STANFORD

Lecture 8

Decoding
February 1, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A — Winter 2024

Stanford University

Announcements & Agenda

Announcements

PS3 extended to Friday — see updated HWH3 at website.
PS4 is due TUESDAY, no late. (HWH4 is already at website.)

* PS4 solutions will post immediately, and thus be available for your midterm study.
* You should expect less time than PS2 or PS3.

There is no homework assigned next week.

Today
e Continue from L7
* Viterbi Sequence Decoding (MLSD)
* A Posteriori Probability (APP) bit decoding
* Soft-Output Viterbi Algorithm (SOVA)

* Backup — not covered: Invariant Factors Decomposition

* Minimal Generators (and thus minimal decoder complexity)
* Matlab code-structure error warning

January 30,2024

L8: 2

Stanford University

Continue L7

Section 7.2

L1:3
Januar y 30,2024

Hard decoder — first decodes the “v” bit sequence

N dimensions/sub-sym

ith p bit-
e.g, QAM, PAM BSC with p bit-error prob

Or DMC with |C| ins/outs p= p
b

AWGN Hard Decoder vV =vhe
g : ML
U| Binary Susérs,n?:\isfcget Det forcode [> U
encoder Y over BSC/DMC

. 1—pv’=v
P =1 p v #v

= Encoder-output subsymbols are decoded independently —e.g., a “hard” decision.
= The remaining channel is a BSC model, to which the binary code applies.

= The BEC with the “erasure” output is a first step from hard to soft....

“ January 30, 2024 Section 2.2.2 L8: 4 Stanford University

Soft Decoder — decode the symbol

_ —llv=xl12 /252 Finite
— 27'[0'2 N/2 e “y x|| /20
Py/x () Real-Time
) Complexity
ur— ML
L| Binary Det forcode | » X
encoder over AWGN
N dimensions/sub-sym N
e.g, QAM, PAM - _ : g — |2
& = arg %ngllyn Z,|

* The demodulator samples (€ C) pass to the detector for comparison of codewords (subsymbol sequences).
* The y information is “soft” in that it is not pre-quantized into a decision (or at least not to |C| subsymbol values).

g

= Deployed systems often have ADC on y,, ; quantize Z ; i.e., 3 bits cover intra-point distance.

* This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
* Same rule applies per dimension for both ADCs in quadrature receivers. B B
* Total ADC bits will then be these 3, plus b, plus 1-2 bits for peak-to-average (analog coverage), so bypc = b +4, or possibly b +5 .

o]
U

b January 30, 2024 Section 2.2.1 L8:5 Stanford University

AWGN Error Probability for Conv Codes

D Vi dmin Y Ex = k
* AWGNPFP, =N,-Q|——)=N,-Q dfree'_z = Ne- Q dfree'—'SNR
20 o n

Because diin=_|dfree "4 Ex T energy-spread reduces energy/subsym

1 . .
(assumes -, can increase, so no filter on AWGN)

" AWGN P, = =2 Q({/dsree -7 - SNR)

* Where Np=Xi2,i" N(i, dfree) and N (i, d) for conv code is the number of i-input-bit error events with distance d .
* Finding N, can require exhaustive search in general, but Section 7.2 (L9) shows how to compute N (i, d) for CC, also distspec.m.
* Yes, itis equal to Chapter 1’s }:72; p,(i) - np (i), which is actually harder to compute.

* BCcodinggainy = 10 - logyo(7 - dfyee) (for AWGN with binary subsymbols ..) and energy/bit &, .
HAZARD WARNING= - BINARY CODING THEORIST’S FALLACY - assumes “free bandwidth”

Binary-code fair comparison: hold2of3{pb &£, P,}fixed and compare 31,

1 -
But Ncoded = ; . Nuncoded sothen BOTH &, &b decrease for coded w.r.t uncoded (~ holding power & rate constant), not fair.

_ - E . .
bcodea =T * buncoded gx,coded =T: gx,coded ;S0 & = 3 isthe same, BUTW - T - W1/,

So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate;
CD adding a code to reduce rate is somewhat antithetical to Shannon if R < C. Increasing W is “cheating.”

0 January 30,2024 Sections 2.2.2.1&8.2.1 18: 6 Stanford University

BSC Error Probabilit

B B [dfree]
BSCP, = N, - [4p(1 —p)] 2

B N [dfree]
BSC Py =2+ [4p(1 —p)II" 2

Chapter 1’s B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).

Fair-comparison discussion is for AWGN.
» Strictly speaking with BSC, data rate must reduce to improve with codes.

* From BSC capacity, 7 < 1+ p -log,p + (1 —p) - log,(1 — p) < 1 for reliable transmission with a code 0 < p < %

