Lecture 4
 Complex AWGN and Other Channels

January 18, 2024
John M. Cioffi
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS2 next Wed - Jan 24
- See HWH if you are having difficulty before spending too much time
- Or ask questions (homework feedback is good also for future students)
- Uploading assignments issues?
- So far, sending to Ethan works

- Today

- Coding Gain
- Signal Representations
- The Phase-Splitting Demodulator
- Noise and passband processes
- SSB, VSB, CAP, other forms of QAM
- Discrete Memoryless Channels

Coding Gain

Lattices and Codes (AWGN)

- Lattice $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \cdots\right\}$ that is closed under an operation "addition" (usually normal addition, but can also be over a finite field when $|\Lambda|<\infty$. (Appendix B)
- Examples include:
- \mathbb{Z} - the integers (think PAM),

$$
D_{2}=2 Z^{2}+\{0,1\} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { is odd- } b \text { square QAM }
$$

- \mathbb{Z}^{2} - 2D integer vectors (think QAM), and
- \mathbb{Z}^{N} - think codewords built from PAM/QAM.
- Coset $\Lambda+\boldsymbol{a}=\left\{\lambda_{0}+\boldsymbol{a}, \lambda_{1}+\boldsymbol{a}, \cdots\right\}$ basically maintains all the lattice properties, but need to add constant \boldsymbol{a} (or remove it) appropriately.
- Most constellations C are subsets of lattices Λ (or their cosets).
- Designs choose M symbols from Λ, and subtract mean so that the set C has minimum average energy.
- Lattices are a nice way for code designers to pack points evenly into given volume or energy.

Coding Gain and Constellation/Code

(b) 6 HEX

$\gamma \triangleq \frac{\left(d_{\min }^{2}(\boldsymbol{x}) / \overline{\mathcal{E}}_{\boldsymbol{x}}\right)}{\left(d_{\min }^{2}(\breve{\boldsymbol{x}}) / \overline{\mathcal{E}}_{\breve{\boldsymbol{x}}}\right)}=\sqrt{\text { coding gain }}=\frac{\left(\frac{d_{\min }^{2}(\boldsymbol{x})}{V^{2 / N}(\Lambda)}\right)}{\underbrace{\left(\frac{d^{2}}{\min ^{2 / N}(\breve{\boldsymbol{x}})}\right)}_{\gamma_{f}}}$
fundamental gain

shaping gain

$\underbrace{\frac{\left(\frac{V^{2 / N}(\Lambda)}{\overline{\mathcal{E}}_{\boldsymbol{x}}}\right)}{\left(\frac{V^{2 / N}(\breve{\Lambda})}{\overline{\mathcal{E}}_{\breve{x}}}\right)}}_{$| γ_{s} |
| :---: |
| shaping |
| gain |$}$

> Basic principle extends as $\bar{N} \rightarrow \infty$. Hexagon \rightarrow hypersphere (Gaussian marginals).

Good codes can follow

 from $\Lambda_{s} / \Lambda=|C|$.
Hexagon Constellation, fund gain

$\Lambda=A_{2}$, the "hexagonal" lattice.

$$
\begin{gathered}
V\left(A_{2}\right)=\underbrace{6}_{\text {of } \Delta^{\prime} s} \cdot \frac{1}{2} \cdot \underbrace{\frac{d}{\sqrt{3}}}_{\text {base }} \cdot \underbrace{\frac{d}{2}}_{\text {altitude }}=\frac{\sqrt{3}}{2} \cdot d^{2} . \\
\gamma_{f}=\frac{d^{2}}{\frac{\sqrt{3} d^{2}}{2}}=\frac{2}{\sqrt{3}}=.625 \mathrm{~dB}
\end{gathered}
$$

- A_{2} is (up to) . 625 dB better than $\mathbb{Z}^{2}(d=1, V=1)$ in fundamental gain.
- It's also better as a shaping lattice (closer to a circle).

