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Announcements & Agenda

= Announcements

*  Homework — please start/look, due next Wed (1/17)

Submit by email to emliang@stanford.edu for now (he’ll give to grader).
See Homework Helper documents (HWH) at website if needed.

Use off hours, help, emails, canvas notes, other students

EE379B pages significantly updated

= Today

* Review, Irrelevance, and Reversibility (1.1.5)
e Bit-error probability (1.1.6)

*  AWGN Definition/Basics (1.3)
«  ML/MAP on AWGN (1.3.1-2)

* Pe calculations and bounds (1.3.2)
* Measures & Fair Comparisons (1.3.3)
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Review, Irrelevance, & Reversibility

Section 1.1.5
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Review of “modem” and discrete channel

ntin -Time
M =2b ™ 5! Encoder » Modulator > el —» Demodulator

possible messages Channel

\4

Detector

p};/x
X Channel Y =
m; —>| Encoder > » Detector —> mM;
py/x Vector
output
i=0,...M—-1

= The modulator/demodulator match to the “analog-world” channel.
*  Apply common analysis to all.

= This forms a strong basis for all modern digital transmission.

[3
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MAP Detector Example/Review

y
3.1 >+1
x1 = +1 y 2.9 >+1
\
hannel [—
| channe 0
xo = _1
2.7 2 -1
Py, = Px,=0.5 (MAP > ML) 3.0~ -1
S 9 8 1 2
1 15 9 8
M-1

Pc,MAP = IEx,y[Pc(y)] =

e = This MAP detector minimizes F,.

piS January 11,2024

The following equations (after scaling each by 2) implement p,, = %, p,, * Py /y

Section 1.1.4

1
1

1.8-p31+1.7-po7r+.2-p_or+.4-p_3
2-p31+.3-p2r+18-p o27+1.6-p_3

% First, compute py/x

>>right=[1.81.7.2.4;.2.31.81.6]
1.8000 1.7000 0.2000 0.4000
0.2000 0.3000 1.8000 1.6000

>> left=[1; 1] Proof pinv -see

1 Section 1.1.4,

1 Appendix C on pinv
py=pinv(right)*left;
py’ =

>>sum(py) = 1.0000

>> pygx1=py.*[1.8;1.7; .2 ; .4]; % Bayes - move - to right side
Pygx1’= 0.4336 0.4115 0.0519 0.1029

>> pygxml=py.*[.2;.3;1.8;1.6];
Pygxm1’= 0.0482 0.0726 0.4675 0.4118

>>

x1*.5 +pygxm1*.5

% same, so far it checks!

L2:5 Stanford University



Example’s Pe calculation in matlab

ul

Pe=2% 22 yep, Py/c " Px

>> pygx=[pygx1'; pygxml'] =

0.4336 0.4115 0.0519 0.1029
0.0482 0.0726 0.4675 0.4118
>>pxgy=[.9.85.1.2;.1.15.9.8] =
0.9000 0.8500 0.1000 0.2000

0.1000 0.1500 0.9000 0.8000 .
* = Unshaded rows simply
77 Pxey py= Check - unnecessar
0.5000 y

0.5000 (checks)

>> pxy = pxgy.*[py'; py'l =

0.2168 0.2058 0.0260 0.0515
0.0241 0.0363 0.2337 0.2059
>>sum(pxy) =

0.2409 0.2421 0.2597 0.2573
>>sum(sum(pxy)) = 1% checks
>> px=[0.5; 0.5];

>> pygx.*[px px px px] =

0.2168 0.2058 0.0260 0.0515
0.0241 0.0363 0.2337 0.2059 %checks again

>> Pc= (pygx(1,1)+pygx(1,2)+pygx(2,3)+pygx(2,4))*.5= 0.8622

% sum over onlii in decision region (each x)

January 11,2024 Section 1.1.4

14% errors is not good, so this channel’s input
encoding could improve.

Perhaps the design specis P, <1073?
* Maybe repeat 7 times with majority vote, so need 4
errors?
7

. (.1378)74 - ( 4)= 0.0126 << .1378.
e Butdatarateisbh =1/7 <<17?

