
Lecture 8
Decoding

February 1, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

JOHN M . C IOFF I

January 30, 2024

Announcements & Agenda
§ Announcements

• PS3 extended to Friday – see updated HWH3 at website.
• PS4 is due TUESDAY, no late. (HWH4 is already at website.)

• PS4 solutions will post immediately, and thus be available for your midterm study.
• You should expect less time than PS2 or PS3.

• There is no homework assigned next week.

L8: 2

§ Today
• Continue from L7
• Viterbi Sequence Decoding (MLSD)
• A Posteriori Probability (APP) bit decoding
• Soft-Output Viterbi Algorithm (SOVA)
• Backup – not covered: Invariant Factors Decomposition

• Minimal Generators (and thus minimal decoder complexity)
• Matlab code-structure error warning

Continue L7

January 30, 2024
L1:3

Section 7.2

§ Encoder-output subsymbols are decoded independently – e.g., a “hard” decision.

§ The remaining channel is a BSC model, to which the binary code applies.

§ The BEC with the “erasure” output is a first step from hard to soft….

January 30, 2024

Hard decoder – first decodes the “v” bit sequence

L8: 4

Simple
Mod

!N 	dimensions/sub-sym
e.g.,	QAM,	PAM

𝒙

Section 2.2.2

𝑥 𝑡 ML
Det for code

over BSC/DMC

p= Pb

$𝒖

𝒗! = 𝒗	⨁	𝒆

𝒖 𝒗
MapperBinary

encoder
+

AWGN Hard Decoder

BSC with p bit-error prob
Or DMC with |C| ins/outs

Simple
demod

Simple Each
Subsymbol Det

𝒚

𝑝𝒗!/𝒗 = -1 − 𝑝𝑝 	𝑣
! = 𝑣
𝑣′ ≠ 𝑣

§ The demodulator samples (∈ ℂ) pass to the detector for comparison of codewords (subsymbol sequences).

§ The 𝒚 informa:on is “so<” in that it is not pre-quan:zed into a decision (or at least not to 𝐶 subsymbol values).

§ Deployed systems o<en have ADC on 𝑦! ; quan:ze "!"# #
$$

= 4% ; i.e., 3 bits cover intra-point distance.
• This 3-bit quanCzaCon of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distorCon (one more bit reduces to .06 dB distorCon).
• Same rule applies per dimension for both ADCs in quadrature receivers.
• Total ADC bits will then be these 3, plus "𝑏 , plus 1-2 bits for peak-to-average (analog coverage), so 𝑏%&' = "𝑏 +4, or possibly "𝑏 +5 .

January 30, 2024

Soft Decoder – decode the symbol

L8: 5Section 2.2.1

Simple
Mod

!N 	dimensions/sub-sym
e.g.,	QAM,	PAM

+

AWGN
𝑥 𝑡𝒙

Finite
Real-Time

Complexity

𝑝!/# = 2𝜋𝜎$ %&/$ & 𝑒% 𝒚%𝒙 !/$)!

Soft Decoder
Simple
demod

ML
Det for code
over AWGN

$𝒙
𝒚𝒖 𝒗

MapperBinary
encoder

§ AWGN "𝑃(= &𝑁((𝑄
)!"#
*+

= &𝑁((𝑄 𝑑,-(((
ℰ$
+%

= &𝑁((𝑄 𝑑,-(((
/
0
(𝑆𝑁𝑅

• Because 𝑑&'(= 𝑑)*++ ' 4 ' ℰ,

January 30, 2024

AWGN Error Probability for Conv Codes

L8: 6

energy-spread reduces energy/subsym
(assumes "

#$
 can increase, so no filter on AWGN)

§ AWGN !𝑃- =
.*
-
$ 𝑄 𝑑/011 $ 𝑟 $ 𝑆𝑁𝑅

• Where 𝑁+=∑,-./ 𝑖 - 𝑁 𝑖, 𝑑0122 and 𝑁 𝑖, 𝑑 for conv code is the number of 𝑖-input-bit error events with distance 𝑑 .
• Finding 𝑁+ can require exhaustive search in general, but Section 7.2 (L9) shows how to compute 𝑁 𝑖, 𝑑 for CC, also distspec.m.
• Yes, it is equal to Chapter 1’s ∑,-./ 𝑝3 𝑖 - 𝑛+ 𝑖 , which is actually harder to compute.

§ BC coding gain 𝛾 = 10 $ log23 𝑟 $ 𝑑/011 (for AWGN with binary subsymbols ..) and energy/bit ̅ℰ- .

HAZARD WARNING☠ – BINARY CODING THEORIST’S FALLACY – assumes “free bandwidth”

Binary-code fair comparison: hold 2 of 3 3𝑏 ̅ℰ* 3𝑃+ fixed and compare 3rd ;
 But 𝑁,-.+. =

/
0
9 𝑁12,-.+.	 so then BOTH ̅ℰ3 & 4𝑏 decrease for coded w.r.t uncoded (~ holding power & rate constant), not fair.

3𝑏,-.+. = 𝑟 9 3𝑏12,-.+. ̅ℰ*,,-.+. = 𝑟 9 ̅ℰ*,,-.+. ; So ℰ5 =
̅ℰ4
85

 is the same, BUT	𝑊 9 𝑇 → ⁄9:; 0

So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate;
 adding a code to reduce rate is somewhat antithetical to Shannon if 𝑅 < 𝐶. Increasing 𝑊 is “cheating.”

Sections 2.2.2.1 & 8.2.1

January 30, 2024

BSC Error Probability

L8: 7

§ BSC (𝑃6 = *𝑁6 & 4𝑝(1 − 𝑝)
%&'((
!

§ BSC (𝑃7 =
&)
7 & 4𝑝(1 − 𝑝)

%&'((
!

§ Chapter 1’s B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).

