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Announcements & Agenda
§ Announcements

• Homework – please start/look, due next Wed (1/17)
• Submit by email to emliang@stanford.edu for now (he’ll give to grader).
• See Homework Helper documents (HWH) at website if needed.
• Use off hours, help, emails, canvas notes, other students
• EE379B pages significantly updated

L2: 2

§ Today
• Review, Irrelevance, and Reversibility (1.1.5) 

• Bit-error probability (1.1.6)

• AWGN Definition/Basics (1.3)
• ML/MAP on AWGN (1.3.1-2)

• Pe calculations and bounds (1.3.2)
• Measures & Fair Comparisons (1.3.3)

mailto:emliang@stanford.edu


Review, Irrelevance, & Reversibility 
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Section 1.1.5
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Review of “modem” and discrete channel

§ The modulator/demodulator match to the “analog-world” channel.
• Apply common analysis to all.

§ This forms a strong basis for all modern digital transmission.

L2: 4

𝑀 = 2! 
possible messages

𝒚 

Vector
output

Encoder Detector

𝑖 = 0, … ,𝑀 − 1

𝒙!
𝑚! #𝑚!

Channel
𝑝𝒚/𝒙

Encoder DetectorDemodulator𝑚 Continuous-Time
ChannelModulator

	
%𝒚/𝒙

Section 1.1
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MAP Detector Example/Review

§ This MAP detector minimizes 𝑃).  
L2: 5

𝑃&,()* = 𝔼𝒙,𝒚 𝑃&(𝒚) = ,
!+,

(-.

,
𝒗∈𝓓𝒊

𝑃𝒚/2( 𝒗	,𝑚! /0𝑝2(	
./4

% First, compute py/x
>> right=[1.8 1.7 .2 .4 ; .2 .3 1.8 1.6] 
    1.8000    1.7000    0.2000    0.4000
    0.2000    0.3000    1.8000    1.6000
>> left=[1 ; 1]
     1
     1
py=pinv(right)*left;
py’ =               0.2409    0.2421    0.2597    0.2573
>> sum(py) =    1.0000

>> pygx1=py.*[1.8 ; 1.7 ; .2 ; .4]; % Bayes – move !" to right side
Pygx1’=            0.4336    0.4115    0.0519    0.1029

>> pygxm1=py.*[.2 ; .3 ; 1.8 ; 1.6];
Pygxm1’ =    0.0482    0.0726    0.4675    0.4118

>> pygx1*.5 +pygxm1*.5
0.2409
0.2421
0.2597
0.2573       % same, so far it checks!

Proof pinv –see 
Section 1.1.4,
Appendix C on pinv

The following equations (after scaling each by 2) implement 𝑝! = ∑" 𝑝" % 𝑝!/"

𝒑𝒙/𝒚 3.1 2.9 -2.7 -3.0

+1 .9 .85 .1 .2

-1 .1 .15 .9 .8

3.1

2.9

-2.7
-3.0

0channel
𝑥& = +1

𝑥' = −1

𝑦

𝑦

𝑝(" = 𝑝(#=0.5  (MAP à ML)

Section 1.1.4
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Example’s Pe calculation in matlab
§ 14% errors is not good, so this channel’s input 

encoding could improve.

§ Perhaps the design spec is  𝑃) ≤10-3?
• Maybe repeat 7 times with majority vote, so need 4 

errors?

• (.1378)^4 ) 74 = 0.0126 << .1378 .
• But data rate is ,𝑏 =1/7  << 1 ?

§ Coding in Chapter 2
• A good design  can xmit at Pe à 0 on this channel 

with rate ,𝑏 = 0.998, so almost 1 bit/dimension, 
with the use of more sophisticated codes.

§ In general, a multilevel channel output (more 
levels than input, e.g. redundancy) often 
provides coding opportunity. 

