Lecture 8
 Decoding

February 1, 2024

John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS3 extended to Friday - see updated HWH3 at website.
- PS4 is due TUESDAY, no late. (HWH4 is already at website.)
- PS4 solutions will post immediately, and thus be available for your midterm study.
- You should expect less time than PS2 or PS3.
- There is no homework assigned next week.
- Today
- Continue from L7
- Viterbi Sequence Decoding (MLSD)
- A Posteriori Probability (APP) bit decoding
- Soft-Output Viterbi Algorithm (SOVA)
- Backup - not covered: Invariant Factors Decomposition
- Minimal Generators (and thus minimal decoder complexity)
- Matlab code-structure error warning

Continue L7

Section 7.2

Hard decoder - first decodes the "v" bit sequence

- Encoder-output subsymbols are decoded independently - e.g., a "hard" decision.
- The remaining channel is a BSC model, to which the binary code applies.
- The BEC with the "erasure" output is a first step from hard to soft....

Soft Decoder - decode the symbol

- The demodulator samples $(\in \mathbb{C})$ pass to the detector for comparison of codewords (subsymbol sequences).
- The \boldsymbol{y} information is "soft" in that it is not pre-quantized into a decision (or at least not to $|C|$ subsymbol values).
- Deployed systems often have ADC on y_{n}; quantize $\frac{d_{\min (|C|)}}{\sigma_{q}}=4^{3}$; i.e., 3 bits cover intra-point distance.
- This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
- Same rule applies per dimension for both ADCs in quadrature receivers.
- Total ADC bits will then be these 3 , plus \bar{b}, plus 1-2 bits for peak-to-average (analog coverage), so $b_{A D C}=\bar{b}+4$, or possibly $\bar{b}+5$.

AWGN Error Probability for Conv Codes

- AWGN $\bar{P}_{e}=\bar{N}_{e} \cdot Q\left(\frac{d_{\text {min }}}{2 \sigma}\right)=\bar{N}_{e} \cdot Q\left(\sqrt{d_{\text {free }} \cdot \frac{\varepsilon_{x}}{\sigma^{2}}}\right)=\bar{N}_{e} \cdot Q\left(\sqrt{d_{\text {free }} \cdot \frac{k}{n} \cdot S N R}\right)$
- Because $d_{\text {min }}=\sqrt{d_{\text {free }} \cdot 4 \cdot \varepsilon_{x}}$
energy-spread reduces energy/subsym (assumes $\frac{1}{T \prime}$ can increase, so no filter on AWGN)
- AWGN $\bar{P}_{b}=\frac{N_{b}}{b} \cdot Q\left(\sqrt{d_{\text {free }} \cdot r \cdot S N R}\right)$
- Where $N_{b}=\sum_{i=1}^{\infty} i \cdot N\left(i, d_{f r e e}\right)$ and $N(i, d)$ for conv code is the number of i-input-bit error events with distance d.
- Finding N_{b} can require exhaustive search in general, but Section 7.2 (L9) shows how to compute $N(i, d)$ for CC, also distspec.m.
- Yes, it is equal to Chapter 1's $\sum_{i=1}^{\infty} p_{x}(i) \cdot n_{b}(i)$, which is actually harder to compute.
- BC coding gain $\gamma=10 \cdot \log _{10}\left(r \cdot d_{\text {free }}\right)$ (for AWGN with binary subsymbols ..) and energy/bit $\bar{\varepsilon}_{b}$.

HAZARD WARNING詈 - BINARY CODING THEORIST'S FALLACY - assumes "free bandwidth"
Binary-code fair comparison: hold 2 of $3\left\{\begin{array}{lll}\bar{b} & \bar{\varepsilon}_{x} & \bar{P}_{e}\end{array}\right\}$ fixed and compare $3^{\text {rd }}$;
But $N_{\text {coded }}=\frac{1}{r} \cdot N_{\text {uncoded }}$ so then BOTH $\bar{\varepsilon}_{x} \& \bar{b}$ decrease for coded w.r.t uncoded (\sim holding power \& rate constant), not fair.
$\bar{b}_{\text {coded }}=r \cdot \bar{b}_{\text {uncoded }} \quad \overline{\mathcal{E}}_{x, \text { coded }}=r \cdot \overline{\mathcal{E}}_{x, \text { coded }} ;$ So $\mathcal{E}_{b}=\frac{\bar{\varepsilon}_{x}}{\bar{b}}$ is the same, BUT $W \cdot T \rightarrow W \cdot T / r$

[^0]
BSC Error Probability

- $\left.\operatorname{BSC} \bar{P}_{e}=\bar{N}_{e} \cdot[4 p(1-p)]^{\frac{d_{\text {free }}}{2}}\right]$
- $\left.\operatorname{BSC} \bar{P}_{b}=\frac{N_{b}}{b} \cdot[4 p(1-p)]^{\left\lvert\, \frac{d_{\text {free }}}{2}\right.}\right)$
- Chapter 1's B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).
- Fair-comparison discussion is for AWGN.
- Strictly speaking with BSC, data rate must reduce to improve with codes.
- From BSC capacity, $r \leq 1+p \cdot \log _{2} p+(1-p) \cdot \log _{2}(1-p) \leq 1$ for reliable transmission with a code $0<p<\frac{1}{2}$.

