

Lecture 4 Complex AWGN and Other Channels January 18, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- PS2 next Wed Jan 24
 - See <u>HWH</u> if you are having difficulty before spending too much time
 - Or ask questions (homework feedback is good also for future students)
- Uploading assignments issues?
 - So far, sending to Ethan works

Today

- Coding Gain
- Signal Representations
 - The Phase-Splitting Demodulator
- Noise and passband processes
- SSB, VSB, CAP, other forms of QAM
- Discrete Memoryless Channels

Coding Gain

January 18, 2024

Lattices and Codes (AWGN)

- Lattice $\Lambda = {\lambda_0, \lambda_1, \dots}$ that is closed under an operation "addition" (usually normal addition, but can also be over a finite field when $|\Lambda| < \infty$. (Appendix B)
- Examples include:
 - \mathbb{Z} the integers (think PAM),
 - \mathbb{Z}^2 2D integer vectors (think QAM), and
 - \mathbb{Z}^N think codewords built from PAM/QAM.

$$D_2 = 2Z^2 + \{0,1\} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is odd-*b* square QAM

- Coset $\Lambda + a = {\lambda_0 + a, \lambda_1 + a, \dots}$ basically maintains all the lattice properties, but need to add constant *a* (or remove it) appropriately.
- Most constellations C are subsets of lattices Λ (or their cosets).
 - Designs choose M symbols from Λ , and subtract mean so that the set C has minimum average energy.
- Lattices are a nice way for code designers to pack points evenly into given volume or energy.

Appendix B.2

L4: 4

Coding Gain and Constellation/Code

Hexagon Constellation, fund gain

- A_2 is (up to) .625 dB better than \mathbb{Z}^2 (d = 1, V = 1) in fundamental gain.
- It's also better as a shaping lattice (closer to a circle).

PS2.3 (1.19) and PS2.5 (1.34)

Section 1.3.4.4 L4: 6

Maximum Shaping Gain

• Let $N \to \infty$, then **best shape** is a **hypersphere**.

• For hypersphere:

$$\frac{\bar{\mathcal{E}}_{x}}{V^{2/N}} = \frac{r^{2}}{N+2} \cdot \frac{\left(\frac{N}{2}!\right)^{2/N}}{\pi \cdot r^{2}} = \frac{\left(\frac{N}{2}!\right)^{2/N}}{\pi \cdot (N+2)}$$
2nd moment $1/area$

$$r^{2}/_{4}$$
1/ $\pi \cdot r^{2}$
1.53 dB.
BEST SHAPING

Limit, relative to Z^N, is πe/₆ = 1.53 dB.
 ▶ Proof in text.

- BEST SHAPING GAIN IS 1.53 dB
- Fundamental gain can be infinite see Chapter 2.

Section 1.3.4.3

Peak-to-Average Ratio (PAR)

• Can be important for amplifiers (see PSK discussion).

Definition 1.3.23 [Discrete Peak Energy] A constellation's N-dimensional discrete peak energy is \mathcal{E}_{peak} .

$$\mathcal{E}_{peak} \stackrel{\Delta}{=} \max_{i} \sum_{n=1}^{N} x_{in}^2 \quad . \tag{1.328}$$

A modulated signal's continuous-time peak energy is

$$\mathcal{E}_{cont} \stackrel{\Delta}{=} max_{i,t} |x_i(t)|^2 \ge \mathcal{E}_{peak} \quad . \tag{1.329}$$

- PARs could be an additional measure:
 - At symbol instants: $PAR = \frac{\varepsilon_{peak}}{\varepsilon_x}$
 - > In continuous time for an overall $PAR = \frac{\mathcal{E}_{cont}}{\mathcal{E}_r}$ this one is always at least as large.
 - Example simple sinusoid symbol-rate sampled at peaks has symbol-rate PAR =1 while any continuous sinusoid has PAR 3dB.

January 16, 2024

Section 1.3.4.3

Signal Representations

January 18, 2024

Revisit the filtered AWGN, more detail

- Often the modulator basis functions are designed with DSP (379B).
- They may be optimized for the channel h(t) as opposed to some fixed filter.
- Channels often limit to a band centered at f_c , the ``carrier'' or ``center'' frequency.
- If not familiar with multi-rate filters, just set q = 1, insert p 1 zeros between symbol values at xmit.
 - Filter is designed at p times sample rate ; similarly, receiver just accepts inputs at $\frac{p}{r}$ and discards p-1 samples/symbol-period at filter output.

January 18, 2024

Section 1.3.5

L4: 10

Carrier Modulated Waveform

Most channels don't use DC or some lower (and higher) frequencies – they exist in a band.