L2: 6

>> pygx=[pygx1' ; pygxm1'] =
    0.4336    0.4115    0.0519    0.1029
    0.0482    0.0726    0.4675    0.4118
>> pxgy=[.9 .85 .1 .2 ; .1 .15 .9 .8] =
    0.9000    0.8500    0.1000    0.2000
    0.1000    0.1500    0.9000    0.8000
>> pxgy*py =
    0.5000
    0.5000  (checks)
>> pxy = pxgy.*[py' ; py'] =
    0.2168    0.2058    0.0260    0.0515
    0.0241    0.0363    0.2337    0.2059
>> sum(pxy) =
    0.2409    0.2421    0.2597    0.2573
>> sum(sum(pxy)) =     1 % checks
>> px=[0.5 ; 0.5];
>> pygx.*[px px px px] =
    0.2168    0.2058    0.0260    0.0515
    0.0241    0.0363    0.2337    0.2059  %checks again

>> Pc= (pygx(1,1)+pygx(1,2)+pygx(2,3)+pygx(2,4))*.5 =    0.8622 
% sum over only y in decision region (each x)

>> Pe=1-ans =    0.1378

Section 1.1.4

Unshaded rows simply
Check - unnecessary
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Irrelevant Channel Outputs
§ Sometimes extra output components (𝒚+) contribute nothing more than others already used (𝒚,).

§ Receiver design may discard 𝒚+ without loss.
𝒚4	is irrelevant

+
𝒚4𝒏4

𝒙	

𝒏.

𝒚.

𝑝 5𝒚)
𝒚*	,	𝒙

= 𝑝 5𝒚) 𝒚*
= 𝑝𝒚)= 𝑝𝒏)

+ +𝒙	

𝒏. 𝒏4

𝒚.

𝒚4

𝑝 5𝒚)
𝒚*	,	𝒙

= 𝑝 5𝒚) 𝒚*
= 𝑝𝒏)

PS1.4 (Sec 1.1.5) 

§ Examples (𝒏- independent of 𝒏.)
• Both independent of 𝒙	
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Nondiscardable output example

§ Noise cancellation - 𝒚+ cannot be discarded because it has an 𝒏, component that could be (partially) 
used to cancel noise in output 𝒚&.

§ Suppose 𝒏+ = 0 , then 𝒚+= 𝒏, , which means 𝒏, could be subtracted (cancelled),  𝒚, = 𝒙 .

• MAP detector has no errors!

L2: 8

+

+ 𝒚)𝒏)

𝒙	

𝒏&

𝒚&
Hmmm …..
𝒚𝟐  is all noise, must be useless, right?

PS1.4 (Sec 1.1.5) 
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Reversible Transformations are OK
§ Special case of irrelevance:

L2: 9

channel 𝐺 MAP
𝒚%

MAP   𝒚&

𝒚)𝒙	
𝒚& 𝐺,& 1𝒙

§ VERY useful  - MAP receiver may simplify greatly after transformation.

Sec 1.1.5.1 
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Bit-Error Probability Calculation
§ Message has 𝑏 bits 𝑢/ ∈ 0 , 1 ; 𝑗 = 1,… , 𝑏 . 
§ Receiver can (instead) use a MAP/ML detector that minimizes bit-error probability.

• For a MAP that maximizes bit-a-posteriori probability, 𝑝-$∈ ' ,& /1 .
• Each bit could have different decision region 𝒟2 𝒚 èmore complex , or could just use common 𝒟 𝒚 for 𝑃3 .

L2: 10

§ 2𝑃0,/ can  vary with 𝑗.

§ LLR’s often used for 
MAP of each bit:

§ Examples later in 
course

PS1.4 (Sec 1.1.6) 
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Bhattacharya Bound
§ B-Bound is based on the MAP detector’s specific error events (needs to be averaged over all such events).

L2: 11

𝑃 𝜀2 72 ≜ 𝑃𝑟 𝒙2 → 𝒙 72

§ Simple proof – see text, Section 1.1.7  ; most often used for symbols that are groups of bits (codewords).

§ When 8𝑃',) ≡ 𝑝 , the error event’s B-Bound takes the simple, often-encountered, form where 𝒙* 	 and	 𝒙 +*   differ in only 
Hamming distance  𝑑,  positions:

𝑃 𝜀2 72 ≤ 4 / 𝑝 / 1 − 𝑝 5@/
4

§ Suggestive of an inner channel where a first decision is made with 8𝑃',) ≡ 𝑝 , and then a second outer bit-level code is present. 
• Symbols are bit vectors carefully chosen to have separation  (two MAP decoders).

§ For binary channels where the error probability interchanges for 1 and 0 as the only two messages, Griot, Weng, and Wesel 
(GWW) tightened the B-Bound to 𝑃 𝜀* +* ≤ #

%- 4 D 𝑝 D 1 − 𝑝
.&' % .

• The extra factor of 1/2 can overly burden some analyses an so original B-Bound form is often used.

