

Lecture 6 Coding Concepts & Dimensionality January 25, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

- Announcements
 - PS3 problem 3.2 may take some runtime for matlab on P_e estimates, so give yourself time.
 - Again, recall HWH (HWH3 is at web site) if spending too much time.

Today

• Codewords, Symbols, and Redundancy

- Random Coding: AWGN's Sphere Packing
- DMC Codes: MDS' Ball Packing

EE379A Lectures – Winter 2024

Tu-Th 3:00 - 4:20 pm; Location Gates B1

Lecture #	Date	Торіс	Reading	Hmwrk (out/in)
		Data-Transmission, Channels & Fundame	ntals	
1	1/9	Intro: Discrete Message Encoding/Decoding	1.1	1/-
2	1/11	White Gaussian Noise (AWGN) Channels	1.2	-/-
3	1/16	Modulation Types (PAM/QAM)	1.3	2/1
4	1/18	Complex and other Channels	1.4	-/-
5	1/23	MIMO and Statistical Channels	1.5, 1.6	3/2
6	1/25	Coding Concepts & Dimensionality	2.1-2	-/-
6	1/25 1/30	Coding Concepts & Dimensionality Binary Codes	2.1-2 8.1,8.2	4/3
6 7 8	1/25 1/30 2/1	Coding Concepts & Dimensionality Binary Codes Viterbi-Sequence & MAP-Bit Decoding	2.1-2 8.1,8.2 7.1-3	-/- 4/3 -/-
6 7 8 9	1/25 1/30 2/1 2/6	Coding Concepts & Dimensionality Binary Codes Viterbi-Sequence & MAP-Bit Decoding Concatenated and Turbo Codes	2.1-2 8.1,8.2 7.1-3 8.3	-/- 4/3 -/- -/4
6 7 8 9 	1/25 1/30 2/1 2/6 2/8	Coding Concepts & Dimensionality Binary Codes Viterbi-Sequence & MAP-Bit Decoding Concatenated and Turbo Codes Midterm Exam (open bk)	2.1-2 8.1,8.2 7.1-3 8.3	-/- 4/3 -/- -/4 -/-
6 7 8 9 10	1/25 1/30 2/1 2/6 2/8 2/8 2/13	Coding Concepts & Dimensionality Binary Codes Viterbi-Sequence & MAP-Bit Decoding Concatenated and Turbo Codes Midterm Exam (open bk) Constraints and LDPC Codes	2.1-2 8.1,8.2 7.1-3 8.3 7.4-6	-/- 4/3 -/- -/4 -/- 5/-
6 7 8 9 10 11	1/25 1/30 2/1 2/6 2/8 2/13 2/15	Coding Concepts & Dimensionality Binary Codes Viterbi-Sequence & MAP-Bit Decoding Concatenated and Turbo Codes Midterm Exam (open bk) Constraints and LDPC Codes Outer Hard-Code Concatenation	2.1-2 8.1,8.2 7.1-3 8.3 7.4-6 8.4,8.6	-/- 4/3 -/- -/4 -/- 5/- -/-

Codewords, Symbols, & Redundancy

Section 2.1

January 25, 2024

AWGN Summary/Review

Detection problem first, every *T* **seconds (symbol period)**

SNR, QAM, PAM reminders

$$SNR \triangleq \frac{\bar{\mathcal{E}}_{\chi}}{\sigma^2} = \frac{\text{single} - \text{sided psd}}{\text{single} - \text{sided psd}} = \frac{\text{two} - \text{sided psd}}{\text{two} - \text{sided psd}}$$

SNR must use the same number of dimensions in numerator (signal) and denominator (noise).

• Thus, also
$$SNR \triangleq \frac{\bar{\varepsilon}_x}{\sigma^2} = \frac{2 \cdot \bar{\varepsilon}_x}{N_0} = \frac{\varepsilon_x}{N \cdot \sigma^2}$$
 where $\bar{\varepsilon}_x$ is energy/real-dimension.