Coding Tables -best known rate ½ conv codes

- Section 8.2 - Conv Code Tables see the octal entries, chap 8 [6])

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$d_{\text {free }}$	γ	(dB)	N_{e}	N_{1}	N_{2}	N_{b}	L_{D}
4	7	5	5	2.5	3.98	1	2	4	1	3
8	17	13	6	3	4.77	1	3	5	2	5
16	23	35	7	3.5	5.44	2	3	4	4	8
$(2 \mathrm{G}) 16$	31	33	7	3.5	5.44	2	4	6	4	7
32	77	51	8	4	6.02	2	3	8	4	8
64	163	135	10	5	6.99	12	0	53	46	16
$(802.11 \mathrm{a}) 64$	155	117	10	5	6.99	11	0	38	36	16
(802.11b) 64	133	175	9	4.5	6.53	1	6	11	3	9
128	323	275	10	5	6.99	1	6	13	6	14
256	457	755	12	6	7.78	10	9	30	40	18
$(3 \mathrm{G}) 256$	657	435	12	6	7.78	11	0	50	33	16
512	1337	1475	12	6	7.78	1	8	8	2	11
1024	2457	2355	14	7	8.45	19	0	80	82	22
2048	6133	5745	14	7	8.45	1	10	25	4	19
4096	17663	11271	15	7.5	8.75	2	10	29	6	18
8192	26651	36477	16	8	9.0	5	15	21	26	28
16384	46253	77361	17	8.5	9.29	3	16	44	17	27
32768	114727	176121	18	9	9.54	5	15	45	26	37
65536	330747	207225	19	9.5	9.78	9	16	48	55	33
131072	507517	654315	20	10	10	6	31	58	30	27

Table 8.1: Rate $1 / 2$ Maximum Free Distance Codes

$$
\begin{aligned}
& L_{D}=\text { length of } \\
& \text { Min-dist event }
\end{aligned}
$$

Best rate- $1 / 3$ convolutional codes

- Codes listed for other rates, example $1 / 3$ here, see Sec 8.2 for $1 / 4,2 / 3,3 / 4$,

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$g_{13}(D)$	$g_{14}(D)$	$d_{\text {free }}$	γ	(dB)	N_{e}	N_{1}	N_{2}	N_{b}	L_{D}
4	7	7	7	5	10	2.5	3.98	1	1	1	2	4
8	17	15	13	13	13	3.25	5.12	2	1	0	4	6
16	37	35	33	25	16	4	6.02	4	0	2	8	7
32	73	65	57	47	18	4.5	6.53	3	0	5	6	8
64	163	147	135	135	20	5	6.99	10	0	0	37	16
128	367	323	275	271	22	5.5	7.40	1	4	3	2	9
256	751	575	633	627	24	6.0	7.78	1	3	4	2	10
512	0671	1755	1353	1047	26	6.5	8.13	3	0	4	6	12
1024	3321	2365	3643	2277	28	7.0	8.45	4	0	5	9	16
2048	7221	7745	5223	6277	30	7.5	8.75	4	0	4	9	15
4096	15531	17435	05133	17627	32	8	9.03	4	3	6	13	17
8192	23551	25075	26713	37467	34	8.5	9.29	1	0	11	3	18
16384	66371	50575	56533	51447	37	9.25	9.66	3	5	6	7	19
32768	176151	123175	135233	156627	39	9.75	9.89	5	7	10	17	21
65536	247631	264335	235433	311727	41	10.25	10.1	3	7	7	7	20

- Code complexity measure $N_{D}=\underbrace{2^{v}}_{\text {states }} \cdot(\underbrace{2^{k}}_{\text {adds }}+\underbrace{2^{k}-1}_{\text {compares }})$

Design Example

- An AWGN has SNR $=5 \mathrm{~dB}$.
- The uncoded $(M=2)$ error rate is $P_{e}=Q\left(10^{5 / 20}\right)=.0377$ (not very good).
- A better design uses best 64-state rate $r=1 / 2$ code, so bandwidth expands by $2 x$.
- The gain is 7 dB .
- New $P_{e}=Q\left(10^{(5+7) / 20}\right)=3.4303 \mathrm{e}-05$ (better, see Slide L8:8's table for this code).
- To get $P_{e} \approx 10^{-6}$?
- Need 8.5 dB of coding gain with rate $1 / 2$, so use this table's 1024 -state code
- $P_{e}=Q\left(10^{(5+8.5) / 20}\right) \approx 10^{-6}$
- Encoder is $G(D)=[\underbrace{1+D+D^{2}+D^{3}+D^{5}+D^{8}+D^{10}}_{2457} \underbrace{1+D^{2}+D^{3}+D^{5}+D^{6}+D^{7}+D^{10}}_{2355}]$

> 1024 is a lot of states: larger distances may have large N_{i} that increase P_{e}. Design instead should use better (not CC) code (see Lectures 9-11).

The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large N_{i}.

Viterbi Sequence Decoding

Section 7.1

Example, rate $r=1 / 2$ CC surviving path

- $\widehat{\boldsymbol{x}}(D)$ is the best survivor path. There are 2^{v} possible survivors at each time.
- Each state thus at time k has one best survivor, so 2^{v} possible survivors at stage k,
- from which any stage $k+1$ survivor must follow.

Example BSC: 6 input bits $\& 12$ output bits

Green outputs - BSC-output 2 errors from correct sequence

All input bits correctly detected

- This example's input bits are known and shown in green (in actual transmission, message is not known).
- Process can continue ad-infinitum, but after reasonable time ($\sim 5 v$) - trace back path with lowest distance.
- If a tie, pick one of them (probably an uncorrectable error has occurred).
- This is exactly ML if extended to infinity, and usually close with finite survivor-path length.

