Lecture 3
 Modulation Types

January 16, 2024

John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- Homework due tomorrow
- Solutions distributed Friday, or earlier if no late
- This of courses causes anything after that to be a zero.
- PS2 is due $1 / 24 / 24$

Problem Set $2=$ PS2	due Tuesday Jan23 at 17:00	
1.	1.14	SQ odd-b QAM constellations
2.	1.19	shaping gain
3.	1.22	basic QAM design
4.	1.34	hexagonal constellation QAM
5.	1.35	Baseband equivalents
6.	1.38	2-tap channel

Problem Set 2 = PS2 due Tuesday Jan23 at 17:00
1. 1.14 SQ odd-b QAM constellations
2. 1.19 shaping gain
3. 1.22 basic QAM design
4. 1.34 hexagonal constellation QAM
5. 1.35 Baseband equivalents
6. 1.38 2-tap channel

Finish Lecture 2

Section 1.3.3.1

Normalization to Dimensionality

- $\bar{P}_{e}, \bar{N}_{e}, \overline{\varepsilon_{x}}, \bar{b}, \ldots$.

$$
\bar{A} \triangleq \frac{A}{N}
$$

- The measure, indicated by a bar, normalizes to the "resources" - the number of dimensions.

$$
N=2 \cdot W \cdot T
$$

W is positive-frequency bandwidth T is transmission length (symbol period)

$$
\operatorname{sinc}(t) \triangleq \frac{\sin (\pi \cdot t)}{t}
$$

Fair Comparisons

- Fix 4 of these 5 - compare last
- Data rate $R=\frac{b}{T}$
- Power $P_{x}=\frac{\varepsilon_{x}}{T}$
- System bandwidth W
- Total transmission time or symbol period T
- Error probability P_{e}
- Or fix 2 of these 3 - compare the last
- Bits/dim $\bar{b}=\frac{b}{N}$
- Energy/dim $\bar{\varepsilon}_{x}=\frac{\varepsilon_{x}}{N}$
- Error Prob/dim $\bar{P}_{e}=\frac{P_{e}}{N}$

> Bigger $d_{\min }$ and twice rate ?
> Not fair, both \bar{b} and \bar{P}_{e} differ
> (these two are really the same)
> set $\bar{b}=1$ and becomes QPSK, smaller $d_{\min }$

Many engineers, including some really famous ones,

 have erred on comparisonsSystem 1: $\frac{1}{T}=10 \mathrm{MHz}, N=1, \pm 1(M=2), R=10 \mathrm{Mbps}$

System 2: $R=20 \mathrm{Mbps}, N=2, \pm 1(M=2), \frac{1}{T}=10 \mathrm{MHz}$

Packet Error Rate

- Block error rate, $P_{e, \text { block }}$, is the average probability that a packet or "block" of B bits contains at least one erred bit.

$$
P_{e, b l o c k} \approx B \cdot \bar{P}_{b}
$$

- More accurately, $P_{e, b l o c k}$ counts the ways that bit errors can occur:

$$
P_{e, b l o c k}=\sum_{i=1}^{B}\binom{B}{i} \cdot\left(1-\bar{P}_{b}\right)^{B-i} \cdot \bar{P}_{b}^{i}
$$

- Other examples
- An erred second is second in which at least one (uncorrectable) bit error occurred.
- Code violations - usually measured in 15 min intervals -- and count the number of erred packets in that interval.

Simple AWGN Modulation \& SNR

Section 1.3.3

AWGN Channel and SNR

- The numerator and denominator must have same number of dimensions.
- It's easy with use of barred quantities (σ^{2} is the noise energy/dimension for any AWGN at MF output = power-spectral density, 2 -sided).
- A constellation's SNR maps to P_{e} (like 10^{-6}) through the (possibly scaled) Q-function argument's square root.
- margin $=$ the amount of SNR in excess of that required to meet a P_{e} target.
- energy/bit $\mathcal{E}_{b}=\varepsilon_{x} / b$; caution, this measure confuses issues when $\bar{b} \geq 1$ (SNR works everywhere).
- Energy quadruples with each additional bit/dim when $\bar{b} \geq 1$, an exponential growth.
- So normalizing by linear-factor can create inconsistencies.
- When $\bar{b} \leq 1$, the energy growth is more consistently linear, so this measure then is self-consistent.

