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Announcements & Agenda

= Announcements
* PS3 —problem 3.2 may take some runtime for matlab on P, estimates, so give yourself time.
* Again, recall HWH (HWH3 is at web site) if spending too much time.

EE379A Lectures — Winter 2024
-Th 3:00 - 4:20 pm;_Location
L] Today Tu-Th 3:00 - 4:20 Gates Bl
* Codewords, Symbols, and Redundancy Lecture # |Date Topic |Reading l(timys%
out/in
* Random Coding: AWGN'’s Sphere Packin
g , p g Data-Transmission, Channels & Fundamentals

* DMC Codes: MDS’ Ball Packing
1 19 Intro: Discrete M ge Encoding/Decoding 11 1/-
2 111 White Gaussian Noise (AWGN) Channels 12 -/-
3 1/16 Modulation Types (PAM/QAM) 13 21
4 1/18 Complex and other Channels 14 -I-
5 1/23 MIMO and Statistical Channels 1.5,1.6 3/2

Codes and Decoding

6 1/25 Coding Concepts & Dimensionality 212 -/-
7 1/30 Binary Codes 8.1,8.2 4/3
8 2/1 Viterbi-Sequence & MAP-Bit Decoding 7.1-3 -/-
9 2/6 Concatenated and Turbo Codes 83 -14
- 2/8 Midterm Exam (open bk) -/-
10 2/13 Constraints and LDPC Codes 7.4-6 5/-
11 2/15 Outer Hard-Code Concatenation 8.4,.8.6 -/-
12 2/20 Guessing Decoders & Product Codes 7.6,8.3.5 6/5
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Codewords, Symbols, & Redundancy

Section 2.1
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AWGN Summary/Review

Detection problem first, every T seconds (symbol period)

symbol/codeword 2 (=N 0)
(M=16, # of messages) n-~o (— T channel-output codeword
-------------- 1 .
:16 MM oy o o E noise B /x\
1 [ a1 ~ x
IR P, owr = &
i —¥ | Al - T~ = Min error probability P,
: © ! o+ o : e ! X y =  Pick closest point for AWGN
e ] = Maximum Likelihood
: © % o © : Uniform input dist’n
——————————————— 4 ¥ J
N\ ~- _/ v
Py/x O «S1SO”
gx — E[lxlz] px y/ SISO
=pn(y — %) (scalar)
SN——— N=1 or 2
= QAM - 2 dimensional =  Add noise
= Uniform input (usually) p, = — maxp Subsymbol if coded (Slide L6:6)
= b=log A;bits/symzofx M " Zeromean xX=x y/x ~ ]R ~ (C
T p . ; 2 (= i - ; -
= R= % bits/second (data rate) Variance 0 (= 2-sided PSD) X ; "'fv E]a" ’ x ' X € y
X has N real dimensions in general,
) P 4. (1 1 ) 0 3-SNR and has N subsymbols, of dim N
e = 7 = N
& January 25, 2024 Section 1.3.4.2 M—1 L6: 4 Stanford University
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SNR, QAM, PAM reminders

E, _ single —sided psd _ two — sided psd

SNR &2 — = =
02 single —sided psd two — sided psd

SNR must use the same number of dimensions in numerator (signal) and denominator (noise).

Z'Ex Ex

15 = . . .
Thus, also SNR £ U—’; =—== where £, is energy/real-dimension.

NO IV'O'2

Energy/dimension generalizes power/Hz (= energy), so equivalent to a power-spectral density (psd).

1-sided = power is integral over positive frequencies of psd.

2-sided = power is integral over all frequencies of psd.

These two powers are the same.

So -40 dBm/Hz (one-sided) psd over 1 MHz is 20 dBm, or 100 mWatts of power.

PAM is always real baseband. QAM is always complex baseband (2 real dimensions)

When QAM has only 1 bit (2 points) in constellation, it is called BPSK (not binary PAM).
PAM’s positive-frequency bandwidth is [0, 1/2T)
QAM’s positive-frequency bandwidth is [-1/2T +f., 1/2T +f.) .

