

Lecture 3 Modulation Types January 16, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- Homework due tomorrow
- Solutions distributed Friday, or earlier if no late
 - This of courses causes anything after that to be a zero.
- PS2 is due 1/24/24

Problem Set 2 =	Problem Set 2 = PS2 due Tuesday Jan23 at 17:00				
1 . 1 .14	SQ odd-b QAM constellations				
2 . 1.19	shaping gain				
3 . 1.22	basic QAM design				
4. 1.34	hexagonal constellation QAM				
5 . 1.35	Baseband equivalents				
6 . 1.38	2-tap channel				

Today (1.3)

- Finish Lecture 2
- Simple AWGN Modulation and SNR
- PAM
- QAM
- Filtered AWGN Channels

Finish Lecture 2

Section 1.3.3.1

January 16, 2024

Normalization to Dimensionality

• \overline{P}_e , \overline{N}_e , $\overline{\mathcal{E}_x}$, \overline{b} ,

$$\bar{A} \triangleq \frac{A}{N}$$

The measure, indicated by a bar, normalizes to the "resources" - the number of dimensions.

Fair Comparisons

Many engineers, including some really famous ones,

have erred on comparisons

- Fix 4 of these 5 compare last
 - Data rate $R = \frac{b}{T}$
 - Power $P_x = \frac{\varepsilon_x}{T}$
 - System bandwidth W
 - Total transmission time or symbol period T
 - Error probability P_e
- Or fix 2 of these 3 compare the last
 - Bits/dim $\overline{b} = \frac{b}{N}$
 - Energy/dim $\bar{\mathcal{E}}_x = \frac{\mathcal{E}_x}{N}$
 - Error Prob/dim $\overline{P}_e = \frac{P_e}{N}$

Bigger d_{min} and twice rate ? Not fair, both \overline{b} and \overline{P}_e differ (these two are really the same) set \overline{b} =1 and becomes QPSK, smaller d_{min}

System 1: $\frac{1}{T} = 10$ MHz, $N = 1, \pm 1$ (M = 2), R = 10 Mbps $\Phi(f) \qquad \varphi(t) = 10^{3.5} \cdot sinc(10^7 \cdot t)$ $-5 \qquad +5 \qquad f$ (MHz) W = 5 MHz $d_{min} = 2$

System 2: R = 20 Mbps, $N = 2, \pm 1$ (M = 2), $\frac{1}{T} = 10$ MHz $\Phi_1(f)$ $\Phi_2(f)$ $\Phi_2(f)$ f (MHz) f (MHz)

$$-10 -5 + +5 + 10$$

 $W = 10 \text{ MHz}$ [+1,+1]
[-1,-1] $d_{min} = 2\sqrt{2}$

January 11, 2024

Sec 1.3.3.1

L2:5

Packet Error Rate

Block error rate, P_{e,block}, is the average probability that a packet or "block" of B bits contains at least one erred bit.

$$P_{e,block} \approx B \cdot \overline{P}_b$$

• More accurately, *P_{e,block}* counts the ways that bit errors can occur:

$$P_{e,block} = \sum_{i=1}^{B} {B \choose i} \cdot (1 - \overline{P}_b)^{B-i} \cdot \overline{P}_b^i$$

- Other examples
 - An erred second is second in which at least one (uncorrectable) bit error occurred.
 - Code violations usually measured in 15min intervals -- and count the number of erred packets in that interval.

Section 1.3.2.5

Simple AWGN Modulation & SNR

Section 1.3.3

January 16, 2024

AWGN Channel and SNR

- The numerator and denominator must have same number of dimensions.
 - It's easy with use of barred quantities (σ^2 is the noise energy/dimension for any AWGN at MF output = power-spectral density, 2-sided).
- A constellation's SNR maps to P_e (like 10⁻⁶) through the (possibly scaled) Q-function argument's square root.
- margin = the amount of SNR in excess of that required to meet a P_e target.
- energy/bit $\mathcal{E}_b = \frac{\mathcal{E}_x}{b}$; caution, this measure confuses issues when $\overline{b} \ge 1$ (SNR works everywhere).
 - Energy quadruples with each additional bit/dim when $\overline{b} \ge 1$, an exponential growth.
 - So normalizing by linear-factor can create inconsistencies.
 - When $\overline{b} \leq 1$, the energy growth is more consistently linear, so this measure then is self-consistent.

