝐿𝐿(1) 3 3 3 3 3,3 3

Δ𝐿𝐿 (dec) 0(?) 0(?) ⁄! " (0) ⁄! " (0) -1 (1) 0 (?)

Green color indicates the minimum-metric path is a survivor in forward direction; all LL’s in units of 𝑙𝑛 𝑝 .

§ The local resolution and majority voting appear equivalent to some of what matlab is doing (requires examination/test of source code).
• Probably could be confirmed by someone testing various situations
• Nonetheless, the above is viable Forward-SOVA tie resolution

Section 7.3.2

01 00 01

?

1

1

1

3

2

2

01 11 012

32

2

3

3

3

3

2

3

3

3

3

4

4

3

? 0
(2/3 are 0)

0
(2/3 are 0) 1 ?

0

0

0

0

January 30, 2024

Forward-Backward SOVA Example

L9: 6

Forward-Backward SOVA

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3
#$%$!

3
%$#$!

4
%$%$!

3
%$%$%

6
"$!$%

4
!$%$%

3
!$#$%

3
!$%$#

5
!$!$%

3
!$%$#

4
"$#$%

6
"$!$%

5
"$%$%

4
"$#$%

4
!$%$%

4
"$%$#

5
"$!$#

4
"$#$%

3
"$#$#

𝐿𝐿(1) 4
#$%$"

5
%$!$!

4
%$%$!

3
%$%$%

4
"$#$%

4
!$%$%

5
!$!$%

4
!$%$%

3
!$#$#

4
!$%$%

6
"$!$%

5
"$!$#

4
"$%$#

3
"$#$#

3
!$%$#

4
"$%$#

3
"$#$#

4
"$%$#

5
"$!$#

Δ𝐿𝐿(dec) 1 (0) 1 (0) ⁄! " (0) ⁄! " (0) -1 (1) 0(?)

Green color indicates the minimum-metric path is a survivor in both forward and backward directions; all LL’s in units of 𝑙𝑛 𝑝

Did better
than Forward

Section 7.3.2

0 3
2 1
3 0
1 2

0
(2/3 are 0)

01 00 01

0

2

3

2

2

2

2

10 11 011

11

1

1

0

0

1

1

1

1

0

0

0

0

0

0 0? 0 1?

3

?

01 00 01

?

1

1

1

3

2

2

01 11 012

32

2

3

3

3

3

2

3

3

3

3

4

4

3

? 0
(2/3 are 0)

0
(2/3 are 0) 1 ?

0

0

0

0

January 30, 2024

Hagenauer’s LLR SOVA update
§ Prob of VA sequence error

L9: 7

§ Magnitude difference of two bit choices is
• Δ𝐿𝑆3 = 𝐿𝑆3∗ 0 - 𝐿𝑆3∗ 1
• 𝐿𝐿𝑅3 = 𝑥3) Δ𝐿𝑆3 (really estimate)

§ Another decoder provides

§ Decoder includes soft info through:

Section 7.3.2

𝑃𝑟56 𝑥3 = −1 = 𝑃𝑟 𝑢3 = 0 ∝ 𝑒768!
∗ 9

𝑃𝑟56 𝑥3 = +1 = 𝑃𝑟 𝑢3 = 1 ∝ 𝑒768!
∗ :

§ Linear-code analysis: 0 in numerator:

𝑃!,# =
!&'()

∗ +

!&'()
∗ + $!&'()

∗ , = %
%$!-'()

§ Algebra provides

𝐿𝐿𝑅# ← l𝑛
1 + 𝑒&'()$)''*)

	

𝑒&'() + 𝑒)''*)
	

§ Ignores scaling difference between sequence and bit, so

Δ𝐿𝑆# →
+),-) /

./00122/(1*

or Δ𝐿𝑆# →
03 +),2)
00122

 for BSC

Code/Decoder Performance
Analysis

Feb 6, 2024 L1:8

Section 7.2

Feb 6, 2024

MLSD Error Events
§ MLSD is ML (maximum likelihood) – error if wrong symbol (codeword) chosen, 𝑃(.

• However, note MLSD’s add-compare-select is basic Machine-Learning element, so ML 2 ways 😀.