§ Fair-comparison discussion is for AWGN.
• Strictly speaking with BSC, data rate must reduce to improve with codes.
• From BSC capacity, 𝑟 ≤ 1+ 𝑝 , log* 𝑝 + 1− 𝑝 , log* 1 − 𝑝

𝒞

≤ 1 for reliable transmission with a code 0 < 𝑝 < "
*
.

Section 8.2.1.2

N|N+1 N|N+1
State Transition

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)

§ SecCon 8.2 – Conv Code Tables see the octal entries, chap 8 [6])

Jan 30, 2024

Coding Tables –best known rate ½ conv codes

L8: 8

BSC!

+

+

+

!

+

+

!

D + D ++ D +
BSC

!! !!"# !!"$!!"%

"$.!

#!
$ 2&

"#.!

! '

! ' !! "$.!

"#.!
$ 2&

#!

>> t8=poly2trellis(4,[17 13]) =
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 8
 nextStates: [8×2 double]
 outputs: [8×2 double]
>> plotnextstates(t8.nextStates)

𝐿, = length of
Min-dist event

Section 8.2.1.3

§ Codes listed for other rates, example 1/3 here, see Sec 8.2 for ¼, 2/3, ¾,

January 30, 2024

Best rate-1/3 convoluMonal codes

L8: 9

§ Code complexity measure 𝑁8 = 129	
;<=<6;

& 12>	
=??;

+ 2> − 1	
@ABC=D6;

Section 8.2.1.3

§ An AWGN has SNR = 5 dB.

§ The uncoded (𝑀 = 2) error rate is 𝑃6 = 𝑄 10E/$F = .0377 𝑛𝑜𝑡 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑 .

§ A better design uses best 64-state rate 𝑟 = ½ code, so bandwidth expands by 2x.
• The gain is 7 dB.
• New 𝑃- = 𝑄 10(/01)/*4 = 3.4303e-05 (better, see Slide L8:8’s table for this code).

§ To get 𝑃6 ≈ 10%G ?
• Need 8.5 dB of coding gain with rate ½ , so use this table’s 1024-state code
• 𝑃- = 𝑄 10(/05./)/*4 ≈ 1078

January 30, 2024

Design Example

L8: 10

§ Encoder is 𝐺 𝐷 = 1 + 𝐷 + 𝐷$ + 𝐷H + 𝐷E + 𝐷I + 𝐷JF

$KEL

1 + 𝐷$ + 𝐷H + 𝐷E + 𝐷G + 𝐷L + 𝐷JF

$HEE

1024 is a lot of states: larger distances may have large 𝑁9 that increase 𝑃-.
 Design instead should use better (not CC) code (see Lectures 9-11).
The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large 𝑁9.

Section 8.2.1.3

Viterbi Sequence Decoding

January 30, 2024
L1:11

Section 7.1

January 30, 2024

Example, rate 𝑟 = ½ CC surviving path

L8: 12

One path/sequence
maximizes
𝒑𝒀 𝑫 /𝑿 𝑫

Section 8.1.4

03

30

21

12

0

1

0

1

0
1

0

1

§ E𝒙 𝐷 is the best survivor path. There are 29 possible survivors at each Ume.
§ Each state thus at Ume 𝑘 has one best survivor, so 29 possible survivors at stage 𝑘,

• from which any stage 𝑘 + 1 survivor must follow.

§ This example’s input bits are known and shown in green (in actual transmission, message is not known).

January 30, 2024

Example BSC: 6 input bits & 12 output bits

L8: 13

§ Process can continue ad-infinitum, but after reasonable time (~5𝜈) – trace back path with lowest distance.
• If a tie, pick one of them (probably an uncorrectable error has occurred).

§ This is exactly ML if extended to infinity, and usually close with finite survivor-path length.

Section 7.1.1

01 00 01

0

1

1

1

3

2

2

00 11 012

22

2

3

2

2

3

3

3

3

3

3

4

4

2

Green outputs – BSC-output 2 errors from correct sequence

0 0 0 1 1

All input bits correctly detected

PS4.1

§ Tie means sequence error is likely – must pick one of two equally likely.
§ Detector needs more informaUon to decode correctly.

• This can include more future channel outputs that extend the 4 states (if available).

January 30, 2024

Example with 6 bits of input (12 output)

L8: 14Section 7.1.1

01 00 01

?

1

1

1

3

2

2

11 012

32

2

3

3

3

4

2

4

3

3

3

4

4

01

3

Red output – 3 BSC output errors à two sequences tied (detect error)

? 0
(2/3 paths are 0)

? 1
(3/3 paths are 1)

?

2/6 input bits are correct; 4 are ambiguous (using majority vote).

PS4.1

§ Formal – Many students just study trellis examples (L8:4-6) first, and then the above follows easily.

January 30, 2024

VA in General

L8: 15Section 7.1.2

§ Same process with squared-distance replacing Hamming distance on branches

January 30, 2024

For AWGN?

L8: 16

[-.9 .5]

0/0 0/0

0.25

2.26

3.86

2.28

10.28

8.28

7.48

0/0 1/1 1/1

6.53

7.86/7.984.53

7.73

10.53

6.66 / 7.76

6.67/7.77

7.86/8.98

7.46/5.38

7.87/8.99

11.07/8.99

11.47 /11.59

11.48/11.60

11.88/12.61

11.48 / 12.61

[-1.1 -.9] [-.5 1.0] [-.8 -.7] [.9 1.0] [-.9 1.0]

3.61 0.25
0.01 2.25

4.41 3.61
0.01 0.01

2.25 0
0.25 4

3.24 2.89
0.04 0.09

0.01 0
3.61 4

3.61 0
0.01 4

0.02

8.02

4.42

3.62
0.25

4.25

2.25

0.13 / 1.25

0.13/1.253.33/4.45

2.93 /.85

0.010.01

3.61
4.01

3.61

4.01/3.62
3.61/3.62

0.01/.02

6.68 / 7.790/0

[-.8 .1] [-.9 .9]

3.24 1.21
0.04 0.81

3.61 0.01
0.01 3.61

-/3.62-/3.62

0.01/.02

§ The green path corresponds to the 2 “BSC errors” in hard-decoder example’s (L8:13) positions.
§ The red numbers correspond to the 3 “BSC hard errors” in L8:14 positions, and they are corrected!