The PAM system looks like it uses only 1/2 the bandwidth, but the QAM system is really transmitting two dimensions per symbol
(so really like 2 PAM systems in parallel with symbol rate 1/T each), so then twice a single PAM’s bandwidth.

January 25, 2024 Section 1.3.4 L6:5 Stanford University



Codewords constructed from “subsymbols”

Xq

X, | X3 | Xy codeword (symbol) x

subsymbols/N =N-N= # subsymbols x (dim/subsymbol)

bits/dim= b = b/N ; bits/subsym=b =2/, =N-b
Code construction

Good Codeb —» CasN —» o

Detector could also detect subsymbols
See PS3.3(2.3)

QAM/PAM operates with given low P, (10-°) and at a “SNR gap” (I' = 8.8 dB @10-%) below capacity.

e See basics in Section 1.3.4.

b = log, (1 + SNTR) bits/complex-subsymbol < C

— . SNR = 13.5 dB (from P, = 10~ formula)

2b_1

Forall b > 1, simple square QAM constellations have constant gap (= 8.8 dB at P, =10%).

The subsymbols are QAM, but usually with more than |C| > M = 2b possible values (redundancy).

January 25, 2024 Section 2.1.1
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Trivial Coding

32CR QAM—UNCOD_EDin 2D
|ICl]=32;b=5; b=25

16 SQ QAM - UNCODED

= The subsymbol can have extra points, which means its coded.
* More redundant points and/or more dimensions = better codes.
* The subsymbol values may no longer be equally likely, but codewords are.

)

|Cl=16;M =16

b=4;b=2;b=4
N=N=2; N=1(orswapN and N » PAM)

G Section 2.1.2

Decision or
Voronoi Region

January 25,2024

~

N=N=2;N=1
O ®© @@ @ ® O
® o e o o o
® © | & o o o
® © | & o o o
® o e o o o
O ®© @ @ @ O
6 PAM x 6 PAM 365Q CODED in 1D
N=N=2;N=1;|Cl=6 =2

Ifb=2.5,p=0.09
(extra constellation points ~ redundancy)

b+ p =log,|C|

L6: 7
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Redundancy and uncoded definition

Definition 2.1.2 (Code) A code is any set of M = 2°, N-dimensional codewords
Cx = {mz‘}i=0,...,M—1 (2.7)

where the N -dimensional codewords have N, N -dimensional subsymbols selected from
an N-dimensional subsymbol constellation C' with |C| subsymbol values. The subscript
x on Cg distinguishes Cg from the subsymbol constellation C' . Thus,

~

N = N . N . (2.8)
~—~ ~~
subsymbol # of
size subsymbols

= Subsymbols are basically now what our earlier efforts (and other texts) were calling QAM (or PAM) symbols.
«  Note MN < |C| - they are equal when “uncoded.”

= The subsymbol dimensionality is N ,and there are N such N —dimensional subsymbols / symbol.
* When¥, hasN = 2,thenx € CV; whenX, hasN = 1,thenx € RV,

= The symbols are codewords. The quantities d,,,;,, and P, refer to this symbol/codeword error.
* As before, more complicated decoders can focus on subsymbol-error or bit-error probabilities, as well as symbol errors.

ED
@ Section2.12  January 25,2024 PS3.4 (2.5) L6:8 Stanford University



More code definitions/relations

b=2=p.N=p.2
N N

= Number of bits/subsymbol is

= The code’s minimum distance remains (for codword spacing):

A .
AWGN  dmin(Cx) = dmin = 2 |z — ;]|

d = min dy(v; — v;
BSC free = i H(vi —vj)

January 25, 2024 Section 2.1.2 L6:9 Stanford University



Uncoded definition

Definition 2.1.3 (Uncoded and Coded) Uncoded data transmission has sub-
symbol constellation C with zero redundancy p = 0. Necessarily, then uncoded trans-
misston also has p = 0 and p = 0. Usually in uncoded transmission, the codeword and

the subsymbol are trivially the same. If the redundancy is greater than zero, p > 0, then
data transmission is coded.

