
Lecture 7
Binary Codes and BICM

January 30, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

J O H N M . C I O F F I

January 30, 2024

Announcements & Agenda
§ Announcements

• PS3 due tomorrow
• PS4 due Feb 6, no late (solutions immediate)
• Midterm Feb 8 (PS5 the following week)

• Open book, laptop, internet
• In class (or other arrangements)

• Web site is usually best place for latest copy
• Canvas uses R1, R2, … notation so you can see history

• Removed by SU after quarter end
• The Edstem page (responding there also)

• Just arrived this morning for me, and I responded.
• Feedback

• 6-15 Hours
• Ethan very much appreciated.
• Homework extends understanding.

L7: 2

§ Today
• Finish L6
• Binary Codes in GF(2) – Basics

• Convolutional code tables
• Block code parametrization (LDPC)

• Binary Code Use
• Mappings to M-ary Symbols: BICM

§ Problem Set 4 = PS4 due Tuesday February 6 at 17:00, no late
1. 8.1 A convolutional encoder and code
2. 8.2 Systematic encoders
3. 8.4 A fool’s code
4. 8.5 power-bandwidth trade at !𝑏 < 1
5. 8.8 code for satellite transmission

§ PS3.1 (1.63)
• 𝐿(𝑑)	is an overall gain multiplier applied to each (all) multipaths
• Equivalently to the entire channel response
• 𝑑!" is a specific model parameter (simplified Wi-Fi) where an extra attenuation factor applies for

distances longer than this “break-point” distance

§ PS3.2 (1.65)
• For the last part, the number of samples per try might best be 100k , not 10k

• This gives a little more accurate match between theory and simulation.

Finish L6

January 30, 2024
L1:3

Sections 2.1-2

Symmetric DMC

Modern Powerful codes

• 𝛾! is large, equivalently can be reliably decoded (low Pe).

• 𝛾! is large with good long-length binary codes:
Ø With binary-to- 𝐶 “mapper” for larger QAM constellations
Ø But leaves shaping (𝛾!) to the constellation boundary design (< 1.53 dB).

January 25, 2024 L7: 4

AWGN
Inner
Code

“mapper”

Compute
Soft Info

Or
Hard Decision

Interleave
or product

De-
interleave

Outer
BINARY
encoder

Decoder

Section 2.1.4

Encoder

message "𝑏 + %𝜌	bits
𝒖!

"𝑏	bits -𝑁	dimensions

𝑓 𝑢&, 𝑠&
𝒗!

§ Inputs have "𝑏 − usually bits.
§ Outputs are %𝑁 −dimensional.

• When "𝒙 ∈ ℂ'𝑵 à Trellis Code.
• When !𝒙 = 𝒗 ∈ 𝐺𝐹(2)!𝑵 à Binary convolutional code.

January 25, 2024

Generalization: Sequential Encoder & Mapper

L7: 5

𝐷
n bits

state
out

state
in

𝑠!
𝑠!&'

𝑔 𝑢&, 𝑠&

This``fakes’’ a larger block length
with finite real-time complexity/delay

Semi-infinite sequences

𝒖 𝐷 =$
!

𝒗! & 𝐷!

𝒗 𝐷 =$
!

𝒗! & 𝐷!

𝒙 𝐷 =$
!

(𝒙! & 𝐷!

§ Trellis or Convolutional Codes (see feedback below) have model:

Section 2.2.4

subsymbol

Constellation
Mapper
𝐶 = 2 "#$%&

	possible	values

6𝒙!

𝐶 = 2 "#$%&
possible	values

Binary Codes in GF(2) -
Basics

January 30, 2024
L1:6

Section 8.1

January 30, 2024

Example, rate 𝑟 = ½ convolutional code

L7: 7

𝒗 𝐷 = 𝑢 𝐷 & 1 + 𝐷 + 𝐷' 1 + 𝐷'
	

) *
𝐺(𝐷) = 𝑘	×	𝑛	 generator matrix, elements/ops in 𝐺𝐹 2 = 𝔽(.

𝐻(𝐷) is an 𝑛 − 𝑘 ×	𝑛	 parity matrix, null space of 𝐺(𝐷), 𝐺(𝐷) F 𝐻)(𝐷) = 0,
	 𝐻 𝐷 = 1 + 𝐷' 1 + 𝐷 + 𝐷'

Trellis stage for
each time 𝑚 has

2 possible output
Subsymbols,
𝑛 = 2.

Encoder is in 1 of
4 STATES,
𝜈 = 2.

Section 8.1.4

0 3

2 1

3 0

1 2

00

01

10

11

00

01

10

11

0 3

3 0

2 1

1 2

𝑣#,% 𝑣&,%
𝑠& 𝑠'

𝑢(= 0

𝑢(= 1

𝑣#,(𝑣&,(=(0,0) = 0
𝑣#,(𝑣&,(=(0,1) = 1
𝑣#,(𝑣&,(=(1,0) = 2
𝑣#,(𝑣&,(=(0,1) = 3

Trellis

𝑢()# 𝑢()&

Input
bit

D D

⊕
𝑘 = 1 𝑛	 = 2

𝑠&,(𝑠',(

𝑣#,(

𝑣&,(

⊕ ⊕

𝑢(

𝜈 = 2

𝑑4566 = 5

!𝑏 =
1
2

�̅� =
1
2

!𝑏+ �̅� = 1

Output
bits

states

§ Other paths are possible, indeed 63 more of them (if initial state known as shown ---).

January 30, 2024

Example with 6 bits of input (12 output)

L7: 8

00 00 00

0

00 11 01

Cardinal is sequence or path corresponding to input bits below trellis (outputs blue).