Binary Antipodal (NRZ) - simple Binary

- 2 constellation points $\pm \sqrt{\varepsilon_{x}}$ best one-dimensional binary code

$$
\begin{aligned}
& \sqrt{S N R}=\frac{\sqrt{\varepsilon_{x}}}{\sigma}=\frac{d_{\min }}{2 \sigma} \\
& P_{e}=\bar{P}_{e}=1 \cdot Q(\sqrt{S N R})
\end{aligned}
$$

- Extend to $N \geq 1 \quad \circ$ = constellation point

$$
\bar{P}_{e} \leq 1 \cdot Q(\sqrt{S N R})
$$

$$
\text { (bound when } N \geq 2 \text {) }
$$

Binary-Orthogonal Constellations

- 2 constellation points $\pm \sqrt{\varepsilon_{x}}$ (antipodal) is the best one-dimensional binary code, but how about:

$$
\begin{aligned}
& \text { i). sometimes pagers use } M=N=4 \\
& \text { ii), early modems (to } 300 \text { bps) }
\end{aligned}
$$

Block-Orthogonal Constellations

- Extending to more dimensions is wasteful of system resources (temporal in particular, time or freq).
- $x_{m}(t)=\sqrt{\mathcal{E}_{x}} \cdot \varphi_{m}(t)$

$$
\begin{aligned}
P_{c / 0, y_{0}=v} & =P\left\{n_{i} \leq v, \forall i \neq 0\right\} \\
& =\prod_{i=1}^{N-1} P\left\{n_{i} \leq v\right\} \\
& =[1-Q(v / \sigma)]^{N-1} .
\end{aligned}
$$

$P_{e}=1-\int_{-\infty}^{\infty}\left(\sqrt{2 \pi \sigma^{2}}\right)^{-1} \cdot e^{-\frac{1}{2 \sigma^{2}}\left(v-\sqrt{\varepsilon_{\boldsymbol{x}}}\right)^{2}} \cdot[1-Q(v / \sigma)]^{N-1} d v$

$$
\frac{\varepsilon_{x}}{\sigma^{2}}=N \cdot \mathrm{SNR}
$$

So energy increases at fixed SNR with N, while \bar{b} decreases.

Example: Pulse Position Modulation (PPM)

ML Detector

- For instance, radar and lidar where the message is the delay/distance (so position).
- Visible Light Communication (VLC) systems (inside rooms, "Li-Fi") - wide bandwidth (10’s Mbps) - IEEE 802.15.7.
- Similarly, pulse-duration modulation, where detector accumulates receiver input energy.

Phase-Shift Keying - Circular Constellations

$$
\text { radius }=\sqrt{\mathcal{E}_{x}}
$$

Often used in satellite transmission
e.g., LEO QPSK, 8PSK (some 16 QAM)
$1 / T=10-400 \mathrm{MHz}$, roughly
carriers are typically above 10 GHz
Low peak-to-average can simplify design.
Performance degrades (low $d_{\text {min }}$ for given
Energy) when $M>4$.

- PSK is shown here with $M=8$, but generally M is any positive integer.
- All points equal energy ε_{x} - this can simplify energy driver/receiver-amplifier circuits implementation and overall energy consumption.
- Minimum distance is $d_{\min }=2 \cdot \sqrt{\varepsilon} \cdot \sin \frac{\pi}{M}$.