Soft decoding performs better than hard.
PS4.1Section 7.1.1

§ INPUTS
• Needs trellis, 𝑦 𝐷 , survivor length
• Indicate “opmode”
• Hard/soft

§ OUTPUTS
• Detected bits (sometimes “delayed”)
• Last-state metrics
• Survivor paths from last state
• Survivor’s bits on survivor path

January 30, 2024

Matlab’s vitdec program

L8: 17

DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,DECTYPE)

 CODE is assumed to be the output of a
 convolutional encoder specified by the MATLAB structure TRELLIS. See
 POLY2TRELLIS for a valid TRELLIS structure. Each symbol in CODE consists
 of log2(TRELLIS.numOutputSymbols) bits, and CODE may contain one or more
 symbols. DECODED is a vector in the same orientation as CODE, and each of
 its symbols consists of log2(TRELLIS.numInputSymbols) bits. TBLEN is a
 positive integer scalar that specifies the traceback depth.

 OPMODE denotes the operation mode of the decoder. Choices are:
 'trunc' : The encoder is assumed to have started at the all-zeros state.
 The decoder traces back from the state with the best metric.
 'term' : The encoder is assumed to have both started and ended at the
 all-zeros state. The decoder traces back from the all-zeros
 state.
 'cont' : The encoder is assumed to have started at the all-zeros state.
 The decoder traces back from the state with the best metric. A
 delay equal to TBLEN symbols is incurred.

 DECTYPE denotes how the bits are represented in CODE. Choices are:
 'unquant' : The decoder expects signed real input values. +1 represents
 a logical zero and -1 represents a logical one.
 'hard' : The decoder expects binary input values.
 'soft' : See the syntax below.

Program-use examples are next.

Section 7.1.3.2

§ This uses matlab’s ugly trellis

January 30, 2024

Use of matlab vitdec for 4-state example

L8: 18

>> t=poly2trellis (3, [7 5]); >> t.nextStates =
 0 2
 0 2
 1 3
 1 3
>> t.outputs =
 0 3
 3 0
 2 1
 1 2

>> convenc([0 0 0 0 1 1],t) = 00 00 00 00 11 0 1

>> msg=[0 0 0 0 1 1];
>> code=convenc(msg,t)
code = 0 0 0 0 0 0 0 0 1 1 0 1
>> [d m p in] = vitdec(code,t,10,'cont','hard’)
 % ‘cont’ mode’s d output does not include the 00001101
d = 0 0 0 0 0 0 %(all before msg – this is survivor delay)
m= 3 2 3 0 % final pathmetrics
p = % previous states

0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2 2 2 2 2
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2 2 2 2 2
in = % last 6 stages of inputs on paths p

0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 1 1
 0 0 0 0 0 1 1 1 1 1

OR with no survivor delay:
>> vitdec(code,t,6,'trunc','hard') =
 0 0 0 0 1 1
 % ‘trunc’ mode includes the 000011

Also for t3 in L7:27 Example (same code, with feedback)
>> code=convenc(msg,t3) =
 0 0 0 0 0 0 0 0 1 1 1 0

>> vitdec(code,t3,6,'trunc','hard') =
0 0 0 0 1 1

0 0 0 0 1 1

Section 7.1.3.2 PS4.1

§ Repeat the earlier 2-output-bit error example decoding with matlab vitdec:

January 30, 2024

Now with Errors

L8: 19

>> y=[0 1 0 0 0 1 0 0 1 1 0 1];

>> vitdec(y,t,6,'trunc','hard')
 0 0 0 0 1 1

>> y3errors=[0 1 0 0 0 1 0 1 1 1 0 1];

>> vitdec(y3errors,t,6,'trunc','hard') =
 0 0 0 0 1 1

§ The program vitdec actually decodes bits with ties too (3-output-bit errors):

§ Surprisingly, this is correct. Later we see a soJ-output Viterbi (SOVA) that calculates addiMonal local
informaMon for sequences with Mes; it will also decode correctly.

§ It is not clear what matlab vitdec is doing internally, but result is same. The full program is available by
typing “edit vitdec” in matlab, but it is 414 lines with a lot of subrouMne calls (the comments do not seem
to help on this) and these subrouMnes are not visible with edit.
• Mo_vated student encourage to take a look and tell me and rest of class how vitdec.m resolves the _es.

Section 7.1.3.2 PS4.1

§ The vitdec.m funcUon accepts the AWGN output as dectype = “unquant” (“soa” is for iteraUve
decoders and is best used with biased all-posiUve log likelihood raUo soa informaUon.)
• vitdec.m ‘s detected input-of-the-channel uses opposite sign on channel output to this class/text’s convenbon.

January 30, 2024

Viterbi Example with AWGN

L1: 20

% original 2-output-bit errors
>> yawgn=[-.9 .5 -1.1 -.9 -.5 1 -.8 -.7 .9 1 -.9 1];
>> vitdec(-yawgn,t,6,'trunc','unquant')

 0 0 0 0 1 1

% With revised 3-output-bit-errors
>> yawgn2=yawgn;
>> yawgn2(8)=.1;
>> yawgn2(12)=.9;
>> vitdec(-yawgn2,t,6,'trunc','unquant')

 0 0 0 0 1 1

Soft decoding performs better than hard

Section 7.1.3.2

§ Form gen & output

January 30, 2024

8-state rate 2/3 code

L8: 21

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])
 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 8
 nextStates: [8×4 double]
 outputs: [8×4 double]