Example with 6 bits of input (12 output)

Red output - 3 BSC output errors \rightarrow two sequences tied (detect error)

2/6 input bits are correct; 4 are ambiguous (using majority vote).

- Tie means sequence error is likely - must pick one of two equally likely.
- Detector needs more information to decode correctly.
- This can include more future channel outputs that extend the 4 states (if available).

VA in General

state index $-i, i=0,1, \ldots, M^{\nu}-1$
state metric for state i at sampling time $k \triangleq \mathscr{U}_{i, k}$ (sometimes called the "path metric")
previous-states set to state $i \triangleq J_{i}$ (that is, states that have a transition into state i)
branch value $\tilde{\boldsymbol{y}}_{k}(j \rightarrow i)$ noiseless output corresponding to a transition from state j to state i. (i.e., the value of the trellis branch, which is just x_{k} when $H(D)=1$ for coded systems)
branch metric in going from state j to state i at time k, e.g. for BSC, $d_{H}\left(\boldsymbol{y}_{k}, \hat{\boldsymbol{v}}_{k}\right)$, or for AWGN

$$
\Delta_{j, i, k} \triangleq\left\|\boldsymbol{y}_{k}-\hat{\boldsymbol{x}}_{k}(j \rightarrow i)\right\|^{2}
$$

survivor path \bar{j}_{i} - the path that has minimum metric coming into state i.

- Formal - Many students just study trellis examples (L8:4-6) first, and then the above follows easily.

For AWGN?

- Same process with squared-distance replacing Hamming distance on branches

- The green path corresponds to the 2 "BSC errors" in hard-decoder example's (L8:13) positions.
- The red numbers correspond to the 3 "BSC hard errors" in L8:14 positions, and they are corrected!

Soft decoding performs better than hard.

Matlab's vitdec program

DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,DECTYPE)

CODE is assumed to be the output of a
convolutional encoder specified by the MATLAB structure TRELLIS. See POLY2TRELLIS for a valid TRELLIS structure. Each symbol in CODE consists of $\log 2$ (TRELLIS.numOutputSymbols) bits, and CODE may contain one or more symbols. DECODED is a vector in the same orientation as CODE, and each of its symbols consists of $\log 2$ (TRELLIS.numInputSymbols) bits. TBLEN is a positive integer scalar that specifies the traceback depth.

OPMODE denotes the operation mode of the decoder. Choices are: 'trunc' : The encoder is assumed to have started at the all-zeros state. The decoder traces back from the state with the best metric.
'term' : The encoder is assumed to have both started and ended at the all-zeros state. The decoder traces back from the all-zeros state.
'cont' : The encoder is assumed to have started at the all-zeros state. The decoder traces back from the state with the best metric. A delay equal to TBLEN symbols is incurred.

DECTYPE denotes how the bits are represented in CODE. Choices are:

- INPUTS
- Needs trellis, $y(D)$, survivor length
- Indicate "opmode"
- Hard/soft

- OUTPUTS

- Detected bits (sometimes "delayed")
- Last-state metrics
- Survivor paths from last state
- Survivor's bits on survivor path

Program-use examples are next.

Use of matlab vitdec for 4-state example

- This uses matlab's ugly trellis

OR with no survivor delay:

>> vitdec(code,t,6,'trunc','hard') =

```
0}00\mp@code{0
```

Also for t3 in L7:27 Example (same code, with feedback) >> code=convenc($\mathrm{msg}, \mathrm{t} 3$) =
000
00
0
$0 \quad 0$
11
10
>> vitdec(code,t3,6,'trunc','hard') =
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}$

Now with Errors

- Repeat the earlier 2-output-bit error example decoding with matlab vitdec:

```
>> y=[010000100011101];
>> vitdec(y,t,6,'trunc','hard')
    0
```

- The program vitdec actually decodes bits with ties too (3-output-bit errors):

```
>> y3errors=[010001011110 1];
>> vitdec(y3errors,t,6,'trunc','hard') =
    0
```

- Surprisingly, this is correct. Later we see a soft-output Viterbi (SOVA) that calculates additional local information for sequences with ties; it will also decode correctly.
- It is not clear what matlab vitdec is doing internally, but result is same. The full program is available by typing "edit vitdec" in matlab, but it is 414 lines with a lot of subroutine calls (the comments do not seem to help on this) and these subroutines are not visible with edit.
- Motivated student encourage to take a look and tell me and rest of class how vitdec.m resolves the ties.