> BPSK (M=2) basically wastes a dimension (although 3 dB larger distance than QPSK)

- Error Prob is $P_{e}<2 \cdot Q\left(\sqrt{S N R} \cdot \sin \frac{\pi}{M}\right)$.

Pulse Amplitude Modulation (PAM)

Section 1.3.4.1

M’ary PAM (Sec 1.3.4.1)

- Pulse Amplitude Modulation (PAM) has $M=2^{b}$ symbol values equally spaced in $N=1$ dimension.

x_{0}	$x_{M / 2-1}$	$x_{M / 2+1}$	x_{M-1}		
$\frac{m=0}{0} \cdots$	\cdots	$m=\frac{M}{2}-1$	$m=\frac{M}{2}+1$	$m=M-1$	
$-\frac{(M-1) d}{2}-\frac{5 d}{2}$	$-\frac{3 d}{2}$	$-\frac{d}{2}$	$+\frac{d}{2}$	$+\frac{3 d}{2}$	$+\frac{5 d}{2}$

- PAM symbol energy is

$$
\varepsilon_{x}=\frac{M^{2}-1}{12} \cdot d^{2} \quad d=\sqrt{\frac{12 \cdot \varepsilon_{x}}{M^{2}-1}}
$$

- PAM bits/dim are
- PAM error prob is

$$
b=\frac{1}{2} \cdot \log _{2}\left(1+12 \cdot \frac{\varepsilon_{x}}{d^{2}}\right)
$$

$$
P_{e}=\underbrace{2 \cdot\left(1-\frac{1}{M}\right)}_{N_{e}} \cdot \underbrace{Q\left(\sqrt{\frac{3 \cdot S N R}{M^{2}-1}}\right)}_{d / 2 \sigma}
$$

PAM Table for $\mathrm{Pe}=1 \mathrm{e}-6$

$b=\bar{b}$	M	$\begin{gathered} \frac{d_{\text {min }}}{2 \sigma} \text { for } \bar{P}_{e}=10^{-6} \approx \\ 2 Q\left(\frac{d_{\text {min }}}{2 \sigma}\right) \end{gathered}$	$\begin{gathered} \mathrm{SNR}= \\ \frac{\left(M^{2}-1\right) \cdot 10^{1.37}}{3} \end{gathered}$	SNR increase $=$ $\frac{M^{2}-1}{(M-1)^{2}-1}$
1	2	13.7 dB	13.7 dB	-
2	4	13.7 dB	20.7 dB	7 dB
3	8	13.7 dB	27.0 dB	6.3 dB
4	16	13.7 dB	33.0 dB	6.0 dB
5	32	13.7 dB	39.0 dB	6.0 dB

Table 1.2: PAM constellation energies.

- PAM is often cited as needed 6dB/bit (last column, large b).
- PCle 6.0 Uses PAM4 with $1 / T \approx 28,44,56,112,228 \mathrm{GHz}$ (for $56,88,112,228$, and 456 Gbps)
- Per wire (PCle allows up to 8-16 wires in parallel).

Matlab Commands

- Modulator is pammod.m

```
>> real(pammod}(0:3,4))%=-3 -1 1 1 3 - lists the 4-PAM outputs (d=2 default
>> real(pammod}(0:3,8))%= -7 -5 -3 -1 - lists first four 8-PAM outputs
>> real(pammod([30 7],8)) % = -1 -7 7 - - some message sequence to 8-PAM
>> d=1;
>> (d/2)*real(pammod([3 0 7],8)) % = -0.5000 -3.5000 3.5000 - change d
>> randi(4,1,5) % = 2 2 1 4 4 1 3 3 - random (uniform) messages
>> (d/2)*real(pammod((randi(4,1,5)-1),8)) % Put it all together, 5 successive 8-PAM symbols
= 0.5000 1.5000 -2.5000 0.5000 1.5000
```

