

Lecture 8 **Decoding** *February 1, 2024*

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- PS3 extended to Friday see updated HWH3 at website.
- PS4 is due TUESDAY, no late. (HWH4 is already at website.)
 - PS4 solutions will post immediately, and thus be available for your midterm study.
 - You should expect less time than PS2 or PS3.
- There is no homework assigned next week.

Today

- Continue from L7
- Viterbi Sequence Decoding (MLSD)
- A Posteriori Probability (APP) bit decoding
- Soft-Output Viterbi Algorithm (SOVA)
- Backup not covered: Invariant Factors Decomposition
 - Minimal Generators (and thus minimal decoder complexity)
 - Matlab code-structure error warning

Continue L7

Section 7.2

January 30, 2024

Hard decoder – first decodes the "v" bit sequence

- Encoder-output subsymbols are decoded independently e.g., a "hard" decision.
- The remaining channel is a BSC model, to which the binary code applies.
- The BEC with the "erasure" output is a first step from hard to soft....

Section 2.2.2

Soft Decoder – decode the symbol

- The demodulator samples (∈ ℂ) pass to the detector for comparison of codewords (subsymbol sequences).
- The y information is "soft" in that it is not pre-quantized into a decision (or at least not to |C| subsymbol values).
- Deployed systems often have ADC on y_n ; quantize $\frac{d_{min}(|C|)}{\sigma_a} = 4^3$; i.e., 3 bits cover intra-point distance.
 - This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
 - Same rule applies per dimension for both ADCs in quadrature receivers.
 - Total ADC bits will then be these 3, plus \bar{b} , plus 1-2 bits for peak-to-average (analog coverage), so $b_{ADC} = \bar{b}$ +4, or possibly \bar{b} +5.

Section 2.2.1

AWGN Error Probability for Conv Codes

• AWGN
$$\overline{P}_e = \overline{N}_e \cdot Q\left(\frac{d_{min}}{2\sigma}\right) = \overline{N}_e \cdot Q\left(\sqrt{d_{free} \cdot \frac{\varepsilon_x}{\sigma^2}}\right) = \overline{N}_e \cdot Q\left(\sqrt{d_{free} \cdot \frac{k}{n} \cdot SNR}\right)$$

• Because $d_{min} = \sqrt{d_{free} \cdot 4 \cdot \mathcal{E}_x}$

energy-spread reduces energy/subsym (assumes $\frac{1}{\tau_{t}}$ can increase, so no filter on AWGN)

- AWGN $\bar{P}_b = \frac{N_b}{b} \cdot Q(\sqrt{d_{free} \cdot r \cdot SNR})$
 - Where $N_b = \sum_{i=1}^{\infty} i \cdot N(i, d_{free})$ and N(i, d) for conv code is the number of *i*-input-bit error events with distance *d*.
 - Finding N_b can require exhaustive search in general, but Section 7.2 (L9) shows how to compute N(i, d) for CC, also distspec.m.
 - Yes, it is equal to Chapter 1's $\sum_{i=1}^{\infty} p_x(i) \cdot n_b(i)$, which is actually harder to compute.
- BC coding gain $\gamma = 10 \cdot \log_{10} (r \cdot d_{free})$ (for AWGN with binary subsymbols ...) and energy/bit $\bar{\mathcal{E}}_b$.

HAZARD WARNING - BINARY CODING THEORIST'S FALLACY - assumes "free bandwidth"

Binary-code fair comparison: hold 2 of 3 { \bar{b} $\bar{\mathcal{E}}_x$ \bar{P}_e } fixed and compare 3rd; But $N_{coded} = \frac{1}{r} \cdot N_{uncoded}$ so then BOTH $\bar{\mathcal{E}}_x \& \bar{b}$ decrease for coded w.r.t uncoded (~ holding power & rate constant), not fair. $\bar{b}_{coded} = r \cdot \bar{b}_{uncoded}$ $\bar{\mathcal{E}}_{x,coded} = r \cdot \bar{\mathcal{E}}_{x,coded}$; So $\mathcal{E}_b = \frac{\bar{\mathcal{E}}_x}{\bar{b}}$ is the same, BUT $W \cdot T \to \frac{W \cdot T}{r}$

So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate; adding a code to reduce rate is somewhat antithetical to Shannon if R < C. Increasing W is "cheating."

Sections 2.2.2.1 & 8.2.1

BSC Error Probability

- BSC $\overline{P}_e = \overline{N}_e \cdot [4p(1-p)]^{\left\lfloor \frac{d_{free}}{2} \right\rfloor}$ • BSC $\overline{P}_b = \frac{N_b}{b} \cdot [4p(1-p)]^{\left\lfloor \frac{d_{free}}{2} \right\rfloor}$
- Chapter 1's B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).
- Fair-comparison discussion is for AWGN.
 - Strictly speaking with BSC, data rate must reduce to improve with codes.