Definition 1.3.25 [Carrier-Modulated Signal] A carrier-modulated signal is any passband signal that satisfies

$$x(t) = a(t) \cdot \cos\left(\omega_c t + \theta(t)\right) \quad , \tag{1.333}$$

where a(t) is the modulated signal's time-varying amplitude or envelope and $\theta(t)$ is its time-varying phase. $\omega_c = 2\pi f_c$ is the carrier frequency (in radians/sec; f_c is in Hz).

 $A(\omega) = 0$ for $\omega \ge \omega_c$ avoids positive/neg translations' overlap.

January 18, 2024

Section 1.3.5.1

L4: 11

Quadrature Decomposition

Definition 1.3.26 [Quadrature Decomposition] The quadrature decomposition of a carrier modulated signal is

$$x(t) = x_I(t) \cdot \cos(\omega_c t) - x_Q(t) \cdot \sin(\omega_c t) \quad , \tag{1.334}$$

where $x_I(t) = a(t) \cdot \cos(\theta(t))$ is the modulated signal's time-varying inphase component, and $x_Q(t) = a(t) \cdot \sin(\theta(t))$ is its time-varying quadrature component.

- Note capital T on Tan^{-1} , so must know each of I's and Q's signs.
 - Baseband components are at/near DC, as if frequency re-indexes to $\omega \rightarrow \omega \omega_c$.

$$a(t) = \sqrt{x_I^2(t) + x_Q^2(t)}$$
$$\theta(t) = \operatorname{Tan}^{-1} \left[\frac{x_Q(t)}{x_I(t)} \right]$$

Previous slide's

Complex Equivalents

Baseband equivalent (carrier frequency not included)

Definition 1.3.27 [Baseband-Equivalent Signal] The complex basebandequivalent signal for x(t) in (1.333) is $x_{bb}(t) \stackrel{\Delta}{=} x_I(t) + \jmath x_Q(t) \quad , \qquad (1.337)$ where $\jmath = \sqrt{-1}$.

- Baseband components are at or near DC, as if frequency re-indexes so that $\omega
 ightarrow \omega \omega_c$.
- Analytic equivalent (carrier frequency included):

Definition 1.3.28 [Analytic-Equivalent Signal] The analytic-equivalent signal for x(t) in (1.333) is $x_A(t) \stackrel{\Delta}{=} x_{bb}(t) \cdot e^{j\omega_c t} \quad . \tag{1.338}$

• Translates components up to positive frequencies. (Analytic has zero neg-freq energy.)

Section 1.3.5.1

L4: 13

Example

$$x(t) = \operatorname{sinc}(10^{6}t) \cdot \cos(2\pi 10^{7}t) + 3 \cdot \operatorname{sinc}(10^{6}t) \cdot \sin(2\pi 10^{7}t)$$

$$\begin{array}{rcl} x_I(t) &=& \operatorname{sinc}(10^6 t) \\ x_Q(t) &=& -3 \cdot \operatorname{sinc}(10^6 t) \end{array}$$

$$a(t) = \sqrt{10} \cdot \operatorname{sinc}(10^6 t)$$

$$\theta(t) = \operatorname{Tan}^{-1}\left[\frac{-3}{1}\right] = -71.6^o$$

$$x_{bb}(t) = (1 - 3j) \cdot \operatorname{sinc}(10^6 t)$$

$$x(t) = \sqrt{10} \cdot \operatorname{sinc}(10^6 t) \cdot \cos(\omega_c t - 71.6^o)$$

 $x_A(t) = (1 - 3j) \cdot \operatorname{sinc}(10^6 t) \cdot e^{j2\pi 10^7 t}$

and

January 18, 2024

Section 1.3.5.1; PS2.5 (1.35)

L4: 14

Example's Spectra

• The sinc function causes the brickwall nature of the signals (in practice never quite this perfect).

January 18, 2024

Section 1.3.5.1

L4: 15

Example revisited in terms of channel $H(\omega)$

January 18, 2024

Section 1.3.5.1

L4:16

Analytic-Signal Generation (App A.3.1/2)

- Hilbert Transform convolve signal x(t) with $\hbar(t) = \begin{cases} 1/_{\pi \cdot t} & t \neq 0 \\ 0 & t = 0 \end{cases}$. $\check{x}(t) = \hbar(t) * x(t)$
- Hilbert's Fourier Transform is $-j \cdot sgn(\omega)$, so HT:
 - shifts positive frequencies by +90° and
 - shifts negative frequencies by -90°,
 - so that means cos into sin , and sin into -cos.

$$x(t) = x_I(t) \cdot \cos(\omega_c \cdot t) - x_Q(t) \cdot \sin(\omega_c \cdot t) = \Re\{x_A(t)\}$$
$$\check{x}(t) = x_I(t) \cdot \sin(\omega_c \cdot t) + x_Q(t) \cdot \cos(\omega_c \cdot t) = \Im\{x_A(t)\}$$

- Algebra leads to $x_A(t) = x(t) + j \cdot \check{x}(t)$.
- Use HT to demodulate passband to a complex baseband signal, any carrier.

