Lecture 7 Binary Codes and BICM January 30, 2024

John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

Announcements

- PS3 due tomorrow
- PS4 due Feb 6, no late (solutions immediate)
- Midterm Feb 8 (PS5 the following week)
- Open book, laptop, internet
- In class (or other arrangements)
- Web site is usually best place for latest copy
- Canvas uses R1, R2, ... notation so you can see history - Removed by SU after quarter end
- The Edstem page (responding there also)
- Just arrived this morning for me, and I responded.
- Feedback
- 6-15 Hours
- Ethan very much appreciated.
- Homework extends understanding.

- Today

- Finish L6
- Binary Codes in GF(2) - Basics
- Convolutional code tables

PS3.1 (1.63)

- $\quad L(d)$ is an overall gain multiplier applied to each (all) multipaths
- Equivalently to the entire channel response
- $d_{p p}$ is a specific model parameter (simplified Wi-Fi) where an extra attenuation factor applies for distances longer than this "break-point" distance

```
PS3.2 (1.65)
```

- For the last part, the number of samples per try might best be 100 k , not 10 k - This gives a little more accurate match between theory and simulation.

```
Problem Set 4 = PS4 due Tuesday February 6 at 17:00, no late
    1. 8.1 A convolutional encoder and code
    2. 8.2 Systematic encoders
    3. 8.4 A fool's code
    4. 8.5 power-bandwidth trade at }\overline{b}<
    5. 8.8 code for satellite transmission
```


Finish L6

Sections 2.1-2

Modern Powerful codes

- γ_{f} is large, equivalently can be reliably decoded (low Pe).
- γ_{f} is large with good long-length binary codes:
$>$ With binary-to- $|C|$ "mapper" for larger QAM constellations
$>$ But leaves shaping $\left(\gamma_{s}\right)$ to the constellation boundary design ($<1.53 \mathrm{~dB}$).

Generalization: Sequential Encoder \& Mapper

- Trellis or Convolutional Codes (see feedback below) have model:

Constellation Mapper $\|C\|=2^{\tilde{b}+\widetilde{\rho}}$ possible values	$\widetilde{\boldsymbol{X}}_{m}$
subsymbol possible values	

- Inputs have \tilde{b} - usually bits.
- Outputs are \widetilde{N}-dimensional.
- When $\widetilde{\boldsymbol{x}} \in \mathbb{C}^{\widetilde{N}} \rightarrow$ Trellis Code.
- When $\widetilde{\boldsymbol{x}}=\boldsymbol{v} \in G F(2)^{\widetilde{N}} \rightarrow$ Binary convolutional code.

This"fakes" a larger block length with finite real-time complexity/delay

Binary Codes in GF(2) Basics

Section 8.1

Example, rate $r=1 / 2$ convolutional code

$\left(\begin{array}{ll}v_{2, m} & v_{1, m}\end{array}\right)=(0,0)=0$
$\left(\begin{array}{ll}v_{2, m} & v_{1, m}\end{array}\right)=(0,1)=1$
$\left(\begin{array}{ll}v_{2, m} & v_{1, m}\end{array}\right)=(1,0)=2$
$\left(\begin{array}{lll}v_{2, m} & v_{1, m}\end{array}\right)=(0,1)=3$

Trellis stage for each time m has

2 possible output Subsymbols,

$$
n=2 .
$$

Encoder is in 1 of 4 STATES,

$$
v=2 .
$$

$$
d_{f r e e}=5
$$

$H(D)$ is an $(n-k) \times n$ parity matrix, null space of $G(D), G(D) \cdot H^{t}(D)=0$,

$$
H(D)=\left[\begin{array}{ll}
1+D^{2} & 1+D+D^{2}
\end{array}\right]
$$

Example with 6 bits of input (12 output)

Cardinal is sequence or path corresponding to input bits below trellis (outputs blue).

- Other paths are possible, indeed 63 more of them (if initial state known as shown ---).
- Each path has 12 output bits,
- and there is 1-to-1 map if we know initial state.
- The other possible "unknown-initial-state" paths differ only in first $v=2$ stages.