С

• From BSC capacity, $r \le 1 + p \cdot \log_2 p + (1-p) \cdot \log_2(1-p) \le 1$ for reliable transmission with a code 0 .

Coding Tables –best known rate ½ conv codes

Section 8.2 – Conv Code Tables see the octal entries, chap 8 [6])

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	d_{free}	γ	(dB)	N_e	N_1	N_2	N_b	L_D
4	7	5	5	2.5	3.98	1	2	4	1	3
8	17	13	6	3	4.77	1	3	5	2	5
16	23	35	7	3.5	5.44	2	3	4	4	8
(2G) 16	31	33	7	3.5	5.44	2	4	6	4	7
32	77	51	8	4	6.02	2	3	8	4	8
64	163	135	10	5	6.99	12	0	53	46	16
(802.11a) 64	155	117	10	5	6.99	11	0	38	36	16
(802.11b) 64	133	175	9	4.5	6.53	1	6	11	3	9
128	323	275	10	5	6.99	1	6	13	6	14
256	457	755	12	6	7.78	10	9	30	40	18
(3G) 256	657	435	12	6	7.78	11	0	50	33	16
512	1337	1475	12	6	7.78	1	8	8	2	11
1024	2457	2355	14	7	8.45	19	0	80	82	22
2048	6133	5745	14	7	8.45	1	10	25	4	19
4096	17663	11271	15	7.5	8.75	2	10	29	6	18
8192	26651	36477	16	8	9.0	5	15	21	26	28
16384	46253	77361	17	8.5	9.29	3	16	44	17	27
32768	114727	176121	18	9	9.54	5	15	45	26	37
65536	330747	207225	19	9.5	9.78	9	16	48	55	33
131072	507517	654315	20	10	10	6	31	58	30	27

Table 8.1: Rate 1/2 Maximum Free Distance Codes

 $L_D =$ length of Min-dist event

>> t8=poly2trellis(4,[17 13]) =
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 8
 nextStates: [8 × 2 double]
 outputs: [8 × 2 double]
>> plotnextstates(t8.nextStates)

Best rate-1/3 convolutional codes

Codes listed for other rates, example 1/3 here, see Sec 8.2 for ¼, 2/3, ¾,

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$g_{13}(D)$	$g_{14}(D)$	d_{free}	γ	(dB)	N_e	N_1	N_2	N_b	L_D
4	7	7	7	5	10	2.5	3.98	1	1	1	2	4
8	17	15	13	13	13	3.25	5.12	2	1	0	4	6
16	37	35	33	25	16	4	6.02	4	0	2	8	7
32	73	65	57	47	18	4.5	6.53	3	0	5	6	8
64	163	147	135	135	20	5	6.99	10	0	0	37	16
128	367	323	275	271	22	5.5	7.40	1	4	3	2	9
256	751	575	633	627	24	6.0	7.78	1	3	4	2	10
512	0671	1755	1353	1047	26	6.5	8.13	3	0	4	6	12
1024	3321	2365	3643	2277	28	7.0	8.45	4	0	5	9	16
2048	7221	7745	5223	6277	30	7.5	8.75	4	0	4	9	15
4096	15531	17435	05133	17627	32	8	9.03	4	3	6	13	17
8192	23551	25075	26713	37467	34	8.5	9.29	1	0	11	3	18
16384	66371	50575	56533	51447	37	9.25	9.66	3	5	6	7	19
32768	176151	123175	135233	156627	39	9.75	9.89	5	7	10	17	21
65536	247631	264335	235433	311727	41	10.25	10.1	3	7	7	7	20

• Code complexity measure $N_D = \underbrace{2^{\nu}}_{states} \cdot \begin{pmatrix} 2^k + 2^k - 1 \\ \underbrace{2^k}_{adds} & \underbrace{2^k - 1}_{compares} \end{pmatrix}$

January 30, 2024

Section 8.2.1.3

Design Example

- An AWGN has SNR = 5 dB.
- The uncoded (M = 2) error rate is $P_e = Q(10^{5/20}) = .0377$ (not very good).
- A better design uses best 64-state rate $r = \frac{1}{2}$ code, so bandwidth expands by 2x.
 - The gain is 7 dB.
 - New $P_e = Q(10^{(5+7)/20}) = 3.4303e-05$ (better, see Slide L8:8's table for this code).
- To get $P_e \approx 10^{-6}$?
 - Need 8.5 dB of coding gain with rate $\frac{1}{2}$, so use this table's 1024-state code
 - $P_e = Q(10^{(5+8.5)/20}) \approx 10^{-6}$

• Encoder is
$$G(D) = \left[\underbrace{\frac{1+D+D^2+D^3+D^5+D^8+D^{10}}{2457}}_{2457} \quad \underbrace{\frac{1+D^2+D^3+D^5+D^6+D^7+D^{10}}{2355}}_{2355}\right]$$

1024 is a lot of states: larger distances may have large N_i that increase P_e.
Design instead should use better (not CC) code (see Lectures 9-11).
The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large N_i.

