Lecture 6
 Coding Concepts \& Dimensionality

January 25, 2024

JOHN M. CIOfFI

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS3 - problem 3.2 may take some runtime for matlab on P_{e} estimates, so give yourself time.
- Again, recall HWH (HWH3 is at web site) if spending too much time.

- Today

- Codewords, Symbols, and Redundancy
- Random Coding: AWGN's Sphere Packing
- DMC Codes: MDS' Ball Packing

EE379A Lectures - Winter 2024

Tu-Th 3:00-4:20 pm; Location Gates B1

Codewords, Symbols, \& Redundancy

Section 2.1

AWGN Summary/Review

Detection problem first, every T seconds (symbol period)

SNR, QAM, PAM reminders

$$
S N R \triangleq \frac{\bar{\varepsilon}_{x}}{\sigma^{2}}=\frac{\text { single }- \text { sided psd }}{\text { single }- \text { sided psd }}=\frac{\text { two }- \text { sided psd }}{\text { two }- \text { sided psd }}
$$

- SNR must use the same number of dimensions in numerator (signal) and denominator (noise).
- Thus, also $S N R \triangleq \frac{\bar{\varepsilon}_{x}}{\sigma^{2}}=\frac{2 \cdot \bar{\varepsilon}_{x}}{\mathcal{N}_{0}}=\frac{\varepsilon_{x}}{N \cdot \sigma^{2}} \quad$ where $\bar{\varepsilon}_{x}$ is energy/real-dimension.
- Energy/dimension generalizes power/Hz (= energy), so equivalent to a power-spectral density (psd).
- 1-sided \rightarrow power is integral over positive frequencies of psd.
- 2 -sided \rightarrow power is integral over all frequencies of psd.
- These two powers are the same.
- So $-40 \mathrm{dBm} / \mathrm{Hz}$ (one-sided) psd over 1 MHz is 20 dBm , or 100 mWatts of power.
- PAM is always real baseband. QAM is always complex baseband (2 real dimensions)
- When QAM has only 1 bit (2 points) in constellation, it is called BPSK (not binary PAM).
- PAM's positive-frequency bandwidth is [0, 1/2T)
- QAM's positive-frequency bandwidth is $\left[-1 / 2 T+f_{c}, 1 / 2 T+f_{c}\right.$)
- The PAM system looks like it uses only $1 / 2$ the bandwidth, but the QAM system is really transmitting two dimensions per symbol (so really like 2 PAM systems in parallel with symbol rate 1/T each), so then twice a single PAM's bandwidth.

Codewords constructed from "subsymbols"

- QAM/PAM operates with given low $P_{e}\left(10^{-6}\right)$ and at a "SNR gap" $\left(\Gamma=8.8 d B @ 10^{-6}\right)$ below capacity.
- See basics in Section 1.3.4.

$$
\tilde{b}=\log _{2}\left(1+\frac{S N R}{\Gamma}\right) \text { bits/complex-subsymbol } \leq \mathcal{C} \quad \frac{3}{2^{b-1}} \cdot \operatorname{SNR}=13.5 d B \text { (from } P_{e}=10^{-6} \text { formula) }
$$

- For all $\tilde{b}>1$, simple square QAM constellations have constant gap ($=8.8 \mathrm{~dB}$ at $P_{e}=10^{-6}$).
- The subsymbols are QAM, but usually with more than $|C|>M=2^{\tilde{b}}$ possible values (redundancy).

16 SQ QAM - UNCODED

$$
|C|=16 ; M=16
$$

$$
b=4 ; \bar{b}=2 ; \tilde{b}=4
$$

$$
N=\widetilde{N}=2 ; \bar{N}=1(\text { or swap } \widetilde{N} \text { and } \bar{N} \rightarrow \mathrm{PAM})
$$

- The subsymbol can have extra points, which means its coded.
- More redundant points and/or more dimensions \rightarrow better codes.
- The subsymbol values may no longer be equally likely, but codewords are.