C

[3

& January 30, 2024 Section 8.2.1.2 L8:7 Stanford University

Coding Tables —best known rate »: conv codes

= Section 8.2 — Conv Code Tables see the octal entries, chap 8 [6])
2" | g11(D) 912(D) | dfree 7 (dB) | Ne NMqi No» Ny Lp
4 7 5/ 5 25 39| 1 2 4 1 3 u(D) o .
B 17 3] 6 3 47| 1 3 5 2 5 BSC —
16 23 35| 7 35 544 2 3 4 4 8
(2G) 16 31 33| 7 35 544| 2 4 6 4 7T
32 77 51| 8 4 602 2 3 8 4 8
64 163 35| 10 5 69912 0 53 46 16| | N NS
(802.11a) 64 155 117 | 10 5 699] 11 0 38 36 16]
(302.11b) 64 133 75| 9 45 653] 16 11 3 9 u(D) —~ y
128 323 275 | 10 5 699| 1 6 13 6 14 L gsc T
256 457 755 | 12 6 748 | 10 9 30 40 18 °
(3G) 256 657 435 12 6 778 11 0 50 33 16 u u n 6‘ T e
512 | 1337 1475 | 12 6 778 1 8 8 2 11
1024 | 2457 2355 | 14 7 845 | 19 0 80 82 22
2048 | 6133 5745 | 14 7 845 | 1 10 25 4 19
4096 | 17663 11271 | 15 7.5 875| 2 10 29 6 18 Fioter Tt
8192 | 26651 36477 | 16 8 90| 5 15 21 26 28
16384 | 46253 77361 | 17 85 929 | 3 16 44 17 27 woon - 1 o000
32768 | 114727 176121 | 18 9 954 | 5 15 45 26 37
65536 | 330747 207225 | 19 95 978 | 9 16 48 55 33 T oo | Joot =
131072 | 507517 654315 | 20 10 10| 6 31 5 30 27 5 §
% 01072 - —4010/2 ;3)
Table 8.1: Rate 1/2 Maximum Free Distance Codes 5 g
0113 40113 &
Lp = length of >> t8=poly2trellis(4,[17 13]) = § ro0s - 1o B
. . numlinputSymbols: 2 2 sl Lo &
Min-dist event numOutputSymbols: 4 z o
numStates: 8 € 1o | {11066 i
nextStates: [8 X 2 double] ol L1
outputs: [8 X 2 double]
>> plotnextstates(t8.nextStates) o NN . .
Jan 30, 2024 L8:8 Section 8.2.1.3 Sie Trnsin Stanford University

Best rate-1/3 convolutional codes

= Codes listed for other rates, example 1/3 here, see Sec 8.2 for %, 2/3, %,

2" | gu(D) g12(D) g13(D) 914(D) | dgree v (dB) | Ne M N Ny Lp

4 7 7 7 5 10 2.5 3.98 1 1 1 2 4

8 17 15 13 13 13 3.25 5.12 2 1 0 4 6

16 37 35 33 25 16 4 6.02 4 0 2 8 7

32 73 65 57 47 18 4.5 6.53 3 0) 6 8

64 163 147 135 135 20) 6.99 | 10 0 0 37 16
128 367 323 275 271 22 5.5 7.40 1 4 3 2 9
256 751 975 633 627 24 6.0 7.78 1 3 4 2 10
512 0671 1755 1353 1047 26 6.5 8.13 3 0 4 6 12
1024 3321 2365 3643 2277 28 7.0 8.45 4 0) 9 16
2048 7221 7745 5223 6277 30 7.5 8.75 4 0 4 9 15
4096 15531 17435 05133 17627 32 8 9.03 4 3 6 13 17
8192 235561 25075 26713 37467 34 8.5 9.29 1 0 11 3 18
16384 66371 50575 96533 51447 37 9.25 9.66 3) 6 7 19
32768 | 176151 123175 135233 156627 39 9.75 9.89 5 7T 10 17 21
65536 | 247631 264335 235433 311727 41 10.25 10.1 3 7 7 7 20

—

= Code complexity measure Np = 2V - (2k 4+ 2k —1)
.-3 States

ot N——
adds compares

& January 30, 2024 Section 8.2.1.3 L8:9 Stanford University

Design Example

= An AWGN has SNR =5 dB.

= The uncoded (M = 2) error rate is P, = Q(10°/2%) = .0377 (not very good).

= A better design uses best 64-state rate r = Y2 code, so bandwidth expands by 2x.

* Thegainis 7 dB.
* New P, = Q(1065%7)/20)=3.4303e-05 (better, see Slide L8:8's table for this code).

= TogetP, ~ 1076?

Cﬁ

ul

* Need 8.5 dB of coding gain with rate 2, so use this table’s 1024-state code
° Pe — Q(10(5+8.5)/20) ~ 10—6

= Encoderis G(D) =

2457 2355

[1+D+D2+D3+D5+D8+D10 1+D*+ D3+ D>+ D%+ D7 4+ D

1024 is a lot of states: larger distances may have large N; thatincrease P,.
Design instead should use better (not CC) code (see Lectures 9-11).

The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large N;.

January 30, 2024 Section 8.2.1.3 L8: 10

Stanford University

Viterbi Sequence Decoding

Section 7.1

L1:11
Januar y 30,2024

Example, rate r = 12 CC surviving path

One path/sequence
maximizes

Py(p)/x(D)

(D) = arg { max
(D) g{ﬁ}(D)py(D)/.’B(D)}

= X(D) is the best survivor path. There are 2V possible survivors at each time.
= Each state thus at time k has one best survivor, so 2V possible survivors at stage k,

* from which any stage k + 1 survivor must follow.

C_J

a January 30, 2024 Section 8.1.4 L8: 12 Stanford University

Example BSC: 6 input bits & 12 output bits

Green outputs - BSC-output 2 errors from correct sequence

ot 1 00 1 01 2 00 2 3 01 4
o - IIITTTTTTTTTm
2 772 2 Tt --__4
3 > 3
° ° PY . o= P
sz

3 3 -7 ~._ 3 2

L [) Tl -2 .

0 0 0 0 1

All input bits correctly detected

= This example’s input bits are known and shown in green (in actual transmission, message is not known).

" Process can continue ad-infinitum, but after reasonable time (~5v) — trace back path with lowest distance.
* If atie, pick one of them (probably an uncorrectable error has occurred).
= This is exactly ML if extended to infinity, and usually close with finite survivor-path length.

[3

a January 30,2024 Section 7.1.1 PS4.1 L8:13 Stanford University

Example with 6 bits of input (12 output)

Red output - 3 BSC output errors = two sequences tied (detect error)

01 1 00 1 01 o1 3 11 . o1 .

NﬂN

(2/3 paths are 0) . (3/3 paths are 1)

2/6 input bits are correct; 4 are ambiguous (using majority vote).

= Tie means sequence error is likely — must pick one of two equally likely.

= Detector needs more information to decode correctly.
* This can include more future channel outputs that extend the 4 states (if available).