Section 8.2.1.3

Viterbi Sequence Decoding

Section 7.1

January 30, 2024

Example, rate $r = \frac{1}{2}$ CC surviving path

- $\hat{x}(D)$ is the best survivor path. There are 2^{ν} possible survivors at each time.
- Each state thus at time k has one best survivor, so 2^{ν} possible survivors at stage k,
 - from which any stage k + 1 survivor must follow.

Section 8.1.4

Example BSC: 6 input bits & 12 output bits

Green outputs – BSC-output 2 errors from correct sequence

All input bits correctly detected

- This example's input bits are known and shown in green (in actual transmission, message is not known).
- Process can continue ad-infinitum, but after reasonable time $(\sim 5\nu)$ trace back path with lowest distance.
 - If a tie, pick one of them (probably an uncorrectable error has occurred).
- This is exactly ML if extended to infinity, and usually close with **finite survivor-path length**.

Example with 6 bits of input (12 output)

Red output – 3 BSC output errors \rightarrow two sequences tied (detect error)

- Tie means sequence error is likely must pick one of two equally likely.
- Detector needs more information to decode correctly.
 - This can include more future channel outputs that extend the 4 states (if available).

L8: 14

VA in General

state index - $i, i = 0, 1, ..., M^{\nu} - 1$

state metric for state *i* at sampling time $k \stackrel{\Delta}{=} \mathscr{U}_{i,k}$ (sometimes called the "path metric")

previous-states set to state $i \stackrel{\Delta}{=} J_i$ (that is, states that have a transition into state *i*)

branch value $\tilde{y}_k(j \to i)$ noiseless output corresponding to a transition from state j to state i. (i.e., the value of the trellis branch, which is just x_k when H(D) = 1 for coded systems)

branch metric in going from state j to state i at time k, e.g. for BSC, $d_H(\boldsymbol{y}_k, \hat{\boldsymbol{v}}_k)$, or for AWGN $\Delta_{j,i,k} \stackrel{\Delta}{=} \|\boldsymbol{y}_k - \hat{\boldsymbol{x}}_k(j \to i)\|^2$

survivor path \overline{j}_i - the path that has minimum metric coming into state *i*.

Formal – Many students just study trellis examples (L8:4-6) first, and then the above follows easily.

For AWGN?

Same process with squared-distance replacing Hamming distance on branches

- The green path corresponds to the 2 "BSC errors" in hard-decoder example's (L8:13) positions.
- The red numbers correspond to the 3 "BSC hard errors" in L8:14 positions, and they are corrected!

Soft decoding performs better than hard.

s

Section 7.1.1

PS4.1

L8:16

Matlab's vitdec program

DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,DECTYPE)

CODE is assumed to be the output of a

convolutional encoder specified by the MATLAB structure TRELLIS. See POLY2TRELLIS for a valid TRELLIS structure. Each symbol in CODE consists of log2(TRELLIS.numOutputSymbols) bits, and CODE may contain one or more symbols. DECODED is a vector in the same orientation as CODE, and each of its symbols consists of log2(TRELLIS.numInputSymbols) bits. TBLEN is a positive integer scalar that specifies the traceback depth.

OPMODE denotes the operation mode of the decoder. Choices are: 'trunc' : The encoder is assumed to have started at the all-zeros state. The decoder traces back from the state with the best metric. 'term' : The encoder is assumed to have both started and ended at the all-zeros state. The decoder traces back from the all-zeros state.

'cont' : The encoder is assumed to have started at the all-zeros state. The decoder traces back from the state with the best metric. A delay equal to TBLEN symbols is incurred.

DECTYPE denotes how the bits are represented in CODE. Choices are:
'unquant': The decoder expects signed real input values. +1 represents a logical zero and -1 represents a logical one.
'hard': The decoder expects binary input values.
'soft': See the syntax below.

INPUTS

- Needs trellis, y(D), survivor length
- Indicate "opmode"
- Hard/soft

OUTPUTS

- Detected bits (sometimes "delayed")
- Last-state metrics
- Survivor paths from last state
- Survivor's bits on survivor path

Program-use examples are next.

Use of matlab vitdec for 4-state example

January 30, 2024

Section 7.1.3.2

PS4.1

Now with Errors

Repeat the earlier 2-output-bit error example decoding with matlab vitdec:

```
>> y=[0 1 0 0 0 1 0 0 1 1 0 1];
>> vitdec(y,t,6,'trunc','hard')
0 0 0 0 1 1
```

• The program vitdec actually decodes bits with ties too (3-output-bit errors):

- Surprisingly, this is correct. Later we see a soft-output Viterbi (SOVA) that calculates additional local information for sequences with ties; it will also decode correctly.
- It is not clear what matlab vitdec is doing internally, but result is same. The full program is available by typing "edit vitdec" in matlab, but it is 414 lines with a lot of subroutine calls (the comments do not seem to help on this) and these subroutines are not visible with edit.