January 18, 2024

Section 1.3.5.1

Complex Demodulator Types

Use Hilbert Transform? (usually implemented, with delay, in digital signal processing with one sampler at input).

The factor ¹/_{√2} maintains signal energy. This is useful for theory, but not implemented

Stanford University

Use cos/sin demodulation (usually analog implementation, with 2 samplers at I and Q outputs).

 Typically symbol rate and carrier are locked (rational fraction, Chapter 6) to same source – HT version is then much more amenable to DSP implementation.

Section 1.3.5 3

Inner Product Generalization

1. The inner product becomes

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^* \boldsymbol{y} = \int_{-\infty}^{\infty} x^*(t) \cdot y(t) dt$$
, (1.408)

- $(\boldsymbol{x}^* \text{ means conjugate transpose of } \boldsymbol{x}).$
- 2. The matched filter is conjugated, that is $\varphi(T-t) \rightarrow \varphi^*(T-t)$.
- 3. Energies of complex scalars are $\mathcal{E}_{\boldsymbol{x}} = E\{|\boldsymbol{x}(t)|^2\}$, or the expected squared magnitude of the complex scalar, and $\bar{\mathcal{E}}_{\boldsymbol{x}} = \mathcal{E}_{\boldsymbol{x}}/2$.

- It is rare that transpose by itself is used or needed any longer almost always conjugate transpose
- Throughout rest of EE379A, B your design careers!

Section 1.3.5.3

Noise and Passband Processes

Section 1.3.5.2

January 18, 2024

AWGN through demodulators

Wireless Multipath Example

$$h(t) = g \cdot [\delta(t) - .9 \cdot \delta(t - \tau)]$$
$$\tau = 1.1ns$$
$$f_c = 852 \text{ MHz}$$

 The baseband equivalent need not be symmetric around zero frequency (it is complex).

- Baseband complex channel in time domain is shown:
- Channel adds white noise.

January 18, 2024

Transmission Line Example

- 26-gauge twisted pair:
 - "Cat 3"
 - 300 meters length
 - See "linemod" software at website.
 - <u>https://cioffi-group.stanford.edu/linemod/</u>
 - Happy to hear of matlab replacements

- Baseband complex channel in time domain:
- Channel adds white noise.

January 18, 2024

Section 1.3.5 2

L4: 23

SSB, VSB, CAP, other forms of QAM

Section 1.3.6

January 18, 2024

Single Side Band (SSB)

- **SSB** has inphase and quadrature from same source.
 - Upper side band is $x(t) = x_I(t) \cdot \cos(\omega t) \check{x}_I(t) \cdot \sin(\omega t)$.

$$x_{Ab}(t) = x_{bb}(t) = x_{I}(t) + j \cdot \check{x}_{I}(t)$$

$$x_{A}(t) = (x_{I}(t) + j \cdot \check{x}_{I}(t)) \cdot e^{j\omega_{c}t}$$

$$X(\omega)$$

$$X(\omega)$$

$$X_{Ab}(-\omega + \omega_{c})/2$$

$$-\omega_{c}$$

$$W_{Ab}(\omega - \omega_{c})/2$$

- SSB, effectively in same bandwidth, can have twice the symbol rate of QAM.
 - But quadrature derives from inphase, so the data rate remains the same.
 - SSB was used in analog radio and especially TV to half bandwidth of a real continuous-time signal. Double side band does not exploit the quadrature dimension.
- This is really just complex QAM with carrier frequency selected at the top (LSB) or bottom (USB).
 - It has no fundamental advantage over QAM.

