

Lecture 7 Binary Codes and BICM January 30, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- PS3 due tomorrow
- PS4 due Feb 6, no late (solutions immediate)
- Midterm Feb 8 (PS5 the following week)
 - Open book, laptop, internet
 - In class (or other arrangements)
- Web site is usually best place for latest copy
 - Canvas uses R1, R2, ... notation so you can see history
 - Removed by SU after quarter end
- The Edstem page (responding there also)
 - Just arrived this morning for me, and I responded.
- Feedback
 - 6-15 Hours
 - Ethan very much appreciated.
 - Homework extends understanding.

Today

- Finish L6
- Binary Codes in GF(2) Basics
 - Convolutional code tables
 - Block code parametrization (LDPC)
- Binary Code Use
- Mappings to M-ary Symbols: BICM

PS3.1 (1.63)

- L(d) is an overall gain multiplier applied to each (all) multipaths
- Equivalently to the entire channel response
- d_{pp} is a specific model parameter (simplified Wi-Fi) where an extra attenuation factor applies for distances longer than this "break-point" distance

PS3.2 (1.65)

- For the last part, the number of samples per try might best be 100k , not 10k
 - This gives a little more accurate match between theory and simulation.

Problem Set 4 = P	S4 due Tuesday February 6 at 17:00, no late
1. 8.1	A convolutional encoder and code
2. 8.2	Systematic encoders
3. 8.4	A fool's code
4. 8.5	power-bandwidth trade at $\overline{b} < 1$
5. 8.8	code for satellite transmission
5. 8.8	code for satellite transmission

Finish L6

Sections 2.1-2

January 30, 2024

Modern Powerful codes

- γ_f is large, equivalently can be reliably decoded (low Pe).
- γ_f is large with good long-length binary codes:
 - \blacktriangleright With binary-to-|C| "mapper" for larger QAM constellations
 - > But leaves shaping (γ_s) to the constellation boundary design (< 1.53 dB).

Generalization: Sequential Encoder & Mapper

Trellis or Convolutional Codes (see feedback below) have model:

Section 2.2.4

Binary Codes in GF(2) -Basics

Section 8.1

January 30, 2024

Example, rate $r = \frac{1}{2}$ convolutional code

Example with 6 bits of input (12 output)

Cardinal is sequence or path corresponding to input bits below trellis (outputs blue).

- Other paths are possible, indeed 63 more of them (if initial state known as shown ---).
- Each path has 12 output bits,
 - and there is 1-to-1 map if we know initial state.
 - The other possible "unknown-initial-state" paths differ only in first $\nu = 2$ stages.

Section 8.1.4

Binary Codewords & Sequences

- Galois Field 2 \rightarrow GF(2), or \mathbb{F}_2 , is the binary field of two elements $\{0, 1\}$ or bits See Appendix B.
 - Addition is ``exclusive or," \oplus .
 - Multiplication is "and," ∧ , which this class writes as ".".
 - No complex variables exist in our finite fields (not in this class).
- Block codes' codewords are finite sequences of $n \triangleq N$ binary subsymbols.
- **Convolutional** codes' codewords are **semi-infinite** sequences of $n \triangleq \tilde{N}$ -dimensional binary-vector subsymbols.
 - Sequence time index is *m*, which has **D-Transform** notation $a(D) = \sum_{m=-\infty}^{\infty} a_m \cdot D^m$.

D is dummy variable, $D \oplus D = 0$; $D^l \cdot D^m = D^{l+m}$.

The ring of finite-length binary sequences is

$$F[D] \triangleq \left\{ a(D) \middle| a(D) = \sum_{m=-\infty}^{\infty} a_m \cdot D^m, a_m \in \mathbb{F}_2 , \nu \in \{0, Z^+\} \right\}.$$

The field of causal infinite-length binary sequences is

$$F_r[D] = \triangleq \left\{ c(D) \left| c(D) = \frac{a(D)}{b(D)}, a(D), b(D) \in F[D], b(D) \neq 0 \land b_0 = 1 \right\}, \text{ ~long division} \right\}$$

January 30, 2024

Section 8.1.1

Sequence parameters

- Sequence delay is
 - $del(a) = \min_{m} a_m = 1$ $(a(D) = 0 \rightarrow del = \infty)$
 - Lowest power of *D*
 - del(g) = 4.
- Sequence degree is
 - $deg(a) = \max_{m} a_m = 1$ $(a(D) = 0 \rightarrow del = -\infty)$
 - Highest power of *D*
 - del(g) = 9.
- Sequence length is
 - len(a) = deg(a) del(a) + 1; len(0) = 0
 - len(g) = 6.