>> tmin.nextStates
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7

>> tmin.outputs
 0 6 3 5
 3 5 0 6
 4 2 7 1
 7 1 4 2
 5 3 6 0
 6 0 5 3
 1 7 2 4
 2 4 1 7
>> inmin= [0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1];
>> outmin=convenc(inmin, tmin)
 000 000 000 011 001 100 110 110
>> plotnextstates(tmin.nextStates)

N|N+1 N|N+1
State Transition

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)

𝐺!"#$ 12,	'(#$)$"
𝐷 = 𝐷 1 + 𝐷* 1 + 𝐷*

1 + 𝐷 𝐷 1	

Section 7.1.3.2

§ Decoding with dfree = 4:

January 30, 2024

8-state decode

L8: 22

>> vitdec(outmin,tmin,6,'trunc','hard’) % no errors
 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1
>> inmin=
 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1];

error2=[0 1 0, zeros(1,9), 1 0 0 , zeros(1,9)]; % 2 errors
>> vitdec(+xor(outmin,error2),tmin,6,'trunc','hard’)

 0 0 0 0 0 0 1 0 1 1 01 0 0 0 1

3 errors – can’t correct (smaller free distance)
>> error = 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

>> vitdec(+xor(outmin,error),tmin,6,'trunc','hard’)
 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1

Higher rate, more complex
(8 states), but lower distance

of dfree = 4

§ We encourage you to play a bit.
• Start with examples here and then vary inputs / channel outputs and see.

It’s possible with only
𝒅𝒇𝒓𝒆𝒆(𝟏

𝟐

output bit errors to select
wrong sequence – why?

§ The error sequence relaUve to correct may not yet have merged.
• This is why decoders typically report decoded output by tracing backward 5 , 𝜈

subsymbol periods

Section 7.1.3.2

§ Receiver knows where punctured bits would have been.

§ The decoder enters distance 0 in the punctured channel-output
posiUon,
• and otherwise proceeds.
• vitdec.m has an opbonal input to say where this occurs.

§ This reduces 𝑑OD66 by (usally, and at most) 1 for every punctured bit
(10 for ½, 7 for 2/3, and 6 for ¾).

January 30, 2024

Decoders with puncturing?

L8: 23

r=3/4

1 1 0
1 0 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC

1 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥ v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC

r=2/3
BSC Decoder inserts “0” for

punctured bit into branch value
(branch Hamming distance

calculaRon uses only
transmiSed bits)

AWGN Decoder similarly
includes 0 into branch

Euclidean metric

G64

block of 12 coded bits
v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC

r=1/2, 6 input-bit block
𝑑0122 = 10

Section 7.1.3.2

§ With 𝑟 < 1 and binary AWGN, matlab’s “SNR” is not defined the same as this course.

§ For example, uncoded binary channel with 𝑆𝑁𝑅HLS= 7 dB

January 30, 2024

☠ CauIon on Matlab’s awgn.m

L8: 24

>> y=awgn(x,7);

§ For 𝑟 = 1/2 and binary AWGN, matlab’s “SNR”

>> y=awgn(x,10);
% or
>> y=awgn(x,7,-3)

The 7 dB is for E𝓔𝒙 = 𝟏 ,
IN THE SAME BANDWIDTH

The 7 dB IN THE SAME BANDWIDTH as uncoded
causes matlab’s 10 dB in 2x BANDWIDTH

(because the noise is relative to E𝓔𝒙 = 𝟏 for
the larger 2x bandwidth)

Or 2x-rate encoder output has E𝓔𝒙 = 𝟏/𝟐,
So 7- (-3) = 10 dB

§ This highly counter-intuiMve, but matlab people were not considering fixed power over variable bandwidths.
§ RecommendaAon: Use randn (Gaussian) noise directly with (1/sqrt(SNR/Exbar))*randn(# of points).

• Avoid awgn command.

Section 7.1.3.2

Maximum a Posteriori & the
APP Algorithm

January 30, 2024 L8:25

Section 7.3

§ The MAP detector has criteria
• Let 𝑚 → 𝑘 to emphasize time here (there are also different k input bits)
• Also, let W𝑁 → 𝐾.

January 30, 2024

Minimize instead each subsymbol error prob

L8: 26

!𝑢< = 𝑎𝑟𝑔	min
15

𝑝 =65
𝒀8::;<

.

§ Usually, the messages 𝑢> are bits, so MAP minimizes each bit’s error probability “separately.”

§ MAP decoding results are oaen very close to MLSD results, but not always:
• If bit-error is the criterion, the MAP is beder .. by definibon.
• If sequence (packet) error is the criterion, then MLSD is beder.
• Both MAP and MLSD inibally assume the input values are equally likely.

§ There is a “Viterbi-like” procedure “Bahl Jelinek Cocke and Raviv (BCJR)” that also uses the trellis for
MAP.

§ MAP or APP is more complex, but also produces “soa informaUon” (LLR) that might be used by another
code’s decoder, if both share different encoders that act on same bit.
• This product or concatenated code is a way to increase block length (beder code possible) but retain simple decoding.

Section 7.3.1

§ Reminder: this is the APP (à posteriori probability).

§ Depends on 3 quanUUes from state 𝑖 at Ume 𝑘 to state 𝑗 at Ume 𝑘 + 1

• Forward trellis quanbty

January 30, 2024

APP Method (largely for a packet of 𝐾 subsymbols)

L8: 27

• Backward trellis quanbty

• Branch quanbty

§ Tedious algebra and bookkeeping (See Section 7.3) 𝛾< 𝑗 = 𝑝 =>5 𝒚5
• Branch calculabon (do them all first)

𝛼> 𝑗 = R
Y∈[/

𝛾> 𝑖, 𝑗 & 𝛼>%J 𝑖• Forward recursion

𝛽> 𝑖 = R
\∈[/01

𝛾>]J 𝑖, 𝑗 & 𝛽>]J 𝑗• Backward recursion

Section 7.3.1

§ Branch 𝛾 calculations are all of the form 45 $ 𝑝
= $ 1 − 𝑝 >?= 𝑖 = 0,1,2 for BSC with 𝑝 = ⁄2 @.