Sec 1.1.7 
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Return to Example on slide 5

§ 2𝑃0,/ ≡ 𝑝 on this channel was equal to 𝑃),122)3 =.1378  .

§ Simple outer code with 2𝑏 = 1/7 (so all zeros or all ones) would have: 

L2: 12

𝑃G,HIJGK ≤ 1/2 / 4 / .1378 / .8622 ⁄0 ) = 0.0012
   

(pretty close to value on slide L2:6)

Sec 1.1.7 



The AWGN
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Section 1.3 
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Additive White Gaussian Noise (AWGN)

§ This channel is the most common in all wireless/wireline communication.
• Most variants use it as foundation.

§ Central Limit Theorem (see A.1.8)  – large number of noise events added together are Gaussian.
• White means “all frequencies equal” power spectra density, or 𝑆/ 𝑓 = 𝒩%

% = 𝔉 𝑟/ 𝜏 (Fourier Transform).
• That is “flat.”
• Flat has the same energy 𝜎( on any basis function (on any dimension).

§ Thermal Noise (𝑘23456 # 𝑇𝑒𝑚𝑝) = -174 dBm/Hz at room temperature) is an example, but also:
§ analogy amplifiers front-end noise, ADC quantization noise (with enough bits quantizing), or even
§ many crosstalking interference signals from other sources (especially if they use good “Gaussian” codes).

L2: 14

+modulated signal

white Gaussian noise

received signal

𝑛 𝑡

𝑥 𝑡 𝑦 𝑡

𝑟4 𝜏 ≜ 𝔼 𝑛 𝜏 ) 𝑛 𝑡 − 𝜏 =
𝒩'

2
) 𝛿 𝜏

𝜏

𝜎) =
𝒩'

2

𝑓

0

0

Sec 1.3 
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AWGN discrete channel loses nothing!

§ This conversion to discrete demodulated vector 𝒚 loses some of white noise, but that part is irrelevant.
§ See proof in Section 1.3.1. 

L2: 15

𝜑&∗ 𝑇 − 𝑡

𝜑)∗ 𝑇 − 𝑡

𝜑6∗ 𝑇 − 𝑡

.

.

.

𝑡 = 𝑇

𝑦 𝑡

𝑦& = 𝑥& + 𝑛&

.

.

.

𝑦) = 𝑥) + 𝑛)

𝑦6 = 𝑥6 + 𝑛6

§ MAP for 𝒚 still minimizes 𝑃1 .

§ For AWGN Channel, analysis need 
not know the modulator type

𝑅𝒏𝒏 ≜ 𝔼 𝒏 ) 𝒏𝒕 =
𝒩'

2
) 𝐼

Autocorrelation matrix,
See Appendix D.1

𝑅𝒚𝒚 = 𝑅𝒙𝒙+ 𝑅𝒏𝒏

Sec 1.3.1 
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Irrelevant White-Noise Concept

§ Clearly independent noise where there is no signal does not help estimate x

L2: 16
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The Q-function (A.1.7)

§ 𝑄 𝑥 =Pr 𝑛 ≥ 9
:

§ Measures probability that AWGN noise exceeds a 
certain level (relative to standard deviation)

L2: 17

𝑥

𝑝)MNO	(Q)+.) 𝑢

𝑢

𝑄 𝑥 =
1
2𝜋

? @
2

3
𝑒4

5&
% ? 𝑑𝑢

Argument (dB)

function qfunc(x);
  Computes the q function
  qfunc(x) = .5 erfc(x/sqrt(2))

>> qfunc(1) =    0.1587
>> qfunc(3) =    0.0013
>> qfunc(5) =   2.8665e-07
>> qfunc(10^(13.5/20)) =   1.1143e-06   (13.5 dB à 10-6 )

>> 20*log(3) =   21.9722 dB  (sample amplitude)
>> 10*log(3^2) =   21.9722 dB (energy)

§ Matlab

Section A.1.7
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MAP/ML on the AWGN

§ ML AWGN detector (if the inputs are not equally likely, your source can be improved):

L2: 18

§ ML is simple (conceptually) with AWGN – pick the closest symbol value (to 𝒚 ).

ML

-1 +1

𝒙' 𝒙&

𝒟&𝒟'

𝑣 < 0 𝑣 > 0

𝜑 &

MAP

-1 +1

( )
( ) ÷
÷
ø

ö
çç
è

æ
- 1

0ln
2

x

x

01 xx p
ps

𝒟' 𝒟&

𝑣 = 0
𝜑&

𝒙&𝒙'
𝒟) 𝒟&

𝒟'𝒟=

𝒙'

𝒙&𝒙)

𝒙=

𝜑&

𝜑)
4SQ (QPSK)

Section 1.3.1.1
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AWGN ML Detector
§ Implement closest point?