[3

a January 30,2024 Section 7.1.1 PS4.1 L8: 14 Stanford University

VA in General

[3

state index -1,7=0,1,..., MV — 1
state metric for state ¢ at sampling time & 2 U i (sometimes called the “path metric”)

previous-states set to state 3 2 J; (that is, states that have a transition into state %)

branch value ¢,(j —) noiseless output corresponding to a transition from state j to state i. (i.e.,

the value of the trellis branch, which is just zy when H(D) = 1 for coded systems)

branch metric in going from state j to state ¢ at time k, e.g. for BSC, dy(y;, k), or for AWGN

A N . .
Ajik = |y, — &G —9)|

survivor path j; - the path that has minimum metric coming into state 3.

= Formal — Many students just study trellis examples (L8:4-6) first, and then the above follows easily.

January 30, 2024 Section 7.1.2 L8: 15

Stanford University

For AWGN?

= Same process with squared-distance replacing Hamming distance on branches

[-.9 .5]

3.61 0.25
0.01 2.25

-8 .1
[-1.1 -.9] -5 1.0] [[8 7] 9 1.0]
0.02 2.28 4.25 6.53 0.13/1.25 6.66/7.76

7.86/7.98
0.13/1.25

3.33/4.45
. 3

2.93/.85

0.25
0/0

0/0 0/0
441 3.61 225 0 3.24 2.89] 001 O
0.01 0.01 0.25 4 0.04 0.09
[3.24 1.21]
0.04 0.81

The green path corresponds to the 2 “BSC errors” in hard-decoder example’s (L8:13) positions.
The red numbers correspond to the 3 “BSC hard errors” in L8:14 positions, and they are corrected!

Soft decoding performs better than hard.

January 30, 2024

Section 7.1.1 PS4.1

[9 9]

-11.48/12.61

3.61 4

3.61 0.01
0.01 3.61

Stanford University

Matlab’s vitdec pro

DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,DECTYPE)

CODE is assumed to be the output of a
convolutional encoder specified by the MATLAB structure TRELLIS. See = INPUTS
POLY2TRELLIS for a valid TRELLIS structure. Each symbolin CODE consists

of log2(TRELLIS.numOutputSymbols) bits, and CODE may contain one or more * Needs trellis, y(D), survivor length

symbols. DECODED is a vector in the same orientation as CODE, and each of * Indicate “opmode”
its symbols consists of log2(TRELLIS.numInputSymbols) bits. TBLEN is a * Hard/soft
positive integer scalar that specifies the traceback depth.
OPMODE denotes the operation mode of the decoder. Choices are: = OUTPUTS
'trunc' : The encoder is assumed to have started at the all-zeros state. * Detected bits (sometimes “delayed”)
The decoder traces back from the state with the best metric. e Last-state metrics
'term' : The encoder is assumed to have both started and ended at the * Survivor paths from last state
all-zeros state. The decoder traces back from the all-zeros e .
state. * Survivor’s bits on survivor path

'cont' : The encoder is assumed to have started at the all-zeros state.
The decoder traces back from the state with the best metric. A
delay equal to TBLEN symbols is incurred.

DECTYPE denotes how the bits are represented in CODE. Choices are: P rogra m-use exam p leS are neXt-

'unquant': The decoder expects signed real input values. +1 represents
a logical zero and -1 represents a logical one.

'hard' :The decoder expects binary input values.

'soft' :See the syntax below.

a January 30, 2024 Section 7.1.3.2 L8: 17 Stanford University

Use of matlab vitdec for 4-state example

>>t=poly2trellis (3, [7 5]); >>convenc([000011]t) = 00 00 00 00 11 O1 >>t.nextStates =
0 2
0 2
>>msg=[000011]; 1 3
>> code=convenc(msg,t) »1t 3t -
code= 0 0 0 00 000110 1 ot
>>[d m p in] = vitdec(code,t,10,'cont’,'hard’) 3 0
% ‘cont’ mode’s d output does not include the 00001101 2 1
d= 0 0 0 0 0 O0%(all before msg- thisissurvivor delay) 12
m= 3 2 3 0 % final pathmetrics . .
000 0O0OOUOTU OO OO >>vitdec(code,t,6,"trunc','hard’) =
0 0000 2 2 2 2 2 O 0 0 0 1 1
0000000000 % ‘trunc’ mode includes the 000011
0 0000 2 2 2 2 2
in= % last 6 stages of inputs on paths p .) .
000000000 O Also for t3in L7:27 Example (same code, with feedback)
00000UO0U0GO0UO0 O G >> code=convenc(msg,t3) =
00001111 11 O 0000 O0OOOTI1IT110Oo0
0 00001 1111
>> vitdec(code,t3,6,'trunc','hard') =
= This uses matlab’s ugly trellis 000011

[3

a January 30,2024 Section 7.1.3.2 PS4.1 L8: 18 Stanford University

= Repeat the earlier 2-output-bit error example decoding with matlab vitdec:

>>y=[010001001101];

>>vitdec(y,t,6,'trunc’,'hard")
O 0 00 1 1

= The program vitdec actually decodes bits with ties too (3-output-bit errors):

>>y3errors=[010001011101];

>>vitdec(y3errors,t,6,'trunc','hard’) =
0 0 00 11

= Surprisingly, this is correct. Later we see a soft-output Viterbi (SOVA) that calculates additional local
information for sequences with ties; it will also decode correctly.

= |tis not clear what matlab vitdec is doing internally, but result is same. The full program is available by
typing “edit vitdec” in matlab, but it is 414 lines with a lot of subroutine calls (the comments do not seem
to help on this) and these subroutines are not visible with edit.
* Motivated student encourage to take a look and tell me and rest of class how vitdec.m resolves the ties.