Section 1.3.3

Binary Antipodal (NRZ) – simple Binary

• 2 constellation points $\pm \sqrt{\mathcal{E}_x}$ best one-dimensional binary code

January 16, 2024

Section 1.3.3.2-3

Binary-Orthogonal Constellations

• 2 constellation points $\pm \sqrt{\mathcal{E}_x}$ (antipodal) is the best one-dimensional binary code, but how about:

$$\frac{d_{min}}{2\sigma} = \frac{\sqrt{\mathcal{E}_x}}{\sqrt{2}\sigma}$$
$$P_e = \bar{P}_e = 1 \cdot Q\left(\frac{\sqrt{\mathcal{E}_x}}{\sqrt{2}\sigma}\right)$$

Stanford University

January 16, 2024

Section 1.3.3.4-5

L3: 10

Block-Orthogonal Constellations

Extending to more dimensions is wasteful of system resources (temporal in particular, time or freq).

$$\frac{\mathcal{E}_x}{\sigma^2} = N \cdot \text{SNR}$$

So energy increases at fixed SNR with N, while \overline{b} decreases.

Stanford University

L3:11

Example: Pulse Position Modulation (PPM)

- For instance, radar and lidar where the message is the delay/distance (so position).
- Visible Light Communication (VLC) systems (inside rooms, "Li-Fi") wide bandwidth (10's Mbps)
 IEEE 802.15.7.
- Similarly, pulse-duration modulation, where detector accumulates receiver input energy.

Section 1.3.3.6

L3: 12

Phase-Shift Keying – Circular Constellations

Often used in satellite transmission e.g., LEO QPSK, 8PSK (some 16 QAM) $^{1}/_{T} = 10 - 400$ MHz, roughly carriers are typically above 10 GHz

Low peak-to-average can simplify design.

Performance degrades (low d_{min} for given Energy) when M > 4.

- PSK is shown here with M = 8, but generally M is any positive integer.
 - All points equal energy \mathcal{E}_x this can simplify energy driver/receiver-amplifier circuits implementation and overall energy consumption.
- Minimum distance is $d_{min} = 2 \cdot \sqrt{\mathcal{E}} \cdot \sin \frac{\pi}{M}$.
- Error Prob is $P_e < 2 \cdot Q\left(\sqrt{SNR} \cdot \sin\frac{\pi}{M}\right)$.

BPSK (M=2) basically wastes a dimension (although 3 dB larger distance than QPSK)

Pulse Amplitude Modulation (PAM)

Section 1.3.4.1

January 16, 2024

M'ary PAM (Sec 1.3.4.1)

• Pulse Amplitude Modulation (PAM) has $M = 2^b$ symbol values equally spaced in N = 1 dimension.

$$\varphi_1(t) = \frac{1}{\sqrt{T}} \cdot \operatorname{sinc}\left(\frac{t}{T}\right)$$

PAM symbol energy is

$$\mathcal{E}_x = \frac{M^2 - 1}{12} \cdot d^2$$
 $d = \sqrt{\frac{12 \cdot \mathcal{E}_x}{M^2 - 1}}$

PAM bits/dim are

PAM error prob is

January 16, 2024

Section 1.3.4.1

PAM Table for Pe=1e-6

$b = \overline{b}$	M	$ \begin{array}{c} \frac{d_{min}}{2\sigma} \mbox{ for } \bar{P}_e = 10^{-6} \approx \\ 2Q\left(\frac{d_{min}}{2\sigma}\right) \end{array} \end{array} $	$\frac{\text{SNR}}{\frac{(M^2 - 1) \cdot 10^{1.37}}{3}}$	SNR increase = $\frac{M^2 - 1}{(M-1)^2 - 1}$
1	0	10 7 10	19710	
	2	13.7dB	13.7dB	
2	4	$13.7\mathrm{dB}$	$20.7\mathrm{dB}$	$7\mathrm{dB}$
3	8	$13.7\mathrm{dB}$	$27.0 \mathrm{dB}$	$6.3\mathrm{dB}$
4	16	$13.7\mathrm{dB}$	$33.0\mathrm{dB}$	$6.0\mathrm{dB}$
5	32	$13.7\mathrm{dB}$	$39.0\mathrm{dB}$	$6.0\mathrm{dB}$

Table 1.2: **PAM constellation energies.**

- PAM is often cited as needed 6dB/bit (last column, large b).
- PCIe 6.0 Uses PAM4 with $1/_T \approx 28, 44, 56, 112, 228$ GHz (for 56, 88, 112, 228, and 456 Gbps)
 - Per wire (PCIe allows up to 8-16 wires in parallel).