= So QAM and PAM are uncoded when all constellation values are equally likely.

= SQ QAM, equivalently PAM, becomes the reference system for coding gain (with same number of

bits/subsymbol).
2 dz..(Cy)
_ d_ . (&) min\“x
2 min 2/N (A S L
A (dmin(m)/ w) B <V2/N(A)> (V 533( )) Yr V2/N(A)
d2 . (&£)/Ex o d2 . (@) V2/N (K) )
14 Vs Vs gx -6 - N
fundamental shaping
gain gain

Section 2.2.1.2 L6: 10 January 25,2024 Stanford University



® | © 0|0 |. %

® O o o -

e o o0 : )
E VZ/N(A) . (22b _ 1)
u y = — —

® 6 o o : : E,-6-N

. 1..d.,d V3 d? 2
= Hexagonal lattice has A) =6() (=) (—) = g2 L= = ——=—=.25dB
g V(A2) 6(2)(2)(\/5) 5 BE "3
= Qverall gain is +.49 dB (16HEX/16QAM) _1-(2%-1) _ _
* Recall Homework problems PS 2.2 and 2.4. s Ep12 e yf = —135dB

16 points in 2D, even with zero mean Is “lopsided” - 20 would be better - Hex is more * " trit oriented’’ or
be clever with time-varying constellation design, as in PS2.4.

[3

&P Section2.2.1.2 January 25,2024 L6: 11 Stanford University



Subsymbol

= Not all points are equally likely in the 2D subsymbol

nle 4D lattice code example

(ss)

1st2D ss 2nd 2D ss

= How did we get 2567 (8 bits)

* Blue path (8x8 + 4x8 + 8 x4) =128
* Red path similarly 128
e 128+128 =256

January 25,2024

. Outer can occur only once per codeword.
How would you decode?

code has dZ,;,, = 2 with 2D ave energy &, = 7
16 QAM has dZ,;,, = 1 with 2D ave energy €, =5

V_1/5

—2/7 - 10/7 =1.55dB! (forget A;)

PS3.3 (2.2) L6: 12 Stanford University



Random Codes: AWGN'’s Sphere Packing

Section 2.1
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Fundamental coding gain can be infinite (which means P, = 0).

a1 ZN oval ZN
n=1

n=1

Theorem 2.1.1 (Law of Large Numbers (LLN)) The LLN observes that a station-
ary random variable z’s sample average over its observations {zp}n=1,.. N converges to
its mean with large N such that

A}im Pr{‘ (% N zn) — E[z]‘ > e} — 0 weak form (2.14)

—00

A}im Pr{% ) iv=1 Zn = ]E[z]} =1 strong form . (2.15)
—00

Proof: See Appendiz A. QED.

Think of x,, here as subsymbol — so randomly pick N values of x,, from some dist (cont or discrete) to form an N-D codeword.

Do it again for another codeword, M times.
That’s one code. — Do it again for another code. Average results. This is a “random-code” design process.

Energy via LLN: f(x) = ||x||?> = all a hypersphere’s energy (points) are at its surface (well known in geometry).

January 25, 2024 Section 2.1.3 L6: 14 Stanford University



Sphere Packing and AWGN Capacity

= For given energy, what is most efficient

hypershape? (Think shaping gain.)
* A Hypersphere!

Clearly from examples, code design would
like to “pack” as many nicely uniformly
spaced (for good inter-codeword d,;,;;,) in a
volume as possible.

*  Each codeword has a decision region around it.

= Gaussian noise decision region:

* LLN implies that noise @ must have
average variance with prob 1 on shell of
its own little hypershere.

= Marginal X distribution is Gaussian, so that is

best distn for picking the random codewords.

January 25,2024

With Pr=> 1, all symbols are at the surface and along some
great arc, where a good code equally spaces them.

great arc
slightly curved

on tangentlaldlrectlonm m

AN

<+—»
great arc

=102 _ 2
Pr{jinll? —o?| <e} -1 slightly curved

SoP, - 0ifog <£and
P, - 1ifo >2

Shannon's Capacity
(It really is that simple.)