L2: 19

§ Or perhaps simpler?

𝑦 𝑡

.

.

.

Tt =

+

+

+

...

𝑥6 𝑇 − 𝑡

𝑥& 𝑇 − 𝑡

𝑥74& 𝑇 − 𝑡

𝑐6

𝑐&

𝑐74&

m̂
Max

&
Decode

.

.

.

Tt =

Matrix
Multiply

NM ´

+

+

+

...

𝜑& 𝑇 − 𝑡

𝜑% 𝑇 − 𝑡

𝜑8 𝑇 − 𝑡

𝒚

𝒙'∗
⋮

𝒙>,&∗
𝒚

𝑐6

𝑐&

𝑐74&

𝑦 𝑡 1𝑚
Max

&
Decode “Machine Leaners” – recognize this?

It is a ReLU (rectified linear unit, 1.5.2; 
where we already know the coefficients, 
bias terms, and use hard nonlinearity.

Section 1.3.1.2
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Matched Filter SNR Maximization

§ Convolution reverses and multiplies – when the two convolved signals align perfectly, the SNR is largest.

§ Matched filter essentially aligns filter with the pre-noise signal (“matched”) to align/boost maximally.

§ MF is fundamental in many detection/receiver strategies.

§ See Section 1.3.1 (proof is there).

L2: 20

+

SNR is max when ℎ 𝑡 =𝑥 𝑇9 − 𝑡

𝑥 𝑡

𝑛 𝑡

𝑡 = 𝑇?
ℎ 𝑡 =𝑥 𝑇? − 𝑡

Section 1.3.1.3



Pe Calculations and Bounds

January 11, 2024 L2:21

(Section 1.3.2)
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Translational Invariance (AWGN)

§ This does not change the distances between constellation points.  (It is a reversible transformation.)

§ Thus, the detector simply subtracts the known 𝒂 so 𝐲 → 𝐲 − 𝒂 and proceeds the same way (note this 
is 1-to-1 so reversibility applies).

§ Minimum Energy translate?

L2: 22

+

𝒂

𝒙! 𝒙′!

§ Section 1.3.2.1 – saves energy, no performance loss (AWGN) – PS1.5’s “tilt.”

PS1.5 (1.10) and Sec 1.3.2.1 
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Rotational Invariance (AWGN)

§ The unitary matrix 𝑄 ? 𝑄∗ = 𝐼 = 𝑄∗ ? 𝑄 is 1-to-1 (reversible).

§ Also, the energy does not change 𝔼 𝒙 + =𝔼 𝑄 ? 𝒙 + .

L2: 23

AWGN ML-Detect performance is invariant to rotation and/or translation.

+
rotated

symbol constellation

WGN

Output
(& define a y)

+

Un-rotated constellation
with corresponding noise

𝒚 = 𝑄′G𝒚𝒙 = 𝑄′G𝒙

G𝒏 = 𝑄@𝒏

G𝒙 = 𝑄@𝒙 G𝒚 = 𝑄@𝒚

𝒏
has same ML error 

probability as

PS1.5 (1.10) ) and Sec 1.3.2.1 
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Minimum Distance & AWGN’s Union Bound

L2: 24

§ Union Bound is thus 𝑃1 ≤ 𝑀 − 1 D 𝑄 :)*+
%;

§  At worst, any constellation point can be confused for any of the 𝑀 − 1 other points, which are at least at 
minimum distance.

𝑃G ≤ 𝑀 − 1
	

UV	WVXY	Z[\U	(-.	Y]YUZ^	

/ 𝑄 @7(8
4Q
	

UV_^Y	`_a	YUVba[

-1 +1

𝒙A 𝒙2

𝒟&𝒟'
𝜑 &

𝒙! + 𝑛  this big causes an error, or |𝑛| > @7(8
4

Sec 1.3.2.2 
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Example 8 PSK
§ 8 messages 𝑀 = 8 , 𝑏 = 3 ;𝑁 = 2 - same basis functions as BPSK (and QPSK)

L2: 25

0x
1x

7x

4x

2x

6x

5x

3x
8

p

xE

𝑃G < 7 / 𝑄
𝑑2!c
2𝜎

§ Overkill?   Well, yes, especially if 𝑀 is large.