Constraint length is

• v = len(a) - 1 = deg(a) - del(a) or number of delay elements if a(D) has feedback.

January 30, 2024

Section 8.1.1

L7: 10

LINEAR Binary Code

- Linear Binary Code is a set of binary sequences such that
 - $C[G] \triangleq \{v(D) | v(D) = u(D) \cdot G(D), u(D) \in F_r(D)\}.$
 - Rate r = k/n, so conv codes often use m as a time index.
 - Systematic if $v_{n-i} = u_{k-i}$, i = 0, ..., k 1 for all times m.
 - Free Distance $d_{free} = \min_{\boldsymbol{\nu} \neq \boldsymbol{\nu}'} d_H(\boldsymbol{\nu}, \boldsymbol{\nu}')$.

When G(D) = G(0), it is a **block code**, otherwise a **convolutional code**.

January 30, 2024

Section 8.1.2

L7: 11

Syndrome Decoding for Linear (binary) Block Codes

Parity Matrix

- *H* is a $(n k) \times n$ binary matrix such that $v \cdot H^t = 0$, $\forall v \in C$
- $G \cdot H^t = 0$
- *H* is a generator too (dual code, rate 1 r), and spans the null space of *G*.
 - The generator and parity matrices together span $[GF(2)]^N = \{ \boldsymbol{u} \cdot G \} \cup \{ \boldsymbol{u}' \cdot H \}.$
 - This is the same concept as a real/complex matrix' pass and null spaces, but with finite field.
- Binary-channel output $y = v \oplus e$; e is the error sequence.

 $s = y \cdot H^t = e \cdot H^t$ is the $1 \times (n - k)$ syndrome vector.

- ML Decoder finds the smallest Hamming weight *e* that solves this equation for the given *s*.
 - There are fancy algorithms that find this finite-field pseudoinverse efficiently for certain linear codes.
- For present discussion, store 2^{n-k} values of e in a look-up table.

• $\hat{v} = y \oplus e \rightarrow \hat{u} = G^{-1} \cdot \hat{v}$ (for systematic codes, this is simply $\hat{u}_{k-i} = \hat{v}_{n-i}$, i = 0, ..., k-1).

LINEAR Block-Code example Hamming (7,4) code

January 30, 2024

Sec 8.2.2.1

General Hamming (higher SNR)

- **General Hamming** Codes choose number of parity bits $p \ge 2$.
 - so $n = 2^p 1$; k = n p, $d_{free} = 3$, rate $r \rightarrow 1$ as $n \rightarrow \infty$.
 - Enumerate indices $i = 1, ..., 2^p 1$ as binary p-digit values for H (rearrange to systematic):
 - The last p bits (last p columns) appear only once in $v \cdot H^t = 0$ and sum other 1-positions' bits.
 - It is easily possible to add 3 H columns to zero, confirming $d_{free} = 3$.
 - Clever rearranging of H's columns can cause the syndromes 3-bit value to be the position of a single bit error (more than 1 bit error cannot be corrected).
- **Expanded Hamming** Codes (expansion applies all odd length linear-binary codes)
 - Expand codeword length by 1 redundant bit, so $n = 2^{p}$.
 - k = n p 1.
 - First add column of all zeros to (previous Hamming parity matrix) H
 - Then add row of all ones (overall parity check, which increases distance by 1 if all-zeros column was first added) $d_{free} = 4$.