Section 2.1.3.1

L6: 15

(S T>

= V37 = 2% - T owR
E 21
y
é}(
v
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AWGN Capacit

b =log, (1 + lf%) bits/complex-subsymbol < C

= Agood code (e.g., one chosen at random) will have P, — 0 if b< €.
* Onlyissue is the very large N.

= Andif b > G, even slightly, some decision regions will necessarily have 2 or more codeword points in
them, which means “flip a coin” to decide - rapidly the P, > 0 . So, it gets bad ina hurryif b > C.

pid January 25,2024 Section 2.1.3 L6: 16 Stanford University



b =log, (1 + lf%) bits/complex-subsymbol < C

= The designer wants a little “margin” protection against possible noise-power increase.

= MARGIN y,, is this protection (usually in dB), 7y, = (SZIYBR_/:)

Positive margin - means performing well ; Negative margin - means not meeting design goals.

An AWGN with SNR = 20.5 dB has € = log, (1 + 102°%) = 7 bits/subsymbol.

02.05—.88

Suppose that 16-QAM (b = 4) is transmitted @ P,=10° (T = 8.8dB), theny,, = 124—_1 =0dB.

= Suppose instead QAM with b =5 bits/complex-subsymbol with a code and gain 7 dB of gain (/"> 8.8-7=1.8 dB)?

102.05—.18
° —

=3.8dB.

Vm - 251

6 bits/subsymbol with same code? = 0.8 dB margin — just barely below the desired P, ; P, = Pe/N.

[3

@ Section2.4.1  January 25,2024 PS3.5 (2.8) L6: 17 Stanford University



Gap Plot & Example

= The gap I is constant, independent of the bits/dimension b — greatly simplifies “loading” (adapting b
to a specific channel).

Achievable bit rate for various gaps
3 T T T T

bits/dimension

0 I I I | I I
2 4 6 8 10 12 14 16
SNR (dB)

Section2.4.1 ~ January 25,2024 L6: 18 Stanford University



More complete coding illustrated for AWGN

X1 Y1
X2 Y2
X = . e
R = AWGN Yy=1:
Discrete Transmitter Xy =
m v x®) vy YN

N dimensions/sub-sym ‘
e.g, QAM, PAM

This can be complex.

1
i Discrete i Simple + Simple ML m
7 ’m "l Mod | i Mod EEIgs Det

= Simple modulator is QAM (or PAM) typically.

= Demodulator produces y , which feeds the ML detector for the code (which applies through encoder).
e Overall is simple concept.
* ML detector might have to check large number of codewords.
* There are many very good codes = having a simple detector becomes the objective.

[3
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Can the random part make it complex?

= Put simply, yes, really complex.

= Unless we abandon pure ML decoding .... or do random “educated” guessing.

- ===

' ner - ! Outer
Outer Inne chnd Inner De

1
1

encode i - encode decode 'interleave i decode
1

5
—+
D
=
()
Q
<
D
\ 4

Iterative decoding

= One way or another, good codes essentially randomize by interleaving (perhaps more than 1 inner code).

= MAP (or approximately so) decoders for each inner code, which then need to help each other.

Cﬁ

2 January 25,2024 Section 2.1.4 L6: 20 Stanford University



DMC Codes: Maximum

Distance Separable

Section 2.2

Januar y 25,2024 L6:21



Good Ball Packing — Singleton Bound

Lemma 2.2.1 (Singleton Bound) If a designer knows the blocklength n and the dyc.
necessary for performance, then a binary block code’s rate must be less than

k = logy(M)

r

IA

IN

n—dfree—|—1
1— dfree_]-
n

Zn/zk ~2dfree_1

Codes that meet the SB are basically most dense ball packing — Maximum Distance Separable (MDS).

For g > 2 there are classes of good codes that are MDS.