Section 1.3.4.1

Matlab Commands

Modulator is pammod.m

```
>> real(pammod(0:3,4)) % = -3 -1 1 3 - lists the 4-PAM outputs (d=2 default)
>> real(pammod(0:3,8)) % = -7 -5 -3 -1 - lists first four 8-PAM outputs
>> real(pammod([3 0 7],8)) % = -1 -7 7 - some message sequence to 8-PAM
>> d=1;
>> (d/2)*real(pammod([3 0 7],8)) % = -0.5000 -3.5000 3.5000 - change d
>> randi(4,1,5) % = 2 1 4 1 3 - random (uniform) messages
>> (d/2)*real(pammod((randi(4,1,5)-1),8)) % Put it all together, 5 successive 8-PAM symbols
= 0.5000 1.5000 -2.5000 0.5000 1.5000
```

ML detector is pamdemod.m

Can run this with longer data sequences, and test several SNR. Generate Pe versus SNR

X Avoid matlab "awgn.m" program – can be confusing on "SNR"

>> real(pammod([3 0 7],8,0,'gray')) % = -3 -7 3 - the 0 is initial phase % gray code bit-mapping to constellation differs only by 1 bit in adjacent points, so then Pb = Pe >> bits= [0 1 3 2 6 7 5 4]; 000 001 011 010 110 111 101 100 >> real(pammod(bits,8,0,'gray')) % = -7 -5 -3 -1 1 3 5 7 >> pamdemod(real(pammod(bits,8,0,'gray')),8) % = 0 1 2 3 4 5 6 7 >> pamdemod(real(pammod(bits,8,0,'gray')),8,0,'gray') % = 0 1 3 2 6 7 5 4

January 16, 2024

Not in text yet

Example: Noncoherent fiber transmission

- Amplitude of light is modulated typically all positive so constant $a = \frac{1-M}{2}d$ is added (& $x \ge 0$).
 - All positive loses 6 dB immediately to the constant, but still heavily used.
- The light wavelength is part of modulation, so not relevant to PAM (directly) consistent with theory.
- 4PAM finds use in ethernet-fiber (IEEE 802.3xxx) standards with ¹/_T ≈ 26.56 GHz longer fiber does introduce lowpass filtering of signals (see Chapter 3, L13-18, ISI later).
- Multiwavelength combinations (ITU standards) use $1/T \approx (up \ to) \ k \cdot 12.5$ GHz (ITU G.964.1) with PAM4 (contemplating PAM8 and PAM16), with k = 1, 2, ..., 8 (8 probably is part of a DMT/OFDM system, see 379B).
- GPON (broadband fiber access, G.989.2 with G.sup64) 4PAM with $1/_T \approx 25$, 50 GHz.

Not in text yet

Some interconnect uses (Copper or Fiber)

- PCIe (Peripheral Component Interconnect Express) has $-\frac{1}{r} = 16 GHz$; b = 4 (4PAM) R = 64 Gbps:
 - PCle can have up to 16 lanes (each at this speed) 128 GBYTES/sec,
 - PCIe helps connect computer processor to peripheral components,
 - PCIe is typically (short) copper wires.
- **GDDR6 (Graphics Double Data Rate)** $\frac{1}{T} = 6 GHz$; b = 4 (4PAM) R = 24 Gbps:
 - GDDR6 is a memory interface (version 6 went to 4 PAM) that is used in gaming,
 - GDDR6 is also for copper wires.
- Ethernet 100 and 200 Gbps:
 - Fiber $\frac{1}{r}$ = 50 or 100 GHz; b = 4 (4PAM) R = 100 or 200 Gbps,
 - 200 Gbps is relatively new just entering market.
- Coherent Fiber 16 QAM at $\frac{1}{\tau} = 130$ GHz \rightarrow 400 Gbps of actual information (some code overhead).
 - Actually, use two polarizations per wavelength (so 2 16-QAMs that are spatially orthogonal, so 2x2 channel).
 - We'll see more "MIMO" instances later, so the data rate advertised is 800 Gbps (500 meters length).
 - Called Coherent DSP (two former students of this class P. Voois/N. Swenson started the company, ClariPhy that began this whole passage to QAM in coherent fiber now part of Marvell).