0 10 0 1

§ Each path has 12 output bits,
• and there is 1-to-1 map if we know initial state.
• The other possible “unknown-initial-state” paths differ only in first 𝜈 = 2 stages.

Section 8.1.4

January 30, 2024

Binary Codewords & Sequences
§ Galois Field 2 à GF(2), or 𝔽., is the binary field of two elements 0 , 1 or bits - See Appendix B.

• Addition is ``exclusive or,’’ ⨁ .
• Multiplication is “and,” ∧ , which this class writes as “& ”.
• No complex variables exist in our finite fields (not in this class).

§ Block codes’ codewords are finite sequences of 𝑛 ≜ 𝑁 binary subsymbols.
§ Convolutional codes’ codewords are semi-infinite sequences of 𝑛 ≜ (𝑁-dimensional binary-vector

subsymbols.
• Sequence time index is 𝑚, which has D-Transform notation 𝑎 𝐷 = ∑&/011 𝑎& 2 𝐷& .

L7: 9Section 8.1.1

§ The ring of finite-length binary sequences is
𝐹 𝐷 ≜ 𝑎 𝐷 E𝑎 𝐷 = ∑!7899 𝑎! & 𝐷! , 𝑎! ∈ 𝔽'	, 𝜈 ∈ 0, 𝑍$.

§ The field of causal infinite-length binary sequences is

𝐹5 𝐷 =≜ 𝑐 𝐷 M𝑐 𝐷 = : *
*

, 𝑎 𝐷 , 𝑏 𝐷 ∈ 𝐹 𝐷 , 𝑏 𝐷 ≠ 0	⋀ 	𝑏;= 1 , ~ long division

𝐷 is dummy variable, 𝐷⨁𝐷 = 0 ; 𝐷* ? 𝐷(= 𝐷*+(.

January 30, 2024

Sequence parameters
§ Sequence delay is

• 𝑑𝑒𝑙 𝑎 = min
!

𝑎! = 1 (𝑎 𝐷 = 0 → 𝑑𝑒𝑙 = ∞)
• Lowest power of 𝐷
• 𝑑𝑒𝑙 𝑔 = 4 .

L7: 10

§ Sequence degree is
• 𝑑𝑒𝑔 𝑎 = m𝑎𝑥

!	
𝑎! = 1 	 (𝑎 𝐷 = 0 → 𝑑𝑒𝑙 = −∞)

• Highest power of 𝐷
• 𝑑𝑒𝑙 𝑔 = 9 .

𝑚
4 5 6 7 8 9

𝑔 𝐷 = 𝐷@ + 𝐷A + 𝐷B

§ Sequence length is
• 𝑙𝑒𝑛 𝑎 = 𝑑𝑒𝑔 𝑎 − 𝑑𝑒𝑙 𝑎 + 1	; 𝑙𝑒𝑛 0 = 0
• len 𝑔 = 6 .

𝑑𝑒𝑙 𝑔 𝑑𝑒𝑔 𝑔

𝑙𝑒𝑛 𝑔

Section 8.1.1

§ Constraint length is
• 𝜈 = 𝑙𝑒𝑛 𝑎 − 1= 𝑑𝑒𝑔 𝑎 − 𝑑𝑒𝑙 𝑎 or number of delay elements if 𝑎 𝐷 	has feedback.

January 30, 2024

LINEAR Binary Code

L7: 11

Code = outputs

𝐺(𝐷)
𝒖! = 𝑢C,! 	 ⋯	𝑢',!	 𝑢E,! 𝒗! = 𝑣F,! 	 ⋯	𝑣',!	 𝑣E,!

When G 𝐷 = 𝐺 0 , it is a block code, otherwise a convolutional code .

0 → −1
1 → +1

AWGN modulator/mapper
(omit for BSC)

𝒙!

§ Linear Binary Code is a set of binary sequences such that

• 𝐶 𝐺 ≜ 𝑣 𝐷 | 𝑣 𝐷 = 𝑢 𝐷) 𝐺 𝐷 , 𝑢 𝐷 ∈ 𝐹8 𝐷 .

• Rate 𝑟 = 𝑘/𝑛 , so conv codes often use 𝑚 as a time index.

• Systematic if 𝑣9:; = 𝑢<:; , 𝑖 = 0,… , 𝑘 − 1 for all times 𝑚.

• Free Distance 𝑑=8>> = min
𝒗@𝒗A

𝑑B 𝒗 , 𝒗′ .

Earlier example? 𝐺 𝐷 = 1 + 𝐷 + 𝐷2 1 + 𝐷2

Section 8.1.2

January 30, 2024

Syndrome Decoding for Linear (binary) Block Codes
§ Parity Matrix

• 𝐻 is a 𝑛 − 𝑘 × 𝑛 binary matrix such that 𝒗 2 𝐻3 = 0 , ∀ 𝑣 ∈ 𝐶
• 𝐺 & 𝐻G = 0
• 𝐻 is a generator too (dual code, rate 1 − 𝑟), and spans the null space of 𝐺.

• The generator and parity matrices together span 𝐺𝐹(2) # = 𝒖 2 𝐺 ∪ 𝒖′ 2 𝐻 .
• This is the same concept as a real/complex matrix’ pass and null spaces, but with finite field.

§ Binary-channel output 𝒚 = 𝒗⊕𝒆 ; 𝒆 is the error sequence.

L7: 12

𝒔 = 𝒚 F 𝐻) = 𝒆 F 𝐻) is the 1× 𝑛 − 𝑘 syndrome vector.

§ ML Decoder finds the smallest Hamming weight 𝒆 that solves this equation for the given 𝒔.
• There are fancy algorithms that find this finite-field pseudoinverse efficiently for certain linear codes.