§ Double counts the red-shaded region for 𝜀1/

§ Can you do better? 

§ How about 𝑃) < 2 ? 𝑄 KBCD
+:   ?

includes this region
Should omit this region

𝒙A

𝒙2

𝒙E

𝑃) 𝒙A 	, 𝒙2
𝑃 𝜀A2 	

Sec 1.3.2.2 
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Nearest Neighbor Union Bound
§ 𝑃) < 𝑁) ? 𝑄

KBCD
+: . 

§ Where 𝑁) ≜ the number of nearest neighbors .

L2: 26

§ Count only those at distance 𝑑L12  (often easier to do) 𝑁) ≅ ∑1MNOP, M𝑁1 ? 𝑝𝒙 𝑖 ; M𝑁1 counts only @ dmin .
 

§ 𝑃) ≅ 𝑁) ? 𝑄
KBCD
+:    this is the nearest-neighbor union bound (usually very tight, often used).

Sec 1.3.2.3 
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NNUB Example 8SQ

§ 𝑃) < 3.25 ? 𝑄

L2: 27

-1

-3

1 3

1

3

-1

-3

0x

2x

1x

3x

4x

5x

7x

6x
0x

1x2x 6x

4x

5x

3x 7x

Rotate 
45o

§ This analysis counts only (so approximates) 
neighbors at minimum distance.
• Others have smaller contribution.

Sec 1.3.2.2 



Measures & Fair Comparisons

January 11, 2024 L2:28

See 1.3.2.4
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Calculate ave bit error prob (symbol decoder)

L2: 29

§ Average Total Bit Errors per Error Event

𝑁' =	 G
()*

+,-

𝑝! 𝑖 % 𝑛' 𝑖 𝑛' 𝑖 = G
.)*

/#

𝑛' 𝑖, 𝑗where

§ Then

Sec 1.3.2.4
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Normalization to Dimensionality

§ 2𝑃) , P𝑁), ℰ9, 2𝑏 , ….

§ The measure, indicated by a bar, normalizes to the “resources”  - the number of dimensions.

L2: 30Sec 1.1.3

�̅� ≜
𝐴
𝑁
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Fair Comparisons
§ Fix 4 of these 5 – compare last

• Data rate 𝑅 = K
L

• Power 𝑃( =
ℰ,
L

• System bandwidth 𝑊
• Total transmission time or symbol period 𝑇
• Error probability 𝑃3

L2: 31

§ Or fix 2 of these 3 – compare the last
• Bits/dim ,𝑏 = K

6

• Energy/dim ℰ̅( = ℰ,
6

• Error Prob/dim ,𝑃3 = N-
6

  

Sec 1.3.3.1

Many engineers, including some really famous ones,
have erred on comparisons

-5 +5
𝑓	(MHz)

System 1:  𝑅 = 10 Mbps, 𝑁 = 1, ±1 𝑀 = 2 , *9+., MHz

𝑊 = 5 MHz
-1 +1

Φ 𝑓

𝑑QA4 = 2

System 2:  𝑅 = 20 Mbps, 𝑁 = 2, ±1 𝑀 = 2 , #.R&' MHz

-5 +5
𝑓	(MHz)

𝑊 = 10 MHz
+5

Φ& 𝑓 Φ% 𝑓

+10
𝑓	(MHz)

-5-10

[-1 , -1]

[+1 , +1]

𝑑QA4 = 2 2

Bigger 𝑑QA4  and twice rate ?
Not fair, both ,𝑏	and ,𝑃3  differ
(these two are really the same) 
set ,𝑏	=1 and becomes QPSK, smaller 𝑑QA4
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Packet Error Rate

§ Block error rate, 𝑃:,243;<, is the average probability that a packet or “block” of 𝐵 bits contains at least one 
erred bit. 

L2: 32

𝑃G,deH&f ≈ 𝐵 / X𝑃d

§ More accurately, 𝑃),0STUV counts the ways that bit errors can occur:

§ Other examples 
• An erred second is second in which at least one (uncorrectable) bit error occurred.
• Code violations – usually measured in 15min intervals  -- and count the number of erred packets in that interval.

Section 1.3.2.5



End Lecture 2
§ (Reversible) Transformations to simplify detectors
§ AWGN channel simplifications for ML detectors.
§ Pe calculations
§ Fair analysis