Maximum Shaping Gain

- Let $N \rightarrow \infty$, then best shape is a hypersphere.
- For hypersphere:

$$
\frac{\bar{\varepsilon}_{x}}{V^{2 / N}}=\underbrace{\frac{r^{2}}{N+2}}_{\substack{\text { 2nd moment } \\ r^{2} / 4}} \cdot \underbrace{\frac{\left(\frac{N}{2}!\right)^{2 / N}}{\pi \cdot r^{2}}}_{\substack{1 / \text { area } \\ 1 / \pi \cdot r^{2}}}=\frac{\left(\frac{N}{2}!\right)^{2 / N}}{\pi \cdot(N+2)}
$$

- Limit, relative to \mathbb{Z}^{N}, is $\frac{\pi e}{6}=1.53 \mathrm{~dB}$.
$>$ Proof in text.

BEST SHAPING GAIN IS 1.53 dB

- Fundamental gain can be infinite - see Chapter 2.

Peak-to-Average Ratio (PAR)

- Can be important for amplifiers (see PSK discussion).

Definition 1.3.23 [Discrete Peak Energy] A constellation's N-dimensional discrete peak energy is $\mathcal{E}_{\text {peak }}$.

$$
\begin{equation*}
\mathcal{E}_{\text {peak }} \triangleq \max _{i} \sum_{n=1}^{N} x_{i n}^{2} . \tag{1.328}
\end{equation*}
$$

A modulated signal's continuous-time peak energy is

$$
\begin{equation*}
\mathcal{E}_{\text {cont }} \triangleq \max _{i, t}\left|x_{i}(t)\right|^{2} \geq \mathcal{E}_{\text {peak }} . \tag{1.329}
\end{equation*}
$$

- PARs could be an additional measure:
$>$ At symbol instants: $P A R=\varepsilon_{\text {peak }} / \varepsilon_{x}$
$>$ In continuous time for an overall $P A R=\varepsilon_{\text {cont }} / \varepsilon_{x}$ - this one is always at least as large.
$>$ Example - simple sinusoid symbol-rate sampled at peaks has symbol-rate PAR =1 while any continuous sinusoid has PAR 3dB.

Signal Representations

Revisit the filtered AWGN, more detail

designed/optimized

$$
\begin{gathered}
p, q \in \mathbb{Z}^{+}, \\
p \geq q
\end{gathered}
$$

noise whitening (L13) absorbed
into receiver matched filters

- Often the modulator basis functions are designed with DSP (379B).
- They may be optimized for the channel $h(t)$ - as opposed to some fixed filter.
- Channels often limit to a band centered at f_{c}, the "carrier" or "center" frequency.
- If not familiar with multi-rate filters, just set $q=1$, insert $p-1$ zeros between symbol values at xmit.
- Filter is designed at p times sample rate ; similarly, receiver just accepts inputs at $\frac{p}{T}$ and discards $p-1$ samples/symbol-period at filter output.

Carrier Modulated Waveform

- Most channels don't use DC or some lower (and higher) frequencies - they exist in a band.

Definition 1.3.25 [Carrier-Modulated Signal] A carrier-modulated signal is any passband signal that satisfies

$$
\begin{equation*}
x(t)=a(t) \cdot \cos \left(\omega_{c} t+\theta(t)\right) \tag{1.333}
\end{equation*}
$$

where $a(t)$ is the modulated signal's time-varying amplitude or envelope and $\theta(t)$ is its time-varying phase. $\omega_{c}=2 \pi f_{c}$ is the carrier frequency (in radians/sec; f_{c} is in Hz).
$A(\omega)=0$ for $\omega \geq \omega_{c}$ avoids positive/neg translations' overlap.

Quadrature Decomposition

Definition 1.3.26 [Quadrature Decomposition] The quadrature decomposition of a carrier modulated signal is

$$
\begin{equation*}
x(t)=x_{I}(t) \cdot \cos \left(\omega_{c} t\right)-x_{Q}(t) \cdot \sin \left(\omega_{c} t\right) \tag{1.334}
\end{equation*}
$$

where $x_{I}(t)=a(t) \cdot \cos (\theta(t))$ is the modulated signal's time-varying inphase component, and $x_{Q}(t)=a(t) \cdot \sin (\theta(t))$ is its time-varying quadrature component.