§ For present discussion, store 29:< values of 𝒆 in a look-up table.

§ 0𝒗 = 𝒚⊕𝒆 à 0𝒖 = 𝐺:N 3 0𝒗 (for systematic codes, this is simply 4𝑢<:; = 4𝑣9:;	 , 𝑖 = 0,… , 𝑘 − 1).

𝐻) 𝐻) & 𝐺*' h𝒖𝒚
𝒔 𝒆

⊕
h𝒗

look-up
table

Not in text yet

January 30, 2024

LINEAR Block-Code example Hamming (7,4) code

L7: 13

§ 𝑘 = 4 ; 𝑛 = 7

§ Systematic 𝐺 =
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

= [𝐼 ℎO]

§ Parity 𝐻 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

[Q R]

; 𝐺 3 𝐻O = 0

§ Rate/redundancy
• 𝑟 = !𝑏 = 4

5

• �̅� = 6
5

• !𝑏+ �̅� = 1

§ Performance 𝑑=8>> = 3
• 𝜈 = 0

𝒗 = 𝒖 F 𝐺
𝑢@

𝑢H

𝑢'

𝑢E

𝑣I

𝑣A

𝑣J

𝑣@

𝑣H

𝑣E

⨁⨁
⨁⨁

⨁⨁

𝑣'

only corrects a single error, but
l𝑏 = 4/7 > 1/3 majority- vote

General Hamming Code
Integer parameter 𝑝 ≥ 2

𝑛 = 2$ − 1	; 	 𝑘 = 𝑛 − 𝑝

𝑟 = 𝑘/𝑛 & 𝑑%&'' = 3
>> p=3;
>> [H,G]=hammgen(p);
>> G(end:-1:1,end:-1:1)
>> H(end:-1:1, end:-1:1)
Column/row permutaitons
(reindexing) does not change code.

>> G(end:-1:1,end:-1:1) =
 1 0 0 0 1 0 1
 0 1 0 0 1 1 1
 0 0 1 0 1 1 0
 0 0 0 1 0 1 1

>> H(end:-1:1,end:-1:1) =
 1 1 1 0 1 0 0
 0 1 1 1 0 1 0
 1 1 0 1 0 0 1

>> gf(G)*gf(H')=
 0 0 0
 0 0 0
 0 0 0
 0 0 0

Sec 8.2.2.1

§ General Hamming Codes – choose number of parity bits 𝑝 ≥ 2.
• so 𝑛 = 2K − 1 ; 𝑘 = 𝑛 − 𝑝 , 𝑑4566 = 3 , rate 𝑟 → 1 as 𝑛 → ∞.
• Enumerate indices 𝑖 = 1,… , 2K −1 as binary 𝑝-digit values for 𝐻 (rearrange to systematic):

January 30, 2024

General Hamming (higher SNR)

L7: 14

𝐺 =
	1	0	0	0	1	0	1
	0	1	0	0	1	1	1
	0	0	1	0	1	1	0

	

0	0	0	1	0	1	1

𝐻 =
1	1	1	0	1	0	0
0	1	1	1	0	1	0
1	1	0	1	0	0	1

§ Expanded Hamming Codes (expansion applies all odd length
linear-binary codes)
• Expand codeword length by 1 redundant bit, so 𝑛 = 2K .

• 𝑘 = 𝑛 − 𝑝 − 1 .
• First add column of all zeros to (previous Hamming parity matrix) 𝐻

>> Hext=[H , zeros(3,1) ;(ones(1,8))] % =
 1 0 0 1 0 1 1 0
 0 1 0 1 1 1 0 0
 0 0 1 0 1 1 1 0

Use for SNRs > 3 dB
Sec 8.2.2.1

• The last 𝑝 bits (last 𝑝 columns) appear only once in 𝒗 & 𝐻G = 0 and sum other 1-positions’ bits.
• It is easily possible to add 3 𝐻 columns to zero, confirming 𝑑7899 = 3.
• Clever rearranging of 𝐻’s columns can cause the syndromes 3-bit value to be the position of a

single bit error (more than 1 bit error cannot be corrected).

1 1 1 1 1 1 1 1
>> Hprime=inv(gf(Hext(1:4,1:4)))*gf(Hext) % =
 1 0 0 0 1 1 0 1
 0 1 0 0 0 1 1 1
 0 0 1 0 1 1 1 0
 0 0 0 1 1 0 1 1
>> Hsys=[Hprime(1:4,5:8) Hprime(1:4,1:4)]
 1 1 0 1 1 0 0 0
 0 1 1 1 0 1 0 0
 1 1 1 0 0 0 1 0
 1 0 1 1 0 0 0 1

• Then add row of all ones (overall parity check, which increases
distance by 1 if all-zeros column was first added) 𝑑4566 = 4.

§ Hadamard is low-SNR binary code and has:
• Large 𝑑4566 = 𝑛/2,
• Small rate 𝑟 ≪ 1
• All codewords are mutually orthogonal (in 𝐺𝐹(2)),

• SO KIND OF LIKE BINARY ORTHOGONAL.
• All codewords have weight 𝑛/2.

January 30, 2024

Hadamard Codes (low SNR)

L7: 15

General Hadamard Code
𝑛 = 2:	; 	 𝑘 = log2 𝑛

𝑟 = 𝑘/2: for 𝑑7899 = 𝑛/2

n=16;
k=log2(n);
Gtemp=dec2bin(0:2^k-1)’;
 G=zeros(k,n);
 for i=1:k for j=1:n
 G(i,j)=bin2dec(Gtemp(i,j));
 end ; end
>> G % =
 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 x 16 (n=16, k=4, dfree is 8)

§ Augmented Hadamard code:
• Has 𝑛 = 2!	; 	 𝑘 = 𝑚 + 1	; 	𝑑4566 = 𝑛/2 ,
• Takes only columns of 𝐺(𝑚+ 1) that start with 1.
• Is dual code of Expanded Hamming with codeword length 𝑛/2.