Not in text yet

Quadrature Amplitude Modulation (QAM)

Section 1.3.4.2

January 16, 2024

M'ary QAM

• Quadrature Amplitude Modulation (PAM) has $M = 2^b$ symbol values in N = 2 dimension, "squares PAM"

Cartesian product of 2 PAMS

 φ_1

$$\begin{aligned} \varphi_1(t) &= \sqrt{\frac{2}{T}} \cdot \operatorname{sinc}\left(\frac{t}{T}\right) \cdot \cos \omega_c t \\ \varphi_2(t) &= -\sqrt{\frac{2}{T}} \cdot \operatorname{sinc}\left(\frac{t}{T}\right) \cdot \sin \omega_c t \end{aligned}$$

QAM symbol energy

$$\mathcal{E}_{\boldsymbol{x}} = rac{M-1}{6} \cdot d^2$$
 $\bar{\mathcal{E}}_{\boldsymbol{x}} = d^2 \left(rac{M-1}{12}
ight)$

QAM bits/sym are
$$b = \log_2\left(1 + 6 \cdot \frac{\varepsilon_x}{d^2}\right)$$

QAM error prob is

L3: 21

QAM Table for Pe=1e-6

		$\frac{d}{2\sigma}$ for $\bar{P}_e = 10^{-6} \approx$	SNR =	SNR increase =	
$b=2\bar{b}$	M	$2Q\left(\frac{d_{\min}}{2\sigma}\right)$	$rac{(M-1)\cdot 10^{1.37}}{3}$	$rac{M-1}{(M-1)-1}$	$\mathrm{dB/bit}$
2	4	13.7dB	$13.7\mathrm{dB}$	$M_{QAM} = M_{PAM}^2$	
4	16	$13.7\mathrm{dB}$	$20.7\mathrm{dB}$	$7.0\mathrm{dB}$	$3.5\mathrm{dB}$
6	64	$13.7\mathrm{dB}$	$27.0\mathrm{dB}$	$6.3 \mathrm{dB}$	$3.15\mathrm{dB}$
8	256	$13.7\mathrm{dB}$	$33.0\mathrm{dB}$	$6.0\mathrm{dB}$	$3.0\mathrm{dB}$
10	1024	$13.7\mathrm{dB}$	$39.0\mathrm{dB}$	$6.0\mathrm{dB}$	$3.0\mathrm{dB}$
12	4096	$13.7\mathrm{dB}$	$45.0\mathrm{dB}$	$6.0\mathrm{dB}$	$3.0\mathrm{dB}$
14	$16,\!384$	13.7dB	$51.0\mathrm{dB}$	$6.0 \mathrm{dB}$	$3.0\mathrm{dB}$

- QAM is often cited as needed 3dB/bit (last column, large b) same as PAM, but over 2 dimensions
- Some wireless (satellite 16QAM, cellular 1G,2G,3G, Wi-Fi 802.11b, early US digital TV)
- Wireline coherent fiber, $1/T \approx k \cdot 32$ GHz or $1/T \approx k \cdot 12.5$ GHz k = 1,2,3,4 ... 8 so far

SQ QAM for odd *b* ?

- Most typical today is "every other point" from b + 1 size constellation
 - Use SQ QAM formulas, but increase $d_{min} \rightarrow \sqrt{2} \cdot d$ below

PS2.1 (1.14) - your turn to find formulas

L3:23

CR constellations Slightly Better for odd b QAM

More symmetrically removes high-energy corner points

Used on some (of many carriers) in DMT systems (xDSL, G.fast, G.mgfast, etc)

Sec 1.4.3.2

Matlab Commands

Modulator is qammod.m

>> reshape(qammod(0:3,4),2,2) %=
-1.0000 + 1.0000i 1.0000 + 1.0000i
-1.0000i 1.0000 - 1.0000i