Viterbi Example with AWGN

- The vitdec.m function accepts the AWGN output as dectype = "unquant" ("soft" is for iterative decoders and is best used with biased all-positive log likelihood ratio soft information.)
- vitdec.m 's detected input-of-the-channel uses opposite sign on channel output to this class/text's convention.

```
% original 2-output-bit errors
>> yawgn=[-.9 .5 -1.1 -. . -. 5 1-. 8-..7 . . 1 -. . 1 1];
>> vitdec(-yawgn,t,6,'trunc','unquant')
    0
% With revised 3-output-bit-errors
>> yawgn2=yawgn;
>> yawgn2(8)=.1;
>> yawgn2(12)=.9;
>> vitdec(-yawgn2,t,6,'trunc','unquant')
```

Soft decoding performs better than hard
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}$

8 -state rate $2 / 3$ code

- Form gen \& output

$G_{\text {best }{ }_{3}{ }^{2} 8 \text {-state }}(D)=\left[\begin{array}{ccc}D & 1+D^{2} & 1+D^{2} \\ 1+D & D & 1\end{array}\right]$

tmin=poly2trellis([3 2], [2 5 5; 32 1]) numinputSymbols: 4
numOutputSymbols: 8
numStates: 8
nextStates: [8×4 double] outputs: [8×4 double]
>> tmin.nextStates
0426
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
>> tmin.outputs
$\begin{array}{llll}0 & 6 & 3 & 5\end{array}$
$\begin{array}{llll}3 & 5 & 0 & 6\end{array}$
$\begin{array}{llll}4 & 2 & 7 & 1\end{array}$
$\begin{array}{llll}7 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}5 & 3 & 6 & 0\end{array}$
$6 \quad 0 \quad 5 \quad 3$
$\begin{array}{llll}1 & 7 & 2 & 4\end{array}$
$\begin{array}{llll}2 & 4 & 1 & 7\end{array}$
>> inmin $=\left[\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 10 & 11 & 01 & 00 \\ 0 & 1\end{array}\right] ;$ >> outmin=convenc(inmin, tmin)

000000000011001100110110
>> plotnextstates(tmin.nextStates)

8-state decode

- Decoding with dfree = 4:

- We encourage you to play a bit.
- Start with examples here and then vary inputs / channel outputs and see.
- The error sequence relative to correct may not yet have merged.

$$
\begin{aligned}
& \text { It's possible with only }\left\lceil\frac{d_{\text {free }}-1}{2}\right\rceil \\
& \text { output bit errors to select } \\
& \text { wrong sequence - why? }
\end{aligned}
$$

- This is why decoders typically report decoded output by tracing backward $5 \cdot v$ subsymbol periods

Decoders with puncturing?

- Receiver knows where punctured bits would have been.
- The decoder enters distance 0 in the punctured channel-output position,
- and otherwise proceeds.
- vitdec.m has an optional input to say where this occurs.
- This reduces $d_{f r e e}$ by (usally, and at most) 1 for every punctured bit (10 for $1 / 2,7$ for $2 / 3$, and 6 for $3 / 4$).

Caution on Matlab's awgn.m

- With $r<1$ and binary AWGN, matlab's "SNR" is not defined the same as this course.
- For example, uncoded binary channel with $S N R_{379}=7 \mathrm{~dB}$

$$
\gg y=\operatorname{awgn}(x, 7)
$$

The 7 dB is for $\overline{\mathcal{E}}_{x}=1$, IN THE SAME BANDWIDTH

- For $r=1 / 2$ and binary AWGN, matlab's "SNR"

$$
\begin{aligned}
& \gg y=\operatorname{awgn}(x, 10) ; \\
& \% \text { or } \\
& \gg y=\operatorname{awgn}(x, 7,-3)
\end{aligned}
$$

The 7 dB IN THE SAME BANDWIDTH as uncoded causes matlab's 10 dB in 2 x BANDWIDTH (because the noise is relative to $\overline{\mathcal{E}}_{x}=1$ for the larger 2 x bandwidth)

Or $2 x$-rate encoder output has $\overline{\mathcal{E}}_{x}=1 / 2$, So 7-(-3) = $\mathbf{1 0 ~ d B ~}$

- This highly counter-intuitive, but matlab people were not considering fixed power over variable bandwidths.
- Recommendation: Use randn (Gaussian) noise directly with (1/sqrt(SNR/Exbar))*randn(\# of points).
- Avoid awgn command.

Maximum a Posteriori \& the APP Algorithm

Section 7.3

Minimize instead each subsymbol error prob

- The MAP detector has criteria
- Let $m \rightarrow k$ to emphasize time here (there are also different k input bits)
- Also, let $\bar{N} \rightarrow K$.

$$
\hat{u}_{k}=\arg \min _{u_{k}} p u_{k}{Y_{0: K-1}}
$$

- Reminder: this is the APP (à posteriori probability).
- Usually, the messages u_{k} are bits, so MAP minimizes each bit's error probability "separately."
- MAP decoding results are often very close to MLSD results, but not always:
- If bit-error is the criterion, the MAP is better .. by definition.
- If sequence (packet) error is the criterion, then MLSD is better.
- Both MAP and MLSD initially assume the input values are equally likely.
- There is a "Viterbi-like" procedure "Bahl Jelinek Cocke and Raviv (BCJR)" that also uses the trellis for MAP.
- MAP or APP is more complex, but also produces "soft information" (LLR) that might be used by another code's decoder, if both share different encoders that act on same bit.
- This product or concatenated code is a way to increase block length (better code possible) but retain simple decoding.