§ Hadamard generator forms from 0: 2< − 1 in binary

gf(G)*gf(G)’ % =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

Sec 8.2.2.2

GA=G(:,8:16) =
 0 1 1 1 1 1 1 1 1
 1 0 0 0 0 1 1 1 1
 1 0 0 1 1 0 0 1 1
 1 0 1 0 1 0 1 0 1

4 x 8 (n=8, k=4, m=3), dfree is now 4

• Each of its 𝑛 rows/columns are orthogonal to one another in 𝐺𝐹(2).
• All zeros is a codeword, but all other codewords have at least	𝑛/2	 1’s.
• For parity, note the k systematic columns are there, so group them.

• The rest is then ℎ(for systematic parity matrix.

There is a matlab Hadamard command that generates the
unitary Walsh-Hadamard Transform matrix of +/- 1’s.

This is related and used in multiuser systems, but easier
to create generator as shown above.

§ encode.m – handles Hamming or general linear (binary).

January 30, 2024

Matlab binary block codes

L7: 16

codeword = encode(inbits, n, k, 'hamming’)
 % don’t need generator nor parity matrices

§ decode.m – handles Hamming or general linear (binary).

msgbits = decode(y, n, k, 'hamming’)
 don’t need generator nor parity matrices

msgbits = decode(y, n,k, ‘linear’, G)
 use this for Hadamard G or any other linear G

These functions
for small codes –
could have long

run time for
arbitrary G , which

may have to test
all codewords.

>> y = encode([1 0 1 1 0 1 0 0 0 1 1],15,11,'hamming') =
 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1

>> error=[zeros(1,7) 1 zeros(1,7)];

>> decode(xor(y,error),15,11,'hamming')
1 0 1 1 0 1 0 0 0 1 1

Section 8.2.2.3

codeword = encode(inbits, n,k, ‘linear’, G)
 % if not Hamming, then input generator
 % can also have ‘cyclic’ for cyclic binary codes (eBCH)

No time to present specific decoder simplifications for
Hamming nor Hadamard – however, see L12 GRAND.

§ Cylic Binary (BCH)
§ Reed Muller
§ Polar
§ eBCH
§ Golay
§ “product codes” of the above

§ See EE387
• May have a little more on this in 379B
• Product codes after midterm, L12.

January 30, 2024

Other Binary Block Codes

L1: 17

January 30, 2024

(General) Linear Code Equivalence and Parity

L7: 18

§ Code	Equivalence
• 𝐺L 𝐷 = 𝐴 𝐷

C×C

& 𝐺 𝐷 , 𝐴 𝐷 =	1		(invertible)

• 𝐺L 𝐷 and 𝐺 𝐷 generate	the	same	codewords	(sequences).

§ Alternate	code	description	is
• 𝐶 𝐺 ≜ 𝑣 𝐷 | 𝑣 𝐷 & 𝐻G 𝐷 = 0 , 𝑣 𝐷 ∈ 𝐹5 𝐷

§ 𝐻(𝐷) is a generator for “dual code.”
• Every codeword in dual code is orthogonal to codeword in original code (𝐺).
• High-rate codes are often specified more compactly by 𝐻 𝐷 .

§ Complexity µ = min
] ^ _`a b]

𝜐 .

§ When µ = 𝜈 , 𝐺 𝐷 is a Minimal Encoder.

§ There is always a minimal encoder, and with feedback possible, a minimal
systematic encoder. (See Appendix B – this is non-trivial and not covered.)

The codes we use
here are always

always be minimal

Sections 8.1.2 & B.7

January 30, 2024

4-state example (same code)
§ Premultiply 𝐺 𝐷 = 1 + 𝐷 + 𝐷8 1 + 𝐷8 by feedback 𝐴 𝐷 = 9

9:;:;;
to get systematic equivalent:

• 𝐺NON= 1 E$*)

E$*$*)

§ 𝐺<=< produces the same output bit sequences, but with different input-to-output mapping.
• 𝐺<=< has a different trellis input-bit mapping, but otherwise has all the same paths (infinite length).
• 𝐺<=< has the same free distance and the same number of states.

L7: 19

𝐷 + 𝐷 ++

𝑢′! 𝑣(,!

𝑣',!
𝑠′>,& 𝑠′2,&

Section 8.1.2

January 30, 2024

Puncturing:
§ Uses same base code, but delete some encoder-output bits.

§ Increases rate 𝑟 = ⁄> ? → ⁄> ?@A 𝑖 < 𝑛 − 𝑘 ∈ 𝑍:.

§ Simplifies encoder/decoder implementation (but changes codewords and can lower minimum distance).

§ Example 𝑟 = ⁄9 8→ ⁄B C
• 3 input bits: punctures 2 output bits from 6 output bits: 1 1 0 1 1 0 3 in / 4 out
• Often just 1 1 0 1 1 0

§ Example 𝑟 = ⁄9 8→ ⁄8 B
• 4 input bits punctures 2 bits from 8: 1 1 1 0 1 0 1 1 4 in/6 out

§ If the pattern is regular (so occurs in same way over 𝐿 subsymbol outputs), then

• Define a puncturing matrix 𝐺@ABC=

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
0

for above 2/3 example ; then 𝐺 𝐷 →
𝐺 𝐷 0 0
0 𝐺(𝐷) 0
0 0 𝐺(𝐷)

2 𝐺@ABC .

L7: 20

Regular/periodic
puncturing retains

linear code.