Binary Codewords \& Sequences

- Galois Field $2 \rightarrow \operatorname{GF}(2)$, or \mathbb{F}_{2}, is the binary field of two elements $\{0,1\}$ or bits - See Appendix B.
- Addition is "exclusive or," \oplus.
- Multiplication is "and," \wedge, which this class writes as ". ".
- No complex variables exist in our finite fields (not in this class).
- Block codes' codewords are finite sequences of $n \triangleq N$ binary subsymbols.
- Convolutional codes' codewords are semi-infinite sequences of $n \triangleq \widetilde{N}$-dimensional binary-vector subsymbols.
- Sequence time index is m, which has D -Transform notation $a(D)=\sum_{m=-\infty}^{\infty} a_{m} \cdot D^{m}$.

```
D is dummy variable, D\oplusD=0; Dl}\cdot\mp@subsup{D}{}{m}=\mp@subsup{D}{}{l+m}
```

- The ring of finite-length binary sequences is

$$
F[D] \triangleq\left\{a(D) \mid a(D)=\sum_{m=-\infty}^{\infty} a_{m} \cdot D^{m}, a_{m} \in \mathbb{F}_{2}, v \in\left\{0, Z^{+}\right\}\right\}
$$

- The field of causal infinite-length binary sequences is

$$
F_{r}[D]=\triangleq\left\{c(D) \left\lvert\, c(D)=\frac{a(D)}{b(D)}\right., a(D), b(D) \in F[D], b(D) \neq 0 \wedge b_{0}=1\right\}, \sim \text { long division }
$$

Sequence parameters

- Sequence delay is
- $\operatorname{del}(a)=\min _{m} a_{m}=1 \quad(a(D)=0 \rightarrow \operatorname{del}=\infty)$
- Lowest power of D
- $\operatorname{del}(g)=4$.
- Sequence degree is
- $\operatorname{deg}(a)=\max a_{m}=1 \quad(a(D)=0 \rightarrow \operatorname{del}=-\infty)$
- Highest power of D
- $\operatorname{del}(g)=9$.
- Sequence length is
- $\operatorname{len}(a)=\operatorname{deg}(a)-\operatorname{del}(a)+1 ; \operatorname{len}(0)=0$
- len $(g)=6$.

$$
g(D)=D^{4}+D^{6}+D^{9}
$$

$\operatorname{del}(g)$
$\operatorname{deg}(g)$

- Constraint length is
- $v=\operatorname{len}(a)-1=\operatorname{deg}(a)-\operatorname{del}(a)$ or number of delay elements if $a(D)$ has feedback.

LINEAR Binary Code

- Linear Binary Code is a set of binary sequences such that
- $C[G] \triangleq\left\{v(D) \mid v(D)=u(D) \cdot G(D), u(D) \in F_{r}(D)\right\}$.

Code = outputs

- Rate $r=k / n$, so conv codes often use m as a time index.
- Systematic if $v_{n-i}=u_{k-i}, i=0, \ldots, k-1$ for all times m.
- Free Distance $d_{f r e e}=\min _{\boldsymbol{v} \neq \boldsymbol{v}^{\prime}} d_{H}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right)$.

When $\mathrm{G}(D)=G(0)$, it is a block code, otherwise a convolutional code .

Syndrome Decoding for Linear (binary) Block Codes

- Parity Matrix

- H is a $(n-k) \times n$ binary matrix such that $v \cdot H^{t}=0, \forall v \in C$
- $G \cdot H^{t}=0$
- H is a generator too (dual code, rate $1-r$), and spans the null space of G.
- The generator and parity matrices together span $[G F(2)]^{N}=\{\boldsymbol{u} \cdot G\} \cup\left\{\boldsymbol{u}^{\prime} \cdot H\right\}$.

- This is the same concept as a real/complex matrix' pass and null spaces, but with finite field.
- Binary-channel output $\boldsymbol{y}=\boldsymbol{v} \bigoplus \boldsymbol{e}$; \boldsymbol{e} is the error sequence.

$$
\boldsymbol{s}=\boldsymbol{y} \cdot H^{t}=\boldsymbol{e} \cdot H^{t} \text { is the } 1 \times(n-k) \text { syndrome vector. }
$$

- ML Decoder finds the smallest Hamming weight \boldsymbol{e} that solves this equation for the given \boldsymbol{S}.
- There are fancy algorithms that find this finite-field pseudoinverse efficiently for certain linear codes.
- For present discussion, store 2^{n-k} values of \boldsymbol{e} in a look-up table.
- $\widehat{\boldsymbol{v}}=\boldsymbol{y} \oplus \boldsymbol{e} \rightarrow \widehat{\boldsymbol{u}}=G^{-1} \cdot \widehat{\boldsymbol{v}}$ (for systematic codes, this is simply $\widehat{u}_{k-i}=\hat{v}_{n-i}, i=0, \ldots, k-1$).