APP Method (largely for a packet of K subsymbols)

- Depends on 3 quantities from state i at time k to state j at time $k+1$
- Forward trellis quantity

$$
\begin{aligned}
& \alpha_{k}(j)=p\left(s_{k+1}=j, \boldsymbol{Y}_{0: K-1}\right) \quad j=0, \ldots,\left|S_{k+1}\right|-1 \\
& \beta_{k}(j)=p\left(\boldsymbol{Y}_{k: K-1} / s_{k+1}=j\right) \quad j=0, \ldots,\left|S_{k+1}\right|-1
\end{aligned}
$$

- Backward trellis quantity
- Branch quantity

$$
\gamma_{k}(i, j)=p\left(s_{k+1}=j, \boldsymbol{y}_{k} / s_{k}=i\right) \quad, i=0, \ldots,\left|S_{k}\right|-1, j=0, \ldots,\left|S_{k+1}\right|-1
$$

- Tedious algebra and bookkeeping (See Section 7.3)

$$
\gamma_{k}(j)=p m_{k} / y_{k}
$$

- Branch calculation (do them all first)
- Forward recursion
- Backward recursion

$$
\begin{aligned}
\alpha_{k}(j) & =\sum_{i \in S_{k}} \gamma_{k}(i, j) \cdot \alpha_{k-1}(i) \\
\beta_{k}(i) & =\sum_{j \in S_{k+2}} \gamma_{k+1}(i, j) \cdot \beta_{k+1}(j)
\end{aligned}
$$

Example with same rate $1 / 2$ code - BSC

- Branch γ calculations are all of the form $\frac{1}{2} \cdot p^{i} \cdot(1-p)^{2-i} \quad i=0,1,2$ for BSC with $p=1 / 4$. $\quad \frac{3}{32}=.09375$
- Forward pass sums two products at each state to get new α.
- Backward pass sums two products at each state to get new β.

Compute Likelihoods: Foundation Equations

Definition 7.3.1 [APP Foundational Equation:] The important APP foundational equation depends on the 3-term branch product

$$
\begin{equation*}
\beta_{k}(j) \cdot \gamma_{k}(i, j) \cdot \alpha_{k-1}(i) \tag{7.64}
\end{equation*}
$$

and on the labeling \mathcal{S}_{k}, which is the set of all allowed branch transitions from state any state s_{k} to any other state s_{k+1} for the given trellis description. The foundational equal is for caculation of the APP

$$
\begin{equation*}
\operatorname{Pr}\left\{\boldsymbol{x}_{k} / \boldsymbol{Y}_{0: K-1}\right\}=\sum_{(i, j) \mid \boldsymbol{x}_{k} \in \mathcal{S}_{k}} \beta_{k}(j) \cdot \gamma_{k}(i, j) \cdot \alpha_{k-1}(i) \tag{7.65}
\end{equation*}
$$

The MAP detector then selects the x_{k} subsymbol value at each time k that maximizes (7.65).

- Compute the 3 quantities for each branch (γ) and for each state (α, β).
- The decoder can also sum over the bit values corresponding to \boldsymbol{x}_{k},
- which usually includes the input bit values $u_{k, i}$.
- In some iterative-decoding situations is better the output values $v_{k, i}$.
- Then compute sum to get à posteriori probabilities \rightarrow decision for each bit.

How about 3 errors on BSC?

- It corrects all 3 - even with hard decisions; however, the decoder uses a p. This is additional soft info.
- Decoder already knew $p=.25$, but MLSD did not use it (with Viterbi Algorithm) - just Hamming distance.
- This heads toward soft decoding, slightly. Decisions won't change for another $p<0.5$, but the soft info does.

AWGN Case with BCJR (uses log likelihoods)

- Calculation of branch metrics by hand can use the items inside the box.
- Final decisions are in the table.

LOGMAP APP

- This LOGMAP APP algorithm computes LL to avoid multiplication:
- LOGMAP defines

$$
\begin{aligned}
\lambda_{i} & \triangleq \ln \left(\alpha_{i}\right)+\ln \left(\gamma_{i}\right) \\
e^{\lambda_{i}} & =\alpha_{i} \cdot \gamma_{i}
\end{aligned}
$$

$$
\alpha=\sum_{i} \alpha_{i} \cdot \gamma_{i}
$$

- This simplifies multiplication (per term) to addition (and reduces arithmetic range requirement).
- Addition of original terms (different i) requires the calculation:

$$
\lambda=\ln \left(\sum_{i} e^{\lambda_{i}}\right)
$$

- LOGMAP recursively recruits the sum with table look ups and additions/differences:

$$
\lambda=\lambda_{1}+\ln \left(1+e^{\lambda_{2}-\lambda_{1}}\right)=\lambda_{1}+f\left(\lambda_{2}-\lambda_{1}\right)
$$

Matlab's BCJR (with some edits,@ website)

- Section 8.2 - Conv Code Tables (see the octal entries)

function BCJR_AWGN(y,trellis,sigma)
BCJR_conv Decoder
This program derives from a nice matlab-file-xchange listing by K. Elhalil, of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow convolutional codes with $\mathrm{k}>1, \mathrm{r}=\mathrm{k} / \mathrm{n}$.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm This function accepts the channel output y , the trellis (from poly2trellis. It uses a priori prob that is set to $1 / 2^{\wedge} \mathrm{k}$ instead of the original matalb. Motivated users may want to add the ability to input a set of a priori inputs (presumably extrinsic information from another code's use on same bits). It returns the APP LLR for each data bit input. The program replaces an alpha->beta turnaround at
last stage with just equal output probability $1 / 2^{\wedge} n$ for each initial beta value. I believe that avoids bias and is more accurate.
$\mathrm{N}=$ length(y) and N / n must be integer. Also, I commented out a
normalization line for alpha and beta that I believe incorrect.