Cﬁ

w January 30, 2024 Section 7.1.3.2 PS4.1 L8: 19 Stanford University

Viterbi Example with AWGN

[3

The vitdec.m function accepts the AWGN output as dectype = “unquant” (“soft” is for iterative
decoders and is best used with biased all-positive log likelihood ratio soft information.)
* vitdec.m ‘s detected input-of-the-channel uses opposite sign on channel output to this class/text’s convention.

% original 2-output-bit errors
>>yawgn=[-.9.5-1.1-9-51-.8-7.91-91];
>> vitdec(-yawgn,t,6,'trunc','unquant’)

0 00 0 11

% With revised 3-output-bit-errors
>>yawgn2=yawgn;

>>yawgn2(8)=.1;

>>yawgn2(12)=.9;
>>vitdec(-yawgn2,t,6,'trunc','unquant’)

0 00 0 11

Soft decoding performs better than hard

January 30, 2024

Section 7.1.3.2 L1: 20 Stanford University

8-state rate 2/3 code

Form gen & output

G

_| D
best ;,S—State (D) - [1 +D

1+ D?
D

1+D2]
1

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])
numinputSymbols: 4
numOutputSymbols: 8

numStates: 8
nextStates: [8 X 4 double]
outputs: [8 X 4 double]

>>tmin.nextStates
0 4 2 6

= OO +~KME O
(G, RN T WT RN
WWNON WW N
NN NN

>>tmin.outputs

0 6 3 5
3 50 6
4 2 71
71 4 2
53 6 0
6 0 5 3
1 7 2 4
2 4 17

>>inmin=[00 00 00 10 11 01 00 O01];
>> outmin=convenc(inmin, tmin)

000 000 000 011 001 100 110 110
>> plotnextstates(tmin.nextStates)

Plot of NextStates Matrix

000/0 -

‘c 001/1

010/2 -

011/3 |-

100/4

101/5 -

Initial State (Binary/Octal representation

110/6 -

111/7 |

T

- 000/0

Hoo1n
S
s
c

Ho102 8
o
o
o

40113 5
o]
Q
e

410014 &
£
Q
]

1015
(2}
IS
c

1106 iL

411177

Il

January 30, 2024

Section 7.1.3.2

State Transition

L8:21

NIN+1

Stanford University

8-state decode

= Decoding with dfree = 4:

>>vitdec(outmin,tmin,6,'trunc','hard’) % no errors
00 00 00 10 11 0100 01
>>inmin=

00 00 00 10 11 01 00 O1];
--------------- Higher rate, more complex

error2=[010, zeros(1,9),100, zeros(1,9)]; % 2 errors (8 states) but lower distance
>> vitdec(+xor(outmin,error2),tmin,6,'trunc','hard’) !
of dfree =4

00 00 00 10 11 01 00 01

3 errors - can’t correct (smaller free distance)
>>error=001 000 000 100 000 00O 010 O0OO

>>vitdec(+xor(outmin,error),tmin,6,'trunc','hard’)
00 00 00 11 00 10 00 11

= We encourage you to play a bit. 15 [rseat e [dfree_ll
2

* Start with examples here and then vary inputs / channel outputs and see. ST e e ealees

wrong sequence — why?

= The error sequence relative to correct may not yet have merged.

* This is why decoders typically report decoded output by tracing backward 5 - v
subsymbol periods

w January 30, 2024 Section 7.1.3.2 L8: 22 Stanford University

Decoders with puncturing?

=)

block of 12 coded bits

Vi

V2

V3

2

Vs

Ve

vy

Vs

Vg

Va

Vg

Ve

r=1/2, 6 input-bit block
dfree =10

|

|

1
1

1

7
\

110
101

|

r=2/3

Vi

v,

V3 V4

Vs

Ve

vy

Vg

Vi

Vs

vz

r=3/4

Vg

Vs

Vs

Vg

= Receiver knows where punctured bits would have been.

= The decoder enters distance 0 in the punctured channel-output

position,
and otherwise proceeds.
vitdec.m has an optional input to say where this occurs.

Ve

= This reduces df, e, by (usally, and at most) 1 for every punctured bit

(10 for ¥, 7 for 2/3, and 6 for %).

[3

wl

January 30, 2024

Section 7.1.3.2

BSC Decoder inserts “0” for
punctured bit into branch value
(branch Hamming distance

calculation uses only
transmitted bits)

AWGN Decoder similarly
includes 0 into branch
Euclidean metric

L8:23 Stanford University

¥ Caution on Matlab’s awgn.m

With r < 1 and binary AWGN, matlab’s “SNR” is not defined the same as this course.

For example, uncoded binary channel with SNR379=7 dB The 7 dBisforE, = 1,
IN THE SAME BANDWIDTH

>>y=awgn(x,7);

_ o The 7 dB IN THE SAME BANDWIDTH as uncoded
" Forr =1/2 and binary AWGN, matlab’s “SNR causes matlab’s 10 dB in 2x BANDWIDTH
(because the noise is relative to £, = 1 for
>>y=awgn (x,10); the larger 2x bandwidth)
% or B
_ Or 2x-rate encoder output has £, = 1/2,
>>y=awgn(x,7,-3) S07- (-3) = 10 dB x

= This highly counter-intuitive, but matlab people were not considering fixed power over variable bandwidths.
= Recommendation: Use randn (Gaussian) noise directly with (1/sqrt(SNR/Exbar))*randn(# of points).
CD * Avoid awgn command.

a January 30, 2024 Section 7.1.3.2 L8: 24 Stanford University

Maximum a Posteriori & the

APP Algorithm

Section 7.3

Januar y 30, 2024 L8:25

Minimize instead each subsymbol error prob

The MAP detector has criteria = :
* Letm — k to emphasize time here (there are also different k input bits) uk — Cl?‘g min puk/ .
Uk Yo.k—1

« Also, letN = K.

Reminder: this is the APP (a posteriori probability).