LINEAR Block-Code example Hamming $(7,4)$ code

only corrects a single error, but $\bar{b}=4 / 7>1 / 3$ majority- vote

- $k=4 ; n=7$
- Systematic $G=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}I & h^{t}\end{array}\right]$
- Parity $H=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right] ; G \cdot H^{t}=0$
>> G(end:-1:1,end:-1:1) =
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{lllllll}0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$
$\begin{array}{lllllll}0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$
>> H(end:-1:1,end:-1:1) =
$\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
>> gf(G)*gf(H')=
000
000
000
000

General Hamming Code

Integer parameter $p \geq 2$

- Rate/redundancy
- $r=\bar{b}=\frac{4}{7}$
- $\bar{\rho}=\frac{3}{7}$
- $\bar{b}+\bar{\rho}=1$
- Performance $d_{\text {free }}=3$
- $v=0$

$$
n=2^{p}-1 ; k=n-p
$$

$$
r=k / n \& d_{f r e e}=3
$$

$\gg p=3 ;$
>> [H,G]=hammgen(p);
>> G(end:-1:1,end:-1:1)
>> H(end:-1:1, end:-1:1)
Column/row permutaitons
(reindexing) does not change code.

General Hamming (higher SNR)

- General Hamming Codes - choose number of parity bits $p \geq 2$.
- so $n=2^{p}-1 ; k=n-p, d_{\text {free }}=3$, rate $r \rightarrow 1$ as $n \rightarrow \infty$.
- Enumerate indices $i=1, \ldots, 2^{p}-1$ as binary p-digit values for H (rearrange to systematic):

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- The last p bits (last p columns) appear only once in $\boldsymbol{v} \cdot H^{t}=0$ and sum other 1-positions' bits.
- It is easily possible to add 3 H columns to zero, confirming $d_{\text {free }}=3$.
- Clever rearranging of H 's columns can cause the syndromes 3-bit value to be the position of a single bit error (more than 1 bit error cannot be corrected).

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- Expanded Hamming Codes (expansion applies all odd length linear-binary codes)
- Expand codeword length by 1 redundant bit, so $n=2^{p}$.
- $k=n-p-1$.
- First add column of all zeros to (previous Hamming parity matrix) H
- Then add row of all ones (overall parity check, which increases distance by 1 if all-zeros column was first added) $d_{f r e e}=4$.
>> Hext=[H , zeros(3,1);(ones(1,8))] \% =
$\begin{array}{llllllll}1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$
$\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
>> Hprime=inv(gf(Hext(1:4,1:4)))*gf(Hext) $\%=$
100001101
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
000111011
>> Hsys=[Hprime(1:4,5:8) Hprime(1:4,1:4)]
$\begin{array}{llllllll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{llllllll}1 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$

Hadamard Codes (low SNR)

- Hadamard is low-SNR binary code and has:
- Large $d_{\text {free }}=n / 2$,
- Small rate $r \ll 1$
- All codewords are mutually orthogonal (in $G F(2)$), - SO KIND OF LIKE BINARY ORTHOGONAL.
- All codewords have weight $n / 2$.
- Hadamard generator forms from 0: $2^{k}-1$ in binary
- Each of its n rows/columns are orthogonal to one another in $G F(2)$.
- All zeros is a codeword, but all other codewords have at least $n / 2$ 1's.
- For parity, note the k systematic columns are there, so group them.
- The rest is then h^{t} for systematic parity matrix.
- Augmented Hadamard code:

$$
\begin{aligned}
& \text { General Hadamard Code } \\
& n=2^{k} ; k=\log _{2} n \\
& r=k / 2^{k} \text { for } d_{\text {free }}=n / 2
\end{aligned}
$$

```
n=16;
k= log2(n);
Gtemp=dec2bin(0:2^k-1)';
    G=zeros(k,n);
for i=1:k for j=1:n
    G(i,j)=bin2dec(Gtemp(i,j));
end; end
```

$\gg G \%=$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$
$4 \times 16(n=16, k=4$, dfree is 8$)$

```
gf(G)*gf(G)' % =
    O 0 0 0
    0 0 0
    0 0 0
    0 0 0
```

- Has $n=2^{m} ; k=m+1 ; d_{\text {free }}=n / 2$,
- Takes only columns of $G(m+1)$ that start with 1 .
- Is dual code of Expanded Hamming with codeword length $n / 2$.

There is a matlab Hadamard command that generates the unitary Walsh-Hadamard Transform matrix of +/- 1's.

$\mathrm{GA}=\mathrm{G}(:, 8: 16)=$								
0	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1
1	0	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	1
4×8 ($\mathrm{n}=8, \mathrm{k}=4, \mathrm{~m}=3$), dfree is now 4								

This is related and used in multiuser systems, but easier to create generator as shown above.