6 PAM $\times 6$ PAM 36SQ CODED in 1D

$$
\begin{gathered}
N=\bar{N}=2 ; \widetilde{N}=1 ;|C|=6=2^{2.59} \\
\text { If } \bar{b}=2.5, \bar{\rho}=0.09
\end{gathered}
$$

(extra constellation points \sim redundancy)
$\bar{b}+\bar{\rho}=\log _{2}|C|$

Redundancy and uncoded definition

Definition 2.1.2 (Code) A code is any set of $M=2^{b}, N$-dimensional codewords

$$
\begin{equation*}
C_{\boldsymbol{x}}=\left\{\boldsymbol{x}_{i}\right\}_{i=0, \ldots, M-1} \tag{2.7}
\end{equation*}
$$

where the N-dimensional codewords have \bar{N}, \tilde{N}-dimensional subsymbols selected from an \widetilde{N}-dimensional subsymbol constellation C with $|C|$ subsymbol values. The subscript \boldsymbol{x} on $C_{\boldsymbol{x}}$ distinguishes $C_{\boldsymbol{x}}$ from the subsymbol constellation C. Thus,

$$
N=\underbrace{\widetilde{N}}_{\begin{array}{c}
\text { subsymbol } \tag{2.8}\\
\text { size }
\end{array}} \cdot \underbrace{\bar{N}}_{\begin{array}{c}
\# \text { of } \\
\text { subsymbols }
\end{array}}
$$

- Subsymbols are basically now what our earlier efforts (and other texts) were calling QAM (or PAM) symbols.
- Note $M^{1 / \widetilde{N}} \leq|C|$ - they are equal when "uncoded."
- The subsymbol dimensionality is \widetilde{N}, and there are \bar{N} such \widetilde{N}-dimensional subsymbols / symbol.
- When $\widetilde{\boldsymbol{x}}_{n}$ has $\widetilde{N}=2$, then $\boldsymbol{x} \in \mathbb{C}^{N}$; when $\widetilde{\boldsymbol{x}}_{n}$ has $\widetilde{N}=1$, then $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{N}}$.
- The symbols are codewords. The quantities $d_{\min }$ and P_{e} refer to this symbol/codeword error.
- As before, more complicated decoders can focus on subsymbol-error or bit-error probabilities, as well as symbol errors.

More code definitions/relations

- Number of bits/subsymbol is

$$
\tilde{b}=\frac{b}{\bar{N}}=\bar{b} \cdot \widetilde{N}=b \cdot \frac{\widetilde{N}}{N}
$$

- The code's minimum distance remains (for codword spacing):

$$
\begin{array}{ll}
\text { AWGN } & d_{\text {min }}(C \boldsymbol{x}) \triangleq d_{\text {min }}=\min _{\boldsymbol{x}_{i} \neq \boldsymbol{x}_{j}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| \\
\text { BSC } & d_{\text {free }}=\min _{\boldsymbol{v}_{i} \neq \boldsymbol{v}_{j}} d_{H}\left(\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right)
\end{array}
$$

Uncoded definition

Definition 2.1.3 (Uncoded and Coded) Uncoded data transmission has subsymbol constellation C with zero redundancy $\tilde{\rho}=0$. Necessarily, then uncoded transmission also has $\rho=0$ and $\bar{\rho}=0$. Usually in uncoded transmission, the codeword and the subsymbol are trivially the same. If the redundancy is greater than zero, $\tilde{\rho}>0$, then data transmission is coded.

- So QAM and PAM are uncoded when all constellation values are equally likely.
- SQ QAM, equivalently PAM, becomes the reference system for coding gain (with same number of bits/subsymbol).

$$
\begin{gathered}
\gamma_{f}=\frac{d_{\min }^{2}\left(C_{x}\right)}{V^{2 / N}(\Lambda)} \\
\gamma_{s}=\frac{V^{2 / N}(\Lambda) \cdot\left(2^{2 \bar{b}}-1\right)}{\tilde{\varepsilon}_{x} \cdot 6 \cdot \widetilde{N}}
\end{gathered}
$$

Hexagonal constellations, 2D

(b) 16 HEX

- Hexagonal lattice has

$$
V\left(A_{2}\right)=6\left(\frac{1}{2}\right)\left(\frac{d}{2}\right)\left(\frac{d}{\sqrt{3}}\right)=d^{2} \frac{\sqrt{3}}{2} \quad \gamma_{f}=\frac{d^{2}}{\frac{\sqrt{3} d^{2}}{2}}=\frac{2}{\sqrt{3}}=.625 \mathrm{~dB}
$$