- ML detector is pamdemod.m

```
>> message=randi(8,1,10000)-1;%1\times10k \in [1: 8]
>> x=real(pammod(message,8));
>> SNR=23;
>> Ex=63/3;
>> sig2=10^(-2.3)*Ex;
>> n=sqrt(sig2)*randn(1,10000);
>> y=x+n;
>> xhat = pamdemod(y,8);
>> sum(xhat ~= message) = 16
>> Pe=ans/10000= 0.0016
> 1.5*qfunc(sqrt((3/63)*10^(SNR/10))) = 0.0015
```


Can run this with longer data sequences, and test several SNR. Generate Pe versus SNR

Avoid matlab "awgn.m" program - can be confusing on "SNR"

```
>> real(pammod([3 0 7],8,0,'gray')) % = -3 -7 3 - the 0 is initial phase
% gray code bit-mapping to constellation differs only by 1 bit in adjacent points, so then
Pb}=\textrm{Pe
>> bits=[[\begin{array}{lllllllll}{0}&{1}&{3}&{2}&{6}&{7}&{5}&{4}\end{array}];
% 000001011010110111101100
>> real(pammod(bits,8,0,'gray')) %= -7 -5 (-3 -1 clulllll
>> pamdemod(real(pammod(bits,8,0,'gray')),8) %= 0
>> pamdemod(real(pammod(bits,8,0,'gray')),8,0,'gray') %= 
```


Example: Noncoherent fiber transmission

data rate $R=b / T$

- Amplitude of light is modulated - typically all positive so constant $a=\frac{1-M}{2} d$ is added ($\& x \geq 0$).
- All positive loses 6 dB immediately to the constant, but still heavily used.
- The light wavelength is part of modulation, so not relevant to PAM (directly) - consistent with theory.
- 4PAM finds use in ethernet-fiber (IEEE 802.3 xxx) standards with $1 /{ }^{1} \approx 26.56 \mathrm{GHz}$ - longer fiber does introduce lowpass filtering of signals (see Chapter 3, L13-18, ISI later).
- Multiwavelength combinations (ITU standards) use $1 / T \approx$ (up to) $k \cdot 12.5 \mathrm{GHz}$ (ITU G.964.1) with PAM4 (contemplating PAM8 and PAM16), with $k=1,2, \ldots, 8$ (8 probably is part of a DMT/OFDM system, see 379B).
- GPON (broadband fiber access, G.989.2 with G.sup64) - 4PAM with $1 / T \approx 25,50 \mathrm{GHz}$.

Some interconnect uses (Copper or Fiber)

- PCle (Peripheral Component Interconnect Express) has $-\frac{1}{T}=16 \mathrm{GHz} ; b=4$ (4PAM) $R=64 \mathrm{Gbps}$:
- PCle can have up to 16 lanes (each at this speed) - 128 GBYTES $/ \mathrm{sec}$,
- PCle helps connect computer processor to peripheral components,
- PCle is typically (short) copper wires.
- GDDR6 (Graphics Double Data Rate) $-\frac{1}{T}=6 \mathrm{GHz} ; b=4$ (4PAM) $R=24 \mathrm{Gbps}:$
- GDDR6 is a memory interface (version 6 went to 4 PAM) that is used in gaming,
- GDDR6 is also for copper wires.
- Ethernet 100 and 200 Gbps:
- Fiber $-\frac{1}{T}=50$ or $100 \mathrm{GHz} ; b=4$ (4PAM) $R=100$ or 200 Gbps ,
- 200 Gbps is relatively new - just entering market.
- Coherent Fiber -16 QAM at $\frac{1}{T}=130 \mathrm{GHz} \rightarrow 400 \mathrm{Gbps}$ of actual information (some code overhead).
- Actually, use two polarizations per wavelength (so $216-Q A M s$ that are spatially orthogonal, so 2×2 channel).
- We'll see more "MIMO" instances later, so the data rate advertised is 800 Gbps (500 meters length).
- Called Coherent DSP (two former students of this class P. Voois/N. Swenson started the company, ClariPhy that began this whole passage to QAM in coherent fiber - now part of Marvell).