INPUTS:

y - these are real-valued vectors from some (AWGN likely) channel output multiply this by -1 to get the EE379 Class convention on 0->-1 trellis - this is matlab's usual trellis description (see text or class notes to avoid excessive computation for feedback systematic). sigma - this is 1-dimensional AWGN standard deviation

OUTPUTS:

The decoded bits' LLRs

BCJR_BSC @ website

- Section 8.2 - Conv Code Tables (see the octal entries)

function BCJR_BSC(y,trellis,p)
BCJR_conv Decoder - HAMMING DISTANCE BSC
This program derives from a nice matlab-file-xchange listing by K. Elhalil, of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow convolutional codes with $k>1, r=k / n$. It has been tested on easy $(r=2 / 3)$ codes but not for $k>2$. Maximum k value is 4 , so up to rate $4 / 5$ codes.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm. This function accepts the BSC output y, the trellis (from poly2trellis. It uses a priori prob that is set to $1 / 2^{\wedge} k$.
Motivated users may want to add the ability to input a set of a priori inputs or extrinsic information

The program returns the a posteriori probability's LLR for each data bit input. The program sets the stage beta initial probabilities to $1 / 2^{\wedge} \mathrm{n}$ each. JC believes that avoids bias and is more accurate. $\mathrm{N}=$ length (y) and N / n must be integer.

INPUTS:
y - these are integers 1's or 0's in 1xn vector trellis - this is matlabs usual trellis description (see my text or class notes to avoid excessive computation for feedback systematic. p - this is 1-dimensional BSC error-probability for uncoded use. OUTPUTS:
the decoded input bits' LLRs

WITH 0 OUTPUT BIT ERRORS:
 \gg out $=0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$
 >> BCJR_BSC(out,t,.25) =
 $\begin{array}{llllll}3.5981 & 3.1193 & 2.6526 & 2.2290 & -1.9712 & -1.4020\end{array}$ LLRS

0	0	0	0	1	1	Bits

WITH 2 OUTPUT BIT ERRORS:

>> outBSC2=[0 1000100110 1];
>> BCJR_BSC(outBSC2,t,.25) =
$\begin{array}{llllll}0.3406 & 0.8704 & 1.0826 & 0.7295 & -0.9589 & -0.5173\end{array} \%$ less soft info/confidence
>> outBSC3=[010001011101];
>> BCJR_BSC(outBSC3,t,.25) =
$\begin{array}{llllll}0.3514 & 0.5341 & 0.0870 & 0.0870 & -0.6286 & -0.0870\end{array}$ \% less soft info, all bits but first
>> BCJR_BSC(outBSC2,t,.49) =
$0.0008 \quad 0.03920 .00160 .0016-0.0008-0.0000 \%$ same decisions, but
Less confident because p is large
>> BCJR_BSC(outBSC3,t,.49)=0.0008 0.0392 0.0000 0.0000 -0.0008 -0.0000
$p<1 / 2$ just scales confidence

Rate $2 / 3$ examples

- The original program (BCJR_conv.m) from Matlab File exchange only handed AWGN.
- It also only handled $k=1$, so then only rate $r=1 / n$ codes.
- BCJR_BSC.m and BCJR_AWGN.m handle respectively Hamming and Euclidean distance and $\mathrm{r}=\mathrm{k} / \mathrm{n}$ for $\mathrm{k}=1,2,3,4$

```
tmin=poly2trellis([3 2], [2 5 5; 3 2 1]);
>> inmin =
    00 00 00 10 11 01 00 01];
>> outmin=convenc(inmin,tmin) =
    0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0
>> (-sign(BCJR_BSC(outmin,tmin,0.125))+1)/2
    00 00 00 1011 010001
>> (-sign(BCJR_BSC(xor(outmin,error2),tmin,0.125))+1)/2=
    00 00 00 1011 010001
------ 3 errors breaks
>> error=001 000 000 100 000 000 010 000
>> (-sign(BCJR_BSC(xor(outmin,error),tmin,0.125))+1)/2
    00 00 00 1011 110011
```

$$
G_{\text {best } \frac{2}{3^{\prime}} 8-\text { state }}(D)=\left[\begin{array}{ccc}
D & 1+D^{2} & 1+D^{2} \\
1+D & D & 1
\end{array}\right]
$$

Note fewer bit errors with BCJR than with Viterbi
 (vitdec had 6 errors on L8:14).

- Soft Information?

Soft-Output Viterbi Algorithm SOVA

Section 7.3.2

- LOGMAX - approximates the sum in sum of products by maximum term.
- Often very true in decoding.

$$
\ln \left(\alpha_{k+1}, s_{k+1}\right) \approx \max _{\text {branches into } s_{k+1}} \ln \left(\alpha_{k}, s_{k}, \text { branch into }\right)+\ln \left(\gamma_{k}, \text { branch into }\right)
$$

This is the VA in the forward direction. Similarly in the backward direction

$$
\ln \left(\beta_{k}, s_{k}\right) \approx \max _{\text {branches into } s_{k+1}} \ln \left(\beta_{k+1}, s_{k}, \text { branch into }\right)+\ln \left(\gamma_{k}, \text { branch into }\right)
$$

$$
\begin{aligned}
L L \boldsymbol{R}_{\boldsymbol{x}}= & \pm\left[\max _{\text {b branches }}\left\{\ln \left(\alpha_{k}, \text { branch }\right)+\ln \left(\gamma_{k}, \text { branch }\right)+\ln \left(\beta_{k}, \text { branch }\right)\right\}\right. \\
& \left.-\max _{1 \text { branches }} \ln \left(\alpha_{k}, \text { branch }\right)+\ln \left(\gamma_{k}, \text { branch }\right)+\ln \left(\beta_{k}, \text { branch }\right)\right],
\end{aligned}
$$

- Look familiar?
- Yes, back to Viterbi.
- But now we have 2, one forward and one backward.