§ The symbol is an entire codeword, which theoretically is infinite-length for CC’s.
• An error à error event 𝜖 𝐷 = 𝑥 𝐷 − 3𝑥 𝐷 ; 𝜖; 𝐷 with 𝜖< 𝐷 are difference between input/output.
• For binary codes, the subtraction is binary (mod-2 or xor).

§ So, 𝜖 𝐷 ’s probability counts either at the time it begins (or ends, the two are equivalent) 𝑃(.
• All the corresponding input-bit errors are counted as occurring at that time 4𝑃= ≥ 𝑃> .

L9: 9

1path

2path

𝑠%,'(" = 𝑠!,'("

𝑠&,!

𝑠',!

paths
diverge

paths
merge

error event 𝜖 𝐷

Section 7.2.1

Feb 6, 2024

Minimum distance à distance spectrum
§ Union bound includes all the distances:

L9: 10

𝑃>,A8B ≤ 7
CDC#$%%

E

𝑁C) 4𝑝 1 − 𝑝
C

𝑃>,FGHI ≤ 7
CDC#$%%

E

𝑁C) 𝑄
𝑑	
2𝜎

4𝑃=,A8B ≤
1
𝑘
) 7
CDC#$%%

E

7
KD:

E

𝑖)	 𝑁 𝑖, 𝑑) 4𝑝 1 − 𝑝
C 4𝑃=,FGHI ≤

1
𝑘
) 7
CDC#$%%

E

7
KD:

E

𝑖)	 𝑁 𝑖, 𝑑

	

14 0

) 𝑄
𝑑	
2𝜎

§ For individual bit errors, really need counting function 𝑁 𝑏, 𝑑 :

§ Matlab finds 𝑁)	for convolutional codes (example 8-state 𝑟 = 2/3 code) – also length (not input bit errors).

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])
distspec(tmin,5) =
dfree: 4
 weight: [1 11 108 417 1857] % 𝑁((𝒅)
 event: [1 5 24 71 238] % 𝑁) (𝑑)

𝒅 𝑁((𝒅) 𝑁)(𝒅))

4 1 1

5 11 5

6 108 24

7 417 71

8 1857 238

Ouch! – next-to-nearest can
dominate the union-bound sum

Section 7.2.1.1

Feb 6, 2024

Transfer Function Analysis (mentioned, but archaic)
§ Transfer function redraws trellis as single-time state machine.
§ Each branch has multivariate transfer function:

• 𝑊& collects distance from all zeros as exponent,
• 𝐿' collects length as exponent (each branch is 𝐿),
• 𝐼(collects input errors w.r.t. all zeros as exponent,
• 𝐽) collects number of subsymbol differences.

L9: 11

WLJ

LI

W2LIJ

WLIJ

WLIJ

WLJ
11

10

0100
W2LJ

= 𝑊31 𝐿4 1 𝐼 1 𝐽4 1 1 +𝑊𝐿𝐼𝐽 1 𝐿 + 1 + 𝑊𝐿𝐼𝐽 1 𝐿 + 1 5 +⋯

𝑇 𝑊, 𝐿, 𝐼, 𝐽 =
𝑊3 1 𝐿4 1 𝐼 1 𝐽4

1 −𝑊𝐿𝐼𝐽 1 𝐿 + 1 	

§ Only 1 error event has 𝑑/0((= 5:
• length is 3, with
• 1 input bit error (Nb = 1), &
• 1 error event (Ne = 1).

§ 2 error events have 𝑑	 = 6:
• lengths are 5 and 6,
• both have 2 input bit errors (so Nb (d=6) = 4), &
• Ne (d=6) = 2.

Mason’s Gain Formula
see Section 7.2.2

>> t=poly2trellis(3, [7 5])
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 4
 nextStates: [4×2 double]
 outputs: [4×2 double]
>> distspec(t,4)
 dfree: 5
 weight: [1 4 12 32]
 event: [1 2 4 8]

Section 7.2.2

Random Interleaving

Feb 6, 2024 L1:12

Section 8.3.1

Feb 6, 2024

Binary Codewords & Sequences
§ Recall BICM.