Matlab binary block codes

- encode.m - handles Hamming or general linear (binary).
codeword = encode(inbits, n, k, 'hamming')
\% don't need generator nor parity matrices
codeword = encode(inbits, n,k, 'linear', G)
\% if not Hamming, then input generator
\% can also have 'cyclic' for cyclic binary codes (eBCH)
- decode.m - handles Hamming or general linear (binary).
msgbits = decode(y, n, k, 'hamming')
don't need generator nor parity matrices
msgbits = decode(y, n,k, 'linear', G) use this for Hadamard G or any other linear G

No time to present specific decoder simplifications for Hamming nor Hadamard - however, see L12 GRAND.

```
>>y = encode([ 1011101000011],15,11,'hamming') =
    0
```

>> error=[zeros(1,7) 1 zeros(1,7$)]$;
>> decode(xor(y,error),15,11,'hamming')
10110100011
These functionsfor small codes -could have longrun time forarbitrary G , whichmay have to test all codewords.

Other Binary Block Codes

- Cylic Binary (BCH)
- Reed Muller
- Polar
- eBCH
- Golay
- "product codes" of the above
- See EE387
- May have a little more on this in 379B
- Product codes after midterm, L12.

(General) Linear Code Equivalence and Parity

- Code Equivalence
- $G^{\prime}(D)=A(D) \cdot G(D),|A(D)|=1$ (invertible)
$\underbrace{}_{k \times k}$
- $G^{\prime}(D)$ and $G(D)$ generate the same codewords (sequences).
- Alternate code description is
- $C[G] \triangleq\left\{v(D) \mid v(D) \cdot H^{t}(D)=0, v(D) \in F_{r}(D)\right\}$
- $H(D)$ is a generator for "dual code."
- Every codeword in dual code is orthogonal to codeword in original code (G).
- High-rate codes are often specified more compactly by $H(D)$.
- Complexity $\mu=\min _{\{G(D) \text { for } C[G]\}}(v)$.
- When $\mu=v, G(D)$ is a Minimal Encoder.
- There is always a minimal encoder, and with feedback possible, a minimal systematic encoder. (See Appendix B - this is non-trivial and not covered.)

4-state example (same code)

- Premultiply $G(D)=\left[1+D+D^{2} \quad 1+D^{2}\right]$ by feedback $A(D)=\frac{1}{1+D+D^{2}}$ to get systematic equivalent:
- $G_{s y s}=\left[\begin{array}{ll}1 & \frac{1+D^{2}}{1+D+D^{2}}\end{array}\right]$
- $G_{s y s}$ produces the same output bit sequences, but with different input-to-output mapping.
- $G_{s y s}$ has a different trellis input-bit mapping, but otherwise has all the same paths (infinite length).
- $G_{\text {sys }}$ has the same free distance and the same number of states.

Puncturing:

- Uses same base code, but delete some encoder-output bits.
- Increases rate $r=k / n \rightarrow^{k} /{ }_{n-i} i<n-k \in Z^{+}$.
- Simplifies encoder/decoder implementation (but changes codewords and can lower minimum distance).
- Example $r=1 / 2 \rightarrow 3 / 4$
- 3 input bits: punctures 2 output bits from 6 output bits: $11011 \theta \quad 3$ in / 4 out
- Often just 110110
- Example $r=1 / 2 \rightarrow 2 / 3$
- 4 input bits punctures 2 bits from 8: $111 \theta 1 \theta 114 \mathrm{in} / 6$ out

Regular/periodic puncturing retains linear code.

- If the pattern is regular (so occurs in same way over L subsymbol outputs), then
- Define a puncturing matrix $G_{\text {punc }}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ for above $2 / 3$ example ; then $G(D) \rightarrow\left[\begin{array}{ccc}G(D) & 0 & 0 \\ 0 & G(D) & 0 \\ 0 & 0 & G(D)\end{array}\right] \cdot G_{\text {punc }}$.

Wi-Fi Puncturing - IEEE 802.11 standards (a,g,ac,ax,be)

$$
\begin{gathered}
\text { QAM } \\
X_{n} \\
n=1, \ldots N
\end{gathered}
$$

$$
G_{64}(D)=\left[\begin{array}{cc}
D^{6}+D^{5}+D^{3}+D^{2}+1 & D^{6}+D^{3}+D^{2}+D+1 \\
\hline
\end{array}\right.
$$

block of 6 input bits

$$
r=2 / 3
$$

- Mapper can pick $|C|=4,16,64,256$ QAM ("MCS" mod-code-scheme),
- And $r=1 / 2,2 / 3,3 / 4$.
- 1024 QAM and 4096 QAM may be allowed in some advanced WiFi

Puncturing G(D) example

- $G_{\text {punc }}(D)=G_{\text {punc }}$; max of one 1 in each row/col, rest are 0's.

$$
G_{3 / 4}(D)=G_{64}(D) \cdot\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Tail Biting ~ converts to block code

\boldsymbol{u}_{k-v+1}	\ldots	\boldsymbol{u}_{k}	\boldsymbol{u}_{1}	\boldsymbol{u}_{2}	$\ldots \boldsymbol{u}_{K-v}$	\boldsymbol{u}_{K-v+1}	\ldots	\boldsymbol{u}_{K}

cyclic prefix (not transmitted In conv codes, But encoder processes to set the state)

Packet starts/finishes in same state

- With 2^{v} possible states, the current state is a function only of most recent v input bits.
- This is a mild nonlinearity in the encoding process that becomes neglible with large K, but which can reduce distance (better to terminate).
- The last v bits repeat.
- The packet must be at least v bits long, but in practice this should be small percentage of k (8 input bits below, but repeat the last 2 . These are 00 in example below and not shown; they force a start in state 0$)$. The rate reduction factor is $N /(N+v)$.