Forward SOVA Example with Ties

- It's pretty easy without ties - just find other path with other input with next lowest survivor metric
- And take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and - sign for 1)

Forward SOVA Example with ties (3-error example revisited)								
k	0	1	2	3	4	5		
$\{L L(0)\}$	\{3\}	\{3\}	\{3,3\}	$\{3,3\}$	\emptyset	\{3\}		
\{LL(1) \}	\{3\}	\{3\}	\{3\}	\{3\}	\{3,3\}	\{3\}		
$\Delta L L$ (dec)	O(?)	O(?)	2/3 (0)	2/3 (0)	-1 (1)	0 (?)		
Green color indicates the minimum-metric path is a survivor in forward direction; all LL's in units of $\ln (p)$.								

- The local resolution and majority voting appear to be what matlab is doing (requires examination/test of source code).
- Probably could be confirmed by someone testing various situations
- Nonetheless, the above is viable Forward-SOVA tie resolution

Forward-Backward SOVA Example

Hagenauer's LLR SOVA update

- Prob of VA sequence error

$$
\begin{aligned}
& \operatorname{Pr}_{M L}\left\{x_{k}=-1\right\}=\operatorname{Pr}\left\{u_{k}=0\right\} \propto e^{-L S_{k}^{*}(0)} \\
& \operatorname{Pr}_{M L}\left\{x_{k}=+1\right\}=\operatorname{Pr}\left\{u_{k}=1\right\} \propto e^{-L S_{k}^{*}(1)}
\end{aligned}
$$

- Magnitude difference of two bit choices is
- $\Delta L S_{k}=L S_{k}^{*}(0)-L S_{k}^{*}(1)$
- $L L R_{k}=x_{k} \cdot \Delta L S_{k}$
- Linear-code analysis: all 0's is correct, so

$$
P_{e}=\frac{e^{-L S_{k}^{*}(0)}}{e^{-L S_{k}^{*}(0)}+e^{-L S_{k}^{*}(1)}}=\frac{1}{1+e^{\Delta L S_{k}}}
$$

- Another decoder provides

$$
\widehat{L L R}_{k}=\ln \frac{1-\hat{\bar{P}}_{b, k}}{\hat{\bar{P}}_{b, k}}
$$

- It includes soft info through:

- Algebra provides

$$
L L R_{k} \leftarrow \ln \left[\frac{1+e^{\Delta L S_{k}+L \widehat{L R_{k}}}}{e^{\Delta L S_{k}}+e^{L \widehat{L R} R_{k}}}\right]
$$

- Ignores scaling difference between sequence and bit, so

$$
\begin{aligned}
& \Delta L S_{k} \rightarrow \frac{\left(y_{k}-x_{k}\right)^{2}}{4 \cdot d_{\text {free }} \cdot S N R} \\
& \text { or } \Delta L S_{k} \rightarrow \frac{d_{H}\left(y_{k}, v_{k}\right)}{d_{\text {free }}} \text { for BSC }
\end{aligned}
$$

End Lecture 8

IFD is backup
interesting, not enough time

Invariant Factors Decomposition

Appendix B. 7

Parity Code Tables, Feedback, and poly2trellis

- Poly2trellis has a third input that is feedback - example best 8 -state $r=2 / 3$ conv code from tables

$$
\begin{aligned}
& H(D)=\left[\begin{array}{lll}
17 & 15 & 13
\end{array}\right]=\left[\begin{array}{lll}
D^{3}+D^{2}+D+1 & D^{3}+D^{2}+1 & D^{3}+D+1
\end{array}\right] \\
& \\
& H_{\text {sys }}(D)=\left[\begin{array}{lll}
\frac{D^{3}+D^{2}+D^{1}+1}{D^{3}+D+1} & \frac{D^{3}+D^{2}+1}{D^{3}+D+1} & 1
\end{array}\right] \quad G_{s y s}(D)=\left[\begin{array}{lll}
1 & 0 & \frac{D^{3}+D^{2}+D^{1}+1}{D^{3}+D+1} \\
0 & 1 & \frac{D^{3}+D^{2}+1}{D^{3}+D+1}
\end{array}\right]
\end{aligned}
$$

- Circuit has 8 states (3 flip flops)

So what does Matlab do?

```
>> tfeed=poly2trellis([4 4],[13 0 17; 0 13 15], [13 13])
tfeed =
    numInputSymbols: }
    numOutputSymbols: }
        numStates: 64 OUCH!
        nextStates: [64 }\times4\mathrm{ double]
        outputs: [64 }\times4\mathrm{ double]
```

- I could find no way to use this command other than the above valid (but nonminimal trellis).
- The matlab page examples do the same thing - increase number of states excessively.
- This is NOT a problem if code is $r=1 / n$, then number of states is preserved.
- Here it was square of number of states (64), for rate $3 / 4$, it would cube number of states.

```
But there is a
    fix!
```