- Energy/dimension generalizes power/Hz (= energy), so equivalent to a power-spectral density (psd).
 - 1-sided \rightarrow power is integral over positive frequencies of psd.
 - 2-sided \rightarrow power is integral over all frequencies of psd.
 - These two powers are the same.
 - So -40 dBm/Hz (one-sided) psd over 1 MHz is 20 dBm, or 100 mWatts of power.
- PAM is always real baseband. QAM is always complex baseband (2 real dimensions)
 - When QAM has only 1 bit (2 points) in constellation, it is called BPSK (not binary PAM).
 - PAM's positive-frequency bandwidth is [0, 1/2T) .
 - QAM's positive-frequency bandwidth is $[-1/2T + f_c, 1/2T + f_c]$.
 - The PAM system looks like it uses only 1/2 the bandwidth, but the QAM system is really transmitting two dimensions per symbol (so really like 2 PAM systems in parallel with symbol rate 1/T each), so then twice a single PAM's bandwidth.

Section 1.3.4

L6: 5

Codewords constructed from "subsymbols"

$$\widetilde{x}_1$$
 \widetilde{x}_2 \widetilde{x}_3 \cdots $\widetilde{x}_{\overline{N}}$ $codeword (symbol) x$ Good Code $\widetilde{b} \to C$ as $\overline{N} \to \infty$ subsymbols $N = \overline{N} \cdot \widetilde{N} = \#$ subsymbols x (dim/subsymbol)Detector could also detect subsymbolsbits/dim = $\overline{b} = \frac{b}{N}$; bits/subsym = $\widetilde{b} = \frac{b}{N} = \widetilde{N} \cdot \overline{b}$ Detector could also detect subsymbolsCode constructionCode construction

- QAM/PAM operates with given low P_e (10⁻⁶) and at a "SNR gap" ($\Gamma = 8.8 \ dB \ @10^{-6}$) below capacity.
 - See basics in Section 1.3.4.

$$\tilde{b} = log_2\left(1 + \frac{SNR}{\Gamma}\right)$$
 bits/complex-subsymbol $\leq C$

$$\frac{3}{2^{\overline{b}}-1} \cdot SNR = 13.5 \ dB$$
 (from $P_e = 10^{-6}$ formula)

Stanford University

- For all $\tilde{b} > 1$, simple square QAM constellations have constant gap (= 8.8 dB at $P_e = 10^{-6}$).
- The subsymbols are QAM, but usually with more than $|C| > M = 2^{\tilde{b}}$ possible values (redundancy).

Section 2.1.1

Trivial Coding

16 SQ QAM - UNCODED

|C| = 16; M = 16 $b = 4 : \bar{b} = 2 : \tilde{b} = 4$ $N = \widetilde{N} = 2$; $\overline{N} = 1$ (or swap \widetilde{N} and $\overline{N} \rightarrow$ PAM)

- The subsymbol can have extra points, which means its coded.
 - More redundant points and/or more dimensions \rightarrow better codes.
 - The subsymbol values may no longer be equally likely, but codewords are.

L6:7

Redundancy and uncoded definition

Definition 2.1.2 (Code) A code is any set of $M = 2^b$, N-dimensional codewords

$$C_{\mathbf{x}} = \{\mathbf{x}_i\}_{i=0,\dots,M-1}$$
(2.7)

where the N-dimensional codewords have \overline{N} , \widetilde{N} -dimensional subsymbols selected from an \widetilde{N} -dimensional subsymbol constellation C with |C| subsymbol values. The subscript \boldsymbol{x} on $C_{\boldsymbol{x}}$ distinguishes $C_{\boldsymbol{x}}$ from the subsymbol constellation C. Thus,

$$N = \underbrace{\widetilde{N}}_{\substack{subsymbol\\size}} \cdot \underbrace{\overline{N}}_{\substack{\# of\\subsymbols}} \cdot$$
(2.8)

- Subsymbols are basically now what our earlier efforts (and other texts) were calling QAM (or PAM) symbols.
 - Note M^{1/Ñ} ≤ |C| they are equal when "uncoded."
- The subsymbol dimensionality is \tilde{N} , and there are \overline{N} such \tilde{N} –dimensional subsymbols / symbol.
 - When \widetilde{x}_n has $\widetilde{N} = 2$, then $x \in \mathbb{C}^N$; when \widetilde{x}_n has $\widetilde{N} = 1$, then $x \in \mathbb{R}^N$.
- The symbols are codewords. The quantities d_{min} and P_e refer to this symbol/codeword error.
 - As before, more complicated decoders can focus on subsymbol-error or bit-error probabilities, as well as symbol errors.