• Effectively was simple/deterministic interleave (PS3.5)

§ Adjacent bits are separated
• 𝝅 or 𝜋(𝑘) is periodic with period 𝐿.
• 𝜋 is also an “ordering.”

L9: 13

Equivalent parallel
independent
bit channels

𝑝)/+!

𝑝)/+"#$% &

⋮
𝑝)/+%

Decoder
Code Use 1

Decoder
Code Use 2

Decoder
Code Use log' 𝐶

𝜋

Encoder
Code Use 1

Encoder
Code Use 2

Encoder
Code Use log' 𝐶

𝜋(%

§ 𝐿
𝑙 possibilities in 𝐿 encoder-output positions:
• where 𝑙 channel-bit errors could have occurred.
• True random interleave means they’re all equally likely.

§ Adjacent bits are separated
• Ideally by more than codeword length, big 𝐿>> N .
• Or > survivor length with Viterbi.

§ Receiver de-interleaves/restores original order.
• Now coming from independent channel uses.

§ Real system, 𝐿 is delay, so not too big.

𝑣4,9 𝑣5,9 𝑣%,9 𝑣4,9,% 𝑣5,9,% 𝑣%,9,%

⋯

⋯

⋯𝑣′4,9 𝑣′5,9 𝑣′%,9 𝑣′4,9,%𝑣′5,9,% 𝑣′%,9,%

𝑣4,9 𝑣5,9 𝑣%,9 𝑣4,9,% 𝑣5,9,% 𝑣%,9,% ⋯

Uniform Random Interleaver 𝝅

Section 8.3.1-2

Feb 6, 2024

Various implementations of random interleavers
§ Berrou Glavieux:

L9: 14

§ Pseudorandom sequence: 𝜈 bits – visits every 𝜈 −bit sequence exactly once in 𝐿 = 24 − 1 period.
• These are generated with rate 𝑟 = 1, 2M	−state 𝐺 𝐷 =1/𝑃(𝐷) encoder.
• Table 8.6 lists the 𝑃(𝐷) choices for different 𝜈 choices or use matlab’s prbs.m command.

Section 8.3.1.3-5

§ JPL Block Interleaver:

@	𝑡𝑖𝑚𝑒	𝑘

Feb 6, 2024

S-random interleaver – adapts to situation

§ 𝑆 ≤ ?
@

, run loop with largest 𝑆 that provides enough values for 𝜋 𝑘 .

§ There is no best universal choice of random interleaver – it is related to code choice(s).

§ Ileaveout(1:L) = Ileavein(pi(1:L)) ; ileavein = ileaveout(piinv(1:L)) – for design’s pi choice .

L9: 15

Random
Integer

generator

yes

reset

no

𝜋 𝑘

𝜋(
)
𝑘 − 𝐿

+ 1

⋮

𝜋 𝑘 − 𝑆

⋮

𝜋 𝑘 − 2

𝜋 𝑘 − 1

𝜋 𝑘 − 𝜋 𝑘 − 𝑖 ≤ 𝑆?

𝜋 𝑘

Section 8.3.1.6

For any 𝑖 = 1, . . . , 𝑆

S. Dolinar and D. Divsalar - 1995

Feb 6, 2024

Matlab random interleaving
§ Matlab has its own function where a state can be selected 0 ≤ 𝑆𝑇𝐴𝑇𝐸 < 2*' ; 𝑆𝑇𝐴𝑇𝐸 ∈ ℤ

L9: 16

INTRLVED = randintrlv(DATA, STATE)
DATA=randintrlv(STATE)

§ STATE needs to be the same in both calls. STATE evolves for successive DATA packets:
• Use randi (random integer) or randStream commands for STATE.

§ This appears S-random for length of data and seems to approximate the 𝐿𝑙 possible patterns for 𝑙 ≪ 𝐿,
• with roughly equal probability (L=length(DATA)).

>> data=randi(2,[1,10])-1 =
 0 1 1 0 1 0 0 1 1 1

>> ileaveout=randintrlv(data,1) =
 1 1 0 1 0 1 0 1 0 1

>> randdeintrlv(ileaveout,1) =
 0 1 1 0 1 0 0 1 1 1

>> data=randi(2,[1,8])-1 =
 1 0 1 1 1 1 1 0
>> ileaveout=randintrlv(data,1)=
 1 0 1 0 1 1 1 1
>> randdeintrlv(ileaveout,1) =
 1 0 1 1 1 1 1 0

Nothing Perfectly Random on interleaving.