January 30, 2024

Example with same rate ½ code - BSC

L8: 28

1.00/.0001489

0.00/-

0.00/-

0.00/-

.09375

.09375

.09375/.001015

.09375/.0005736

0/.002191

0/.0005736

.03125

.09375

.28125

Input
Chan out

0
01

0
00

0
01

0
00

1
11

1
01

.09375

.09375
.09375

.03125

.28125

.09375

.09375

.09375

.09375

.28125

.03125

.09375

..09375

.03125

.28125

.28125

.09375

.03125

.09375

.28125

.03125

.28125

.28125

.09375

.09375

.03125 .03175

.09375
.09375

.09375

.09375

.09375

.09375

.03125
.28125

.03125
.28125

.00002574/.25

.00007298/.25

.002930/.007482

.02637/.002777

. 008790/.002777

. 008790/.003341

. 003296/.004026

. 003296/.002560

. 002564/.009306

. 001099/.002560

. 0008241/.02345

. 001007/.01171

. 0004120/.01560

. 0004120/.01171

. 0001416/.04688

. 0002447/.078125

. 0001330 /.04688

. 0001330/.078125

.00002574/.25

.00004505/.25

.3735.2771.6747.7470.7048.5843!" # = 0

.6265.7229.3253.2530.2952.4157!" # = 1

110000Bit decision

Section 7.3.1

?
?@A.CD?EF

§ Forward pass sums two products at each state to get new 𝛼 .
§ Backward pass sums two products at each state to get new 𝛽 .

PS4.2

§ Compute the 3 quantities for each branch 𝛾 and for each state 𝛼 , 𝛽 .
• The decoder can also sum over the bit values corresponding to 𝒙/ ,
• which usually includes the input bit values 𝑢/,7 .
• In some iterative-decoding situations is better the output values 𝑣/,7 .

§ Then compute sum to get à posteriori probabilities à decision for each bit.

January 30, 2024

Compute Likelihoods: FoundaIon EquaIons

L8: 29Section 7.3.1

§ It corrects all 3 – even with hard decisions; however, the decoder uses a 𝑝. This is additional soft info.
§ Decoder already knew 𝑝 = .25 , but MLSD did not use it (with Viterbi Algorithm) – just Hamming distance.
§ This heads toward soft decoding, slightly. Decisions won’t change for another 𝑝 < 0.5 , but the soft info does.

January 30, 2024

How about 3 errors on BSC?

L8: 30

1.00/.0000753

0.00/-

0.00/-

0.00/-

.09375

.09375

.09375/.0002316

.09375/.0001687

0/.0004257

0/.0001687

.03125

.09375

.28125

Input
Chan out

0
01

0
00

0
01

0
01

1
11

1
01

.09375

.09375
.09375

.03125

.28125

.09375

.09375

.09375

.09375

.28125

.03125

.28125

.03125

.09375

.09375

.09375

.28125

.03125

.03125

.28125

.03125

.28125

.28125

.09375

.09375

.09375 .03175

.09375
.09375

.09375

.09375

.09375

.09375

.03125
.28125

.03125
.28125

.00002536/.25

.00004388/.25

.002930/.001440

.02637/.0006635

. 008790/.0006635

. 008790/.001076

. 003296/.003296

. 003296/.003781

. 002564/.003296

. 001099/.004753

. 0005494/.02345

. 0005494/.01171

. 0004121/.01560

. 0009613/.01171

. 0001331/.04688

. 0001674/.078125

. 0001374 /.04688

. 0001374/.078125

.00002536/.25

.00005138/.25

.4783.3478.5217.5217.6304.5870!" # = 0

.5217.6522.4783.4783.3696.4130!" # = 1

110000Bit decision

Section 7.3.1

§ Calcula:on of branch metrics by hand can use the items inside the box.
§ Final decisions are in the table.

January 30, 2024

AWGN Case with BCJR (uses log likelihoods)

L8: 31

0/19.7579

0.00/-

0.00/-

0.00/-

3.9752

5.4344

3.9752/15.8350

5.4124/17.3226

0/-

0/-

9.1490

5.9154

1.9632

Input
Chan out

0 0 0 0 1 1

5.1968

5.7627

3.9662

3.9662

5.7627

2.1698

7.5591

2.7087

5.9424

3.0680

5.5831

5.5831

2.7087

7.5591

5.9424

2.1698

8.7807

1.9542

1.9542

5.1878

5.5471

3.0680 8.7807

5.5471
5.1878

5.1968

5.1968

5.1968

5.1968

8.4304
1.9632

8.4304
1.9632

22.2270/1.3863

18.6321/1.3863

13.1242/12.6691

5.9384/13.8743

11.3278/12.3249

10.6092/12.6356

11.6739/8.3667

9.9038/11.3991

12.7786/10.4704

15.2391/10.5241

14.7155/5.3020

15.6282/8.4822

15.7308/7.8304

12.6124/8.7882

17.6820/5.8899

16.6693/3.3479

17.7665/5.8899

18.0916/3.3479

22.2270/1.3863

20.0484/1.3863

21.327422.920219.989020.000919.791419.8102!! " = 0

19.991319.801121.336121.291523.190022.7349!! " = 1

110000Bit decision

[-.9 .5] [-1.1 -.9] [-.5 1.0] [.9 1.0][-.8 .1] [-.9 .9]

1
2 # $%! #

3.61
0.01 + +",$ # 0.252.25

3.2426
0.0090 + +",$ # 0.22462.0210

2 ' ()! = 1.1133

1
2 # $%! #

4.41
0.01 + +",$ # 3.610.01

3.9612
0.0090 + +",$ # 3.24260.0090

1
2 # $%! #

2.25
0.25 + +",$ # 04

2.0210
0.2246 + +",$ # 0

3.5929

1
2 # $%! #

3.24
0.04 + +",$ # 1.210.81

2.9103
0.0359 + +",$ # 1.08690.7276

1
2 # $%! #

0.01
3.61 + +",$ # 04

.0090
3.2426	 + +

",$ # 0
3.5929

1
2 # $%! #

3.61
0.01 + +",$ # 0.013.61

3.2426
0.0090 + +",$ # 0.00903.2426

All branch metrics !,must add "# 2 + "# 2& ' ()- =.6931+1.2521=1.9452

Section 7.3.1

§ This simplifies mulUplicaUon (per term) to addiUon (and reduces arithmeUc range requirement).