Quadrature Amplitude Modulation (QAM)

Section 1.3.4.2

M’ary QAM

- Quadrature Amplitude Modulation (PAM) has $M=2^{b}$ symbol values in $N=2$ dimension, "squares PAM"
φ_{2}

Cartesian product of 2 PAMS

$$
\begin{aligned}
& \varphi_{1}(t)=\sqrt{\frac{2}{T}} \cdot \operatorname{sinc}\left(\frac{t}{T}\right) \cdot \cos \omega_{c} t \\
& \varphi_{2}(t)=-\sqrt{\frac{2}{T}} \cdot \operatorname{sinc}\left(\frac{t}{T}\right) \cdot \sin \omega_{c} t
\end{aligned}
$$

- QAM symbol energy

$$
\mathcal{E}_{x}=\frac{M-1}{6} \cdot d^{2} \quad \overline{\mathcal{E}}_{\boldsymbol{x}}=d^{2}\left(\frac{M-1}{12}\right)
$$

- QAM bits/sym are

$$
b=\log _{2}\left(1+6 \cdot \frac{\varepsilon_{x}}{d^{2}}\right)
$$

- QAM error prob is

$$
P_{e}=\underbrace{4 \cdot\left(1-\frac{1}{\sqrt{M}}\right)}_{N_{e}} \cdot \underbrace{Q\left(\sqrt{\frac{3 \cdot S N R}{M-1}}\right)}_{Q(d / 2 \sigma)}
$$

QAM Table for $\mathrm{Pe}=1 \mathrm{e}-6$

$b=2 \bar{b}$	M	$\begin{array}{r} \frac{d}{2 \sigma} \text { for } \bar{P}_{e}=10^{-6} \approx \\ 2 Q\left(\frac{d_{\mathrm{min}}}{2 \sigma}\right) \end{array}$	$\begin{gathered} \mathrm{SNR}= \\ \frac{(M-1) \cdot 10^{1.37}}{3} \end{gathered}$	SNR increase $=$ $\frac{M-1}{(M-1)-1}$	dB/bit
2	4	13.7 dB	13.7 dB	$M_{Q A M}=M_{P A M}^{2}$	
4	16	13.7 dB	20.7 dB	7.0 dB	3.5 dB
6	64	13.7 dB	27.0 dB	6.3 dB	3.15 dB
8	256	13.7 dB	33.0 dB	6.0 dB	3.0 dB
10	1024	13.7 dB	39.0 dB	6.0 dB	3.0 dB
12	4096	13.7 dB	45.0 dB	6.0 dB	3.0 dB
14	16,384	13.7 dB	51.0 dB	6.0 dB	3.0 dB

- QAM is often cited as needed $3 \mathrm{~dB} /$ bit (last column, large b) - same as PAM, but over 2 dimensions
- Some wireless (satellite 16QAM, cellular 1G,2G,3G, Wi-Fi 802.11b, early US digital TV)
- Wireline - coherent fiber, $1 / T \approx k \cdot 32 \mathrm{GHz}$ or $1 / T \approx k \cdot 12.5 \mathrm{GHz} k=1,2,3,4$... 8 so far

SQ QAM for odd b ?