>> randperm(7) = 6 3 7 5 1 2 4

Not in text

>> prbs(3,7) = 0 1 0 1 1 1 0
>> prbs(3,14) = 0 1 0 1 1 1 0 0 1 0 1 1 1
0
>> sum(prbs(3,14)) = 8
>> sum(prbs(3,14) == 0) = 6

	
5

;	
3

	
4

<	
E

	
F

;	
.

	
%

§ PRBS Version:

§ randperm(L) - used in coming examples.

Iterative Decoding
& Turbo Codes

Feb 6, 2024 L1:17

Section 8.3.2

§ Intrinsic soft information (at time 𝑘):
• includes à priori information (which initially is uniform, but often replaced by another decoder’s update).
• includes the channel output (examples squared distance to closest constellation point AWGN, ln(p(1-p)) on BSC).

§ Extrinsic soft information (at times ≠ 𝑘):
• Includes everything else from code (and sometimes channel/constellation-mapping) constraints.
• For instance, the MAP decoder’s 𝛼! , 𝛽! that accumulate information for all the other subsymbols in codeword.

§ The next à priori becomes the last extrinsic in successive decoding iterations.

Feb 6, 2024

Intrinsic and Extrinsic Soft Information

L9: 18

𝛾# 𝛼# 	, 𝛽#

Sections 8.3.2, 7.4-5

§ Decompose LLs (or often LLRs for bit decoding)

Feb 6, 2024

Iterative Decoding with LL’s

L9: 19

Soft-out
decoder 2

De-Interleaver
𝜋9:

𝐿𝐿>;UDemux/
Demap𝒚3

De-Interleaver

Soft-out
decoder 1

𝐿𝐿VW

𝐿𝐿>;U

Channel outputs
Corresponding to

Code 1’s uses

Simple at high level,
details can be complex

e.g.
Are the LLR’s for the

encoder input or
output bits or both?

(it depends)

§ Converged if two have same decision (or exceed interation max)

Interleaver
𝜋

𝐿𝐿VW
Channel outputs
Corresponding to

Code 2’s uses

Section 7.5

§ Parallel Concatenation – usually occurs with 𝑟 = 1/𝑛 codes and systematic encoders.
• Often 𝑔: 𝐷 = 𝑔X 𝐷 and is called a “Turbo Code.”

Feb 6, 2024

Parallel Code Concatenation

Section 2.4.1

Encoder 1
𝑔: 𝐷

Encoder 2
𝑔X 𝐷

𝜋

𝑢Y

Modem
&

Channel

𝑣Y,X

𝑣Y,:
(:)

𝑣Z (Y),:
(X)

SOVA/APP
Decoder 1

Demap

𝐿𝐿𝑅Y,X

𝐿𝐿𝑅Y,:
(:)

𝐿𝐿𝑅Y,:
(X) SOVA/APP

Decoder 2

𝜋

𝜋7:

𝜋7:

§ Overall rate is 𝑟=1/3, but each is 𝑟=1/2 in the example above.
• If nonsystematic, the efficiency of not repeating the same bit is lost.

§ Soft extrinsic information between decoders is for input bits.

§ Initial soft intrinsic information is for channel/encoder output bits.

1
𝑟 =

1
𝑟%
+
1
𝑟5
− A1	 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐0	𝑛𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚

L9: 20Section 8.3.2.1 (PS5.1 (8.12)

See footnote in Section 8.3
for more on this formula.

§ Serial Concatenation – usually occurs with 𝑟 = ;
;<: codes and a systematic encoder.

• sometimes ℎ: 𝐷 = ℎX 𝐷 and is also called a “Turbo Code.”

Feb 6, 2024

Serial Code Concatenation

Section 2.4.1

Encoder 1
𝑔: 𝐷

Encoder 2
𝑔X 𝐷

𝜋𝒖Y
Modem

&
Channel

𝒗Y
(:) 𝒖Z(Y)

(X)

§ Overall rate is 𝑟 = 𝑟: 5 𝑟= .