Previous slide's

- Note capital T on T^{-1}, so must know each of I's and Q's signs.
- Baseband components are at/near DC, as if frequency re-indexes to $\omega \rightarrow \omega-\omega_{c}$.

$$
a(t)=\sqrt{x_{I}^{2}(t)+x_{Q}^{2}(t)}
$$

$$
\theta(t)=\operatorname{Tan}^{-1}\left[\frac{x_{Q}(t)}{x_{I}(t)}\right]
$$

Complex Equivalents

- Baseband equivalent (carrier frequency not included)

Definition 1.3.27 [Baseband-Equivalent Signal] The complex basebandequivalent signal for $x(t)$ in (1.333) is

$$
\begin{equation*}
x_{b b}(t) \triangleq x_{I}(t)+\jmath x_{Q}(t) \tag{1.337}
\end{equation*}
$$

where $\jmath=\sqrt{-1}$.

- Baseband components are at or near $D C$, as if frequency re-indexes so that $\omega \rightarrow \omega-\omega_{c}$.
- Analytic equivalent (carrier frequency included):

Definition 1.3.28 [Analytic-Equivalent Signal] The analytic-equivalent signal for $x(t)$ in (1.333) is

$$
\begin{equation*}
x_{A}(t) \triangleq x_{b b}(t) \cdot e^{\jmath \omega_{c} t} \tag{1.338}
\end{equation*}
$$

- Translates components up to positive frequencies. (Analytic has zero neg-freq energy.)

Example

$$
x(t)=\operatorname{sinc}\left(10^{6} t\right) \cdot \cos \left(2 \pi 10^{7} t\right)+3 \cdot \operatorname{sinc}\left(10^{6} t\right) \cdot \sin \left(2 \pi 10^{7} t\right)
$$

$$
\begin{aligned}
x_{I}(t) & =\operatorname{sinc}\left(10^{6} t\right) \\
x_{Q}(t) & =-3 \cdot \operatorname{sinc}\left(10^{6} t\right)
\end{aligned}
$$

$$
a(t)=\sqrt{10} \cdot \operatorname{sinc}\left(10^{6} t\right)
$$

$$
\theta(t)=\operatorname{Tan}^{-1}\left[\frac{-3}{1}\right]=-71.6^{\circ}
$$

$$
x_{b b}(t)=(1-3 \jmath) \cdot \operatorname{sinc}\left(10^{6} t\right)
$$

$$
x(t)=\sqrt{10} \cdot \operatorname{sinc}\left(10^{6} t\right) \cdot \cos \left(\omega_{c} t-71.6^{\circ}\right)
$$

- and

$$
x_{A}(t)=(1-3 \jmath) \cdot \operatorname{sinc}\left(10^{6} t\right) \cdot e^{\jmath 2 \pi 10^{7} t}
$$

Example's Spectra

- The sinc function causes the brickwall nature of the signals (in practice never quite this perfect).

Example revisited in terms of channel $H(\omega)$

passband

- The baseband view basically centers the channel carrier frequency at 0 .

Analytic-Signal Generation (App A.3.1/2)

- Hilbert Transform - convolve signal $x(t)$ with $\hbar(t)=\left\{\begin{array}{cl}1 / \pi \cdot t & t \neq 0 \\ 0 & t=0\end{array} . \quad \check{x}(t)=\hbar(t) * x(t)\right.$
- Hilbert's Fourier Transform is $-j \cdot \operatorname{sgn}(\omega)$, so HT:
- shifts positive frequencies by $+90^{\circ}$ and
- shifts negative frequencies by -90°,
- so that means cos into sin, and sin into -cos.

$$
\begin{aligned}
& x(t)=x_{I}(t) \cdot \cos \left(\omega_{c} \cdot t\right)-x_{Q}(t) \cdot \sin \left(\omega_{c} \cdot t\right) \\
&=\mathfrak{R}\left\{x_{A}(t)\right\} \\
& \check{x}(t)=x_{I}(t) \cdot \sin \left(\omega_{c} \cdot t\right)+x_{Q}(t) \cdot \cos \left(\omega_{c} \cdot t\right)
\end{aligned}=\mathfrak{J}\left\{x_{A}(t)\right\}, ~ l
$$

- Algebra leads to $x_{A}(t)=x(t)+j \cdot \check{x}(t)$.
- Use HT to demodulate passband to a complex baseband signal, any carrier.