PS4.1

Motivated student encourage to take a look and tell me and rest of class how vitdec.m resolves the ties.

Viterbi Example with AWGN

- The vitdec.m function accepts the AWGN output as dectype = "unquant" ("soft" is for iterative decoders and is best used with biased all-positive log likelihood ratio soft information.)
 - vitdec.m 's detected input-of-the-channel uses opposite sign on channel output to this class/text's convention.

```
% original 2-output-bit errors
>> yawgn=[-.9 .5 -1.1 -.9 -.5 1 -.8 -.7 .9 1 -.9 1];
>> vitdec(<mark>-</mark>yawgn,t,6,'trunc','unquant')
```

```
0 \ 0 \ 0 \ 0 \ 1 \ 1
```

```
% With revised 3-output-bit-errors
>> yawgn2=yawgn;
>> yawgn2(8)=.1;
>> yawgn2(12)=.9;
>> vitdec(-yawgn2,t,6,'trunc','unquant')
```

```
0 \ 0 \ 0 \ 0 \ 1 \ 1
```

Soft decoding performs better than hard

8-state rate 2/3 code

8-state decode

Decoding with dfree = 4:

```
>> vitdec(outmin,tmin,6,'trunc','hard') % no errors
 00 00 00 10 11 01 00 01
>> inmin=
 00 00 00 10 11 01 00 01]:
error2=[0 1 0, zeros(1,9), 1 0 0, zeros(1,9)]; % 2 errors
>> vitdec(+xor(outmin,error2),tmin,6,'trunc','hard')
      00 00 10 11 01 00 01
 0.0
3 errors – can't correct (smaller free distance)
>> error = 001 000 000 100 000 000 010 000
>> vitdec(+xor(outmin,error),tmin,6,'trunc','hard')
 00 00 00 1<mark>1 00 10 00 1</mark>1
```

- We encourage you to play a bit.
 - Start with examples here and then vary inputs / channel outputs and see.
- The error sequence relative to correct may not yet have merged.
 - This is why decoders typically report decoded output by tracing backward $5 \cdot v$ subsymbol periods

Higher rate, more complex (8 states), but lower distance of dfree = 4

Stanford University

Section 7.1.3.2

Decoders with puncturing?

BSC Decoder inserts "0" for punctured bit into branch value (branch Hamming distance calculation uses only transmitted bits)

> AWGN Decoder similarly includes 0 into branch Euclidean metric

> > Stanford University

- Receiver knows where punctured bits would have been.
- The decoder enters distance 0 in the punctured channel-output position,
 - and otherwise proceeds.
 - vitdec.m has an optional input to say where this occurs.
- This reduces d_{free} by (usally, and at most) 1 for every punctured bit (10 for ½, 7 for 2/3, and 6 for ¾).

Section 7.1.3.2

🕱 Caution on Matlab's awgn.m

- With r < 1 and binary AWGN, matlab's "SNR" is not defined the same as this course.
- For example, uncoded binary channel with SNR_{379} = 7 dB

>> y=awgn(x,7);

• For r = 1/2 and binary AWGN, matlab's "SNR"

>> y=awgn(x,10); % or >> y=awgn(x,7,-3) The 7 dB is for $\overline{\mathcal{E}}_x = \mathbf{1}$, IN THE SAME BANDWIDTH

The 7 dB IN THE SAME BANDWIDTH as uncoded causes matlab's 10 dB in 2x BANDWIDTH (because the noise is relative to $\overline{\mathcal{E}}_x = 1$ for the larger 2x bandwidth)

Or 2x-rate encoder output has $\overline{\mathcal{E}}_x = 1/2$, So 7- (-3) = 10 dB

- This highly counter-intuitive, but matlab people were not considering fixed power over variable bandwidths.
- Recommendation: Use randn (Gaussian) noise directly with (1/sqrt(SNR/Exbar))*randn(# of points).
 - Avoid awgn command.

January 30, 2024

Section 7.1.3.2

Maximum a Posteriori & the APP Algorithm

Section 7.3

January 30, 2024

Minimize instead each subsymbol error prob

- The MAP detector has criteria
 - Let m o k to emphasize time here (there are also different k input bits) $\widehat{u}_k = arg \min p u_{k/k}$
 - Also, let $\overline{N} \to K$.
 - Reminder: this is the **APP** (à posteriori probability).
- Usually, the messages uk are bits, so MAP minimizes each bit's error probability "separately."
- MAP decoding results are often very close to MLSD results, but not always:
 - If bit-error is the criterion, the MAP is better .. by definition.
 - If sequence (packet) error is the criterion, then MLSD is better.
 - Both MAP and MLSD initially assume the input values are equally likely.
- There is a "Viterbi-like" procedure "Bahl Jelinek Cocke and Raviv (BCJR)" that also uses the trellis for MAP.
- MAP or APP is more complex, but also produces "soft information" (LLR) that might be used by another code's decoder, if both share different encoders that act on same bit.
 - This product or concatenated code is a way to increase block length (better code possible) but retain simple decoding.