Use for SNRs > 3 dB

January 30, 2024

1000101

 $H = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

[1 1 1 0 **1** 0 0]

```
0 1 1 1 0 1 0 0
1 1 1 0 0 0 1 0
10110001
                      Stanford University
      L7:14
```

>> Hext=[H, zeros(3,1);(ones(1,8))] % = 0 1 0 1 1 0

0 1 1 1 0 0

1 1 1 1 1 1

10001101

1 1 0 1 1 0 0 0

1000111 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1

>> Hprime=inv(gf(Hext(1:4,1:4)))*gf(Hext) % =

>> Hsys=[Hprime(1:4,5:8) Hprime(1:4,1:4)]

Hadamard Codes (low SNR)

- Hadamard is low-SNR binary code and has:
 - Large $d_{free} = n/2$,
 - Small rate $r \ll 1$
 - All codewords are mutually orthogonal (in *GF*(2)),
 - SO KIND OF LIKE BINARY ORTHOGONAL.
 - All codewords have weight n/2.
- Hadamard generator forms from 0: 2^k 1 in binary
 - Each of its n rows/columns are orthogonal to one another in GF(2).
 - All zeros is a codeword, but all other codewords have at least n/2 1's.
 - For parity, note the k systematic columns are there, so group them.
 - The rest is then h^t for systematic parity matrix.
- Augmented Hadamard code:
 - Has $n=2^m$; k=m+1 ; $d_{free}=n/2$,
 - Takes only columns of G(m + 1) that start with 1.
 - Is dual code of Expanded Hamming with codeword length n/2.

There is a matlab Hadamard command that generates the unitary Walsh-Hadamard Transform matrix of +/- 1's. This is related and used in multiuser systems, but easier to create generator as shown above.

General Hadamard Code

$$n = 2^k$$
; $k = \log_2 n$
 $r = k/2^k$ for $d_{free} = n/2$

11-T	υ,															
k=lo	og2	(n)	;													
Gtemp=dec2bin(0:2^k-1)';																
G=zeros(k,n);																
for i=1:k for j=1:n																
6	G(i,j)=t	oin2	2de	ec(C	Ste	mp	(i,j)));							
en	d;(enc	ł													
>> G	% =															
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	

4 x 16 (n=16, k=4, dfree is 8)

gf(C	G)*	gf(G)' % =	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

n=16

January 30, 2024 Sec 8.2.2.2 L7: 15 Stanford University

Matlab binary block codes

encode.m – handles Hamming or general linear (binary).

codeword = encode(inbits, n, k, 'hamming')
% don't need generator nor parity matrices

codeword = encode(inbits, n,k, 'linear', G)
% if not Hamming, then input generator
% can also have 'cyclic' for cyclic binary codes (eBCH)

decode.m – handles Hamming or general linear (binary).

msgbits = decode(y, n, k, 'hamming')
 don't need generator nor parity matrices

msgbits = decode(y, n,k, 'linear', G) use this for Hadamard G or any other linear G

> No time to present specific decoder simplifications for Hamming nor Hadamard – however, see L12 GRAND.

These functions for small codes – could have long run time for arbitrary G , which may have to test all codewords.

January 30, 2024

Section 8.2.2.3

Other Binary Block Codes

- Cylic Binary (BCH)
- Reed Muller
- Polar
- eBCH
- Golay
- "product codes" of the above
- See EE387
 - May have a little more on this in 379B
 - Product codes after midterm, L12.

(General) Linear Code Equivalence and Parity

- Code Equivalence
 - $G'(D) = A(D) \cdot G(D)$, |A(D)| = 1 (invertible)
 - G'(D) and G(D) generate the same codewords (sequences).
- Alternate code description is
 - $C[G] \triangleq \{v(D) \mid v(D) \cdot H^t(D) = 0, v(D) \in F_r(D)\}$
- H(D) is a generator for "dual code."
 - Every codeword in dual code is orthogonal to codeword in original code (G).
 - High-rate codes are often specified more compactly by H(D).
- Complexity $\mu = \min_{\{G(D) \text{ for } C[G]\}}(v)$.
- When $\mu = \nu$, G(D) is a **Minimal Encoder**.
- There is always a minimal encoder, and with feedback possible, a minimal systematic encoder. (See Appendix B – this is non-trivial and not covered.)