Complex Demodulator Types

- Use Hilbert Transform? (usually implemented, with delay, in digital signal processing with one sampler at input).

The factor ${ }^{1} / \sqrt{2}$ maintains signal energy.

This is useful for theory, but not implemented

- Use cos/sin demodulation (usually analog implementation, with 2 samplers at I and Q outputs).

- Typically symbol rate and carrier are locked (rational fraction, Chapter 6) to same source - HT version is then much more amenable to DSP implementation.

Inner Product Generalization

1. The inner product becomes

$$
\begin{equation*}
<\boldsymbol{x}, \boldsymbol{y}>=\boldsymbol{x}^{*} \boldsymbol{y}=\int_{-\infty}^{\infty} x^{*}(t) \cdot y(t) d t \tag{1.408}
\end{equation*}
$$

(\boldsymbol{x}^{*} means conjugate transpose of \boldsymbol{x}).
2. The matched filter is conjugated, that is $\varphi(T-t) \rightarrow \varphi^{*}(T-t)$.
3. Energies of complex scalars are $\mathcal{E}_{\boldsymbol{x}}=E\left\{|x(t)|^{2}\right\}$, or the expected squared magnitude of the complex scalar, and $\overline{\mathcal{E}} \boldsymbol{x}=\mathcal{E} \boldsymbol{x} / 2$.

- It is rare that transpose by itself is used or needed any longer - almost always conjugate transpose
- Throughout rest of EE379A, B your design careers!

Noise and Passband Processes

Section 1.3.5.2

AWGN through demodulators

$$
S_{A}(\omega)=\left\{\begin{array}{cc}
\mathcal{N}_{0} & \omega>0 \\
\frac{\mathcal{N}_{0}}{2} & \omega=0 \\
0 & \omega<0
\end{array}\right.
$$

$$
S_{b b}(\omega)= \begin{cases}\mathcal{N}_{0} & \omega>\omega_{c} \\ \frac{\mathcal{N}_{0}}{2} & \omega=-\omega_{c} \\ 0 & \omega<-\omega_{c}\end{cases}
$$

- Scaling removes the $\sqrt{2}$ that was in the real basis functions for QAM and resets the noise to $\frac{\mathcal{N}_{0}}{2}$ in each of the two dimensions.

Wireless Multipath Example

$$
\begin{gathered}
h(t)=g \cdot[\delta(t)-.9 \cdot \delta(t-\tau)] \\
\tau=1.1 \mathrm{~ns} \\
f_{c}=852 \mathrm{MHz}
\end{gathered}
$$

- The baseband equivalent need not be symmetric around zero frequency (it is complex).

$$
\begin{array}{ll}
3^{x 10^{4}} & \text { Real part of } h_{b b} \\
2 & \\
1 & \\
\frac{0}{0} & \\
\frac{0}{\square} & -1 \\
\frac{\square}{0} & \\
\frac{1}{4} & -2
\end{array}
$$

- Baseband complex channel in time domain is shown:
- Channel adds white noise.

Transmission Line Example

- 26-gauge twisted pair:
- "Cat 3"
- 300 meters length
- See "linemod" software at website.
- https://cioffi-group.stanford.edu/linemod/
- Happy to hear of matlab replacements
- Baseband complex channel in time domain:
- Channel adds white noise.

> Divide $H(f)$ by $\bar{S}_{n}^{-1 / 2}(f)$ to get noise-equivalent channel for analysis (rcvr needs to implement this filter), see L13.