Binary Code Use

Section 2.2

Matlab Trellis and Encoding Functions

- Convert $G(D)=\left[\begin{array}{ll}\underbrace{D^{2}+D+1} & \underbrace{D^{2}+1}_{101}\end{array}\right]=\left[\begin{array}{cc}\underset{\text { octal }}{7} & \underbrace{5}_{\text {octal }}\end{array}\right]$ to design. (Code tables appear in octal later.)

>> t.nextStates =
$\mathrm{t}=$ struct with fields:
13

13
numlnputSymbols: 2
numOutputSymbols: 4
numStates: 4
nextStates: [4×2 double]
outputs: [4×2 double]

Matlab's trellis is equivalent and:

- has same set of paths
- but uses different state-labels.
(We'll translate shortly.)
- Encode bit stream

convenc(bits, trellis, init-state) (default is zero)
- This is same code as earlier on slide L7:7.
- ploy2trellis works with any (nofeedback) $G(D)$
- Constraint length $+1 \rightarrow$ value for each row of $k \times n G(D)$
- t.numStates $=2^{v}$
- t.numinputSymbols $=2^{k}$
- t.numOutputSymbols $=2^{n}$

[^0](see https://www.mathworks.com/help/comm/ref/convenc.html)

- Trellis program plotnextstates(t.nextStates)
- I superimposed t.outputs on figure.
- Looks reversed w.r.t. Slide L7:7 ??
- Matlab reversed the state-label bits
- I superimposed t.outputs on figure
- Looks reversed w.r.t. Slide L7:7 ??
• Matlab reversed the state-label bits
- I superimposed t.outputs on figure
- Looks reversed w.r.t. Slide L7:7 ??
- Matlab reversed the state-label bits

numbits=2;
for $\mathrm{i}=1: 4$ for $\mathrm{j}=1: 2$
nst($\mathrm{i}, \mathrm{j})=$ uint16(bin2dec $($ fliplr(dec2bin ...
(oct2dec(t.nextStates (i, j)),numbits))));
end end

>>cst=bin2dec(fliplr...
$($ dec2base $(0: 3,2)))=$
0
2
1
3

Plot of NextStates Matrix
dec(fliplr...
$(0: 3,2))=$

With Feedback

- Matlab's nextStates \& outputs don't always obey inputs clockwise 0 to 11... 1 on branches.

```
>> t3=poly2trellis(3,[7 5],7) =
struct with fields:
    numInputSymbols: 2
    numOutputSymbols: 4
        numStates: }
>> t3.nextStates =
    O
    2 0 -> counter clockwise
    3 1
1 3 counter clockwise
>> t3.outputs =
    0 3
    0 3, so outputs reversed
    1 2
    1 2, so outputs reversed
    M,
    M,
>> distspec(t3,1) =
    dfree: 5
    weight: }3\mathrm{ (input bit errors, Nb)
    event: 1
```


- Trellis is same as non-feedback (non-systematic) code, with a lot of labelling care!
- Mapping to input bits is different:

A rule to avoid (e.g. Matlab's) ugly trellises

 - See Slide L7:18.

- These have clockwise input-bit branch assignments with Matlab's nextStates, so $0,1,2,3, \ldots 2^{\mathrm{k}}$.

- The systematic (minimal) encoder, like $G_{s y s}(D)=\left[\begin{array}{ll}1 & \frac{1+D^{2}}{1+D+D^{2}}\end{array}\right]$, produces the same code.
- This has different input-sequence assignments to codewords, but all inputs map 1-to-1 to one another anyway.
- Take the inputs $u(D)$ corresponding to any $G(D)$ path and transform them by $u^{\prime}(D)=\frac{u(D)}{1+D+D^{2}}$.
- $u^{\prime}(D)$ into $G(D)$ produces the same output as $u(D)$ into $G_{s y s}(D)$. (so map 1-to-1 on side $u^{\prime}(D)$ <-> $u(D)$.
- u = conv(gf([1 111$\left.], g f\left(u^{\prime}\right)\right)$; u' = deconv(gf([1 111$\left.], g f(u)\right)$

Soft Decoder - decode the symbol

- The demodulator samples $(\in \mathbb{C})$ pass to the detector for comparison of codewords (subsymbol sequences).
- The \boldsymbol{y} information is "soft" in that it is not pre-quantized into a decision (or at least not to $|C|$ subsymbol values).
- Deployed systems often have ADC on y_{n}; quantize $\frac{d_{\min (|C|)}}{\sigma_{q}}=4^{3}$; i.e., 3 bits cover intra-point distance.
- This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
- Same rule applies per dimension for both ADCs if receiver is in quadrature.
- Total ADC bits will then be these 3 , plus \bar{b}, plus 1-2 bits for peak-to-average (analog coverage), so $b_{A D C}=\bar{b}+4$, or possibly $\bar{b}+5$.