§ AddiUon of original terms (different 𝑖) requires the calculaUon:

§ This LOGMAP APP algorithm computes LL to avoid multiplication:

January 30, 2024

LOGMAP APP

L8: 32

§ LOGMAP recursively recruits the sum with table look ups and additions/differences:

Section 7.3.1.2

§ LOGMAP defines

§ Secbon 8.2 – Conv Code Tables (see the octal entries)

January 30, 2024

Matlab’s BCJR (with some edits,@ website)

L8: 33

function BCJR_AWGN(y,trellis,sigma)
 BCJR_conv Decoder
 This program derives from a nice matlab-file-xchange listing by K. Elhalil,
 of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow

convolutional codes with k>1,r=k/n.

 It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.
 This function accepts the channel output y, the trellis (from
 poly2trellis. It uses a priori prob that is set to 1/2^k instead of
 the original matalb . Motivated users may want to add the ability to
 input a set of a priori inputs (presumably extrinsic information from
 another code's use on same bits). It returns the APP LLR for each
 data bit input. The program replaces an alpha->beta turnaround at

last stage with just equal output probability 1/2^n for each initial
beta value. I believe that avoids bias and is more accurate.
N=length(y) and N/n must be integer. Also, I commented out a
normalization line for alpha and beta that I believe incorrect.

 INPUTS:
 y - these are real-valued vectors from some (AWGN likely) channel output
 multiply this by -1 to get the EE379 Class convention on 0->-1
 trellis - this is matlab’s usual trellis description (see text or
 class notes to avoid excessive computation for feedback systematic).
 sigma - this is 1-dimensional AWGN standard deviation
 OUTPUTS:
 The decoded bits’ LLRs

> yawgn2 %(same 4-state code, same outputs – 3 error case)
-0.9000 0.5000 -1.1000 -0.9000 -0.5000 1.0000 -0.8000 0.1000
0.9000 1.0000 -0.9000 0.9000

>> BCJR_AWGN(-yawgn2,t,1.1133/2) =

 5.7066 6.2779 2.5626 2.5684 -6.4242 -2.5681 LLRs

0 0 0 0 1 1 Bits

The entries on the earlier trellis were
obtained by going into source code and
printing gamma, alpha, beta, and LLs.

Section 7.3.1

§ Secbon 8.2 – Conv Code Tables (see the octal entries)

January 30, 2024

BCJR_BSC @ website

L8: 34

function BCJR_BSC(y,trellis,p)
 BCJR_conv Decoder - HAMMING DISTANCE BSC
 This program derives from a nice matlab-file-xchange listing by K. Elhalil,
 of SUP'COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow

convolutional codes with k>1,r=k/n. It has been tested on easy (r=2/3)
 codes but not for k>2. Maximum k value is 4, so up to rate 4/5 codes.

 It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.
 This function accepts the BSC output y, the trellis (from
 poly2trellis. It uses a priori prob that is set to 1/2^k.
 Motivated users may want to add the ability to input a set of
 a priori inputs or extrinsic information

 The program returns the a posteriori probability's LLR for each
 data bit input. The program sets the stage beta initial probabilities
 to 1/2^n each. JC believes that avoids bias and is more accurate.
 N=length(y) and N/n must be integer.

 INPUTS:
 y - these are integers 1's or 0's in 1xn vector
 trellis - this is matlabs usual trellis description (see my text or
 class notes to avoid excessive computation for feedback systematic.
 p - this is 1-dimensional BSC error-probability for uncoded use.
 OUTPUTS:
 the decoded input bits' LLRs

WITH 0 OUTPUT BIT ERRORS:
>> out = 0 0 0 0 0 0 0 0 1 1 0 1
>> BCJR_BSC(out,t,.25) =

 3.5981 3.1193 2.6526 2.2290 -1.9712 -1.4020 LLRs

0 0 0 0 1 1 Bits
WITH 2 OUTPUT BIT ERRORS:

>> outBSC2=[0 1 0 0 0 1 0 0 1 1 0 1];
>> BCJR_BSC(outBSC2,t,.25) =
 0.3406 0.8704 1.0826 0.7295 -0.9589 -0.5173 % less soft info/confidence

>> outBSC3=[0 1 0 0 0 1 0 1 1 1 0 1];

>> BCJR_BSC(outBSC3,t,.25) =
0.3514 0.5341 0.0870 0.0870 -0.6286 -0.0870 % less soft info, all bits but first

>> BCJR_BSC(outBSC2,t,.49) =
 0.0008 0.0392 0.0016 0.0016 -0.0008 -0.0000 % same decisions, but
Less confident because p is large
>> BCJR_BSC(outBSC3,t,.49)= 0.0008 0.0392 0.0000 0.0000 -0.0008 -0.0000

p<1/2 just scales confidence

Section 7.3.1 PS4.2

§ The original program (BCJR_conv.m) from Matlab File exchange only handed AWGN.
• It also only handled 𝑘 = 1, so then only rate 𝑟 = 1/𝑛 codes.
• BCJR_BSC.m and BCJR_AWGN.m handle respecbvely Hamming and Euclidean distance and r=k/n for k=1,2,3,4

January 30, 2024

Rate 2/3 examples

L8: 35

tmin=poly2trellis([3 2], [2 5 5; 3 2 1]);
>> inmin =
 [0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1];
>> outmin=convenc(inmin,tmin) =
 000 000 000 011 001 100 110 110

>> (-sign(BCJR_BSC(outmin,tmin,0.125))+1)/2
0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1

>> (-sign(BCJR_BSC(xor(outmin,error2),tmin,0.125))+1)/2=
0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1

------ 3 errors breaks ---------------------
>> error = 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

>> (-sign(BCJR_BSC(xor(outmin,error),tmin,0.125))+1)/2
 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1

Note fewer bit errors with BCJR
than with Viterbi

(vitdec had 6 errors on L8:14).