>> reshape(qammod(0:15,16,'plotconstellation',1),4,4) % =
-3.0000 + 3.0000i -1.0000 + 3.0000i 3.0000 + 3.0000i 1.0000 + 3.0000i
-3.0000 + 1.0000i -1.0000i -1.0000i 3.0000 + 1.0000i
-3.0000 - 3.0000i -1.0000i -1.0000i 3.0000 - 3.0000i 1.0000 - 3.0000i
-3.0000 - 1.0000i -1.0000i 3.0000 - 1.0000i 1.0000 - 1.0000i

>>qammod(0:31, 32,'plotconstellation',1); % produces 32CR

Odd bits 5 or greater \rightarrow cross constellation

However 8 CR is horrible and looses 0.8 dB w.r.t. 8SQ

8SQ is not well handled by matlab (**see for yourself:** matlab''s constellation from qammod for M=8)

January 16, 2024

Not in text yet

Matlab Commands

ML detector is qamdemod.m

Defaults to Gray Code

```
rng(7)
message=randi(16,1,10000)-1;
x=qammod(message,16);
SNR=17;
Ex=10;
N0=10^(-1.7)*Ex;
n=sqrt(N0/2)*randn(1,10000)+i*sqrt(N0/2)*randn(1,10000);
y=x+n;
xhat = qamdemod(y,16);
sum(xhat ~= message)
= 25
ans/10000 = .0025
>> 3*qfunc(sqrt(0.2*10^(1.7)))
ans = 0.0023
```

```
errrate=comm.ErrorRate;
for indx=1:100
    message=randi(16,1,10000)-1;
    x=qammod(message,16);
    n=sqrt(N0/2)*randn(1,10000)+i*sqrt(N0/2)*randn(1,10000);
    y=x+n;
    xhat = qamdemod(y,16);
    errstats = errrate(xhat',message');
end
errstats(1)
ans = 0.0023 % perfect match!
```


Forney's Gap Approximation – PAM/QAM

• What Q-function argument gives $(\bar{P}_e=) \ 10^{-6}$? (assume $\bar{N}_e=2$)

$$\frac{3}{2^{2 \cdot \bar{b}} - 1} \cdot SNR = 10^{1.38}$$

13.8 dB ?? >> 20*log10(qfuncinv(1e-6/2)) = 13.7891

- Solve for \overline{b} to get Forney's Gap Formula:
 - $\bar{b} = \frac{1}{2} \cdot \log_2 \left(1 + \frac{SNR}{\Gamma}\right)$, where
 - + Γ = 8.8 dB (for both PAM and QAM) , and
 - $\Gamma = 9.5 \text{ dB for } \bar{P}_e = 10^{-7}.$
 - Gap is largely independent of \bar{b} >0.5 ; we'll see this applies to most good codes built on PAM/QAM also.
 - This looks like a very famous formula (Chapter 2, we'll see),
 - where Γ =1 (0 dB).
 - That, is, the maximum reliably decodable data rate on AWGN, the capacity.
 - The gap measures reduction (in SNR, dB) relative to this capacity (here for "uncoded" PAM/QAM).

PS2.4 (1.22) Sec 1.4.3.2

Examples

- Best to date? (no MIMO dimensions)
 - QAM, b = 15 bits/Hz.

• Bits/Hz =
$$2\overline{b}$$

- Most useful codes also based on sequences of QAM/PAM symbols.
 - Their gaps are also constant for $2\overline{b} > 1$.
 - The good ones have $\Gamma \rightarrow 0$ dB (or maybe in practice more like 1 dB).

PS2.4 (1.22)

L3: 28

End Lecture 3

Lattices and Codes (AWGN)

- Lattice $\Lambda = {\lambda_0, \lambda_1, \dots}$ that is closed under an operation "addition" (usually normal addition, but can also be over a finite field when $|\Lambda| < \infty$. (Appendix B)
- Examples include:
 - \mathbb{Z} the integers (think PAM),
 - \mathbb{Z}^2 2D integer vectors (think QAM), and
 - \mathbb{Z}^N think codewords built from PAM/QAM.

$$D_2 = 2Z^2 + \{0,1\} \cdot \begin{bmatrix} 1\\1 \end{bmatrix}$$

Coset Λ + a = {λ₀ + a, λ₁ + a, ··· } basically maintains all the lattice properties, but need to add a or remove it appropriately.