Hard decoder - decode the bit sequence

- Subsymbols are decoded independently - e.g., a "hard" decision.
- The remaining channel is a DMC (most often a BSC) model, to which an outer binary code may also be applied.
- The BEC with the "erasure" output is a first step from hard to soft.

AWGN Error Probability for Conv Codes

- AWGN $\bar{P}_{e}=\bar{N}_{e} \cdot Q\left(\frac{d_{\min }}{2 \sigma}\right)=\bar{N}_{e} \cdot Q\left(\sqrt{d_{\text {free }} \cdot \frac{\varepsilon_{x}}{\sigma^{2}}}\right)=\bar{N}_{e} \cdot Q\left(\sqrt{d_{\text {free }} \cdot \frac{k}{n} \cdot \operatorname{SNR}}\right)$
- Because $d_{\text {min }}=\sqrt{d_{\text {free }} \cdot 4 \cdot \varepsilon_{x}}$
energy-spread reduces energy/subsym (assumes $\frac{1}{T^{\prime}}$ can increase, so no filter on AWGN)
- AWGN $\bar{P}_{b}=\frac{N_{b}}{b} \cdot Q\left(\sqrt{d_{\text {free }} \cdot r \cdot S N R}\right)$
- Where $N_{b}=\sum_{i=1}^{\infty} i \cdot N\left(i, d_{f r e e}\right)$ and $N(i, d)$ for conv code is the number of i-input-bit error events with distance d.
- Finding N_{b} can require exhaustive search in general, but Section 7.2 (Lecture 8) show how to compute $N(i, d)$ for CC.
- Yes, it is equal to Chapter 1's $\sum_{i=1}^{\infty} p_{x}(i) \cdot n_{b}(i)$, which is actually harder to compute.
- BC coding gain $\gamma=10 \cdot \log _{10}\left(r \cdot d_{f r e e}\right)$ (for AWGN with binary subsymbols ..) and energy/bit $\overline{\mathcal{E}}_{b}$.

HAZARD WARNING展 - BINARY CODING THEORIST'S FALLACY - assumes "free bandwidth"
Binary-code fair comparison: hold 2 of $3\left\{\begin{array}{lll}\bar{b} & \bar{\varepsilon}_{x} & \bar{P}_{e}\end{array}\right\}$ fixed and compare $3^{\text {rd }}$;
But $N_{\text {coded }}=\frac{1}{r} \cdot N_{\text {uncoded }}$ so then BOTH $\bar{\varepsilon}_{x} \& \bar{b}$ decrease for coded w.r.t uncoded (\sim holding power \& rate constant), not fair.
$\bar{b}_{\text {coded }}=r \cdot \bar{b}_{\text {uncoded }} \quad \overline{\mathcal{E}}_{x, \text { coded }}=r \cdot \overline{\mathcal{E}}_{x, \text { coded }} ;$ So $\mathcal{E}_{b}=\frac{\bar{\varepsilon}_{x}}{\bar{b}}$ is the same, BUT $W \cdot T \rightarrow W \cdot T / r$

[^1]
BSC Error Probability

- $\left.\operatorname{BSC} \bar{P}_{e}=\bar{N}_{e} \cdot[4 p(1-p)]^{\frac{d_{\text {free }}}{2}}\right]$
- $\left.\operatorname{BSC} \bar{P}_{b}=\frac{N_{b}}{b} \cdot[4 p(1-p)]^{\left\lvert\, \frac{d_{\text {free }}}{2}\right.}\right)$
- Chapter 1's B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).
- Fair-comparison discussion is for AWGN.
- Strictly speaking with BSC, data rate must reduce to improve with codes.
- From BSC capacity, $r \leq 1+p \cdot \log _{2} p+(1-p) \cdot \log _{2}(1-p) \leq 1$ for reliable transmission with a code $0<p<\frac{1}{2}$.