PS8.1.6

May 21, 2018

Wi-Fi Puncturing – IEEE 802.11 standards (a,g,ac,ax,be)

L7: 21

block of 6 input bits
u1 u2 u3 u4 u5 u6

⊕
D D D D D D

⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

input
bits

coded
bits

QAM
Xn

n=1,…N

G64 D()= D6 +D5 +D3 +D2 +1 D6 +D3 +D2 +D+1⎡
⎣⎢

⎤
⎦⎥

G64

block of 12 coded bits
v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC r=3/4

1 1 0
1 0 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC

1 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥ v1 v2 v3 v4 v5 v6

v7 v8 v9 vA vB vC

r=2/3

§ Mapper can pick |C| = 4, 16, 64, 256 QAM (“MCS” mod-code-scheme),
§ And 𝑟 = ⁄> 2 , ⁄2 6 , ⁄6 4.
§ 1024 QAM and 4096 QAM may be allowed in some advanced WiFi

Section 8.1.6.1, PS8.2

January 30, 2024

Puncturing G(D) example

§ 𝐺!"#$ 𝐷 = 𝐺!"#$; max of one 1 in each row/col, rest are 0’s.

L3: 22

𝐺//1 𝐷 = 𝐺21 𝐷 F

1 0 0
0 1 0
0 0 1

	
0 0 0
0 0 0
0 0 0

	
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

	
0 0 0
1 0 0
0 1 0

	
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

	
0 0 1
0 0 0
0 0 0

	
0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

	
0 0 0
0 0 0
0 0 0

	
0 1 0
0 0 1
0 0 0

January 30, 2024

Tail Biting ~ converts to block code

§ With 2! possible states, the current state is a function only of most recent 𝜈 input bits.
• This is a mild nonlinearity in the encoding process that becomes neglible with large 𝐾 , but which can reduce distance (better to terminate).

§ The last 𝜈 bits repeat.
• The packet must be at least 𝜈 bits long, but in practice this should be small percentage of 𝑘 (8 input bits below, but repeat the last 2. These are 00 in example below and

not shown; they force a start in state 0). The rate reduction factor is 𝑁/ 𝑁 + 𝜈 .

L7: 23

𝒖' 𝒖(𝒖3*4⋯ 𝒖3*4&' 𝒖3⋯𝒖5*4&' 𝒖5⋯

cyclic prefix
(not transmitted

In conv codes,
But encoder
processes to
set the state)

𝒗' 𝒗(𝒗3*4⋯ 𝒗3*4&' 𝒗6⋯

Packet starts/finishes in same state

Packet of 𝐾
subsymbols

Output packet
𝑁 = ⁄P 5 subsymbols

0 0←0 0 1 0 1 1
Section 8.2.1.5

Binary Code Use

January 30, 2024 L1:24

Section 2.2

§ Convert 𝐺 𝐷 = 𝐷
% + 𝐷 + 1

&&&

𝐷% + 1
&'&

= ⏟7
($)*+

⏟5
($)*+

to design. (Code tables appear in octal later.)

January 30, 2024

Matlab Trellis and Encoding Functions

L7: 25

>> t=poly2trellis(,	 3	
JK>

, 	 [7	5]	

L M

)

t = struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 4
 nextStates: [4×2 double]
 outputs: [4×2 double]

>> t.nextStates =
 0 2
 0 2
 1 3
 1 3
>> t.outputs =
 0 3
 3 0
 2 1
 1 2

Matlab’s trellis is equivalent and:
 - has same set of paths
 - but uses different state-labels.

(We’ll translate shortly.)

§ This is same code as earlier on slide L7:7.
§ ploy2trellis works with any (nofeedback) 𝐺 𝐷

• Constraint length+1 à value for each row of 𝑘×𝑛 𝐺 𝐷
• t.numStates = 2!
• t.numinputSymbols = 2"
• t.numOutputSymbols = 2#

TRELLIS = poly2trellis(nu+1, Gnum, Gdenom)
 is the same as the first syntax, but for a feedback convolutional encoder.

 - Gdenom is a 1-by-k vector of octal numbers specifying the
 feedback connection for each of the k inputs. It will be GCM of denoms in each row.
 only works when k=1 unfortunately (matlab bug).

§ Encode bit stream >> convenc([0 0 0 0 1 1],t) = 00 00 00 00 11 0 1

𝑖𝑛𝑝𝑢𝑡	𝑏𝑖𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡	𝑏𝑖𝑡𝑠

convenc(bits, trellis, init-state)
(default is zero)

Sec 8.1.5, See PS4.1

§ Trellis program plotnextstates(t.nextStates)

January 30, 2024

Translating Trellises
(see https://www.mathworks.com/help/comm/ref/convenc.html)

§ I superimposed t.outputs on figure.
§ Looks reversed w.r.t. Slide L7:7 ??

• Matlab reversed the state-label bits
numbits=2;
for i=1:4 for j=1:2
nst(i,j)=uint16(bin2dec(fliplr(dec2bin …
(oct2dec(t.nextStates(i,j)),numbits))));
end end

>> nst(cst+1,:)
=
 0 1
 2 3
 0 1
 2 3

>> t.outputs(cst+1,:)
 =
 0 3
 2 1
 3 0
 1 2

>> t2=t; t2.nextStates=nst(cst+1,:);
>> t2.nextStates =
 0 1
 2 3
 0 1
 2 3

>> t2.outputs=t.outputs(cst+1,:);
>> t2.outputs =
 0 3
 2 1
 3 0
 1 2

Now it’s same as L7:7

>> convenc([0 0 0 0 1 1],t2) = 00 00 00 00 11 01

>>cst=bin2dec(fliplr…
(dec2base(0:3,2)))=
 0
 2
 1
 3 N|N+1 N|N+1

State Transition

00/0

01/1

10/2

11/3In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

00/0

01/1

10/2

11/3 Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)0 3

3 0

2 1

1 2

0 3

2 1

3 0

1 2

𝑑,-.. = 5	, 𝑁. = 1	, 𝑁! = 1
>> t.nextStates =
 0 2
 0 2
 1 3
 1 3
>> t.outputs =
 0 3
 3 0
 2 1
 1 2

plotnextstates(t2.nextStates)