𝐺!"#$ 12,	'(#$)$"
𝐷 = 𝐷 1 + 𝐷* 1 + 𝐷*

1 + 𝐷 𝐷 1	

§ Soa InformaUon?
>> BCJR_BSC(outmin,tmin,0.125) =
 6.3363 6.0916 5.5102 5.2724 4.8885 4.7739 -4.3927 4.3377
 -3.9469 -3.8931 3.5362 -3.3284 3.1898 2.8062 2.2747 -2.3525

>> BCJR_BSC(xor(outmin,error2),tmin,0.125)
 1.4981 1.1619 1.0144 0.5441 1.7154 1.5290 -0.3864 1.0702
 -1.2267 -0.5590 0.6631 -0.7614 1.1868 0.6030 0.4964 -0.6719

>> BCJR_BSC(outmin,tmin,0.25) =
 2.1147 2.0436 1.4665 1.3846 1.1293 1.1448 -0.9088 0.8865
 -0.7604 -0.6870 0.6312 -0.5003 0.5364 0.3806 0.2365 -0.2868

Errors à less confidence

Worse channel à less confidence

Section 7.3.1

Soft-Output Viterbi Algorithm
SOVA

January 30, 2024 L7:36

Section 7.3.2

§ LOGMAX – approximates the sum in sum of products by maximum term.
• Oken very true in decoding.

January 30, 2024

SOVA

L8: 37

§ Look familiar?
• Yes, back to Viterbi.
• But now we have 2, one forward and one backward.

Section 7.3.2

§ It’s pretty easy without ties – just find other path with other input with next lowest survivor metric
• And take the difference, which magnitude (an integer for BSC) is indication of confidence (+ sign for 0 and – sign for 1)

January 30, 2024

Forward SOVA Example with Ties

L8: 38

01 00 01

?

1

1

1

3

2

2

01 11 012

32

2

3

3

3

3

2

3

3

3

3

4

4

3

? 0
(2/3 are 0)

0
(2/3 are 0) 1 ?

0

0

0

0

Forward SOVA Example with 5es (3-error example revisited)

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3 3 3,3 3,3 ∅ 3

𝐿𝐿(1) 3 3 3 3 3,3 3

Δ𝐿𝐿 (dec) 0(?) 0(?) ⁄- . (0) ⁄- . (0) -1 (1) 0 (?)

Green color indicates the minimum-metric path is a survivor in forward direction; all LL’s in units of 𝑙𝑛 𝑝 .

§ The local resolution and majority voting appear to be what matlab is doing (requires examination/test of source code).
• Probably could be confirmed by someone testing various situations
• Nonetheless, the above is viable Forward-SOVA tie resolution

Section 7.3.2

January 30, 2024

Forward-Backward SOVA Example
Forward-Backward SOVA

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3
/010-

3
10/0-

4
1010-

3
10101

6
.0-01

4
-0101

3
-0/01

3
-010/

5
-0-01

3
-010/

4
.0/01

6
.0-01

5
.0101

4
.0/01

4
-0101

4
.010/

5
.0-0/

4
.0/01

3
.0/0/

𝐿𝐿(1) 4
/010.

5
10-0-

4
1010-

3
10101

4
.0/01

4
-0101

5
-0-01

4
-0101

3
-0/0/

4
-0101

6
.0-01

5
.0-0/

4
.010/

3
.0/0/

3
-010/

4
.010/

3
.0/0/

4
.010/

5
.0-0/

Δ𝐿𝐿(dec) 1 (0) 1 (0) ⁄- . (0) ⁄- . (0) -1 (1) 0(?)

Green color indicates the minimum-metric path is a survivor in both forward and backward directions; all LL’s in units of 𝑙𝑛 𝑝

Did beSer
than Forward

Section 7.3.2

0 3
2 1
3 0
1 2

0
(2/3 are 0)

01 00 01

0

2

3

2

2

2

2

10 11 011

11

1

1

0

0

1

1

1

1

0

0

0

0

0

0 0? 0 1?

3

?

01 00 01

?

1

1

1

3

2

2

01 11 012

32

2

3

3

3

3

2

3

3

3

3

4

4

3

? 0
(2/3 are 0)

0
(2/3 are 0) 1 ?

0

0

0

0

§ Prob of VA sequence error

January 30, 2024

Hagenauer’s LLR SOVA update

L8: 40

§ Magnitude difference of two bit choices is
• Δ𝐿𝑆C = 𝐿𝑆C∗ 0 - 𝐿𝑆C∗ 1
• 𝐿𝐿𝑅C = 𝑥C , Δ𝐿𝑆C

§ Another decoder provides

§ It includes soa info through:

Section 7.3.2

𝑃𝑟EF 𝑥C = −1 = 𝑃𝑟 𝑢C = 0 ∝ 𝑒(FG8
∗ H

𝑃𝑟EF 𝑥C = +1 = 𝑃𝑟 𝑢C = 1 ∝ 𝑒(FG8
∗ I

§ Linear-code analysis: all 0’s is correct, so

𝑃+ =
+;EF5

∗ 8

+;EF5
∗ 8 L+;EF5

∗ < = /
/L+HEF5

§ Algebra provides

𝐿𝐿𝑅< ← l𝑛
1 + 𝑒MNO5L PNNQ5

	