Coding Tables -best known rate ½ conv codes

- Section 8.2 - Conv Code Tables see the octal entries, chap 8 [6])

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$d_{\text {free }}$	γ	(dB)	N_{e}	N_{1}	N_{2}	N_{b}	L_{D}
4	7	5	5	2.5	3.98	1	2	4	1	3
8	17	13	6	3	4.77	1	3	5	2	5
16	23	35	7	3.5	5.44	2	3	4	4	8
$(2 \mathrm{G}) 16$	31	33	7	3.5	5.44	2	4	6	4	7
32	77	51	8	4	6.02	2	3	8	4	8
64	163	135	10	5	6.99	12	0	53	46	16
$(802.11 \mathrm{a}) 64$	155	117	10	5	6.99	11	0	38	36	16
$(802.11 \mathrm{~b}) 64$	133	175	9	4.5	6.53	1	6	11	3	9
128	323	275	10	5	6.99	1	6	13	6	14
256	457	755	12	6	7.78	10	9	30	40	18
2 G$) 256$	657	435	12	6	7.78	11	0	50	33	16
512	1337	1475	12	6	7.78	1	8	8	2	11
1024	2457	2355	14	7	8.45	19	0	80	82	22
2048	6133	5745	14	7	8.45	1	10	25	4	19
4096	17663	11271	15	7.5	8.75	2	10	29	6	18
8192	26651	36477	16	8	9.0	5	15	21	26	28
16384	46253	77361	17	8.5	9.29	3	16	44	17	27
32768	114727	176121	18	9	9.54	5	15	45	26	37
65536	330747	207225	19	9.5	9.78	9	16	48	55	33
131072	507517	654315	20	10	10	6	31	58	30	27

Table 8.1: Rate 1/2 Maximum Free Distance Codes

$$
\begin{aligned}
& L_{D}=\text { length of } \\
& \text { Min-dist event }
\end{aligned}
$$

> >> t8=poly2trellis $\left(4,\left[\begin{array}{ll}17 & 13\end{array}\right]\right)=$ numInputSymbols: 2 numOutputSymbols: 4 numStates: 8
> nextStates: $[8 \times 2$ double $]$ outputs: $[8 \times 2$ double] >> plotnextstates(t8.nextStates)

Best rate- $1 / 3$ convolutional codes

- Codes listed for other rates, example $1 / 3$ here, see Sec 8.2 for $1 / 4,2 / 3,3 / 4$,

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$g_{13}(D)$	$g_{14}(D)$	$d_{\text {free }}$	γ	(dB)	N_{e}	N_{1}	N_{2}	N_{b}	L_{D}
4	7	7	7	5	10	2.5	3.98	1	1	1	2	4
8	17	15	13	13	13	3.25	5.12	2	1	0	4	6
16	37	35	33	25	16	4	6.02	4	0	2	8	7
32	73	65	57	47	18	4.5	6.53	3	0	5	6	8
64	163	147	135	135	20	5	6.99	10	0	0	37	16
128	367	323	275	271	22	5.5	7.40	1	4	3	2	9
256	751	575	633	627	24	6.0	7.78	1	3	4	2	10
512	0671	1755	1353	1047	26	6.5	8.13	3	0	4	6	12
1024	3321	2365	3643	2277	28	7.0	8.45	4	0	5	9	16
2048	7221	7745	5223	6277	30	7.5	8.75	4	0	4	9	15
4096	15531	17435	05133	17627	32	8	9.03	4	3	6	13	17
8192	23551	25075	26713	37467	34	8.5	9.29	1	0	11	3	18
16384	66371	50575	56533	51447	37	9.25	9.66	3	5	6	7	19
32768	176151	123175	135233	156627	39	9.75	9.89	5	7	10	17	21
65536	247631	264335	235433	311727	41	10.25	10.1	3	7	7	7	20

- Code complexity measure $N_{D}=\underbrace{2^{v}}_{\text {states }} \cdot(\underbrace{2^{k}}_{\text {adds }}+\underbrace{2^{k}-1}_{\text {compares }})$

Design Example

- An AWGN has SNR $=5 \mathrm{~dB}$.
- The uncoded $(M=2)$ error rate is $P_{e}=Q\left(10^{5 / 20}\right)=.0377$ (not very good).
- A better design uses best 64-state rate $r=1 / 2$ code, so bandwidth expands by $2 x$.
- The gain is 7 dB .
- New $P_{e}=Q\left(10^{(5+7) / 20}\right)=3.4303 \mathrm{e}-05$ (better, see Slide L7:33's table for this code).
- To get $P_{e} \approx 10^{-6}$?
- Need 8.5 dB of coding gain with rate $1 / 2$, so use this table's 1024 -state code
- $P_{e}=Q\left(10^{(5+8.5) / 20}\right) \approx 10^{-6}$
- Encoder is $G(D)=[\underbrace{1+D+D^{2}+D^{3}+D^{5}+D^{8}+D^{10}}_{2457} \underbrace{1+D^{2}+D^{3}+D^{5}+D^{6}+D^{7}+D^{10}}_{2355}]$

> 1024 is a lot of states: larger distances may have large N_{i} that increase P_{e}. Design instead should use better (not CC) code (see Lectures 9-10).