N|N+1 N|N+1
State Transition

00/0

01/1

10/2

11/3In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

00/0

01/1

10/2

11/3 Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)0 3

3 0

2 1

1 2

0 3

3 0

2 1

1 2

Sec 8.1.5

§ Matlab’s nextStates & outputs don’t always obey inputs clockwise 0 to 11…1 on branches.

January 30, 2024

With Feedback

L7: 27

>> t3=poly2trellis(3,[7 5],7) =
 struct with fields:
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 4

>> t3.nextStates =
 0 2
 2 0 à counter clockwise
 3 1
 1 3 à counter clockwise
>> t3.outputs =
 0 3
 0 3 , so outputs reversed
 1 2
 1 2 , so outputs reversed
>> distspec(t3,1) =
 dfree: 5
 weight: 3 (input bit errors, Nb)
 event: 1

N|N+1 N|N+1
State Transition

00/0

01/1

10/2

11/3In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

00/0

01/1

10/2

11/3 Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)0 3

 3 0

 2 1

§ Trellis is same as non-feedback (non-systematic) code, with a lot of labelling care!
§ Mapping to input bits is different:

>> t.nextStates =
 0 2
 0 2
 1 3
 1 3
>> t.outputs =
 0 3
 3 0
 2 1
 1 2

>> convenc([0 0 0 0 1 1],t3,0)= 00 00 00 00 11 10

0 3

2 1

3 0

1 2

Sec 8.1.5, See PS4.2

§ Always use the nonsystematic (minimal) encoder, like 𝐺 𝐷 =
1 + 𝐷 + 𝐷'

&&&

1 + 𝐷'

E;E
= ⏟7

($)*+
⏟5

($)*+
.

• See Slide L7:18.
§ These have clockwise input-bit branch assignments with Matlab’s nextStates, so 0,1,2,3, … 2k.

January 30, 2024

A rule to avoid (e.g. Matlab’s) ugly trellises

L7: 28

§ The systematic (minimal) encoder, like 𝐺<=< 𝐷 = 1	 E$*$

	 E$*$*$
, produces the same code.

• This has different input-sequence assignments to codewords, but all inputs map 1-to-1 to one another anyway.

§ Take the inputs 𝑢(𝐷)	corresponding to any 𝐺 𝐷 path and transform them by 𝑢> 𝐷 = "(@)
&B@B@T .

§ 𝑢> 𝐷 into 𝐺 𝐷 produces the same output as 𝑢(𝐷) into 𝐺<=< 𝐷 . (so map 1-to-1 on side 𝑢> 𝐷 <-> 𝑢(𝐷).
• u = conv(gf([1 1 1], gf(u’)) ; u’ = deconv(gf([1 1 1], gf(u))

⋰

0

1

2C − 1

Not in text yet

§ The demodulator samples (∈ ℂ) pass to the detector for comparison of codewords (subsymbol sequences).

§ The 𝒚 information is “soft” in that it is not pre-quantized into a decision (or at least not to 𝐶 subsymbol values).

§ Deployed systems often have ADC on 𝑦B ; quantize N%&' O
P(

= 46 ; i.e., 3 bits cover intra-point distance.
• This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
• Same rule applies per dimension for both ADCs if receiver is in quadrature.
• Total ADC bits will then be these 3, plus G𝑏 , plus 1-2 bits for peak-to-average (analog coverage), so 𝑏)*+ = G𝑏 +4, or possibly G𝑏 +5 .

January 30, 2024

Soft Decoder – decode the symbol

L7: 29Section 2.2.1

Simple
Mod

!N 	dimensions/sub-sym
e.g.,	QAM,	PAM

+

AWGN
𝑥 𝑡

𝑝=/D = 2𝜋𝜎% EF/% 3 𝑒E 𝒚E𝒙 T/%IT

Soft Decoder
Simple
demod

ML
Det for code
over AWGN

W𝒙
𝒙

Finite
Real-Time

Complexity

§ Subsymbols are decoded independently – e.g., a “hard” decision.

§ The remaining channel is a DMC (most often a BSC) model, to which an outer binary code may also be applied.

§ The BEC with the “erasure” output is a first step from hard to soft.

January 30, 2024

Hard decoder – decode the bit sequence

L1: 30

Simple
Mod

!N 	dimensions/sub-sym
e.g.,	QAM,	PAM

x t()
+

AWGN Hard Decoder

BSC with p bit-error prob
Or DMC with |C| ins/outs

Simple
demod

Simple
Subsymbol Det

																								
py/x=

1−p y=x
p y≠x

⎧
⎨
⎪

⎩⎪

! "## $##

𝒙 ML
Det for code

over BSC/DMC

p= Pb

W𝒙

Section 2.2.2

§ AWGN G𝑃, = J𝑁, L 𝑄
-/01
./

= J𝑁, L 𝑄 𝑑01,, L
ℰ2
/3

= J𝑁,L 𝑄 𝑑01,, L
"
#
L 𝑆𝑁𝑅

• Because 𝑑(45= 𝑑,-.. Q 4 Q ℰ6

January 30, 2024

AWGN Error Probability for Conv Codes

L7: 31

energy-spread reduces energy/subsym
(assumes E

UL
 can increase, so no filter on AWGN)

§ AWGN A𝑃P =
QT
P
C 𝑄 𝑑RSTT C 𝑟 C 𝑆𝑁𝑅

• Where 𝑁U=∑V/>1 𝑖 L 𝑁 𝑖, 𝑑7899 and 𝑁 𝑖, 𝑑 for conv code is the number of 𝑖-input-bit error events with distance 𝑑 .
• Finding 𝑁U can require exhaustive search in general, but Section 7.2 (Lecture 8) show how to compute 𝑁 𝑖, 𝑑 for CC.
• Yes, it is equal to Chapter 1’s ∑V/>1 𝑝W 𝑖 L 𝑛U 𝑖 , which is actually harder to compute.