𝑒MNO5 + 𝑒 PNNQ5
	

§ Ignores scaling difference between sequence and bit, so

Δ𝐿𝑆< →
R5S*5 J

T:.KLMM:OUQ

or Δ𝐿𝑆< →
.N R5,V5
.KLMM

 for BSC

End Lecture 8
IFD is backup

interesting, not enough time

Invariant Factors
Decomposition

January 30, 2024 L7:42

Appendix B.7

January 30, 2024

Parity Code Tables, Feedback, and poly2trellis
§ Poly2trellis has a third input that is feedback – example best 8-state 𝑟 = 2/3 conv code from tables

L8: 43

𝐻 𝐷 = 17 15 13 = 𝐷J + 𝐷* + 𝐷 + 1 𝐷J + 𝐷* + 1 𝐷J + 𝐷 + 1

𝐻#K# 𝐷 = 𝐷J + 𝐷* + 𝐷I + 1
𝐷J + 𝐷 + 1

𝐷J + 𝐷* + 1
𝐷J + 𝐷 + 1

	

1 𝐺#K# 𝐷 =
1 0

𝐷J + 𝐷* + 𝐷I + 1
𝐷J + 𝐷 + 1

0 1
𝐷J + 𝐷* + 1
𝐷J + 𝐷 + 1

	

§ Circuit has 8 states (3 flip flops)

𝐷 + 𝐷 ++

𝑢*,L

𝑣I,L

𝑣H,L𝐷 +

𝑢I,L

𝑣*,L

Section 7.3.3

January 30, 2024

So what does Matlab do?

§ I could find no way to use this command other than the above valid (but nonminimal trellis).
§ The matlab page examples do the same thing – increase number of states excessively.
§ This is NOT a problem if code is 𝑟 = ⁄J ^ , then number of states is preserved.
§ Here it was square of number of states (64), for rate ¾, it would cube number of states.

L8: 44

>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])

tfeed =

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 64 OUCH!
 nextStates: [64×4 double]
 outputs: [64×4 double]

But there is a
fix!

Section 7.3.3

January 30, 2024

Work-Around
§ This is tedious and so matlab probably wanted to avoid it (See Appendix B on Invariant Factors Decomp).

• It is Smith-Normal Form, but in binary polynomials:

L8: 45

𝐺#K# 𝐷 = 1 + 𝐷 + 𝐷* + 𝐷J 1 + 𝐷 + 𝐷*
1 + 𝐷* + 𝐷J 𝐷 + 𝐷*

	
W

W A/

,
1

𝐷J + 𝐷 + 1
0

0 1
	
X

X YC

, 𝐷 1 + 𝐷* 1 + 𝐷*
1 + 𝐷 𝐷 1	

§ The first two matrices are 1-to-1, so only remap all possible binary inputs to the SAME codewords.
• They do not affect the set of codewords (or the code).

§ Minimal 8-state feedback-free encoder is 𝐺O=P 𝐷 = 𝐷 1 + 𝐷> 1 + 𝐷>
1 + 𝐷 𝐷 1	

.

§ Encode with 𝐺QRQ 𝐷 convenc.m has no issues (even though it uses 64 states) or just encode with 8 state
circuit on slide 34; the codewords are the same (so MLSD will find closest codeword).

§ Decoder assumes 𝐺6,! 𝐷 and finds \𝑢6,! 𝐷 ; then B𝑣O=P 𝐷 = B𝑢O=P 𝐷 $ 𝐺6,! 𝐷 - recode the decoded.
§ \𝑢787 𝐷 = \𝑣9,6,!(𝐷) \𝑣.,6,!(𝐷) because the original encoder was systemaMc.

• Further any finite number of output errors only cause a finite (possibly less, but not more) number of input bit errors.

Sections 7.3.3 and B.7

January 30, 2024

Example: 8-state rate 2/3 code
§ Saving commands

L7: 46

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])

 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 8
 nextStates: [8×4 double]
 outputs: [8×4 double]

>> tmin.nextStates
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7
 0 4 2 6
 0 4 2 6
 1 5 3 7
 1 5 3 7

>> tmin.outputs
 0 6 3 5
 3 5 0 6
 4 2 7 1
 7 1 4 2
 5 3 6 0
 6 0 5 3
 1 7 2 4
 2 4 1 7
>> outmin=convenc([0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1],tmin)
 000 000 000 011 001 100 110 110
>> plotnextstates(tmin.nextStates)

N|N+1 N|N+1
State Transition

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)

Section 7.3.3

0365

3056

4721

7412

5630

6503

1274

2147

January 30, 2024

8-state decode
§ Minimal Direct Works – dfree = 6

L8: 47

>> vitdec(outmin,tmin,6,'trunc','hard’)
 00 00 00 10 11 01 00 01
>> inmin=
 00 00 00 10 11 01 00 01];

error2 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]; % 2 errors introduced
>> vitdec(+xor(outmin,error2),tmin,6,’trunc’,’hard’)

 00 00 00 10 11 01 00 01

Have to leave spaces in
matlab, but it looks better

without them here

§ Systematic feedback encoder – different output

>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])
 numInputSymbols: 4
 numOutputSymbols: 8
 numStates: 64
 nextStates: [64×4 double]
 outputs: [64×4 double]
>> outfeed=convenc([0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1],tfeed)
 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 %systematic
>> informin=vitdec(outfeed,tmin,6,'trunc','hard')
 00 00 00 11 01 11 00 00 % map differs
>> vmin = convenc(informin,tmin) =
 000 000 000 101 111 011 001 011

>> informin2=vitdec(+xor(outfeed,error2),tmin,6,'trunc','hard’)
 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
>> vmin2 = convenc(informin2,tmin)

000 000 000 101 111 011 001 011

>> outfeed % check
000 000 000 101 111 011 001 011

% So, this fixes matlab’s high-complexity-trellis problem with 8-state decoder

This works for any decoder,
But of course most helpful

With matlab poly2trellis issues

Section 7.3.3