The 7 dB and 8.5 dB here often reduce in practice to about $5.5-6.0 \mathrm{~dB}$, because of large N_{i}.

Mappings to M’ary Constellations: BICM

Sections 2.2, 8.1.7

BICM Basic concept

- The interleaver π reorders adjacent bits, and the deinterleaver π^{-1} causes $p_{y /\left[v_{i}, v_{i+L-1}\right]}=p_{y / v_{i}} \ldots p_{y / v_{i+L-1}}$.
- Deinterleaving restores the original order but spreads a large channel-error/noise event over several codes.
- L is the interleaver's "depth"- L9 has more on depth (Section 8.3).
- Each code sees an independent channel - so each is like a BSC or AWGN.
- EVEN WHEN AWGN and the SNR supports M-ary PAM (or SQ QAM) with $M>2$ (4).
- Without interleaving, a single large noise could cause multiple bit errors in presumably a single applied code.

Gray Mapping and distance preservation

- Gray Coding (almost) maintains coding gain γ with (one-dimensional) $|C|=2^{\bar{b}+\bar{\rho}}>2$.
- Coded M-ary retains $d_{\text {min }} \geq 4 \cdot d_{\text {free }} \cdot \bar{\varepsilon}_{x}$ for M-ary SQ QAM.
- This applies well to PAM, or SQ-QAM, (in effect Cartesian product of 2 PAMs) and Gray Code.

- So, with Gray Code, $\bar{P}_{b}=\frac{N_{b}}{b} \cdot Q\left(\sqrt{\frac{3}{|C|^{2}-1} \cdot \gamma \cdot S N R}\right)$ where again $\gamma=r \cdot d_{f r e e}$.
- Exact ONLY IF 1-dimensional $|C|$ remains the same for coded and uncoded, but what about $\frac{1}{T^{\prime}} \rightarrow \frac{1}{r \cdot T^{\prime}}$??

M’ary PAM: approx constant- Γ puncturing with binary code

- $d_{\text {free }}=\infty$ for $\Gamma=0 \mathrm{~dB}$ gap, but also $|C|=\infty$, so theoretically must work with some good codes that look similar.
- For the 64 -state Wi-Fi code, $\gamma=7 \mathrm{~dB}$, but $\gamma_{s} \rightarrow 1.53 \mathrm{~dB}$ for large $|C|$, and this reduces the 7 dB gradually. For this code the gap would be, at $P_{e}=10^{-6}, 8.8-7+1.5$ or 3.3 dB, leaving $\gamma_{c}=5.5 \mathrm{~dB}$ for the larger constellations.
- Even with reasonable puncturing, this code eventually looses gain with large $|C|$, so has increasing gap (and thus needs more than $6 \mathrm{~dB} /$ bit-dimension to increase $|C|$, but they use it anyway).
- There are larger- N binary block codes (LDPC, product) that offer more continuous puncturing options so the $d_{\text {min }}$ choices (w.r.t r) help offset the constellation-increase.
- In reality, with many nearest neighbors with BICM, puncturing is "about as good as it gets" with binary codes that ignore the constellation.
- Iterative decoding (see L9) between constellation and binary-code can restore the constant gap at its best value (so account for the constellation).
- 64 -state $r=1 / 2$'s 7 dB is really for $b<1$ where shaping improvement is negligible. It can be restored with shaping codes (see Section 8.5 , not taught).
- There are "trellis codes" that well-hold constant gap, but their best gaps are below those of the BICM with convolutional codes.
- If there was one giant ML decoder for the aggregate of $\log _{2}|C|$ codes (large N), the interleaving is unnecessary.
- This aggregate code is NOT just the single binary code.

Mapping by set-partitioning (Trellis Codes)

- Trellis Codes (Ungerboeck, IBM) were popular, and a major intermediate step for M’ary in 1990's.
- They also have simpler ML decoders.
- TCs have coding gain limits below best codes (roughly 2 dB less than Gray codes with good binary codes).
- See Appendix B.

End Lecture 7

[^0]: TRELLIS = poly2trellis(nu+1, Gnum, Gdenom) is the same as the first syntax, but for a feedback convolutional encoder.

 - Gdenom is a 1-by-k vector of octal numbers specifying the
 feedback connection for each of the kinputs. It will be GCM of denoms in each row. only works when $\mathrm{k}=1$ unfortunately (matlab bug).

[^1]: So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate; adding a code to reduce rate is somewhat antithetical to Shannon if $R<C$. Increasing W is "cheating."