§ BC coding gain 𝛾 = 10 C log9U 𝑟 C 𝑑RSTT (for AWGN with binary subsymbols ..) and energy/bit ̅ℰP .

HAZARD WARNING☠ – BINARY CODING THEORIST’S FALLACY – assumes “free bandwidth”

Binary-code fair comparison: hold 2 of 3 X𝑏 ̅ℰ= X𝑃> fixed and compare 3rd ;
 But 𝑁?@A>A =

'
B
F 𝑁CD?@A>A	 so then BOTH ̅ℰW & Q𝑏 decrease for coded w.r.t uncoded (~ holding power & rate constant), not fair.

X𝑏?@A>A = 𝑟 F X𝑏CD?@A>A ̅ℰ=,?@A>A = 𝑟 F ̅ℰ=,?@A>A ; So ℰF =
̅ℰV
IF

 is the same, BUT	𝑊 F 𝑇 → ⁄JKL B

So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate;
 adding a code to reduce rate is somewhat antithetical to Shannon if 𝑅 < 𝐶. Increasing 𝑊 is “cheating.”

Sections 2.2.2.1 & 8.2.1

January 30, 2024

BSC Error Probability

L17: 32

§ BSC f𝑃R = h𝑁R 3 4𝑝(1 − 𝑝)
VWXYY
T

§ BSC f𝑃S =
FZ
S 3 4𝑝(1 − 𝑝)

VWXYY
T

§ Chapter 1’s B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).

§ Fair-comparison discussion is for AWGN.
• Strictly speaking with BSC, data rate must reduce to improve with codes.
• From BSC capacity, 𝑟 ≤ 1+ 𝑝 & log' 𝑝 + 1− 𝑝 & log' 1 − 𝑝

𝒞

≤ 1 for reliable transmission with a code 0 < 𝑝 < E
'
.

Section 8.2.1.2

N|N+1 N|N+1
State Transition

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

In
iti

al
 S

ta
te

 (B
in

ar
y/

O
ct

al
 re

pr
es

en
ta

tio
n)

Plot of NextStates Matrix

000/0

001/1

010/2

011/3

100/4

101/5

110/6

111/7

Fi
na

l S
ta

te
 (B

in
ar

y/
O

ct
al

 re
pr

es
en

ta
tio

n)

§ Section 8.2 – Conv Code Tables see the octal entries, chap 8 [6])

Jan 30, 2024

Coding Tables –best known rate ½ conv codes

L7: 33

BSC!

+

+

+

!

+

+

!

D + D ++ D +
BSC

!! !!"# !!"$!!"%

"$.!

#!
$ 2&

"#.!

! '

! ' !! "$.!

"#.!
$ 2&

#!

>> t8=poly2trellis(4,[17 13]) =
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 8
 nextStates: [8×2 double]
 outputs: [8×2 double]
>> plotnextstates(t8.nextStates)

𝐿* = length of
Min-dist event

Section 8.2.1.3

§ Codes listed for other rates, example 1/3 here, see Sec 8.2 for ¼, 2/3, ¾,

January 30, 2024

Best rate-1/3 convolutional codes

L7: 34

§ Code complexity measure 𝑁@ = i2T	
<)*)R<

3 i2U	
*VV<

+ 2U − 1	
$(W!*XR<

Section 8.2.1.3

§ An AWGN has SNR = 5 dB.

§ The uncoded (𝑀 = 2) error rate is 𝑃R = 𝑄 10Y/%' = .0377 𝑛𝑜𝑡 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑 .

§ A better design uses best 64-state rate 𝑟 = ½ code, so bandwidth expands by 2x.
• The gain is 7 dB.
• New 𝑃6 = 𝑄 10(J$I)/'; = 3.4303e-05 (better, see Slide L7:33’s table for this code).

§ To get 𝑃R ≈ 10EZ ?
• Need 8.5 dB of coding gain with rate ½ , so use this table’s 1024-state code
• 𝑃6 = 𝑄 10(J$_.J)/'; ≈ 108A

January 30, 2024

Design Example

L7: 35

§ Encoder is 𝐺 𝐷 = 1 + 𝐷 + 𝐷% + 𝐷[+ 𝐷Y + 𝐷\ + 𝐷&'

%]Y^

1 + 𝐷% + 𝐷[+ 𝐷Y + 𝐷Z + 𝐷^ + 𝐷&'

%[YY

1024 is a lot of states: larger distances may have large 𝑁a that increase 𝑃6.
 Design instead should use better (not CC) code (see Lectures 9-10).
The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large 𝑁a.

Section 8.2.1.3

Mappings to M’ary
Constellations: BICM

January 30, 2024 L7:36

Sections 2.2, 8.1.7

January 30, 2024

BICM Basic concept

§ The interleaver 𝜋 reorders adjacent bits, and the deinterleaver 𝜋@9causes 𝑝=/[XX ,XXYZ[\] = 𝑝=/]&...𝑝=/XXYZ[\.
• Deinterleaving	restores	the	original	order	but	spreads	a	large	channel-error/noise	event	over	several	codes.
• 𝐿 is the interleaver’s “depth”– L9 has more on depth (Section 8.3).