APP Method (largely for a packet of K subsymbols)

- Depends on 3 quantities from state *i* at time *k* to state *j* at time k + 1
 - Forward trellis quantity
 - Backward trellis quantity

$$\alpha_k(j) = p(s_{k+1} = j, \mathbf{Y}_{0:K-1}) \quad j = 0, ..., |S_{k+1}| - 1$$

 $\beta_k(j) = p(\mathbf{Y}_{k:K-1} / s_{k+1} = j) \quad j = 0, ..., |S_{k+1}| - 1$

Branch quantity

$$\gamma_k(i,j) = p(s_{k+1} = j, \boldsymbol{y}_k/s_k = i)$$
, $i = 0, ..., |S_k| - 1$, $j = 0, ..., |S_{k+1}| - 1$

- Tedious algebra and bookkeeping (See Section 7.3)
 - Branch calculation (do them all first)
 - Forward recursion
 - Backward recursion

$$\beta_k(i) = \sum_{j \in S_{k+2}} \gamma_{k+1}(i,j) \cdot \beta_{k+1}(j)$$

 $\alpha_k(j) = \sum \gamma_k(i,j) \cdot \alpha_{k-1}(i)$

January 30, 2024

Section 7.3.1

L8:27

Example with same rate ½ code - BSC

• Branch γ calculations are all of the form $\frac{1}{2} \cdot p^i \cdot (1-p)^{2-i}$ i = 0,1,2 for BSC with p = 1/4.

- Forward pass sums two products at each state to get new α .
- Backward pass sums two products at each state to get new β .

Section 7.3.1

PS4.2

L8: 28

Compute Likelihoods: Foundation Equations

Definition 7.3.1 [APP Foundational Equation:] The important APP foundational equation depends on the 3-term branch product

$$\beta_k(j) \cdot \gamma_k(i,j) \cdot \alpha_{k-1}(i) \tag{7.64}$$

and on the labeling $S_{k,}$, which is the set of all allowed branch transitions from state any state s_k to any other state s_{k+1} for the given trellis description. The foundational equal is for caculation of the APP

$$Pr\{\boldsymbol{x}_{k}/\boldsymbol{Y}_{0:K-1}\} = \sum_{(i,j)\mid\boldsymbol{x}_{k}\in\mathcal{S}_{k}}\beta_{k}(j)\cdot\gamma_{k}(i,j)\cdot\alpha_{k-1}(i)$$
(7.65)

The MAP detector then selects the x_k subsymbol value at each time k that maximizes (7.65).

- Compute the 3 quantities for each branch (γ) and for each state (α, β) .
 - The decoder can also sum over the bit values corresponding to x_k ,
 - which usually includes the input bit values $u_{k,i}$.
 - In some iterative-decoding situations is better the output values $v_{k,i}$.
- Then compute sum to get à posteriori probabilities → decision for each bit.

Section 7.3.1

How about 3 errors on BSC?

- It corrects all 3 even with hard decisions; however, the decoder uses a p. This is additional soft info.
- Decoder already knew p = .25, but MLSD did not use it (with Viterbi Algorithm) just Hamming distance.
- This heads toward soft decoding, slightly. Decisions won't change for another p < 0.5, but the soft info does.

Section 7.3.1

AWGN Case with BCJR (uses log likelihoods)

- Calculation of branch metrics by hand can use the items inside the box.
- Final decisions are in the table.

LOGMAP APP

- This LOGMAP APP algorithm computes LL to avoid multiplication:
- LOGMAP defines

$$\begin{array}{rcl} \lambda_i & \stackrel{\Delta}{=} & \ln(\alpha_i) + \ln(\gamma_i) \\ e^{\lambda_i} & = & \alpha_i \cdot \gamma_i \end{array}$$

- This simplifies multiplication (per term) to addition (and reduces arithmetic range requirement).
- Addition of original terms (different *i*) requires the calculation:

$$\lambda = \ln\left(\sum_i e^{\lambda_i}
ight)$$

LOGMAP recursively recruits the sum with table look ups and additions/differences:

$$\lambda = \lambda_1 + \ln\left(1 + e^{\lambda_2 - \lambda_1}\right) = \lambda_1 + f(\lambda_2 - \lambda_1)$$

Section 7.3.1.2

Matlab's BCJR (with some edits,@ website)