January 30, 2024

Sections 8.1.2 & B.7

L7: 18

Stanford University

The codes we use here are always always be minimal

4-state example (same code)

- Premultiply $G(D) = [1 + D + D^2 \quad 1 + D^2]$ by feedback $A(D) = \frac{1}{1 + D + D^2}$ to get systematic equivalent:
 - $G_{sys} = \begin{bmatrix} 1 & \frac{1+D^2}{1+D+D^2} \end{bmatrix}$
- *G*_{sys} produces the same output bit sequences, but with different input-to-output mapping.
 - G_{sys} has a different trellis input-bit mapping, but otherwise has all the same paths (infinite length).
 - G_{sys} has the same free distance and the same number of states.

Section 8.1.2

Puncturing:

- Uses same base code, but delete some encoder-output bits.
- Increases rate $r = k/n \rightarrow k/n-i$ $i < n-k \in Z^+$.
- Simplifies encoder/decoder implementation (but changes codewords and can lower minimum distance).

PS8.1.6

L7: 20

Wi-Fi Puncturing – IEEE 802.11 standards (a,g,ac,ax,be)

May 21, 2018

Section 8.1.6.1, PS8.2

Puncturing G(D) example

• $G_{punc}(D) = G_{punc}$; max of one 1 in each row/col, rest are 0's.

Tail Biting ~ converts to block code

 $N = \frac{K}{r}$ subsymbols

- With 2^{ν} possible states, the current state is a function only of most recent ν input bits.
 - This is a mild nonlinearity in the encoding process that becomes neglible with large K, but which can reduce distance (better to terminate).
- The last ν bits repeat.
 - The packet must be at least ν bits long, but in practice this should be small percentage of k (8 input bits below, but repeat the last 2. These are 00 in example below and not shown; they force a start in state 0). The rate reduction factor is $N/(N + \nu)$.

Section 8.2.1.5

L7:23

Binary Code Use

Section 2.2

January 30, 2024

Matlab Trellis and Encoding Functions

Translating Trellises

(see https://www.mathworks.com/help/comm/ref/convenc.html)

With Feedback

Matlab's nextStates & outputs don't always obey inputs clockwise 0 to 11...1 on branches.

- Trellis is same as non-feedback (non-systematic) code, with a lot of labelling care!
- Mapping to input bits is different:

Sec 8.1.5, See PS4.2

A rule to avoid (e.g. Matlab's) ugly trellises

- Always use the nonsystematic (minimal) encoder, like $G(D) = \begin{bmatrix} 1 + D + D^2 \\ 111 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 0 & ctal \end{bmatrix}$.
 - See Slide L7:18.
- These have clockwise input-bit branch assignments with Matlab's nextStates, so 0,1,2,3, ... 2^k.

- The systematic (minimal) encoder, like $G_{sys}(D) = \left[1 \frac{1+D^2}{1+D+D^2}\right]$, produces the same code.
 - This has different input-sequence assignments to codewords, but all inputs map 1-to-1 to one another anyway.
- Take the inputs u(D) corresponding to any G(D) path and transform them by $u'(D) = \frac{u(D)}{1+D+D^2}$.
- u'(D) into G(D) produces the same output as u(D) into $G_{sys}(D)$. (so map 1-to-1 on side u'(D) <-> u(D).
 - u = conv(gf([1 1 1], gf(u')) ; u' = deconv(gf([1 1 1], gf(u))

Not in text yet

Soft Decoder – decode the symbol

- The demodulator samples ($\in \mathbb{C}$) pass to the detector for comparison of codewords (subsymbol sequences).
- The y information is "soft" in that it is not pre-quantized into a decision (or at least not to |C| subsymbol values).
- Deployed systems often have ADC on y_n ; quantize $\frac{d_{min}(|C|)}{\sigma_n} = 4^3$; i.e., 3 bits cover intra-point distance.
 - This 3-bit quantization of dmin limits decoder loss (w.r.t. infinite precision) to .25 dB distortion (one more bit reduces to .06 dB distortion).
 - Same rule applies per dimension for both ADCs if receiver is in quadrature.
 - Total ADC bits will then be these 3, plus \bar{b} , plus 1-2 bits for peak-to-average (analog coverage), so $b_{ADC} = \bar{b}$ +4, or possibly \bar{b} +5.