- Most constellations C are subsets of lattices Λ (or their cosets).
 - Designs choose M symbols from Λ , and subtract mean so that they have minimum average energy.
- Lattices are a nice way for designers to pack points evenly into given volume or energy.

Appendix B.2

L3: 30

Coding Gain and Constellation/Code

Hexagon Constellation, fund gain

$$\Lambda = A_2$$
, the **"hexagonal" lattice.**

$$V(A_2) = \underbrace{6}_{of \Delta's} \cdot \frac{1}{2} \cdot \underbrace{\frac{d}{\sqrt{3}}}_{altitude} \cdot \frac{d}{2} = \frac{\sqrt{3}}{2} \cdot d^2 \quad .$$

$$\gamma_f = \frac{\alpha}{\frac{\sqrt{3}d^2}{2}} = \frac{2}{\sqrt{3}} = .625 \text{ dB}$$

- A_2 is (up to) .625 dB better than \mathbb{Z}^2 in fundamental gain.
- It's also better as a shaping lattice (see previous page).

Maximum Shaping Gain

• Let $N \to \infty$, then **best shape** is a **hypersphere**.

• For hypersphere:

Limit, relative to Z^N is πe/₆ = 1.53 dB.
 Proof in text.

- BEST SHAPING GAIN IS 1.53 dB
- Fundamental gain can be infinite see Chapter 2.

Peak-to-Average Ratio (PAR)

• Can be important for amplifiers (see PSK discussion)

Definition 1.3.23 [Discrete Peak Energy] A constellation's N-dimensional discrete peak energy is \mathcal{E}_{peak} .

$$\mathcal{E}_{peak} \stackrel{\Delta}{=} \max_{i} \sum_{n=1}^{N} x_{in}^2 \quad . \tag{1.328}$$

A modulated signal's continuous-time peak energy is

$$\mathcal{E}_{cont} \stackrel{\Delta}{=} max_{i,t} |x_i(t)|^2 \ge \mathcal{E}_{peak} \quad . \tag{1.329}$$

- PARs could be measured
 - At symbol instants: $PAR = \frac{\varepsilon_{peak}}{\varepsilon_x}$
 - > In continuous time for an overall $PAR = \frac{\mathcal{E}_{cont}}{\mathcal{E}_{r}}$ this one is always at least as large.
 - Example simple sinusoid symbol-rate sampled at peaks has symbol-rate PAR =1 while any continuous sinusoid has PAR 3dB.

January 16, 2024

Section 1.3.4.3

Filtered AWGN Channels

Section 1.3.7

January 16, 2024

Real channels don't pass all frequencies

• The filtered AWGN has linear filter h(t).

- Successive symbols get stretched and may overlap (intersymbol interference).
 Can't go too fast ...
- Correlated ("colored") noise is equivalent to filtered AWGN next slides

Colored noise

- Noise is not "white" (not flat PSD) power spectral density $\frac{N_0}{2} \cdot \bar{S}_n(f)$
- What is problem with this?
 - The MAP/ML detector is no longer "pick the closest point"
- See Examples in Section 1.3.7.2 / 3

Noise Whitening

- 1-to-1 reversible transformation that whitens noise.
 Loses nothing by reversibility theorem.
- And thus creates a filtered AWGN $H(f) = \overline{S}_n^{-1/2}(f)$.

But WAIT!

This filter only exists, and is 1-to-1 causal and causally invertible, IF

Theorem 1.3.6 [Paley-Wiener Criterion] If $\int_{-\infty}^{\infty} \frac{|\ln S_n(f)|}{1+f^2} df < \infty , \qquad (1.434)$ then there exists a G(f) satisfying below with a realizable inverse. (Thus the filter g(t) is a 1-to-1 mapping).

$$\left[\bar{\mathcal{S}}_n(f)\right]^{-1} = |G(f)|^2$$

- See Appendix D on canonical factorization of autocorrelation/power spectra:
 - Such a filter exists for any noise typically found in practice.
 - Notice this says "noise" does not necessarily apply to systems that optimize transmit power spectra.

January 16, 2024

Section 1.3.7.2