§ Soft extrinsic information between decoders has code 1’s out bits and code 2’s in bits.

§ Initial soft intrinsic information is for code 2’s channel/encoder output bits.

Demap

SOVA/APP
Decoder 2

SOVA/APP
Decoder 1

𝜋 𝜋7:

BICM is simple Example,
but can be 2 more complex codes.

So are “turbo equalizers”
and “multiuser soft cancellers.”

Albert Guillén i Fàbregas, Alfonso Martinez and Giuseppe Caire (2008), "Bit-Interleaved Coded Modulation",
Foundations and Trends® in Communications and Information Theory: Vol. 5: No. 1–2, pp 1-153.
http://dx.doi.org/10.1561/0100000019

L9: 21Section 8.3.2.1

http://dx.doi.org/10.1561/0100000019

§ Parity bits here may be for different codes with same input bit(s).

Feb 6, 2024

Puncturing (parallel case)

L9: 22

𝑢3 𝑝:,3 𝑝X,3 𝑢!+' 𝑝:,3[: 𝑝X,3[:´ ´
𝑢! 𝑝:,3 𝑝X,3´ 𝑢!+' 𝑝:,3 𝑝X,3´´ 𝑢!+& 𝑝:,3[X 𝑝X,3[X´ 𝑢!+* 𝑝:,3[\ 𝑝X,3[\´´§ increases 𝑟 = :

? to =?

§ This restores code rate 𝑟 = :
? to :=

§ Serial case similar – try to distribute deleted bit positions equally throughout

Section 8.3.2.2

§ Individual codes are convolutional codes (parallel and serial cases).

Feb 6, 2024

Turbo Codes

L9: 23

§ Example analysis for well known 4-state 𝑟 = :
= code:

§ An input error event 1 + 𝐷= for 1st-code corresponds to output error event 1 + 𝐷= 1 + 𝐷 +𝐷= ,
• which is the 𝑑]^>> = 5 error event (or closest codeword to all zeros).
• So there are 2 input-bit errors if an output-bits error event causes decoder to pick wrong codeword.

§ But this has to happen for 2nd-code also (same code, just a 2nd parity bit);
• so, 𝑑]^>> = 8 for the concatenated code.

• The new gain is 𝛾 =8/3 instead of 5/2, which is roughly only .3 dB improvement; HOWEVER

𝑃𝑟𝑜𝑏	𝑏𝑜𝑡ℎ	𝑒𝑟𝑟 = 𝐿
2

,%
=

2
𝐿 1 𝐿 − 1

§ So 𝑁B reduces by 2/(𝐿 − 1);	if 𝐿 = 2000, this is ~ 2-3 dB improvement, ~0.2 ; log@ 𝐿 in range 10CD −	10CE.
• This basic effect occurs also with more powerful convolutional codes, but still about 1-1.5 dB short of best (capacity).

Section 8.3.2.3

§ Decode tool default is MAP/APP Decode.
• Options can set max (max) and maxlog (max*).
• Options can increase number of bits also (NumScalingBits) up to 8 (default is 3-bit arithmetic).
• Soft information on 𝑝 or 𝜎' is consistent within and need not be supplied (only need this for MAP when sending outside this loop).

Feb 6, 2024

Matlab’s comm.TurboEncoder/Decoder

L9: 24

>> tfeed=poly2trellis(3,[7 5],7) =
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 4
 nextStates: [4×2 double]
 outputs: [4×2 double]

>> ileaveorder=randperm(100);

>> turbo = comm.TurboEncoder('TrellisStructure', tfeed, 'InterleaverIndices',
ileaveorder) =
 TrellisStructure: [1×1 struct]
 InterleaverIndicesSource: 'Property'
 InterleaverIndices: [99 32 40 22 34 …]
 OutputIndicesSource: 'Auto’ % this deletes the repeated input bit.