- Most typical today is "every other point" from $b+1$ size constellation
- Use SQ QAM formulas, but increase $d_{\min } \rightarrow \sqrt{2} \cdot d$ - below

CR constellations Slightly Better for odd b QAM

- More symmetrically removes high-energy corner points

$$
\varepsilon_{x}=\frac{d^{2}}{6} \cdot\left(\frac{31}{32} M-1\right)
$$

$$
P_{e}=\underbrace{4 \cdot\left(1-\frac{1}{\sqrt{2 M}}\right)}_{N_{e}} \cdot Q(\underbrace{\left.\sqrt{\frac{3 \cdot S N R}{\frac{31}{32} M-1}}\right)}_{d / 2 \sigma}
$$

- Used on some (of many carriers) in DMT systems (xDSL, G.fast, G.mgfast, etc)

Matlab Commands

- Modulator is qammod.m

```
>> reshape(qammod(0:3,4),2,2) %=
-1.0000+1.0000i 1.0000+1.0000i
-1.0000-1.0000i 1.0000-1.0000i
```

>> reshape(qammod(0:15,16,'plotconstellation',1),4,4) $\%=$		
$-3.0000+3.0000 \mathrm{i}-1.0000+3.0000 \mathrm{i}$	$3.0000+3.0000 \mathrm{i}$	$1.0000+3.0000 \mathrm{i}$
$-3.0000+1.0000 \mathrm{i}-1.0000+1.0000 \mathrm{i}$	$3.0000+1.0000 \mathrm{i}$	$1.0000+1.0000 \mathrm{i}$
$-3.0000-3.0000 \mathrm{i}-1.0000-3.0000 \mathrm{i}$	$3.0000-3.0000 \mathrm{i}$	$1.0000-3.0000 \mathrm{i}$
$-3.0000-1.0000 \mathrm{i}-1.0000-1.0000 \mathrm{i}$	$3.0000-1.0000 \mathrm{i}$	$1.0000-1.0000$

>>qammod(0:31, 32,'plotconstellation',1); \% produces 32CR
Odd bits 5 or greater \rightarrow cross constellation

However 8 CR is horrible and looses 0.8 dB w.r.t. 8SQ
8SQ is not well handled by matlab (see for yourself: matlab"s constellation from qammod for $M=8$)

Matlab Commands

- ML detector is qamdemod.m

```
rng(7)
message=randi(16,1,10000)-1;
x=qammod(message,16);
SNR=17;
Ex=10;
N0=10^(-1.7)*Ex;
n=sqrt(N0/2)*randn(1,10000)+i*sqrt(N0/2)* }\mp@subsup{}{}{*
y=x+n;
xhat = qamdemod(y,16);
sum( xhat ~= message)
= 25
ans/10000 = .0025
>> 3*qfunc(sqrt(0.2*10^(1.7)))
ans=0.0023
```

Defaults to Gray Code

```
errrate=comm.ErrorRate;
```

errrate=comm.ErrorRate;
for indx=1:100
for indx=1:100
message=randi(16,1,10000)-1;
message=randi(16,1,10000)-1;
x=qammod(message,16);
x=qammod(message,16);
n=sqrt(N0/2)*randn(1,10000)+i*sqrt(N0/2)*randn(1,10000);
n=sqrt(N0/2)*randn(1,10000)+i*sqrt(N0/2)*randn(1,10000);
y=x+n;
y=x+n;
xhat = qamdemod(y,16);
xhat = qamdemod(y,16);
errstats = errrate(xhat',message');
errstats = errrate(xhat',message');
end
end
errstats(1)
errstats(1)
ans = 0.0023 % perfect match!

```
ans = 0.0023 % perfect match!
```


Forney's Gap Approximation - PAM/QAM

- What Q-function argument gives $\left(\bar{P}_{e}=\right) 10^{-6} \quad$? (assume $\bar{N}_{e}=2$)

$$
\frac{3}{2^{2 \cdot \bar{b}}-1} \cdot S N R=10^{1.38}
$$

```
    13.8 dB ??
>>20*}\operatorname{log}10(qfuncinv(1e-6/2))=13.789
```

- Solve for \bar{b} to get Forney's Gap Formula:
- $\bar{b}=\frac{1}{2} \cdot \log _{2}\left(1+\frac{S N R}{\Gamma}\right)$, where
- $\Gamma=8.8 \mathrm{~dB}$ (for both PAM and QAM), and
- $\Gamma=9.5 \mathrm{~dB}$ for $\bar{P}_{e}=10^{-7}$.
- Gap is largely independent of $\bar{b}>0.5$; we'll see this applies to most good codes built on PAM/QAM also.
- This looks like a very famous formula (Chapter 2, we'll see),
- where $\Gamma=1$ (0 dB).
- That, is, the maximum reliably decodable data rate on AWGN, the capacity.
- The gap measures reduction (in $S N R, d B$) relative to this capacity (here for "uncoded" PAM/QAM).