Usually, the messages uy are bits, so MAP minimizes each bit’s error probability “separately.”

MAP decoding results are often very close to MLSD results, but not always:
* If bit-error is the criterion, the MAP is better .. by definition.
* If sequence (packet) error is the criterion, then MLSD is better.
* Both MAP and MLSD initially assume the input values are equally likely.

There is a “Viterbi-like” procedure “Bahl Jelinek Cocke and Raviv (BCJR)” that also uses the trellis for
MAP.

MAP or APP is more complex, but also produces “soft information” (LLR) that might be used by another
code’s decoder, if both share different encoders that act on same bit.
* This product or concatenated code is a way to increase block length (better code possible) but retain simple decoding.

January 30, 2024 Section 7.3.1 L8: 26 Stanford University

APP Method (largely for a packet of K subsymbols)

= Depends on 3 quantities from state i at time k to state j at time k + 1

= Tedious algebra and bookkeeping (See Section 7.3)

[3

wl

Forward trellis quantity (07% (])

— p(3k+1 - j, YO:K—l)] = 0, ceey |Sk+1| —1

Backward trellis quantity ,Bk ()

Branch quantity

(YkK 1/3k+1 —]) J=0,.., |Sk+1| —1

’Yk(ll'?.?) =p(8k+1 :j7yk/3k = Z) 77: = 0)"'7 |Sk| —1) .7 = O, ooy

|Sk41| —1

Branch calculation (do them all first)

Forward recursion

Backward recursion

January 30, 2024

V() =pme,

() =) el - tea @

LESK

Be® = > VienG)) Biera ()

JESk+2
Section 7.3.1 L8: 27

Stanford University

le with same rate 2 code - BSC

= Branch y calculations are all of the form 2 - p* - (1 — p)?~" i = 0,1,2 for BSC with p = 1/,. 3

25=-09375
= Forward pass sums two products at each state to get new « .
= Backward pass sums two products at each state to get new [.
Icnhpaunt out 001 000 001 ooo 111 011
1.00/.0001489 .. -09375/.001015 02637/.002777 .003296/.004026 -0008241/.02345 03125 -0001416/.04688 (0a-c .00002574/.25

0.00/- < .0002447/.078125 :00002574/.25
© Q ’
0.00/- 0/.002191 s .0001330/.04688 .00004505/.25
S .,L%{f’
0.00/- 0/.0005736 .008790/.003341 .001099/.002560 .0004120/.01171 0001330/.078125 .00007298/.25
Pr{u = 0} .5843 .7048 .7470 .6747 2771 .3735
Pr{u =1} 4157 .2952 .2530 .3253 7229 .6265
Bit decision 0 0 0 0 1 1

y January 30, 2024 Section 7.3.1 PS4.2 L8: 28 Stanford University

Compute Likelihoods: Foundation E

Definition 7.3.1 [APP Foundational Equation:] The important APP foundational
equation depends on the 3-term branch product

Bi(3) - (3, 5) - ar—1() (7.64)

and on the labeling Sy, which is the set of all allowed branch transitions from state any
state s to any other state sxy1 for the given trellis description. The foundational equal
is for caculation of the APP

Pri{mi/Yox-1}t= > Be(d) - (J) - ax-1(5) (7.65)
(i.5) 11 €5

The MAP detector then selects the x; subsymbol value at each time k£ that
maximizes (7.65).

= Compute the 3 quantities for each branch (y) and for each state (a, 8).
The decoder can also sum over the bit values corresponding to xy, ,

which usually includes the input bit values uy ;.
In some iterative-decoding situations is better the output values vy ; .

ij = Then compute sum to get a posteriori probabilities = decision for each bit.

a January 30, 2024 Section 7.3.1 L8: 29 Stanford University

How about 3 errors on BSC?

Input 0 0 0 0
Chan out 01 00 01 01
.00/. ,09375/.0002316 . 0005494/.02345
1.00/.0000753 05375 .00002536/.25

.00002536/.25

.00004388/.25

.001099/.004753 .0009613/.01171 .0001374/.078125

0.00/- 0/.0001687 .008790/.001076

Pr{u = 0} .5870 .6304 .5217 .5217 .3478 4783

Priu =1} 4130 .3696 4783 4783 .6522 .5217

Bit decision 0 0

It corrects all 3 —even with hard decisions; however, the decoder uses a p. This is additional soft info.

» Decoder already knew p = .25, but MLSD did not use it (with Viterbi Algorithm) — just Hamming distance.
* This heads toward soft decoding, slightly. Decisions won’t change for another p < 0.5, but the soft info does.

ERD
C January 30,2024 Section 7.3.1 L8:30 Stanford University

AWGN Case with BCIJR (uses log likelihoods)

Input 0 0 0 0 1
Chan out [-9 .5] [-1.1-9] [-.5 1.0]

[-8 .1] [.9 1.0] -9 .9]
0/19.7579 3.9752/15.8350 5.9384/13.8743 14.7155/5.3020 17.6820/5.8899
/ 3.9752 . / 57627 11.6739/8.3667 | 8.7807 5 1968 22.2270/1.3863

39344 1954,

5.4124/17.3226

2-6%=1.1133

0.00/-

0.00/- 0/- 10.6092/12.6356 15.2391/10.5241 12.6124/8.7882

18.0916/3.3479 18.6321/1.3863
1 361 1. [0:25 1 ! 1 1
R SRR N, O . RO 1 O 1) PO R 7 WO)
3.2426] , ;01 .[0.2246 |
Gl B pmeegmg BRSO Ldel ESeRS LEMeslSl RS0
All branch metrics ¥, must add In(2) + In(2m - 62)=.6931+1.2521=1.9452

LL{u = 0} 19.8102 19.7914 20.0009 19.9890 22.9202 21.3274
LL{u =1} 22.7349 23.1900 21.2915 21.3361 19.8011 19.9913
Bit decision 0 0 0 0 1 1

= Calculation of branch metrics by hand can use the items inside the box.