>> X=prbs(7,100);
>> Y=turbo(X ')' =
001 000 001 …
>> size(Y) = 1 308 % This equals (1/r) x L plus 2 x nu x n

>> turbodec=comm.TurboDecoder(tfeed,ileaveorder)
 TrellisStructure: [1×1 struct]
 InterleaverIndicesSource: 'Property'
 InterleaverIndices: [99 32 40 22 34]
 InputIndicesSource: 'Auto'
 Algorithm: 'True APP'
 NumIterations: 6
>> decmsg=turbodec(2*Y-1); % takes real numbers with 0à -1, 1à +1
>> (decmsg-X')' =
 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
 000 000 000 0
>> >> biterr(decmsg,X') = 0

>> error = [1 zeros(1,49) 1 zeros(1,49) 1 zeros(1,99) 1 zeros(1,45) 1 zeros(1,61)];
>> decmsg=turbodec(2*(+xor(Y,error))-1);
>> (decmsg-X')’
 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
 000 000 000 0
>> biterr(decmsg,X') = 0

PS6.1 (8.12)

§ Interleaver gain additional gain is 𝛾WV^V__>_ ≅ log:9
67:
X

dB
• over the range, 𝛾,-.-//)/ < 3 dB .

§ 𝛾WV^V__>_ dominates over operational range where 𝑑 > 𝑑YK`
next-to-nearest counts contribute significantly.

§ At large SNR, the 𝑑YK` term in Q-function argument(s)
eventually dominates.

Feb 6, 2024

Error Flooring

L9: 25

1 2 3 4 5 6 7 8 9 10
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

SNR (dB)

pr
ob

ab
ilit

y
of

 e
rro

r

Error Flooring, d2=5 d3=3

Larger 𝑑

𝑑,-.

sum

𝑃!

𝑆𝑁𝑅

Error
floor

𝑑()**
dominates

Interleave gain
dominates

0

0

Limits coding gain or
equivalently errors may not go to

zero when SNR is better than
anticipated in design.

Section 8.3.2.3

§ The gain at ?𝑃B = 10CI is about 8.5 dB ; however 𝒞 = 0.5@ 𝑆𝑁𝑅 = 0 dB (so still about 2 dB short)
• But roughly 3 dB better than best 16-state 𝑟 = ⁄' & code!

Feb 6, 2024

The example 4-state code with puncturing

L9: 26

We’re almost to 𝓒 !

Certain high-rate (see L11, EE387)
Reed Solomon byte-wise block codes

can, with small overhead, take
J𝑃+ = 10,- close to zero

The drop in D𝑃(= 1001 becomes
very steep, so coding gain becomes
less meaningful – high sensitivity

to small SNR changes
(there is another interleaver outside).

But that gets us close enough to
capacity

Section 8.3.2.3

§ SOVA w.r.t. LOGMAP loses about 0.5 dB and both show earlier error flooring.

Feb 6, 2024

SOVA / Logmax and error flooring

L9: 27

ℰ(
𝑏
𝒩)

=

ℰ(
𝑏
𝒩)

=
2ℰ(
𝒩)

= 𝑆𝑁𝑅

𝑆𝑁𝑅 = when 𝑟 = ⁄1 2 and 2PAM (4SQ)

Section 8.3.2.3

§ Section 8.3 lists many.

Feb 6, 2024

Good constituent Turbo Codes (Divsilar, JPL)

L1: 28

Fit to design, but
probably at best another 1 dB

over the earlier example.

Some may be better for
BICM outside of Turbo.

Section 8.3.2.5

§ The puncturing (as well as interleaver, and of course the 2 together) is at least as important as the code.

Feb 6, 2024

Good Punctured Codes & Patterns (DLM) for Turbo

L9: 29Section 8.3.2.6

22 3

23 4

24 5

25 6

26 7

27 8

28 9

§ It may be easier to concatenate with an existing system serially.
• Use when necessary (essentially pass-through when SNR is above minimum necessary – systematic, no decode).

§ Analysis is more complex, see Section 8.3.

Feb 6, 2024

Serial Concatenation

L9: 30Section 8.3.2.4

Which is better, parallel or serial?
Really depends on situation, exact SNR.

Turbo codes have largely yielded to LDPC codes in recent years (next lecture).

Midterm Review

Feb 6, 2024 L1:31

End Lecture 9