PS3.4 (2.5)

More code definitions/relations

• Number of bits/subsymbol is
$$\tilde{b} = rac{b}{\overline{N}} = \overline{b} \cdot \widetilde{N} = b \cdot rac{\widetilde{N}}{N}$$
.

The code's minimum distance remains (for codword spacing):

AWGN
$$d_{min}(C_{\boldsymbol{x}}) \stackrel{\Delta}{=} d_{min} = \min_{\boldsymbol{x}_i
eq \boldsymbol{x}_j} \| \boldsymbol{x}_i - \boldsymbol{x}_j \|$$

$$\mathsf{BSC} \qquad d_{free} = \min_{\boldsymbol{v}_i \neq \boldsymbol{v}_j} d_H(\boldsymbol{v}_i - \boldsymbol{v}_j)$$

January 25, 2024

Section 2.1.2

 $\widetilde{}$

Uncoded definition

Definition 2.1.3 (Uncoded and Coded) Uncoded data transmission has subsymbol constellation C with zero redundancy $\tilde{\rho} = 0$. Necessarily, then uncoded transmission also has $\rho = 0$ and $\bar{\rho} = 0$. Usually in uncoded transmission, the codeword and the subsymbol are trivially the same. If the redundancy is greater than zero, $\tilde{\rho} > 0$, then data transmission is **coded**.

- So QAM and PAM are uncoded when all constellation values are equally likely.
- SQ QAM, equivalently PAM, becomes the reference system for coding gain (with same number of bits/subsymbol).

$$\gamma \stackrel{\Delta}{=} \frac{\left(d_{\min}^{2}(\boldsymbol{x})/\bar{\mathcal{E}}_{\boldsymbol{x}}\right)}{\left(d_{\min}^{2}(\boldsymbol{x})/\bar{\mathcal{E}}_{\boldsymbol{x}}\right)} = \begin{bmatrix} \left(\frac{d_{\min}^{2}(\boldsymbol{x})}{V^{2/N}(\Lambda)}\right) \\ \left(\frac{d_{\min}^{2}(\boldsymbol{x})}{V^{2/N}(\Lambda)}\right) \\ \left(\frac{d_{\min}^{2}(\boldsymbol{x})}{V^{2/N}(\Lambda)}\right) \\ \gamma_{f} \\ \text{fundamental} \\ \text{gain} \end{bmatrix} \begin{bmatrix} \left(\frac{V^{2/N}(\Lambda)}{\bar{\mathcal{E}}_{\boldsymbol{x}}}\right) \\ \left(\frac{V^{2/N}(\Lambda)}{\bar{\mathcal{E}}_{\boldsymbol{x}}}\right) \\ \gamma_{s} \\ \text{shaping} \\ \text{gain} \end{bmatrix}$$

Section 2.2.1.2 L6: 10

$$\gamma_f = \frac{d_{min}^2(C_x)}{V^{2/N}(\Lambda)}$$
$$\gamma_s = \frac{V^{2/N}(\Lambda) \cdot (2^{2\overline{b}} - 1)}{\tilde{\mathcal{E}}_x \cdot 6 \cdot \tilde{N}}$$

January 25, 2024

Hexagonal constellations, 2D

- Overall gain is +.49 dB (16HEX/16QAM)
 - Recall Homework problems PS 2.2 and 2.4.

$$\gamma_s = \frac{1 \cdot (2^4 - 1)}{\tilde{\varepsilon}_x \cdot 12} = \gamma \cdot \gamma_f = -.135 \text{ dB}$$

16 points in 2D, even with zero mean Is "lopsided" – 20 would be better - Hex is more ``trit oriented'' or be clever with time-varying constellation design, as in PS2.4.

Section 2.2.1.2

January 25, 2024

L6: 11

Simple 4D lattice code example

- Not all points are equally likely in the 2D subsymbol code has $d_{min}^2 = 2$ with 2D ave energy $\tilde{\mathcal{E}}_x = 7$
- How did we get 256? (8 bits)
 - Blue path (8x8 + 4x8 + 8 x4) = 128

January 25, 2024

- Red path similarly 128
- 128+128 = 256 !

```
16 QAM has d_{min}^2 = 1 with 2D ave energy \tilde{\mathcal{E}}_x = 5

\gamma = \frac{2/7}{1/5} = 10/7 = 1.55 \text{ dB! (forget } A_2)

PS3.3 (2.2)

L6: 12

Stanford University
```