§ Each code sees an independent channel – so each is like a BSC or AWGN.

§ EVEN WHEN AWGN and the SNR supports 𝑀-ary PAM (or SQ QAM) with 𝑀 > 2 (4).
• Without interleaving, a single large noise could cause multiple bit errors in presumably a single applied code.

L7:37

Equivalent parallel
independent
bit channels

𝑝7/9!

𝑝7/9"#$% &

⋮
𝑝7/9%𝜋

Encoder
Code Use 1

Encoder
Code Use 2

Encoder
Code Use log' 𝐶

Decoder
Code Use 1

Decoder
Code Use 2

Decoder
Code Use log' 𝐶

𝜋)&

Encoder
Code Use 1

Encoder
Code Use 2

Encoder
Code Use log' 𝐶

𝑝7/9!
Decoder

Code Use 1

𝑝7/9%
Decoder

Code Use 2

𝑝7/9(
Decoder

Code Use 3

Independent with BICM

Section 8.1.7PS4.5 (8.8)

§ Gray Coding (almost) maintains coding gain 𝛾 with (one-dimensional) 𝐶 = 2QSBuv > 2 .

§ Coded 𝑀-ary retains 𝑑Ww# ≥ 4 3 𝑑xXRR 3 ̅ℰD for 𝑀-ary SQ QAM.

§ This applies well to PAM, or SQ-QAM, (in effect Cartesian product of 2 PAMs) and Gray Code.

January 30, 2024

Gray Mapping and distance preservation

L7: 38

Gray Code

§ So, with Gray Code, f𝑃S =
FZ
S 3 𝑄

[
y TE& 3 𝛾 3 𝑆𝑁𝑅 where again 𝛾 = 𝑟 3 𝑑xXRR .

• Exact ONLY IF 1-dimensional 𝐶 remains the same for coded and uncoded, but what about E
UL
→ E

5?UL
 ??

00

01

11

10

4𝑃𝐴𝑀	

𝑑

0001

4𝑃𝐴𝑀	⨂	4𝑃𝐴𝑀 = 16SQ QAM

0000

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

1010
2 ? 𝑑

𝑑: ? 𝑑

4𝑃𝐴𝑀 B

Section 8.1.7.1 PS6.2 (8.13)

§ The code rate 𝑟 increases as 1/𝑇′ correspondingly decreases (𝑇′ and ̅ℰ7 increase).
• Puncturing carefully increases 𝑟 with SNR until PAM constellation-size can double, which allows 1/T’ to reduce by

!
!+&

.
• E.g., smooth transition @ 8-16 PAM has rate 3/4, then increasing from ¾ to 1 with puncturing until 32 PAM.

§ Careful puncturing attempts to hold constant code gap.
• 𝑑)*++=∞ for Γ =0 dB gap, but also 𝐶 =∞, so theoretically must work with some good codes that look similar.
• For the 64-state Wi-Fi code, 𝛾=7 dB, but 𝛾; → 1.53 dB for large 𝐶 , and this reduces the 7 dB gradually. For this code the gap would be, at 𝑃. = 10)<, 8.8-7+1.5 or 3.3 dB, leaving

𝛾==5.5 dB for the larger constellations.
• Even with reasonable puncturing, this code eventually looses gain with large 𝐶 , so has increasing gap (and thus needs more than 6 dB/bit-dimension to increase 𝐶 , but they use it anyway).
• There are larger-𝑁 binary block codes (LDPC, product) that offer more continuous puncturing options so the 𝑑,-.choices (w.r.t 𝑟) help offset the constellation-increase.

• In reality, with many nearest neighbors with BICM, puncturing is “about as good as it gets” with binary codes that ignore the constellation.
• Iterative decoding (see L9) between constellation and binary-code can restore the constant gap at its best value (so account for the constellation).
• 64-state 𝑟 = ⁄1 2 ′𝑠 7 dB is really for 𝑏 < 1 where shaping improvement is negligible. It can be restored with shaping codes (see Section 8.5, not taught).
• There are “trellis codes” that well-hold constant gap, but their best gaps are below those of the BICM with convolutional codes.

§ If there was one giant ML decoder for the aggregate of log. |𝐶| codes (large 𝑁), the interleaving is unnecessary.
• This aggregate code is NOT just the single binary code.

January 30, 2024

M’ary PAM: approx constant-Γ puncturing with binary code

L7: 39

⋯

⋯

code rate 𝑟

1

1/2

𝑑&VB

𝐶 = 2 𝐶 = 4 𝐶 = 8 𝐶 = 16 𝐶 = 32

𝑆𝑁𝑅 − Γ X𝑏4.8	dB 1 11.7	dB 2 18	 dB 3 24	 dB 40	dB 1/2

𝑟 = &
#

𝑟 = 1

𝑟 = &
#

𝑟 = 1

𝑟 = #
>

𝑟 = 1

𝑟 = >
?

𝑟 = 1

𝑟 = ?
@

𝑑&VB/2

Shaping Effects
Reduce binary-code map’s

gain for larger
constellations

Section 8.1.5.2

𝑆𝑁𝑅 increasing →

§ Trellis Codes (Ungerboeck, IBM) were popular, and a major intermediate step for M’ary in 1990’s.
§ They also have simpler ML decoders.
§ TCs have coding gain limits below best codes (roughly 2 dB less than Gray codes with good binary

codes).
§ See Appendix B.

January 30, 2024

Mapping by set-par^^oning (Trellis Codes)

L7: 40

End Lecture 7