Section 2.2.1

Hard decoder – decode the bit sequence

- Subsymbols are decoded independently e.g., a "hard" decision.
- The remaining channel is a DMC (most often a BSC) model, to which an outer binary code may also be applied.
- The BEC with the "erasure" output is a first step from hard to soft.

Section 2.2.2

AWGN Error Probability for Conv Codes

• AWGN
$$\overline{P}_e = \overline{N}_e \cdot Q\left(\frac{d_{min}}{2\sigma}\right) = \overline{N}_e \cdot Q\left(\sqrt{d_{free} \cdot \frac{\varepsilon_x}{\sigma^2}}\right) = \overline{N}_e \cdot Q\left(\sqrt{d_{free} \cdot \frac{k}{n} \cdot SNR}\right)$$

• Because $d_{min} = \sqrt{d_{free} \cdot 4 \cdot \mathcal{E}_x}$

energy-spread reduces energy/subsym (assumes $\frac{1}{T_{I}}$ can increase, so no filter on AWGN)

• AWGN $\bar{P}_b = \frac{N_b}{b} \cdot Q(\sqrt{d_{free} \cdot r \cdot SNR})$

• Where $N_b = \sum_{i=1}^{\infty} i \cdot N(i, d_{free})$ and N(i, d) for conv code is the number of *i*-input-bit error events with distance *d*.

- Finding N_b can require exhaustive search in general, but Section 7.2 (Lecture 8) show how to compute N(i, d) for CC.
- Yes, it is equal to Chapter 1's $\sum_{i=1}^{\infty} p_x(i) \cdot n_b(i)$, which is actually harder to compute.
- BC coding gain $\gamma = 10 \cdot \log_{10} (r \cdot d_{free})$ (for AWGN with binary subsymbols ...) and energy/bit $\bar{\mathcal{E}}_b$.

HAZARD WARNING - BINARY CODING THEORIST'S FALLACY - assumes "free bandwidth"

Binary-code fair comparison: hold 2 of 3 { \bar{b} $\bar{\mathcal{E}}_x$ \bar{P}_e } fixed and compare 3rd; But $N_{coded} = \frac{1}{r} \cdot N_{uncoded}$ so then BOTH $\bar{\mathcal{E}}_x \& \bar{b}$ decrease for coded w.r.t uncoded (~ holding power & rate constant), not fair. $\bar{b}_{coded} = r \cdot \bar{b}_{uncoded}$ $\bar{\mathcal{E}}_{x,coded} = r \cdot \bar{\mathcal{E}}_{x,coded}$; So $\mathcal{E}_b = \frac{\bar{\mathcal{E}}_x}{\bar{b}}$ is the same, BUT $W \cdot T \to \frac{W \cdot T}{r}$

So, either the coded design increased bandwidth (may not be possible) or otherwise reduced rate; adding a code to reduce rate is somewhat antithetical to Shannon if R < C. Increasing W is "cheating."

Sections 2.2.2.1 & 8.2.1

L7: 31

BSC Error Probability

- BSC $\overline{P}_e = \overline{N}_e \cdot [4p(1-p)]^{\left\lfloor \frac{d_{free}}{2} \right\rfloor}$ • BSC $\overline{P}_b = \frac{N_b}{b} \cdot [4p(1-p)]^{\left\lfloor \frac{d_{free}}{2} \right\rfloor}$
- Chapter 1's B-Bound can be used to show that this is roughly 3dB inferior to soft decoding (AWGN).
- Fair-comparison discussion is for AWGN.
 - Strictly speaking with BSC, data rate must reduce to improve with codes.

С

• From BSC capacity, $r \le 1 + p \cdot \log_2 p + (1-p) \cdot \log_2(1-p) \le 1$ for reliable transmission with a code 0 .