[]

Final decisions are in the table.

January 30, 2024 Section 7.3.1 L8: 31 Stanford University

LOGMAP APP

= This LOGMAP APP algorithm computes LL to avoid multiplication:

= LOGMAP defines)\i = ln(ai)+1n(7i)

i
€ = Q"

CMIZOAZ'"W
i

= This simplifies multiplication (per term) to addition (and reduces arithmetic range requirement).

= LOGMAP recursively recruits the sum with table look ups and additions/differences:

[3

wl

Addition of original terms (different i) requires the calculation: \=In (Z e/\z)

A=A +In(1+e ™M) =X + f(ha — A1)

January 30, 2024 Section 7.3.1.2

L8:32

Stanford University

Matlab’s BCJR (with some edits,@ website)

= Section 8.2 — Conv Code Tables (see the octal entries)

function BCJR_AWGN(y,trellis,sigma)
BCJR_conv Decoder

This program derives from a nice matlab-file-xchange listing by K. Elhalil, > yawgnz 0/0($ame 4-state code, same outputs - 3 error Case)
f SUP'COM Tunisia. It dified b (J. Cioffi) in 2023 to all
comvolutional codes with koL rel/m o EEE RO aoW -0.9000 0.5000 -1.1000 -0.9000 -0.5000 1.0000 -0.8000 0.1000

0.9000 1.0000 -0.9000 0.9000
It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.
This function accepts the channel output y, the trellis (from

poly2trellis. It uses a priori prob that is set to 1/2/k instead of >>BCJR_AWGN (—yawgn2,t,1.1133/2) =
the original matalb . Motivated users may want to add the ability to
input a set of a priori inputs (presumably extrinsic information from 5.7066 6.2779 2.5626 2.5684 -6.4242 -2.5681 L L RS

another code's use on same bits). It returns the APP LLR for each
data bit input. The program replaces an alpha->beta turnaround at
last stage with just equal output probability 1/2”n for each initial °
beta value. | believe that avoids bias and is more accurate. 0 0 0 0 1 1 B ItS
N=length(y) and N/n must be integer. Also, | commented out a
normalization line for alpha and beta that | believe incorrect.

INPUTS:
y - these are real-valued vectors from some (AWGN likely) channel output
multiply this by -1 to get the EE379 Class convention on 0->-1
trellis - this is matlab’s usual trellis description (see text or
class notes to avoid excessive computation for feedback systematic).
sigma - this is 1-dimensional AWGN standard deviation
OUTPUTS:
The decoded bits’ LLRs

The entries on the earlier trellis were
obtained by going into source code and
printing gamma, alpha, beta, and LLs.

s January 30, 2024 Section 7.3.1 L8: 33 Stanford University

BCJR_BSC @ website

Section 8.2 — Conv Code Tables (see the octal entries)

function BCJR_BSC(y,trellis,p)
BCJR_conv Decoder - HAMMING DISTANCE BSC
This program derives from a nice matlab-file-xchange listing by K. Elhalil,
of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow
convolutional codes with k>1,r=k/n. It has been tested on easy (r=2/3)
codes but not for k>2. Maximum k value is 4, so up to rate 4/5 codes.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.
This function accepts the BSC output y, the trellis (from
poly2trellis. It uses a priori prob that is set to 1/2/k.

Motivated users may want to add the ability to input a set of

a priori inputs or extrinsic information

The program returns the a posteriori probability's LLR for each
data bit input. The program sets the stage beta initial probabilities
to 1/27n each. JC believes that avoids bias and is more accurate.
N=length(y) and N/n must be integer.

INPUTS:
y - these are integers 1's or 0's in 1xn vector
trellis - this is matlabs usual trellis description (see my text or
class notes to avoid excessive computation for feedback systematic.
p - this is 1-dimensional BSC error-probability for uncoded use.
OUTPUTS:
the decoded input bits' LLRs

WITH 0 OUTPUT BIT ERRORS:
>out= 0 0 0 0 0O OO O 1 1 01
>>BCJR_BSC(out,t,.25) =

3.5981 3.1193 2.6526 2.2290 -1.9712 -1.4020 LLRS

0 0 0 0 1 1 Bits

WITH 2 OUTPUT BIT ERRORS:

>>0outBSC2=[010001001101];
>>BCJR_BSC(outBSC2,t,.25) =
0.3406 0.8704 1.0826 0.7295 -0.9589 -0.5173 % less soft info/confidence

>>0outBSC3=[010001011101];

>>BCJR_BSC(outBSC3,t,.25) =
0.3514 0.5341 0.0870 0.0870 -0.6286 -0.0870 % less soft info, all bits but first

>>BCJR_BSC(outBSC2,t,.49) =

0.0008 0.0392 0.0016 0.0016 -0.0008 -0.0000 % same decisions, but
Less confident because p is large
>>BCJR_BSC(outBSC3,t,.49)=0.0008 0.0392 0.0000 0.0000 -0.0008 -0.0000

January 30, 2024 Section 7.3.1 PS4.2

p<1/2 just scales confidence

L8: 34

Stanford University

Rate 2/3 examg

= The original program (BCJR_conv.m) from Matlab File exchange only handed AWGN.
* Italsoonly handled k = 1, so then only rate r = 1/n codes.
* BCJR_BSC.m and BCJR_AWGN.m handle respectively Hamming and Euclidean distance and r=k/n for k=1,2,3,4

tmin=poly2trellis([3 2], [2 5 5; 3 2 1]); G (D) = D 1+ D? 1+ D?
T inmin = s best ; 8—state 1+D D 1
>> outmin=convenc(inmin,tmin) = , . .