- Overall gain is +.49 dB (16HEX/16QAM)
- Recall Homework problems PS 2.2 and 2.4.

$$
\gamma_{s}=\frac{1 \cdot\left(2^{4}-1\right)}{\tilde{\varepsilon}_{x} \cdot 12}=\gamma-\gamma_{f}=-.135 \mathrm{~dB}
$$

Simple 4D lattice code example

Outer can occur only once per codeword. How would you decode?

- Not all points are equally likely in the 2D subsymbol
- How did we get 256? (8 bits)
- Blue path $(8 \times 8+4 \times 8+8 \times 4)=128$
code has $d_{\min }^{2}=2$ with 2 D ave energy $\tilde{\varepsilon}_{x}=7$
- Red path similarly 128
- $128+128=256$!

16 QAM has $d_{\min }^{2}=1$ with 2 D ave energy $\tilde{\varepsilon}_{x}=5$

$$
\gamma=\frac{2 / 7}{1 / 5}=10 / 7=1.55 \mathrm{~dB}!\left(\text { forget } A_{2}\right)
$$

Random Codes: AWGN's Sphere Packing

Section 2.1

Law of Large Numbers \& Random Coding

- Fundamental coding gain can be infinite (which means $P_{e} \rightarrow 0$).

$$
\hat{\boldsymbol{x}} \triangleq \frac{1}{N} \cdot \sum_{n=1}^{N} \boldsymbol{x}_{n} \quad \hat{f}(\boldsymbol{x}) \triangleq \frac{1}{N} \cdot \sum_{n=1}^{N} f\left(\boldsymbol{x}_{n}\right)
$$

Theorem 2.1.1 (Law of Large Numbers (LLN)) The LLN observes that a stationary random variable z 's sample average over its observations $\left\{z_{n}\right\}_{n=1, \ldots, N}$ converges to its mean with large N such that

$$
\begin{array}{ccl}
\lim _{N \rightarrow \infty} & \operatorname{Pr}\left\{\left|\left(\frac{1}{N} \sum_{n=1}^{N} z_{n}\right)-\mathbb{E}[z]\right|>\epsilon\right\} \rightarrow 0 & \text { weak form } \\
\lim _{N \rightarrow \infty} & \operatorname{Pr}\left\{\frac{1}{N} \sum_{n=1}^{N} z_{n}=\mathbb{E}[z]\right\}=1 & \text { strong form } . \tag{2.15}
\end{array}
$$

Proof: See Appendix A. QED.

- Think of \boldsymbol{x}_{n} here as subsymbol - so randomly pick \widetilde{N} values of \boldsymbol{x}_{n} from some dist (cont or discrete) to form an N-D codeword.
- Do it again for another codeword, M times.
- That's one code. - Do it again for another code. Average results. This is a "random-code" design process.
- Energy via LLN: $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2} \rightarrow$ all a hypersphere's energy (points) are at its surface (well known in geometry).

Sphere Packing and AWGN Capacity

- For given energy, what is most efficient hypershape? (Think shaping gain.)
- A Hypersphere!
- Clearly from examples, code design would like to "pack" as many nicely uniformly spaced (for good inter-codeword $d_{\text {min }}$) in a volume as possible.
- Each codeword has a decision region around it.
- Gaussian noise decision region:
- LLN implies that noise $\widetilde{\boldsymbol{n}}$ must have average variance with prob 1 on shell of its own little hypershere.
- Marginal $\tilde{\boldsymbol{x}}$ distribution is Gaussian, so that is best distn for picking the random codewords.