Random Codes: AWGN's Sphere Packing

Section 2.1

January 25, 2024

Law of Large Numbers & Random Coding

• Fundamental coding gain can be infinite (which means $P_e \rightarrow 0$).

$$\hat{oldsymbol{x}} \stackrel{\Delta}{=} rac{1}{N} \cdot \sum_{n=1}^{N} oldsymbol{x}_n \qquad \hat{f}(oldsymbol{x}) \stackrel{\Delta}{=} rac{1}{N} \cdot \sum_{n=1}^{N} f(oldsymbol{x}_n)$$

Theorem 2.1.1 (Law of Large Numbers (LLN)) The LLN observes that a stationary random variable z's sample average over its observations $\{z_n\}_{n=1,...,N}$ converges to its mean with large N such that

$$\lim_{N \to \infty} Pr\left\{ \left| \left(\frac{1}{N} \sum_{n=1}^{N} z_n \right) - \mathbb{E}[z] \right| > \epsilon \right\} \to 0 \quad \text{weak form}$$

$$\lim_{N \to \infty} Pr\left\{ \frac{1}{N} \sum_{n=1}^{N} z_n = \mathbb{E}[z] \right\} = 1 \quad \text{strong form} .$$

$$(2.14)$$

Proof: See Appendix A. **QED**.

- Think of x_n here as subsymbol so randomly pick \tilde{N} values of x_n from some dist (cont or discrete) to form an N-D codeword.
- Do it again for another codeword, *M* times.
- That's one code. Do it again for another code. Average results. This is a **"random-code" design process**.
- Energy via LLN: $f(x) = ||x||^2 \rightarrow all a hypersphere's energy (points) are at its surface (well known in geometry).$

January 25, 2024

Section 2.1.3

L6: 14

Sphere Packing and AWGN Capacity

- For given energy, what is most efficient hypershape? (Think shaping gain.)
 - A Hypersphere!
- Clearly from examples, code design would like to "pack" as many nicely uniformly spaced (for good inter-codeword d_{min}) in a volume as possible.
 - Each codeword has a decision region around it.
- Gaussian noise decision region:
 - LLN implies that noise \tilde{n} must have ٠ average variance with prob 1 on shell of its own little hypershere.
- Marginal \tilde{x} distribution is Gaussian, so that is best distn for picking the random codewords.

With $Pr \rightarrow 1$, all symbols are at the surface and along some great arc, where a good code equally spaces them.

January 25, 2024

Section 2.1.3.1

AWGN Capacity

$$\tilde{b} = log_2\left(1 + \frac{SNR}{\Gamma \cdot \gamma_m}\right)$$
 bits/complex-subsymbol $\leq \tilde{C}$

- A good code (e.g., one chosen at random) will have $P_e \rightarrow 0$ if $\tilde{b} < \tilde{C}$.
 - Only issue is the very large *N*.
- And if $\tilde{b} > \tilde{C}$, even slightly, some decision regions will necessarily have 2 or more codeword points in them, which means "flip a coin" to decide rapidly the $P_e > 0$. So, it gets bad in a hurry if $\tilde{b} > \tilde{C}$.

Margin

$$\tilde{b} = log_2 \left(1 + \frac{SNR}{\Gamma \cdot \gamma_m}\right)$$
 bits/complex-subsymbol $\leq C$

- The designer wants a little "margin" protection against possible noise-power increase.
- MARGIN γ_m is this protection (usually in dB), $\gamma_m = \frac{(SNR/\Gamma)}{2^{\tilde{b}}-1}$.

Positive margin – means performing well ; **Negative margin** – means not meeting design goals.

- An AWGN with SNR = 20.5 dB has $\tilde{C} = log_2 (1 + 10^{2.05}) = 7$ bits/subsymbol.
- Suppose that 16-QAM ($\tilde{b} = 4$) is transmitted @ $P_e = 10^{-6}$ ($\Gamma = 8.8 \text{ dB}$), then $\gamma_m = \frac{10^{2.05-.88}}{2^4-1} = 0 \text{ dB}$.
- Suppose instead QAM with \tilde{b} =5 bits/complex-subsymbol with a code and gain 7 dB of gain ($\Gamma \rightarrow 8.8$ -7=1.8 dB)? • $\gamma_m = \frac{10^{2.05-.18}}{2^5-1} = 3.8 \text{ dB}$.
- 6 bits/subsymbol with same code? \rightarrow 0.8 dB margin just barely below the desired P_e ; $\bar{P}_e = \frac{P_e}{N}$.