Coding Tables –best known rate ½ conv codes

Section 8.2 – Conv Code Tables see the octal entries, chap 8 [6])

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	d_{free}	γ	(dB)	N_e	N_1	N_2	N_b	L_D
4	7	5	5	2.5	3.98	1	2	4	1	3
8	17	13	6	3	4.77	1	3	5	2	5
16	23	35	7	3.5	5.44	2	3	4	4	8
(2G) 16	31	33	7	3.5	5.44	2	4	6	4	7
32	77	51	8	4	6.02	2	3	8	4	8
64	163	135	10	5	6.99	12	0	53	46	16
(802.11a) 64	155	117	10	5	6.99	11	0	38	36	16
(802.11b) 64	133	175	9	4.5	6.53	1	6	11	3	9
128	323	275	10	5	6.99	1	6	13	6	14
256	457	755	12	6	7.78	10	9	30	40	18
(3G) 256	657	435	12	6	7.78	11	0	50	33	16
512	1337	1475	12	6	7.78	1	8	8	2	11
1024	2457	2355	14	7	8.45	19	0	80	82	22
2048	6133	5745	14	7	8.45	1	10	25	4	19
4096	17663	11271	15	7.5	8.75	2	10	29	6	18
8192	26651	36477	16	8	9.0	5	15	21	26	28
16384	46253	77361	17	8.5	9.29	3	16	44	17	27
32768	114727	176121	18	9	9.54	5	15	45	26	37
65536	330747	207225	19	9.5	9.78	9	16	48	55	33
131072	507517	654315	20	10	10	6	31	58	30	27

Table 8.1: Rate 1/2 Maximum Free Distance Codes

 $L_D =$ length of Min-dist event

>> t8=poly2trellis(4,[17 13]) =
 numInputSymbols: 2
 numOutputSymbols: 4
 numStates: 8
 nextStates: [8 × 2 double]
 outputs: [8 × 2 double]
>> plotnextstates(t8.nextStates)

Best rate-1/3 convolutional codes

Codes listed for other rates, example 1/3 here, see Sec 8.2 for ¼, 2/3, ¾,

2^{ν}	$g_{11}(D)$	$g_{12}(D)$	$g_{13}(D)$	$g_{14}(D)$	d_{free}	γ	(dB)	N_e	N_1	N_2	N_b	L_D
4	7	7	7	5	10	2.5	3.98	1	1	1	2	4
8	17	15	13	13	13	3.25	5.12	2	1	0	4	6
16	37	35	33	25	16	4	6.02	4	0	2	8	7
32	73	65	57	47	18	4.5	6.53	3	0	5	6	8
64	163	147	135	135	20	5	6.99	10	0	0	37	16
128	367	323	275	271	22	5.5	7.40	1	4	3	2	9
256	751	575	633	627	24	6.0	7.78	1	3	4	2	10
512	0671	1755	1353	1047	26	6.5	8.13	3	0	4	6	12
1024	3321	2365	3643	2277	28	7.0	8.45	4	0	5	9	16
2048	7221	7745	5223	6277	30	7.5	8.75	4	0	4	9	15
4096	15531	17435	05133	17627	32	8	9.03	4	3	6	13	17
8192	23551	25075	26713	37467	34	8.5	9.29	1	0	11	3	18
16384	66371	50575	56533	51447	37	9.25	9.66	3	5	6	7	19
32768	176151	123175	135233	156627	39	9.75	9.89	5	7	10	17	21
65536	247631	264335	235433	311727	41	10.25	10.1	3	7	7	7	20

• Code complexity measure $N_D = \underbrace{2^{\nu}}_{states} \cdot \begin{pmatrix} 2^k + 2^k - 1 \\ \underbrace{2^k}_{adds} & \underbrace{2^k - 1}_{compares} \end{pmatrix}$

January 30, 2024

Section 8.2.1.3

Design Example

- An AWGN has SNR = 5 dB.
- The uncoded (M = 2) error rate is $P_e = Q(10^{5/20}) = .0377$ (not very good).
- A better design uses best 64-state rate $r = \frac{1}{2}$ code, so bandwidth expands by 2x.
 - The gain is 7 dB.
 - New $P_e = Q(10^{(5+7)/20}) = 3.4303e-05$ (better, see Slide L7:33's table for this code).
- To get $P_e \approx 10^{-6}$?
 - Need 8.5 dB of coding gain with rate $\frac{1}{2}$, so use this table's 1024-state code
 - $P_e = Q(10^{(5+8.5)/20}) \approx 10^{-6}$

• Encoder is
$$G(D) = \left[\underbrace{\frac{1+D+D^2+D^3+D^5+D^8+D^{10}}{2457}}_{2457} \quad \underbrace{\frac{1+D^2+D^3+D^5+D^6+D^7+D^{10}}{2355}}_{2355}\right]$$

1024 is a lot of states: larger distances may have large N_i that increase P_e.
Design instead should use better (not CC) code (see Lectures 9-10).
The 7 dB and 8.5 dB here often reduce in practice to about 5.5-6.0 dB, because of large N_i.