000 000 000011 001100110 110 Note fewer bit errors with BCJR

than with Viterbi

>> (-siin(BCJR_BSC(outmin,tmin,0‘125))+1)/2 (vitdec ed G e e |.8'14)
>> (-siin(BCJR_BSC(xor(outmin,error2),tmin,0.125))+1)/2: » Soft Information?

>>BCJR_BSC(outmin,tmin,0.125) =
______ 3 e110rS breaks —-weemeeemee 6.3363 6.0916 5.5102 5.2724 4.8885 4.7739 -4.3927 4.3377
>>ermor=001 000 000 100 000 000 010 000 -3.9469 -3.8931 3.5362 -3.3284 3.1898 2.8062 2.2747 -2.3525

>> BCJR_BSC(xor(outmin,error2) tmin,0.125)| Errors => less confidence

14981 1.1619 1.0144 0.5441 1.7154 1.5290 -0.3864 1.0702
-1.2267 -0.5590 0.6631 -0.7614 1.1868 0.6030 0.4964 -0.6719

>>BCJR_BSC(outmin,tmin,0.25) = Worse channel = less confidence

2.1147 2.0436 1.4665 1.3846 1.1293 1.1448 -0.9088 0.8865
-0.7604 -0.6870 0.6312 -0.5003 0.5364 0.3806 0.2365 -0.2868

>> (-sign(BCJR_BSC(xor(outmin,error),tmin,0.125))+1)/2
00 00 001011 1100 11

w January 30, 2024 Section 7.3.1 L8: 35 Stanford University

Soft-Output Viterbi Algorithm

SOVA

Section 7.3.2

Januar y 30, 2024 L7:36

SOVA

= LOGMAX — approximates the sum in sum of products by maximum term.
* Often very true in decoding.

max
branches into Sg41

In(ag41, Sk41) &

This is the VA in the forward direction. Similarly in the backward direction

In(Bk, sk) ~

max
branches into Sg41

In(a, Sk, branch into) + In(yg, branch into) .

In(Bk+1, Sk, branch into) + In(~yg, branch into) .

LLRg,

=]

O branches

max In(ag, branch) + In(~x, branch) + In(8%, branch)

1 branches

max {In(ax, branch) + In(+g, branch) + In(8x, branch)}

|

Look familiar?
Yes, back to Viterbi.
But now we have 2, one forward and one backward.

N

“

January 30, 2024 L8: 37

Section 7.3.2

Stanford University

Forward SOVA Example with Ties

= |t’s pretty easy without ties — just find other path with other input with next lowest survivor metric
* And take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and — sign for 1)

Forward SOVA Example with ties (3-error example revisited)

k 0 2 3 4 5

{LL(0)} {3} {3,3} {3,3} ¢ {3}

{LL(1)} {3} {3} {3} {33} {3}

ALL (dec) 0(?) %/3 (0) %/3 (0) -1 (1) 0

Green color indicates the minimum-metric path is a survivor in forward direction; all LL’s in units of In(p).

0 01 1 00 01 11 3 01 4
o _9
0 1 3 = <=7 4
® Pt =
0 3 s 3
o { & -
0 3 .

9
o : o i 0 o - ,
(2/3 are 0) (2/3 are 0)

= The local resolution and majority voting appear to be what matlab is doing (requires examination/test of source code).

* Probably could be confirmed by someone testing various situations
E) . Nonetheless, the above is viable Forward-SOVA tie resolution

Iy

y January 30, 2024

Section 7.3.2

L8:38

Stanford University

Forward-Backward SOVA Example

Forward-Backward SOVA

k 0 1 2 3 4 5
{LL(0)} { 3 } { 3 4 } { 3 6 4 3 } { 3 5 3 4 } { 6 5 4 4 } { 4 5 4 3 }
0+1+2 1+0+2 1+1+2 1+1+1 3+2+1 2+1+1 2+0+1 2+1+0 2+2+1 2+1+0 3+0+1 3+2+1 3+1+1 3+0+1 2+1+1 3+1+0 3+2+0 3+0+1 3+0+0

—_——
0+1+3

{LL(l)}{tl-} {5 4}{34 45}{4 3 46}{5 4 33}{4 3 45}
1+2+2 1+1+2 1+1+1 34+0+1 2+1+1 2+2+1 2+1+1 24+0+0 2+1+1 3+2+1 3+2+0 3+1+0 3+0+0 2+1+0 3+1+0 3+0+0 3+1+0 3+2+0

ALL(dec) 1 (0) 1(0) ?/5 (0) ?/5 (0) -1 (1) 0

Green color indicates the minimum-metri¢ path is a survivor in both forward and backward directions; all LLs in unjits of [n(p)

01

03
21
30
12

Did better
than Forward

(2/3 are 0) (2/3 are 0)
0
(2/3 are 0)
3 01
[4
[
[J

D

Section 7.3.2
[)
Kj January 30, 2024°

Stanford University

Iy

Hagenauer’s LLR SOVA update

= Prob of VA sequence error = |t includes soft info through:

— _1) — — —LS,(0) _ - ALSk
Pry{xy = —1} = Pr{u; = 0} x e "k Por By e

1
. Y 1 L _ALS. 1 14 oALSy
Pry{x; = +1} = Pr{u;, = 1} « e L5 — 1+ eAL5k 1+ eALSk
ML{ k } { k } bit differs —_———

. ——
survivor correct bit same anyway survivor incorrect

+ (1—Pyy)
————

= Magnitude difference of two bit choices is
* ALS, = LS;(0)- LS;;(1)

= Algebra provides
o LLRk =X ALSk g p

= Linear-code analysis: all 0’s is correct, so LLR, < In [
k
*
* * -

1+ eALSk+Lka]

P, =

= |gnores scaling difference between sequence and bit, so

= Another decoder provides ALS. — (V=52
= k 4"dfree'SNR
- = 1 - Pb k
LLR; =In ———
Py i

d R
’ or ALS,, — L) £ psc
C‘j dfree
2 January 30,2024 Section 7.3.2 L8: 40 Stanford University