Section 8.2 – Conv Code Tables (see the octal entries)

function **BCJR_AWGN**(y,trellis,sigma)

BCJR_conv Decoder This program derives from a nice matlab-file-xchange listing by K. Elhalil, of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow convolutional codes with k>1,r=k/n.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm. This function accepts the channel output y, the trellis (from poly2trellis. It uses a priori prob that is set to 1/2^k instead of the original matalb . Motivated users may want to add the ability to input a set of a priori inputs (presumably extrinsic information from another code's use on same bits). It returns the APP LLR for each data bit input. The program replaces an alpha->beta turnaround at last stage with just equal output probability 1/2^n for each initial beta value. I believe that avoids bias and is more accurate. N=length(y) and N/n must be integer. Also, I commented out a normalization line for alpha and beta that I believe incorrect.

INPUTS:

 y - these are real-valued vectors from some (AWGN likely) channel output multiply this by -1 to get the EE379 Class convention on 0->-1 trellis - this is matlab's usual trellis description (see text or class notes to avoid excessive computation for feedback systematic).
 sigma - this is 1-dimensional AWGN standard deviation
 OUTPUTS:

The decoded bits' LLRs

The entries on the earlier trellis were obtained by going into source code and printing gamma, alpha, beta, and LLs.

Stanford University

L8: 33

BCJR_BSC @ website

Section 8.2 – Conv Code Tables (see the octal entries)
--

function **BCJR_BSC**(y,trellis,p)

BCJR_conv Decoder - HAMMING DISTANCE BSC

This program derives from a nice matlab-file-xchange listing by K. Elhalil, of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow convolutional codes with k>1,r=k/n. It has been tested on easy (r=2/3) codes but not for k>2. Maximum k value is 4, so up to rate 4/5 codes.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm. This function accepts the BSC output y, the trellis (from poly2trellis. It uses a priori prob that is set to 1/2^k. Motivated users may want to add the ability to input a set of a priori inputs or extrinsic information

The program returns the a posteriori probability's LLR for each data bit input. The program sets the stage beta initial probabilities to $1/2^n$ each. JC believes that avoids bias and is more accurate. N=length(y) and N/n must be integer.

INPUTS:

y - these are integers 1's or 0's in 1xn vector
 trellis - this is matlabs usual trellis description (see my text or class notes to avoid excessive computation for feedback systematic.
 p - this is 1-dimensional BSC error-probability for uncoded use.
 OUTPUTS:

the decoded input bits' LLRs

WITH 0 OUTPUT BIT ERRORS: >> out = 0 0 0 0 0 0 0 0 1 1 0 1

>> BCJR_BSC(out,t,.25) =

3.5981 3.1193 2.6526 2.2290 -1.9712 -1.4020 LLRS

0 0 0 0 1 1 Bits	Dia di la contra di	C
-------------------------	--	----------

WITH 2 OUTPUT BIT ERRORS:

>> outBSC2=[0 1 0 0 0 1 0 0 1 1 0 1]; >> BCJR_BSC(outBSC2,t,.25) = 0.3406 0.8704 1.0826 0.7295 -0.9589 -0.5173 % less soft info/confidence

>> outBSC3=[010001011101];

>> BCJR_BSC(outBSC3,t,.25) = 0.3514 0.5341 0.0870 0.0870 -0.6286 -0.0870 % less soft info, all bits but first

```
>> BCJR_BSC(outBSC2,t,.49) =
```

0.0008 0.0392 0.0016 0.0016 -0.0008 -0.0000 % same decisions, but Less confident because p is large

>> BCJR_BSC(outBSC3,t,.49)= 0.0008 0.0392 0.0000 0.0000 -0.0008 -0.0000

p<1/2 just scales confidence

L8: 34

Rate 2/3 examples

- The original program (BCJR_conv.m) from Matlab File exchange only handed AWGN.
 - It also only handled k = 1, so then only rate r = 1/n codes.
 - BCJR_BSC.m and BCJR_AWGN.m handle respectively Hamming and Euclidean distance and r=k/n for k=1,2,3,4

$$G_{best\frac{2}{3},8-state}(D) = \begin{bmatrix} D & 1+D^2 & 1+D^2 \\ 1+D & D & 1 \end{bmatrix}$$

Note fewer bit errors with BCJR than with Viterbi (vitdec had 6 errors on L8:14).

Soft Information?