SSB, VSB, CAP, other forms of QAM

Section 1.3.6

Single Side Band (SSB)

- SSB has inphase and quadrature from same source.

$>$ Upper side band is $x(t)=x_{I}(t) \cdot \cos (\omega t)-\check{x}_{I}(t) \cdot \sin (\omega t)$.

$$
\begin{aligned}
& x_{A b}(t)=x_{b b}(t)=x_{I}(t)+j \cdot \check{x}_{I}(t) \\
& x_{A}(t)=\left(x_{I}(t)+j \cdot \check{x}_{I}(t)\right) \cdot e^{j \omega_{c} t}
\end{aligned} \quad \begin{aligned}
& X_{A b}(\omega) \\
& 0
\end{aligned}
$$

- SSB, effectively in same bandwidth, can have twice the symbol rate of QAM.
$>$ But quadrature derives from inphase, so the data rate remains the same.
$>$ SSB was used in analog radio and especially TV to half bandwidth of a real continuous-time signal. Double side band does not exploit the quadrature dimension.
- This is really just complex QAM with carrier frequency selected at the top (LSB) or bottom (USB).
$>$ It has no fundamental advantage over QAM.

Vestigial Sideband (VSB)

- Old analog TV places carrier at $1 / 3$ point in 6 MHz channel.
- VSB looks like SSB but the $X_{I}(\omega)$ has vestigial symmetry about ω_{c}.
$>x(t)=x_{V S B}(t) \cdot \cos (\omega t)-\check{x}_{V S B}(t) \cdot \sin (\omega t)$

$$
X_{V b}(f)+X_{V b}(-f)=X_{A b}(f) \forall f>0
$$

$$
x_{V b}(t)=x_{b b}(t)=x_{V S B}(t)+j \cdot \check{x}_{V S B}(t)
$$

- Again, design might have just placed carrier where desired in baseband QAM
$>$ But then not compatible with transition from analog to digital in TV.

Carrierless Amplitude Phase modulation (CAP)

- CAP is really just QAM that exploits the carrier and symbol clock are locked in modern digital-signal-processing-based transmitters.

$$
\begin{aligned}
x_{A}(t) & =\sum_{k} x_{k} \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c} t} \\
& =\sum_{k} x_{k} \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c} t} \cdot e^{-\jmath \omega_{c} k T} \cdot e^{+\jmath \omega_{c} k T} \\
& =\sum_{k}\left(x_{k} \cdot e^{+\jmath \omega_{c} k T}\right) \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c}(t-k T)} \\
& =\sum_{k} \breve{x}_{k} \cdot \varphi_{A}(t-k T)
\end{aligned}
$$

- Synthesize directly the full bandwidth signal without any carrier.
$>$ Although it is hidden in the \breve{x}_{k}, often the rotation is simply implemented.
- Just stay with QAM baseband analysis.
- It is exactly the same for any of the SSB, VSB, CAP systems.
- Precise transmit/receiver implementation can exploit any of the techniques depending on the specific design
> Fundamentally, the analysis and performance are the same.

Discrete Memoryless Channels

Section 1.4

DMC Definition

Definition 1.4.1 [Discrete Memoryless Channel (DMC)] A discrete memoryless channel (DMC) has $M^{\prime} \geq M=|C|<\infty$ with ordered transmitted message group $\boldsymbol{X} \triangleq\left\{\boldsymbol{x}_{n}, n=1, \ldots, N\right\}$, with each message $\boldsymbol{x}_{n} \in\{i=0, \ldots, M-1\}$, and with corresponding outputs $\boldsymbol{Y} \triangleq\left\{\boldsymbol{y}_{n}, n=1, \ldots, N\right\}$ with each $\boldsymbol{y}_{n} \in\left\{j=0, \ldots, M^{\prime}-1\right\}$ that satisfy

$$
\begin{equation*}
p_{\boldsymbol{Y} / \boldsymbol{X}}(j, i)=\prod_{n=1}^{N} p_{\boldsymbol{y}_{n} / \boldsymbol{x}_{n}}(j, i) \tag{1.461}
\end{equation*}
$$

The integer n here is a dimensional index (typically reflecting successive time-based DMC uses, but not necessarily so). The indices j and i reflect instead particular (output, input) sample values from the discrete distribution. A stationary DMC has $p_{\boldsymbol{y}_{n}} / \boldsymbol{x}_{n}(j, i)=$ $p_{\boldsymbol{y} / \boldsymbol{x}}(j, i) \forall j, i$, or is thus independent of the dimensional index n.