Examples

2. Examples
a. $S N R=13.5 \mathrm{~dB}$? $\quad P_{e}=10$

$\bar{b}=\frac{1}{2} \log _{2}\left(1+10^{2.44-.95}\right)=2.5$

5 bits $/ \mathrm{Hz}_{3}$ (4 PAM, not enough SNR for 8PAM)
c. SNR $=44.7 \mathrm{~dB}$
10

$$
\begin{aligned}
\bar{b}= & \frac{1}{2} \log _{2}(1+10.47-.88 \\
& 64 \text { PAM or } 4096 \text { SQ QAM }
\end{aligned}
$$

- Best to date? (no MIMO dimensions)
- QAM, $b=15 \mathrm{bits} / \mathrm{Hz}$.
- Bits/Hz $=2 \bar{b}$
- Most useful codes also based on sequences of QAM/PAM symbols.
- Their gaps are also constant for $2 \bar{b}>1$.
- The good ones have $\Gamma \rightarrow 0 \mathrm{~dB}$ (or maybe in practice more like 1 dB).

End Lecture 3

Lattices and Codes (AWGN)

- Lattice $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \cdots\right\}$ that is closed under an operation "addition" (usually normal addition, but can also be over a finite field when $|\Lambda|<\infty$. (Appendix B)
- Examples include:
- \mathbb{Z} - the integers (think PAM),
- \mathbb{Z}^{2} - 2D integer vectors (think QAM), and

$$
D_{2}=2 Z^{2}+\{0,1\} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- \mathbb{Z}^{N} - think codewords built from PAM/QAM.
- Coset $\Lambda+\boldsymbol{a}=\left\{\lambda_{0}+\boldsymbol{a}, \lambda_{1}+\boldsymbol{a}, \cdots\right\}$ basically maintains all the lattice properties, but need to add \boldsymbol{a} or remove it appropriately.
- Most constellations C are subsets of lattices Λ (or their cosets).
- Designs choose M symbols from Λ, and subtract mean so that they have minimum average energy.
- Lattices are a nice way for designers to pack points evenly into given volume or energy.

Coding Gain and Constellation/Code

: (b) 6 HEX

glatice for $d_{\text {min }}$ $\Lambda_{s}=$ shaping lattice for ε_{x} $V(\Lambda) \triangleq$ decision - region volume for (any) lattice point in Λ

> Basic principle extends $\bar{N} \rightarrow \infty$. Hexagon \rightarrow hypersphere (Gaussian marginals).

Good codes can follow

 from ${ }^{\Lambda_{s}} /_{\Lambda}=|C|$.
$\Lambda=A_{2}$, the "hexagonal" lattice.

$$
\begin{aligned}
& V\left(A_{2}\right)=\underbrace{6}_{\text {of } \Delta^{\prime} s} \cdot \frac{1}{2} \cdot \underbrace{\frac{d}{\sqrt{3}}}_{\text {altitude }} \cdot \frac{d}{2}=\frac{\sqrt{3}}{2} \cdot d^{2} . \\
& \gamma_{f}=\frac{d^{2}}{\frac{\sqrt{3} d^{2}}{2}}=\frac{2}{\sqrt{3}}=.625 \mathrm{~dB}
\end{aligned}
$$

- A_{2} is (up to) . 625 dB better than \mathbb{Z}^{2} in fundamental gain.
- It's also better as a shaping lattice (see previous page).