With $\operatorname{Pr} \rightarrow$ 1, all symbols are at the surface and along some great arc, where a good code equally spaces them.
great arc
slightly curved on tangential direction

$$
\operatorname{Pr}\left\{\left|\|\widehat{\boldsymbol{n}}\|^{2}-\sigma^{2}\right|<\varepsilon\right\} \rightarrow 1
$$

$$
\begin{gathered}
\text { So } P_{e} \rightarrow 0 \text { if } \sigma<\frac{d}{2} \text { and } \\
P_{e} \rightarrow 1 \text { if } \sigma>\frac{d}{2} \\
\hline
\end{gathered}
$$

slightly curved

$$
\sqrt{\overline{\mathcal{E}}_{y}} \left\lvert\, \begin{gathered}
\sqrt[N]{M}= \\
\sqrt{\overline{\mathcal{E}}_{x}}
\end{gathered}\right.
$$

Shannon's Capacity
(It really is that simple.)

AWGN Capacity

$$
\tilde{b}=\log _{2}\left(1+\frac{S N R}{\Gamma \cdot \gamma_{m}}\right) \text { bits/complex-subsymbol } \leq \tilde{\mathcal{C}}
$$

- A good code (e.g., one chosen at random) will have $P_{e} \rightarrow 0$ if $\tilde{b}<\tilde{\mathcal{C}}$.
- Only issue is the very large N.
- And if $\tilde{b}>\tilde{\mathcal{C}}$, even slightly, some decision regions will necessarily have 2 or more codeword points in them, which means "flip a coin" to decide - rapidly the $P_{e}>0$. So, it gets bad in a hurry if $\tilde{b}>\tilde{\mathcal{C}}$.

Margin

$$
\tilde{b}=\log _{2}\left(1+\frac{S N R}{\Gamma \cdot \gamma_{m}}\right) \text { bits/complex-subsymbol } \leq \mathcal{C}
$$

- The designer wants a little "margin" protection against possible noise-power increase.
- MARGIN γ_{m} is this protection (usually in dB), $\quad \gamma_{m}=\frac{(S N R / \Gamma)}{2^{\tilde{b}}-1}$.

Positive margin - means performing well ; Negative margin - means not meeting design goals.

- An AWGN with SNR $=20.5 \mathrm{~dB}$ has $\tilde{\mathcal{C}}=\log _{2}\left(1+10^{2.05}\right)=7$ bits/subsymbol.
- Suppose that 16-QAM $(\tilde{b}=4)$ is transmitted @ $P_{e}=10^{-6}(\Gamma=8.8 \mathrm{~dB})$, then $\gamma_{m}=\frac{10^{2.05-.88}}{2^{4}-1}=0 \mathrm{~dB}$.
- Suppose instead QAM with $\tilde{b}=5$ bits/complex-subsymbol with a code and gain 7 dB of gain $(\Gamma \rightarrow 8.8-7=1.8 \mathrm{~dB})$?
- $\gamma_{m}=\frac{10^{2.05-.18}}{2^{5}-1}=3.8 \mathrm{~dB}$.
- $6 \mathrm{bits} /$ subsymbol with same code? $\rightarrow 0.8 \mathrm{~dB}$ margin - just barely below the desired $P_{e} ; \bar{P}_{e}={ }^{P_{e}} /{ }_{N}$.

Gap Plot \& Example

- The gap Γ is constant, independent of the bits/dimension \bar{b} - greatly simplifies "loading" (adapting \bar{b} to a specific channel).

More complete coding illustrated for AWGN

- Simple modulator is QAM (or PAM) typically.
- Demodulator produces \boldsymbol{y}, which feeds the ML detector for the code (which applies through encoder).
- Overall is simple concept.
- ML detector might have to check large number of codewords.
- There are many very good codes \rightarrow having a simple detector becomes the objective.

Can the random part make it complex?

- Put simply, yes, really complex.
- Unless we abandon pure ML decoding or do random "educated" guessing.

Iterative decoding

- One way or another, good codes essentially randomize by interleaving (perhaps more than 1 inner code).
- MAP (or approximately so) decoders for each inner code, which then need to help each other.