Section 8.2.1.3

Mappings to M'ary Constellations: BICM

Sections 2.2, 8.1.7

January 30, 2024

BICM Basic concept

- The interleaver π reorders adjacent bits, and the deinterleaver π^{-1} causes $p_{y/[v_i, v_{i+L-1}]} = p_{y/v_i} \dots p_{y/v_{i+L-1}}$.
 - Deinterleaving restores the original order but spreads a large channel-error/noise event over several codes.
 - *L* is the interleaver's "depth" L9 has more on depth (Section 8.3).
- Each code sees an independent channel so each is like a BSC or AWGN.
- EVEN WHEN AWGN and the SNR supports M-ary PAM (or SQ QAM) with M > 2 (4).
 - Without interleaving, a single large noise could cause multiple bit errors in presumably a single applied code.

PS4.5 (8.8)

Section 8.1.7

Gray Mapping and distance preservation

- Gray Coding (almost) maintains coding gain γ with (one-dimensional) $|C| = 2^{\overline{b} + \overline{\rho}} > 2$.
- Coded *M*-ary retains $d_{min} \ge 4 \cdot d_{free} \cdot \bar{\mathcal{E}}_x$ for *M*-ary SQ QAM.
- This applies well to PAM, or SQ-QAM, (in effect Cartesian product of 2 PAMs) and Gray Code.

M'ary PAM: approx constant- Γ puncturing with binary code

- Puncturing carefully increases r with SNR until PAM constellation-size can double, which allows 1/T' to reduce by $\frac{\nu}{h+1}$.
- E.g., smooth transition @ 8-16 PAM has rate 3/4, then increasing from ¾ to 1 with puncturing until 32 PAM.
- Careful puncturing attempts to hold constant code gap.
 - $d_{free} = \infty$ for $\Gamma = 0$ dB gap, but also $|C| = \infty$, so theoretically must work with some good codes that look similar.
 - For the 64-state Wi-Fi code, $\gamma = 7$ dB, but $\gamma_s \rightarrow 1.53$ dB for large |C|, and this reduces the 7 dB gradually. For this code the gap would be, at $P_e = 10^{-6}$, 8.8-7+1.5 or 3.3 dB, leaving $\gamma_c = 5.5$ dB for the larger constellations.

gain for larger

constellations

Stanford University

L7:39

• Even with reasonable puncturing, this code eventually looses gain with large |C|, so has increasing gap (and thus needs more than 6 dB/bit-dimension to increase |C|, but they use it anyway).

Section 8.1.5.2

- There are larger-N binary block codes (LDPC, product) that offer more continuous puncturing options so the d_{min} choices (w.r.t r) help offset the constellation-increase.
- In reality, with many nearest neighbors with BICM, puncturing is "about as good as it gets" with binary codes that ignore the constellation.
- Iterative decoding (see L9) between constellation and binary-code can restore the constant gap at its best value (so account for the constellation).
- 64-state r = 1/2 's 7 dB is really for b < 1 where shaping improvement is negligible. It can be restored with shaping codes (see Section 8.5, not taught).
- There are "trellis codes" that well-hold constant gap, but their best gaps are below those of the BICM with convolutional codes.
- If there was one giant ML decoder for the aggregate of $\log_2 |C|$ codes (large N), the interleaving is unnecessary.
 - This aggregate code is NOT just the single binary code.

Mapping by set-partitioning (Trellis Codes)

- Trellis Codes (Ungerboeck, IBM) were popular, and a major intermediate step for M'ary in 1990's.
- They also have simpler ML decoders.
- TCs have coding gain limits below best codes (roughly 2 dB less than Gray codes with good binary codes).
- See Appendix B.

End Lecture 7