- Memoryless - the channel dimensions don't interfere with each other.

The Binary Symmetric Channel (BSC)

- ML Detector?

$$
>\text { Easy, } 0 \rightarrow 0,1 \rightarrow 1 .
$$

- Error prob?

$$
\Rightarrow P_{e}=p .
$$

$$
P_{e}=p
$$

- Often used to model an "inner detector" so $\bar{P}_{b} \rightarrow p$.
- Probability transition matrix example:

$$
P_{y / x}=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right]
$$

$$
P_{\boldsymbol{y} / \boldsymbol{x}}=\left[\begin{array}{ccc}
p_{M^{\prime}-1 / M-1} & \cdots & p_{M^{\prime}-1 / 0} \\
\vdots & \ddots & \vdots \\
\underbrace{p_{0 / M-1}}_{\grave{\varrho}} & \cdots & p_{0} \\
P_{\boldsymbol{y} / \boldsymbol{x}(M-1)}
\end{array}\right.
$$

- $P_{y / \boldsymbol{x}}$ is essentially just a table of the probabilities $p_{y / x}$.
- y has a discrete distribution.

Example 2: Binary Erasure Channel (BEC)

$\boldsymbol{P}_{\boldsymbol{y} / \boldsymbol{x}}=\left[\begin{array}{cc}p & p \\ 1-p & 0 \\ 0 & 1-p\end{array}\right]$

$$
P_{e}=p
$$

- ML decoder always correct on $0 \rightarrow 0$ or $1 \rightarrow 1$, but 2 ?
- An erasure channel self reports it cannot decide.
> This really corresponds to an "inner channel" like AWGN when y is on/close to the decision boundary.

Some Properties of Transition Matrix

- Convenient description

- Can be helpful for matlab/other implementations/simulations

1. unit column sum - Each column sums to unity:

$$
\begin{equation*}
1=\sum_{j=0}^{M^{\prime}} p_{j / i}=[\mathbf{1}]^{*} \boldsymbol{p}_{\boldsymbol{y} / \boldsymbol{x}}(i) \forall i=0, \ldots, M-1 . \tag{1.464}
\end{equation*}
$$

2. weighted row-sum is $p_{\boldsymbol{y}}(j)$ - Each row sums to the corresponding \boldsymbol{y}-value's probability:

$$
p \boldsymbol{y}(j)=\sum_{i=0}^{M} p_{j / i} \cdot p \boldsymbol{x}(i) \forall j=0, \ldots, M^{\prime}-1
$$

$$
(1.465)
$$

Equivalently, If $\boldsymbol{p}_{\boldsymbol{y}}$ and $\boldsymbol{p}_{\boldsymbol{x}}$ are row vectors that stack \boldsymbol{y} probability values $\boldsymbol{p}_{\boldsymbol{y}} \triangleq$ $\left[p_{\boldsymbol{y}}\left(M^{\prime}-1\right) \ldots p_{\boldsymbol{y}}(0)\right]^{*}$ and $\boldsymbol{p}_{\boldsymbol{x}}=\left[p_{\boldsymbol{x}}(M-1) \ldots p_{\boldsymbol{x}}(0)\right]^{*}$ respectively, then there is an input/output matrix-multiply relation

$$
\boldsymbol{p}_{\boldsymbol{y}}=P_{\boldsymbol{y} / \boldsymbol{x}} \cdot \boldsymbol{p}_{\boldsymbol{x}}
$$

$$
(1.466)
$$

3. Joint Probability Distribution - The joint distribution is

$$
P_{\boldsymbol{y}, \boldsymbol{x}}=P_{\boldsymbol{y} / \boldsymbol{x}} \cdot \operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{x}}\right\}
$$