DMC Codes: Maximum Distance Separable

Section 2.2

Good Ball Packing - Singleton Bound

Lemma 2.2.1 (Singleton Bound) If a designer knows the blocklength n and the $d_{\text {free }}$ necessary for performance, then a binary block code's rate must be less than

$$
\begin{aligned}
k=\log _{2}(M) & \leq n-d_{\text {free }}+1 \\
r & \leq 1-\frac{d_{f r e e}-1}{n}
\end{aligned}
$$

$$
2^{n} / 2^{k} \sim 2^{d_{\text {free }}-1}
$$

- Codes that meet the SB are basically most dense ball packing - Maximum Distance Separable (MDS).
- For $q>2$ there are classes of good codes that are MDS.
- For binary unfortunately, these are trivial.
- For instance, linear cyclic codes, Reed Solomon, nonbinary BCH - (L11 and also see EE 387).
- For binary, very good codes often require some degree of randomness (and large n) to even approach SB.
- See the interleaver on Slide 19 for the random version. Best codes often mix multiple subcodes.

- SDMC is typically used with "bytes" (blocks) of inner-channel detected bits.
$>$ Codes can be much more powerful than best binary codes.
- This channel may have erasures in various modifications also.
- Typically models an "inner channel" for application of outer cyclic codes over finite field (e.g. "Reed Solomon" codes, see EE387, winter 2025, also L11).

Galois Fields: $G F(5)=\left\{\begin{array}{llll}0 & 1 & \alpha \alpha^{2} & \alpha^{3}\end{array}\right\}$

- Appendix B

\times	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

α	α^{2}	α^{3}	α^{4}
2	4	3	1
3	4	2	1

Codes for the symmetric DMC

- Finite Field $G F(q)$ has q as prime or product of primes (See Appendix B), and is:
> closed under addition, with 0 element, \& $>$ closed under multiplication, with identity, and under division except by 0 .
- Codewords are constructed from subsymbol elements of $G F(q)$.
- Same random coding argument leads to uniform over finite field "ball" (consequently uniform in each subsymbol slice) if $q \rightarrow \infty$ and $N \rightarrow \infty$.

MDS - maximum distance separable

- These are the good "ball packers" for finite-length codewords.
- Cyclic Codes (Reed Solomon, BCH, etc) are See EE387, L11.
- Basically, these codes achieve best ball packing for finite $q=p^{n}$ and $N \leq q^{n}-1$.
- They are cyclic in the finite field (all codewords are circular shifts of one another).
- Their encoders are linear (in $G F(q)$) easy implementation; relatively easy ML decoders.
- Unfortunately, binary MDS are all trivial (like repeat N times - so very low rate or add one parity bit so not very powerful).
$>$ So nontrivial binary codes are not MDS.
- Really good binary codes will have some "randomness" and long block length, but they exist (Lectures 9-12).
$>$ Turbo
> Low-Density Parity Check (LDPC)
$>$ Polar
> Product

Modern Powerful codes

- γ_{f} is large, equivalently can be reliably decoded (low Pe).
- Can be based on good long-length binary codes:
$>$ With binary-to- $|C|$ "mapper" for larger QAM constellations
$>$ Leave shaping $\left(\gamma_{s}\right)$ to the constellation boundary design (<1.53 dB).

Generalization: Sequential Encoder \& Mapper

- Trellis or Convolutional Codes (see feedback below) have model:

Mapper

$$
|C|=2^{\tilde{b}+\tilde{\rho}}
$$

possible values
subsymbol $|C|=2^{\tilde{b}+\widetilde{\rho}}$ possible values
Semi-infinite sequences

$$
\begin{aligned}
& \boldsymbol{u}(D)=\sum_{m} \boldsymbol{v}_{m} \cdot D^{m} \\
& \boldsymbol{v}(D)=\sum_{m}^{m} \boldsymbol{v}_{m} \cdot D^{m} \\
& \boldsymbol{x}(D)=\sum_{m} \tilde{\boldsymbol{x}}_{m} \cdot D^{m}
\end{aligned}
$$

- Inputs have \tilde{b} - usually bits.
- Outputs are \widetilde{N}-dimensional.
- When $\widetilde{\boldsymbol{x}} \in \mathbb{C}^{\widetilde{N}} \rightarrow$ Trellis Code.
- When $\tilde{\boldsymbol{x}}=\boldsymbol{v} \in G F(2)^{\tilde{N}} \rightarrow$ Binary convolutional code.

$$
\begin{gathered}
\text { Tries to "fake" } \\
\text { larger block length } \\
\text { with finite real-time complexity/delay }
\end{gathered}
$$

End Lecture 6