>> BCJR_BSC(outmin,tmin,0.125) =							
6.3363 6.0916 5.5102 5.2724 4.8885 4.7739 -4.3927 4.3377							
-3.9469 -3.8931 3.5362 -3.3284 3.1898 2.8062 2.2747 -2.3525							
>> BCJR_BSC(xor(outmin,error2),tmin,0.125) Errors → less confidence							
1.4981 1.1619 1.0144 0.5441 1.7154 1.5290 -0.3864 1.0702							
-1.2267 -0.5590 0.6631 -0.7614 1.1868 0.6030 0.4964 -0.6719							
>> BCJR_BSC(outmin,tmin,0.25) = Worse channel -> less confidence							
2.1147 2.0436 1.4665 1.3846 1.1293 1.1448 -0.9088 0.8865							
-0.7604 -0.6870 0.6312 -0.5003 0.5364 0.3806 0.2365 -0.2868							

January 30, 2024

Section 7.3.1

Soft-Output Viterbi Algorithm SOVA

Section 7.3.2

January 30, 2024

SOVA

- LOGMAX approximates the sum in sum of products by maximum term.
 - Often very true in decoding.

$$\begin{split} \ln(\alpha_{k+1},s_{k+1}) &\approx \max_{\text{branches into } s_{k+1}} \ln(\alpha_k,s_k,\text{branch into}) + \ln(\gamma_k,\text{branch into}) \ . \end{split}$$

$$This is the VA in the forward direction. Similarly in the backward direction
$$\ln(\beta_k,s_k) &\approx \max_{\text{branches into } s_{k+1}} \ln(\beta_{k+1},s_k,\text{branch into}) + \ln(\gamma_k,\text{branch into}) \ . \end{split}$$

$$LLR_{\boldsymbol{x}_k} = \pm \left[\max_{0 \text{ branches}} \left\{ \ln(\alpha_k,\text{branch}) + \ln(\gamma_k,\text{branch}) + \ln(\beta_k,\text{branch}) \right\} - \max_{1 \text{ branches}} \ln(\alpha_k,\text{branch}) + \ln(\gamma_k,\text{branch}) + \ln(\beta_k,\text{branch}) \right] \ ,$$$$

- Look familiar?
 - Yes, back to Viterbi.
 - But now we have 2, one forward and one backward.

Section 7.3.2

Forward SOVA Example with Ties

- It's pretty easy without ties just find other path with other input with next lowest survivor metric
 - And take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and sign for 1)

Forward SOVA Example with ties (3-error example revisited)										
k	0	1	2	3	4	5				
$\{LL(0)\}$	{3}	{3}	{3,3}	{3,3}	Ø	{3}				
$\{LL(1)\}$	{3}	{3}	{3 }	{3}	{3,3}	{3}				
ΔLL (dec)	0(?)	0(?)	² / ₃ (0)	² / ₃ (0)	-1 (1)	0 (?)				

Green color indicates the minimum-metric path is a survivor in forward direction; all LL's in units of ln(p).

- The local resolution and majority voting appear to be what matlab is doing (requires examination/test of source code).
 - Probably could be confirmed by someone testing various situations
 - Nonetheless, the above is viable Forward-SOVA tie resolution

January 30, 2024

Section 7.3.2

L8: 38

Forward-Backward SOVA Example

Hagenauer's LLR SOVA update

Prob of VA sequence error

$$\begin{aligned} & Pr_{ML}\{x_k = -1\} = Pr\{u_k = 0\} \propto e^{-LS_k^*(0)} \\ & Pr_{ML}\{x_k = +1\} = Pr\{u_k = 1\} \propto e^{-LS_k^*(1)} \end{aligned}$$

- Magnitude difference of two bit choices is
 - $\Delta LS_k = LS_k^*(0) LS_k^*(1)$
 - $LLR_k = x_k \cdot \Delta LS_k$
- Linear-code analysis: all 0's is correct, so

$$P_e = \frac{e^{-LS_k^*(0)}}{e^{-LS_k^*(0)} + e^{-LS_k^*(1)}} = \frac{1}{1 + e^{\Delta LS_k}}$$

Another decoder provides

$$\widehat{LLR}_k = \ln \frac{1 - \hat{\bar{P}}_{b,k}}{\hat{\bar{P}}_{b,k}}$$

January 30, 2024

Section 7.3.2

It includes soft info through:

Algebra provides

$$LLR_k \leftarrow \ln\left[\frac{1 + e^{\Delta LS_k + L\widehat{L}R_k}}{e^{\Delta LS_k} + e^{L\widehat{L}R_k}}\right]$$

Ignores scaling difference between sequence and bit, so

$$\Delta LS_k \rightarrow \frac{(y_k - x_k)^2}{4 \cdot d_{free} \cdot SNR}$$

or
$$\Delta LS_k \rightarrow \frac{d_H(y_k, v_k)}{d_{free}}$$
 for BSC

L8: 40

End Lecture 8 IFD is backup interesting, not enough time

Invariant Factors Decomposition

Appendix B.7

January 30, 2024

Parity Code Tables, Feedback, and poly2trellis

• Poly2trellis has a third input that is feedback – example best 8-state r = 2/3 conv code from tables

$$H(D) = \begin{bmatrix} 17 & 15 & 13 \end{bmatrix} = \begin{bmatrix} D^3 + D^2 + D + 1 & D^3 + D^2 + 1 & D^3 + D + 1 \end{bmatrix}$$
$$H_{sys}(D) = \begin{bmatrix} \frac{D^3 + D^2 + D^1 + 1}{D^3 + D + 1} & \frac{D^3 + D^2 + 1}{D^3 + D + 1} & 1 \end{bmatrix}$$
$$G_{sys}(D) = \begin{bmatrix} 1 & 0 & \frac{D^3 + D^2 + D^1 + 1}{D^3 + D + 1} \\ 0 & 1 & \frac{D^3 + D^2 + 1}{D^3 + D + 1} \end{bmatrix}$$