Work-Around

- This is tedious and so matlab probably wanted to avoid it (See Appendix B on Invariant Factors Decomp). - It is Smith-Normal Form, but in binary polynomials:

$$
G_{s y s}(D)=\underbrace{\left[\begin{array}{cc}
1+D+D^{2}+D^{3} & 1+D+D^{2} \\
1+D^{2}+D^{3} & D+D^{2}
\end{array}\right]}_{|A|=1} \cdot \underbrace{\left[\begin{array}{cc}
\frac{1}{D^{3}+D+1} & 0 \\
0 & 1
\end{array}\right]}_{\begin{array}{c}
\Gamma \\
|\Gamma| \neq 0
\end{array}} \cdot\left[\begin{array}{ccc}
D & 1+D^{2} & 1+D^{2} \\
1+D & D & 1
\end{array}\right]
$$

- The first two matrices are 1-to-1, so only remap all possible binary inputs to the SAME codewords.
- They do not affect the set of codewords (or the code).
- Minimal 8-state feedback-free encoder is $G_{\min }(D)=\left[\begin{array}{ccc}D & 1+D^{2} & 1+D^{2} \\ 1+D & D & 1\end{array}\right]$.
- Encode with $G_{s y s}(D)$ convenc.m has no issues (even though it uses 64 states) or just encode with 8 state circuit on slide 34; the codewords are the same (so MLSD will find closest codeword).
- Decoder assumes $G_{\text {min }}(D)$ and finds $\hat{u}_{\text {min }}(D)$; then $\hat{v}_{\text {min }}(D)=\hat{u}_{\text {min }}(D) \cdot G_{\text {min }}(D)$-recode the decoded.
- $\hat{u}_{s y s}(D)=\left[\hat{v}_{2, \text { min }}(D) \quad \hat{v}_{1, \text { min }}(D)\right]$ because the original encoder was systematic.
- Further any finite number of output errors only cause a finite (possibly less, but not more) number of input bit errors.

Example: 8 -state rate $2 / 3$ code

- Saving commands

tmin=poly2trellis([3 2], [2 5 5; 32 1])
numInputSymbols: 4
numOutputSymbols: 8
numStates: 8
nextStates: [8×4 double] outputs: [8×4 double]
>> tmin.nextStates
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}0 & 4 & 2 & 6\end{array}$
0426
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
$\begin{array}{llll}1 & 5 & 3 & 7\end{array}$
>> tmin.outputs
$\begin{array}{llll}0 & 6 & 3 & 5\end{array}$
$\begin{array}{llll}3 & 5 & 0 & 6\end{array}$
$\begin{array}{llll}4 & 2 & 7 & 1\end{array}$
$\begin{array}{llll}7 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}5 & 3 & 6 & 0\end{array}$
$6 \quad 0 \quad 5 \quad 3$
$\begin{array}{llll}1 & 7 & 2 & 4\end{array}$
$\begin{array}{llll}2 & 4 & 1 & 7\end{array}$
>> outmin=convenc([0000001011010001$]$,tmin) $\begin{array}{llllllll}000 & 000 & 000 & 011 & 001 & 100 & 110 & 110\end{array}$
>> plotnextstates(tmin.nextStates)
Plot of NextStates Matrix

8-state decode

- Minimal Direct Works - dfree = 6
 >> vitdec(outmin,tmin,6,'trunc','hard')
 $00 \begin{array}{llllllll}00 & 00 & 10 & 11 & 01 & 00 & 01\end{array}$
 >> inmin=
 $00 \quad 00 \quad 00 \quad 10 \quad 11 \quad 01 \quad 00 \quad 01] ;$

error2 $=[001000000000000000010000]$; \% 2 errors introduced >> vitdec(+xor(outmin,error2),tmin,6,'trunc','hard')

$$
\begin{array}{llllllll}
00 & 00 & 00 & 10 & 11 & 01 & 00 & 01
\end{array}
$$

- Systematic feedback encoder - different output

```
```

>> tfeed=poly2trellis([4 4],[13 0 17; 0 13 15], [13 13])

```
```

>> tfeed=poly2trellis([4 4],[13 0 17; 0 13 15], [13 13])
numInputSymbols: 4
numInputSymbols: 4
numOutputSymbols: }
numOutputSymbols: }
numStates: }6
numStates: }6
nextStates: [64 > 4 double]
nextStates: [64 > 4 double]
outputs: [64 }\times4\mathrm{ double]
outputs: [64 }\times4\mathrm{ double]
>> outfeed=convenc([00 000 00 10}1011 011 00 01],tfeed
>> outfeed=convenc([00 000 00 10}1011 011 00 01],tfeed
000 000000101111011001011%systematic
000 000000101111011001011%systematic
>> informin=vitdec(outfeed,tmin,6,'trunc','hard')
>> informin=vitdec(outfeed,tmin,6,'trunc','hard')
00
00
>> vmin = convenc(informin,tmin) =
>> vmin = convenc(informin,tmin) =
000}0000\quad00

```
```

 000}0000\quad00
    ```
```


Have to leave spaces in matlab, but it looks better without them here

```
>> informin2=vitdec(+xor(outfeed,error2),tmin,6,'trunc','hard')
    00}00000011 01 111 01 11
>> vmin2 = convenc(informin2,tmin)
        000 000 000 101 111 011 001 011
```

>> outfeed \% check
000000000101111011001011
\% So, this fixes matlab's high-complexity-trellis problem with 8-state decoder

This works for any decoder, But of course most helpful With matlab poly2trellis issues

[^0]: So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate; adding a code to reduce rate is somewhat antithetical to Shannon if $R<C$. Increasing W is "cheating."