For binary unfortunately, these are trivial.

For instance, linear cyclic codes, Reed Solomon, nonbinary BCH — (L11 and also see EE 387).

For binary, very good codes often require some degree of randomness (and large n) to even approach SB.
See the interleaver on Slide 19 for the random version. Best codes often mix multiple subcodes.

January 25, 2024 Section 2.2.2.1
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The g-ary Symmetric Channel

SDMC is typically used with “bytes” (blocks) of inner-channel detected bits.
» Codes can be much more powerful than best binary codes.

This channel may have erasures in various modifications also.

Typically models an “inner channel” for application of outer cyclic codes over
finite field (e.g. “Reed Solomon” codes, see EE387, winter 2025, also L11).

January 25,2024 Section 2.2.2.2 PS3.4 (2.5) L6: 23 Stanford University



Galois Fields: GF(5) ={0 1 a a* a3}

= Appendix B

January 25, 2024

Section B.1.2

X 1 (2 (3 |4
1 |1 (2 |3 |4
2 |12 |4 |1 |3
3 (3|1 1|4 |2
4 (4 |3 |2 |1

al o | o | o
2 4 3 1
3 4 2 1

L6:24

Stanford University



Codes for the symmetric DMC

* Finite Field GF(q) has q as prime or
product of primes (See Appendix B), and
IS:

» closed under addition, with 0 element, &

» closed under multiplication, with identity,
and under division except by 0.

* Codewords are constructed from
subsymbol elements of GF(q).

 Same random coding argument leads to
uniform over finite field “ball”
(consequently uniform in each subsymbol
slice)ifg > coand N — oo .

G January 25,2024 Section B.1.2 L6: 25 Stanford University



MDS — maximum distance separable

These are the good “ball packers” for finite-length codewords.

Cyclic Codes (Reed Solomon, BCH, etc) are See EE387, L11.

Basically, these codes achieve best ball packing for finite g = p™ and N < q™ — 1.
They are cyclic in the finite field (all codewords are circular shifts of one another).

Their encoders are linear (in GF(q)) easy implementation; relatively easy ML
decoders.

Unfortunately, binary MDS are all trivial (like repeat N times — so very low
rate or add one parity bit so not very powerful).

» So nontrivial binary codes are not MDS.

ReaIIY]good binary codes will have some “randomness” and long block
length, but they exist (Lectures 9-12).

» Turbo

» Low-Density Parity Check (LDPC)
» Polar

» Product

January 25,2024 Section 2.2 L6: 26 Stanford University



Modern Powerful codes

* Yy islarge, equivalently can be reliably decoded (low Pe).

* Can be based on good long-length binary codes:
» With binary-to-|C| “mapper” for larger QAM constellations
» Leave shaping (y;) to the constellation boundary design (< 1.53 dB).

| Compute i
Outer i SoftInfo !
Interleave ! De-
» Mapper » AWGN > L) » Decoder
AN or product s : Or  linterleave
encoder Hard Decision
Symmetric DMC et '

A
C@ January 25, 2024 Section 2.1.4 L6: 27 Stanford University



Generalization: Sequential Encoder & Mapper

= Trellis or Convolutional Codes (see feedback below) have model:

~ . E
b bits ncoder
\

N dimensions

um \ >

f (Um, sm)

message

state
out

b + p bits

Sm+1

Sm 9 Um, Sm)

A 4

state
in

v bits

\ D

= |nputs have b — usually bits.
= Qutputs are N —dimensional.
« WhenX¥eCV > Trellis Code.
C_j * When ¥ = v € GF(2)N < Binary convolutional code.

i January 25,2024

-V ——>

Constellation
Mapper

possible values

Xm

|C| = 2D+P —  subsymbol

|C| = 2b+P
possible values

Semi-infinite sequences

u(D) = va - D™

m

v(D) = Evm -D™

m

x(D) = zim - D™

m

Tries to ““fake”
larger block length

with finite real-time complexity/delay

Section 2.2.4
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STANFORD

End Lecture 6