January	18,	20	24
---------	-----	----	----

Section 1.3.6.1

L4: 25

Vestigial Sideband (VSB)

- Old analog TV places carrier at 1/3 point in 6 MHz channel.
- VSB looks like SSB but the $X_I(\omega)$ has vestigial symmetry about ω_c . > $x(t) = x_{VSB}(t) \cdot \cos(\omega t) - \check{x}_{VSB}(t) \cdot \sin(\omega t)$

$$X_{Vb}(f) + X_{Vb}(-f) = X_{Ab}(f) \forall f > 0$$

Stanford University

• Again, design might have just placed carrier where desired in baseband QAM

But then not compatible with transition from analog to digital in TV.
 January 18, 2024
 Section 1.3.6.1
 L4: 26

Carrierless Amplitude Phase modulation (CAP)

• **CAP** is really just QAM that exploits the carrier and symbol clock are locked in modern digital-signal-processing-based transmitters.

$$\begin{aligned} x_A(t) &= \sum_k x_k \cdot \varphi(t - kT) \cdot e^{j\omega_c t} \\ &= \sum_k x_k \cdot \varphi(t - kT) \cdot e^{j\omega_c t} \cdot e^{-j\omega_c kT} \cdot e^{+j\omega_c kT} \\ &= \sum_k (x_k \cdot e^{+j\omega_c kT}) \cdot \varphi(t - kT) \cdot e^{j\omega_c (t - kT)} \\ &= \sum_k \breve{x}_k \cdot \varphi_A(t - kT) \end{aligned}$$

$$arphi_A(t) = arphi(t) \cdot e^{\jmath \omega_c t} ext{ and } \ ec{x}_k = x_k \cdot e^{+\jmath \omega_c kT}$$

- Synthesize directly the full bandwidth signal without any carrier.
 - > Although it is hidden in the \breve{x}_k , often the rotation is simply implemented.

Suggestion

• Just stay with QAM baseband analysis.

• It is exactly the same for any of the SSB, VSB, CAP systems.

- Precise transmit/receiver implementation can exploit any of the techniques depending on the specific design
 - Fundamentally, the analysis and performance are the same.

Discrete Memoryless Channels

Section 1.4

January 18, 2024

DMC Definition

Definition 1.4.1 [Discrete Memoryless Channel (DMC)] A discrete memoryless channel (DMC) has $M' \ge M = |C| < \infty$ with ordered transmitted message group $X \stackrel{\Delta}{=} \{x_n, n = 1, ..., N\}$, with each message $x_n \in \{i = 0, ..., M - 1\}$, and with corresponding outputs $Y \stackrel{\Delta}{=} \{y_n, n = 1, ..., N\}$ with each $y_n \in \{j = 0, ..., M' - 1\}$ that satisfy

$$p_{\boldsymbol{Y}/\boldsymbol{X}}(j,i) = \prod_{n=1}^{N} p_{\boldsymbol{y}_n/\boldsymbol{x}_n}(j,i) \quad .$$
(1.461)

The integer n here is a dimensional index (typically reflecting successive time-based DMC uses, but not necessarily so). The indices j and i reflect instead particular (output, input) sample values from the discrete distribution. A stationary DMC has $p_{\boldsymbol{y}_n/\boldsymbol{x}_n}(j,i) = p_{\boldsymbol{y}/\boldsymbol{x}}(j,i) \forall j, i, or is thus independent of the dimensional index n.$

Memoryless – the channel dimensions don't interfere with each other.

The Binary Symmetric Channel (BSC)

- ML Detector? \succ Easy, $0 \rightarrow 0$, $1 \rightarrow 1$.
- Error prob? $\geq P_e = p .$

- Often used to model an "inner detector" so $\overline{P}_b \rightarrow p$.
- Probability transition matrix example:

$$P_{y/x} = \begin{bmatrix} 1-p & p \\ p & 1-p \end{bmatrix}$$

Probability Transition Matrix

$$P_{y/x} = \begin{bmatrix} p_{M'-1/M-1} & \cdots & p_{M'-1/0} \\ \vdots & \ddots & \vdots \\ p_{0/M-1} & \cdots & p_{0/0} \\ \underbrace{ & & \\ \stackrel{\triangleq}{\underset{P_{y/x(M-1)}}{\triangleq}} & & \underbrace{ & \\ \stackrel{\triangleq}{\underset{P_{y/x(0)}}{\triangleq}} \end{bmatrix}}$$

- $P_{y/x}$ is essentially just a table of the probabilities $p_{y/x}$.
- *y* has a discrete distribution.

Example 2: Binary Erasure Channel (BEC)

- ML decoder always correct on $0 \rightarrow 0$ or $1 \rightarrow 1$, but 2?
- An **erasure** channel self reports it cannot decide.
 - This really corresponds to an "inner channel" like AWGN when y is on/close to the decision boundary.