(1.467)
4. Á Posteriori Distribution - The à priori distribution is

$$
P_{\boldsymbol{x} / \boldsymbol{y}}=\left[\operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{y}}\right\}\right]^{-1} \cdot \underbrace{P_{\boldsymbol{y} / \boldsymbol{x}} \cdot \operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{x}}\right\}}_{P_{\boldsymbol{y}}, \boldsymbol{x}}
$$

5. ML Detector - An ML detector selects for any specific received DMC channel output $\boldsymbol{y}=j$ or thus row j :

$$
\begin{equation*}
\hat{\boldsymbol{x}}_{i}=\hat{i}=\arg \left\{\max _{i \in\{0, \ldots, M-1\}}\left[p_{j / i}\right]\right\} \tag{1.469}
\end{equation*}
$$

the index of row j 's largest element. The ML decision region \mathcal{D}_{i} is the set of all row indices $\{j\}$ for which element i maximizes those rows' probabilities in $P_{\boldsymbol{y}_{/}}$
6. MAP Detector - An MAP detector selects for any specific received DMC channel output $y=j$:

$$
\begin{equation*}
\hat{\boldsymbol{x}}_{i}=\hat{i}=\arg \left(\max _{i \in\{0, \ldots, M-1\}}\left\{\left[P \boldsymbol{y} / \boldsymbol{x} \cdot \operatorname{Diag}\left(\boldsymbol{p}_{\boldsymbol{x}}\right)\right](j, i)\right\}\right) \tag{1.470}
\end{equation*}
$$

The MAP decision region \mathcal{D}_{i} is the set of all row indices $\{j\}$ for which element i maximizes those rows' probabilities in $P_{\boldsymbol{y} / \boldsymbol{x}} \cdot \operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{x}}\right\}$.

Binary Asymmetric Channel (BAC)

$$
P_{y / x}=\left[\begin{array}{cc}
1-p_{1 / 0} & p_{0 / 1} \\
p_{1 / 0} & 1-p_{0 / 1}
\end{array}\right]
$$

$$
P_{e}=p_{0 / 1} \cdot p_{1}+p_{1 / 0} \cdot p_{0}
$$

BAC can model optical (fiber) transmission as well as some disk channels.
$>$ Nonlinear effects or data-dependent noise effects can cause the asymmetry.

Symmetric DMC $M=M^{\prime}$

Definition 1.4.2 [Symmetric Channel] A symmetric channel has MAP-detector P_{e} that is independent of input distribution.

Theorem 1.4.1 [Symmetric DMC Properties] The following statements are equivalent:

1. The DMC is symmetric.
2. The MAP and ML dectectors' error probability P_{e} is invariant to input distribution $\boldsymbol{p}_{\boldsymbol{x}}$.
3. Any column of $\boldsymbol{P} \boldsymbol{y} / \boldsymbol{x}$ is a permutation of another column.
4. For any 1-to-1 self-reversible permutation $\pi=\pi^{-1}$ on discrete \boldsymbol{y}, then $p_{\boldsymbol{y}} / \boldsymbol{x}(i)=$ $P_{\pi(\boldsymbol{y}) / \boldsymbol{x}}\left(i^{\prime}\right)$ for some $i^{\prime} \neq i$. involution

- SDMC is useful as the channel for outer code designs.
$>$ There is already an "inner detector" (example is ML for symbols on AWGN).
$>$ BSC and BEC are symmetric DMCs.

Example: The q-ary Symmetric Channel

- This is used with "bytes" (blocks) of inner-channel detected bits.
$>q>2$ codes can be much more powerful than best binary codes.
- This model can have erasures in various modifications.
- Typically models an "inner channel" for application of outer cyclic codes over finite field (will see in Lecture 11).

End Lecture 4