Maximum Shaping Gain

- Let $N \rightarrow \infty$, then best shape is a hypersphere.
- For hypersphere:

$$
\frac{\bar{\varepsilon}_{x}}{V^{2 / N}}=\underbrace{\frac{r^{2}}{N+2}}_{\begin{array}{c}
\text { nd moment } \\
r^{2} / 4
\end{array}} \cdot \underbrace{\frac{\left(\frac{N}{2}!\right)^{2 / N}}{\pi \cdot r^{2}}}_{\substack{1 / \text { area } \\
1 / \pi \cdot r^{2}}}=\frac{\left(\frac{N}{2}!\right)^{2 / N}}{\pi \cdot(N+2)}
$$

- Limit, relative to \mathbb{Z}^{N} is $\frac{\pi e}{6}=1.53 \mathrm{~dB}$. $>$ Proof in text.

BEST SHAPING GAIN IS 1.53 dB

- Fundamental gain can be infinite - see Chapter 2.

Peak-to-Average Ratio (PAR)

- Can be important for amplifiers (see PSK discussion)

Definition 1.3.23 [Discrete Peak Energy] A constellation's N-dimensional discrete peak energy is $\mathcal{E}_{\text {peak }}$.

$$
\begin{equation*}
\mathcal{E}_{\text {peak }} \triangleq \max _{i} \sum_{n=1}^{N} x_{i n}^{2} \tag{1.328}
\end{equation*}
$$

A modulated signal's continuous-time peak energy is

$$
\begin{equation*}
\mathcal{E}_{\text {cont }} \triangleq \max _{i, t}\left|x_{i}(t)\right|^{2} \geq \mathcal{E}_{\text {peak }} \tag{1.329}
\end{equation*}
$$

- PARs could be measured
$>$ At symbol instants: $P A R=\varepsilon_{\text {peak }} / \varepsilon_{x}$
$>$ In continuous time for an overall $P A R=\varepsilon_{\text {cont }} / \varepsilon_{x}$ - this one is always at least as large.
> Example - simple sinusoid symbol-rate sampled at peaks has symbol-rate PAR =1 while any continuous sinusoid has PAR 3dB.

Filtered AWGN Channels

Section 1.3.7

Real channels don't pass all frequencies

- The filtered AWGN has linear filter $h(t)$.

\square

ISI (L12-17)

- Successive symbols get stretched and may overlap (intersymbol interference).
> Can't go too fast ...
- Correlated ("colored") noise is equivalent to filtered AWGN next slides

Colored noise

- Noise is not "white" (not flat PSD) - power spectral density $\frac{\mathcal{N}_{0}}{2} \cdot \bar{S}_{n}(f)$
- What is problem with this?
> The MAP/ML detector is no longer "pick the closest point"
- See Examples in Section 1.3.7.2 / 3

Noise Whitening

- 1-to-1 reversible transformation that whitens noise.
> Loses nothing by reversibility theorem.
- And thus creates a filtered AWGN $H(f)=\bar{S}_{n}^{-1 / 2}(f)$.

But WAIT!

- This filter only exists, and is 1-to-1 causal and causally invertible, IF

Theorem 1.3.6 [Paley-Wiener Criterion] If

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\left|\ln \mathcal{S}_{n}(f)\right|}{1+f^{2}} d f<\infty \tag{1.434}
\end{equation*}
$$

then there exists a $G(f)$ satisfying below with a realizable inverse. (Thus the filter $g(t)$ is a 1-to-1 mapping).

$$
\left[\overline{\mathcal{S}}_{n}(f)\right]^{-1}=|G(f)|^{2}
$$

- See Appendix D on canonical factorization of autocorrelation/power spectra:
$>$ Such a filter exists for any noise typically found in practice.
$>$ Notice this says "noise" - does not necessarily apply to systems that optimize transmit power spectra.