Circuit has 8 states (3 flip flops)

So what does Matlab do?

```
>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])
tfeed =
    numInputSymbols: 4
    numOutputSymbols: 8
        numStates: 64 OUCH!
        nextStates: [64 × 4 double]
        outputs: [64 × 4 double]
```

- I could find no way to use this command other than the above valid (but nonminimal trellis).
- The matlab page examples do the same thing increase number of states excessively.
- This is NOT a problem if code is r = 1/n, then number of states is preserved.
- Here it was square of number of states (64), for rate ¾, it would cube number of states.

Work-Around

- This is tedious and so matlab probably wanted to avoid it (See Appendix B on **Invariant Factors Decomp**).
 - It is Smith-Normal Form, but in binary polynomials:

$$G_{sys}(D) = \underbrace{\begin{bmatrix} 1+D+D^2+D^3 & 1+D+D^2 \\ 1+D^2+D^3 & D+D^2 \end{bmatrix}}_{\substack{A \\ |A|=1}} \cdot \underbrace{\begin{bmatrix} 1 \\ D^3+D+1 & 0 \\ 0 & 1 \end{bmatrix}}_{\Gamma} \cdot \begin{bmatrix} D & 1+D^2 & 1+D^2 \\ 1+D & D & 1 \end{bmatrix}$$

- The first two matrices are 1-to-1, so only remap all possible binary inputs to the SAME codewords.
 - They do not affect the set of codewords (or the code).
- Minimal 8-state feedback-free encoder is $G_{min}(D) = \begin{bmatrix} D & 1+D^2 & 1+D^2 \\ 1+D & D & 1 \end{bmatrix}$.
- Encode with $G_{svs}(D)$ convenc.m has no issues (even though it uses 64 states) or just encode with 8 state circuit on slide 34; the codewords are the same (so MLSD will find closest codeword).
- Decoder assumes $G_{min}(D)$ and finds $\hat{u}_{min}(D)$; then $\hat{v}_{min}(D) = \hat{u}_{min}(D) \cdot G_{min}(D)$ recode the decoded.
- $\hat{u}_{sys}(D) = [\hat{v}_{2,min}(D) \ \hat{v}_{1,min}(D)]$ because the original encoder was systematic.
 - Further any finite number of output errors only cause a finite (possibly less, but not more) number of input bit errors.

January 30, 2024 Sections 7.3.3 and B.7

L8: 45

Example: 8-state rate 2/3 code

Saving commands

January 30, 2024

Section 7.3.3

8-state decode

Minimal Direct Works – dfree = 6

>> vitdec(outmin,tmin,6,'trunc','hard')

```
00 00 00 10 11 01 00 01
  >> inmin=
   00 00 00 10 11 01 00 01];
  error2 = [001 000 000 000 000 000 010 000]; % 2 errors introduced
  >> vitdec(+xor(outmin,error2),tmin,6,'trunc','hard')
       00 00 10 11 01 00 01
   00
 Systematic feedback encoder – different output
>> tfeed=poly2trellis([4 4],[13 0 17; 0 13 15], [13 13])
  numInputSymbols: 4
 numOutputSymbols: 8
    numStates: 64
    nextStates: [64 × 4 double]
     outputs: [64 \times 4 \text{ double}]
>> outfeed=convenc([00 00 00 10 11 01 00 01],tfeed)
                  000 000 000 101 111 011 001 011%systematic
>> informin=vitdec(outfeed,tmin,6,'trunc','hard')
                                     01 11 00
                                                    00 % map differs
                  00 00
                           00
                                11
>> vmin = convenc(informin,tmin) =
                  000 000
                            000 101 111 011 001 011
```

Have to leave spaces in matlab, but it looks better without them here

>> informin2=vitdec(+xor(outfeed,error2),tmin,6,'trunc','hard')
 0 0 0 0 1 1 0 1 1 1 0 1 1 1
>> vmin2 = convenc(informin2,tmin)
 00 00 00 10 11 11 01 01 01

>> outfeed % check
 000 000 000 101 111 011 001 011

% So, this fixes matlab's high-complexity-trellis problem with 8-state decoder

This works for any decoder, But of course most helpful With matlab poly2trellis issues

Section 7.3.3