Some Properties of Transition Matrix

Convenient description

 Can be helpful for matlab/other implementations/simulations 1. unit column sum - Each column sums to unity:

$$\mathbf{l} = \sum_{j=0}^{M'} p_{j/i} = [\mathbf{1}]^* \, \boldsymbol{p}_{\boldsymbol{y}/\boldsymbol{x}}(i) \, \forall \, i = 0, ..., M - 1 \;.$$
(1.464)

2. weighted row-sum is $p_{y}(j)$ - Each row sums to the corresponding y-value's probability:

$$p_{\boldsymbol{y}}(j) = \sum_{i=0}^{M} p_{j/i} \cdot p_{\boldsymbol{x}}(i) \ \forall \ j = 0, ..., M' - 1 \ .$$
(1.465)

Equivalently, If p_y and p_x are row vectors that stack y probability values $p_y \triangleq [p_y(M'-1)...p_y(0)]^*$ and $p_x = [p_x(M-1)...p_x(0)]^*$ respectively, then there is an input/output matrix-multiply relation

$$\boldsymbol{p}_{\boldsymbol{y}} = P_{\boldsymbol{y}/\boldsymbol{x}} \cdot \boldsymbol{p}_{\boldsymbol{x}} \ . \tag{1.466}$$

3. Joint Probability Distribution - The joint distribution is

$$P_{\boldsymbol{y},\boldsymbol{x}} = P_{\boldsymbol{y}/\boldsymbol{x}} \cdot \operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{x}}\right\}$$
 . (1.467)

4. Á Posteriori Distribution - The à priori distribution is

$$P_{\boldsymbol{x}/\boldsymbol{y}} = \left[\operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{y}}\right\}\right]^{-1} \cdot \underbrace{P_{\boldsymbol{y}/\boldsymbol{x}} \cdot \operatorname{Diag}\left\{\boldsymbol{p}_{\boldsymbol{x}}\right\}}_{P_{\boldsymbol{y},\boldsymbol{x}}} \quad . \tag{1.468}$$

5. ML Detector - An ML detector selects for any specific received DMC channel output y = j or thus row j:

$$\hat{x}_i = \hat{i} = \arg \left\{ \max_{i \in \{0, \dots, M-1\}} \left[p_{j/i} \right] \right\}$$
, (1.469)

the index of row j's largest element. The ML decision region \mathcal{D}_i is the set of all row indices $\{j\}$ for which element i maximizes those rows' probabilities in $P_{\boldsymbol{y}/\boldsymbol{x}}$.

6. MAP Detector - An MAP detector selects for any specific received DMC channel output y = j:

$$\hat{\boldsymbol{x}}_{i} = \hat{i} = \arg\left(\max_{i \in \{0,\dots,M-1\}} \left\{ \left[P_{\boldsymbol{y}/\boldsymbol{x}} \cdot \operatorname{Diag}\left(\boldsymbol{p}_{\boldsymbol{x}}\right) \right](j,i) \right\} \right) \quad (1.470)$$

The MAP decision region D_i is the set of all row indices $\{j\}$ for which element *i* maximizes those rows' probabilities in $P_{\boldsymbol{y}/\boldsymbol{x}}$. Diag $\{\boldsymbol{p}_{\boldsymbol{x}}\}$.

January 18, 2024

2024 L4: 34

Section 1.4.1

Binary Asymmetric Channel (BAC)

- BAC can model optical (fiber) transmission as well as some disk channels.
 - Nonlinear effects or data-dependent noise effects can cause the asymmetry.

Symmetric DMC M = M'

Definition 1.4.2 [Symmetric Channel] A symmetric channel has MAP-detector P_e that is independent of input distribution.

Theorem 1.4.1 [Symmetric DMC Properties] The following statements are equivalent:

- 1. The DMC is symmetric.
- 2. The MAP and ML dectectors' error probability P_e is invariant to input distribution p_x .
- 3. Any column of $P_{\boldsymbol{y}/\boldsymbol{x}}$ is a permutation of another column.
- 4. For any 1-to-1 self-reversible permutation $\pi = \pi^{-1}$ on discrete \boldsymbol{y} , then $p_{\boldsymbol{y}/\boldsymbol{x}}(i) = P_{\pi(\boldsymbol{y})/\boldsymbol{x}}(i')$ for some $i' \neq i$. involution
- SDMC is useful as the channel for outer code designs.
 - There is already an "inner detector" (example is ML for symbols on AWGN).
 - BSC and BEC are symmetric DMCs.

Example: The q-ary Symmetric Channel

- This is used with "bytes" (blocks) of inner-channel detected bits.
 - $\rightarrow q > 2$ codes can be much more powerful than best binary codes.
- This model can have erasures in various modifications.
- Typically models an "inner channel" for application of outer cyclic codes over finite field (will see in Lecture 11).

End Lecture 4