STANFORD

End Lecture 8

IFD is backup
interesting, not enough time

Stanford University

Invariant Factors
Decomposition

Appendix B.7

Januar y 30, 2024 L7:42

Code Tables, Feedback, and poly2trellis

= Poly2trellis has a third input that is feedback — example best 8-state r = 2/3 conv code from tables

H(D)=1[17 15 13]=1[D3 2+D+1 D3*+D?+1 D3+D+1
(D) =1 1=[p*+D*+D+ +D? + +D +1] 1 D34 D%+ D41

D3+D2+D'+1 D3+D2+1 _ D*+D+1

HWJD):[1] Goys (D) D3+ D2 +1
D3+ D +1 D3+ D +1 0

D¥+D+1

= Circuit has 8 states (3 flip flops)

s e
% * |l
D D —»@—» D — Vo

pid January 30, 2024 Section 7.3.3 L8: 43 Stanford University

So what does Matlab do?

>> tfeed=poly2trellis([4 4],[130 17 ;0 13 15], [13 13])
tfeed =

numlinputSymbols: 4
numOutputSymbols: 8
numStates: 64 OUCH!
nextStates: [64 X 4 double]
outputs: [64 X 4 double]

| could find no way to use this command other than the above valid (but nonminimal trellis).

The matlab page examples do the same thing — increase number of states excessively.

This is NOT a problem if code is ¥ = 1/, then number of states is preserved.
Here it was square of number of states (64), for rate %, it would cube number of states.

But there is a
fix!

January 30, 2024 Section 7.3.3

L8: 44

Stanford University

Work-Around

= This is tedious and so matlab probably wanted to avoid it (See Appendix B on Invariant Factors Decomp).
e Itis Smith-Normal Form, but in binary polynomials:

_[1+D+D*+D3 1+D+D?| |——m— 0 D 14+ D? 1+ D?
Gsys(D) =" 1 { p2 4 p3 D+DZ]'D3+D+1 l1+p D 1
0 1
A
1A|=1 r
|F|¢0

= The first two matrices are 1-to-1, so only remap all possible binary inputs to the SAME codewords.
* They do not affect the set of codewords (or the code).

. . D 1+ D? 1+ D?
= M | 8- f k-f (D) = [.
inimal 8-state feedback-free encoder is G5, (D) 14D D 1

= Encode with G, (D) convenc.m has no issues (even though it uses 64 states) or just encode with 8 state
circuit on slide 34; the codewords are the same (so MLSD will find closest codeword).
= Decoder assumes G,,;, (D) and finds @,,;,, (D) ; then U,,,;,, (D)= i, (D) * G,,;,,(D) - recode the decoded.

= U5,s(D) = [V2min(D) V1min(D)] because the original encoder was systematic.
* Further any finite number of output errors only cause a finite (possibly less, but not more) number of input bit errors.

Cﬁ
i January 30, 2024 Sections 7.3.3 and B.7 L8: 45 Stanford University

Example: 8-state rate 2/3 code

= Saving commands

Plot of NextStates Matrix
tmin=poly2trellis([3 2], [2 5 5; 3 2 1]) T T

numinputSymbols: 4
numOutputSymbols: 8 000/0 0365
numsStates: 8

nextStates: [8 X 4 double] -
outputs: [8 X 4 double] 001/1 -3056

- 000/0

- 001/

>>tmin.nextStates

0 4 2 6 0102 FA472] @ -1010/2

011/3 F 7412 -1011/3

100/4 - 100/4

HHOORK KO
(G, BN NN T IT BN
WWNNWWN
N~ oN~NO

101/5 -1101/5

>>tmin.outputs
0 6 5

w
Initial State (Binary/Octal representation

Final State (Binary/Octal representation)

110/6 -1110/6

11177 1

= o 0~ h~w
N o~ NO
A WONFHO®

AN O WKRE NG

2 17 I 1
>> outmin=convenc([00 00 00 101101 00 01],tmin) NIN+1 NIN+1
000 000 000 011 001 100 110 110 State Transition
>> plotnextstates(tmin.nextStates)

January 30, 2024 Section 7.3.3 L7:46 Stanford University

8-state decode

= Minimal Direct Works — dfree =6

>>vitdec(outmin,tmin,6,'trunc','hard’)
00 00 00 10 11 01 00 01
>>inmin=

00 00 00 10 11 01 00 O01];

error2={001 000 000 000000 000 010000]; % 2 errors introduced
>> vitdec(+xor(outmin,error2),tmin,6,’trunc’,’hard’)

00 00 00 10 11 01 00 01

= Systematic feedback encoder — different output

Have to leave spaces in
matlab, but it looks better
without them here

>> tfeed=poly2trellis([4 4],[13 0 17 ;0 13 15], [13 13])
numinputSymbols: 4
numOutputSymbols: 8
numStates: 64
nextStates: [64 X 4 double]

outputs: [64 X 4 double
>> outfeed=convenc([],tfeed)
000 000 000 101 111 011001 011 %systematic
>> informin=vitdec(outfeed,tmin,6,'trunc','hard’)
00 00 00 11 01 11 00
>>ymin = convenc(informin,tmin) =

000 000 000 101 111 011 001 o011

00 % map differs

>> informin2=vitdec(+xor(outfeed,error2),tmin,6,'trunc','hard’)
00 00 00 11 01 11 01 11
>>ymin2 = convenc(informin2,tmin)

0do 0do odo 101 1 b1 01 Il

>> outfeed % check
000 000 000 101 111 011 001 011

% So, this fixes matlab’s high-complexity-trellis problem with 8-state decoder

piS January 30, 2024 Section 7.3.3

This works for any decoder,
But of course most helpful
With matlab poly2trellis issues

L8: 47 Stanford University