PS3.5 (2.8)

Gap Plot & Example

• The gap Γ is constant, independent of the bits/dimension \overline{b} – greatly simplifies "loading" (adapting \overline{b} to a specific channel).

More complete coding illustrated for AWGN

- Simple modulator is QAM (or PAM) typically.
- Demodulator produces y, which feeds the ML detector for the code (which applies through encoder).
 - Overall is simple concept.
 - ML detector might have to check large number of codewords.
 - There are many very good codes \rightarrow having a simple detector becomes the objective.

Can the random part make it complex?

- Put simply, yes, really complex.
- Unless we abandon pure ML decoding or do random "educated" guessing.

- One way or another, good codes essentially randomize by interleaving (perhaps more than 1 inner code).
- MAP (or approximately so) decoders for each inner code, which then need to help each other.

Section 2.1.4

L6: 20

DMC Codes: Maximum Distance Separable

Section 2.2

January 25, 2024

Good Ball Packing – Singleton Bound

Lemma 2.2.1 (Singleton Bound) If a designer knows the blocklength n and the d_{free} necessary for performance, then a binary block code's rate must be less than

$$k = \log_2(M) \le n - d_{free} + 1$$

 $r \le 1 - \frac{d_{free} - 1}{n}$.

- Codes that meet the SB are basically most dense ball packing Maximum Distance Separable (MDS).
- For q > 2 there are classes of good codes that are **MDS**.
 - For binary unfortunately, these are trivial.
- For instance, linear cyclic codes, Reed Solomon, nonbinary BCH (L11 and also see EE 387).
- For binary, very good codes often require some degree of randomness (and large *n*) to even approach SB.
 - See the interleaver on Slide 19 for the random version. Best codes often mix multiple subcodes.

Section 2.2.2.1

L6: 22

The q-ary Symmetric Channel

- SDMC is typically used with "bytes" (blocks) of inner-channel detected bits.
 Codes can be much more powerful than best binary codes.
 - Codes can be much more powerful than best binary codes.
- This channel may have erasures in various modifications also.
- Typically models an "inner channel" for application of outer cyclic codes over finite field (e.g. "Reed Solomon" codes, see EE387, winter 2025, also L11).

PS3.4 (2.5)

Galois Fields: $GF(5) = \{0 \ 1 \ \alpha \ \alpha^2 \ \alpha^3 \}$

Codes for the symmetric DMC

- Finite Field GF(q) has q as prime or product of primes (See Appendix B), and is:
 - closed under addition, with 0 element, &
 - closed under multiplication, with identity, and under division except by 0.
- Codewords are constructed from subsymbol elements of GF(q).
- Same random coding argument leads to uniform over finite field "ball" (consequently uniform in each subsymbol slice) if $q \to \infty$ and $N \to \infty$.

MDS – maximum distance separable

- These are the good "ball packers" for finite-length codewords.
- Cyclic Codes (Reed Solomon, BCH, etc) are See EE387, L11.
- Basically, these codes achieve best ball packing for finite $q = p^n$ and $N \le q^n 1$.
- They are cyclic in the finite field (all codewords are circular shifts of one another).
- Their encoders are linear (in GF(q)) easy implementation; relatively easy ML decoders.
- Unfortunately, binary MDS are all trivial (like repeat *N* times so very low rate or add one parity bit so not very powerful).
 - So nontrivial binary codes are not MDS.
- Really good binary codes will have some "randomness" and long block length, but they exist (Lectures 9-12).
 - Turbo
 - Low-Density Parity Check (LDPC)
 - Polar
 - Product

January 25, 2024

Modern Powerful codes

- γ_f is large, equivalently can be reliably decoded (low Pe).
- Can be based on good long-length binary codes:
 - \blacktriangleright With binary-to-|C| "mapper" for larger QAM constellations
 - > Leave shaping (γ_s) to the constellation boundary design (< 1.53 dB).

Generalization: Sequential Encoder & Mapper

Trellis or Convolutional Codes (see feedback below) have model:

Section 2.2.4

End Lecture 6