Coding in Chapter 2

* Agood design can xmit at Pe = 0 on this channel
with rate b = 0.998, so almost 1 bit/dimension,
with the use of more sophisticated codes.

In general, a multilevel channel output (more
levels than input, e.g. redundancy) often
provides coding opportunity.
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Irrelevant Channel Outputs

= Sometimes extra output components (y,) contribute nothing more than others already used (y4).

Theorem 1.1.3 [Theorem on Irrelevance| If

Px/y,y, = Px/y,

or equivalently if the channel-related probability distribution

DPy,/(y,x) = Py,/y,

then y, is not needed in the optimum receiver, that is, y, is irrelevant.

= Receiver design may discard y, without loss.

I

wl

January 11,2024

n, y, isirrelevant  n,

= Examples (n, independent of n,) l l
Both independent of x

X ——(H)—M1 X ——(+)—

n,

l

—@—>y2

nz =YZ

pyz/[yl , x] - pyz/}’1: py2: pnz

PS1.4 (Sec1.1.5)

» V1

Pyzp a7~ P2/y, " Pry

Stanford University



Nondiscardable output example

X »(+) > V1

Hmmm......

y, is all noise, must be useless, right?
n,
n; Y2

= Noise cancellation - y, cannot be discarded because it has an n; component that could be (partially)
used to cancel noise in output y;,.

= Suppose n, = 0, then y,=n4, which means n, could be subtracted (cancelled), y; = x.

*  MAP detector has no errors!

[3
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Reversible Transformations are OK

= Special case of irrelevance:

Y2 V1 G-1 MAP
Y2

A
D
Y

4
v
=)

X —| channel

MAP Y1

Theorem 1.1.4 [Reversibility Theorem| The application of an invertible transfor-
mation to the channel output vector y does not affect the performance of the MAP
detector.

Proof: Using the Theorem on Irrelevance, if the channel output is y, and the result of
the invertible transformation is ¥y, = G(y), with inverse y, = G~1(y;) then [y; y,] =
[y, G7'(yy)]. Then, py /y,.y,) = Px/y,, Which is the definition of irrelevance. Thus,
either of y; or vy, is sufficient to detect  optimally and attain the same minimum error
probability or equivalently the same optimum performance.QED.

= VERY useful - MAP receiver may simplify greatly after transformation.

[3
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Bit-Error Probability Calculation

= Message has b bits u; € {0,1};j=1,..,b.

= Receiver can (instead) use a MAP/ML detector that minimizes bit-error probability.
* For a MAP that maximizes bit-a-posteriori probability, Puje(0 1}/ -

¢ Each bit could have different decision region D;(y) =» more complex, or could just use common D (y) for P, .

= Py jcan vary with j.

= |LR’s often used for
MAP of each bit:

A
@ January 11,2024 L2:10

1
Pb»j = Pr{’aj#uj}:l_ Z Z Py/uj(ﬁ’j:ujav) " Pu;
u;=0 [ VED;
1
= 1= | D puy(u;v) py(v)
u; =0 VeD;

Definition 1.1.5 [Log Likelihood Ratio (LLR)/ A log likelihood ratio for a bit u;
is the logarithm of probability ratio that bit takes the values 0 and 1. Often convention
considers the bit value 0 as correct and the bit value 1 as incorrect, without loss of

generality.
In (Piu]:o(’v))
P"j=1('”)
= In (Zu\uj Py\u(’v,u \u]=0) 'Pu(u |uj=o))

Zu\uJ Py\u(%“ \ujzl) pu(u |uj:1)

1>

LLR,,(v)

When u; — 1; above for a decoder with average bit-error rate Py, then

1- Py,
LLR;, =1n ij (1.28)

= Examples laterin
course

Ps1.4 (sec 1.1.6) Stanford University



Bhattacharya Bound

ul

B-Bound is based on the MAP detector’s specific error events (needs to be averaged over all such events).

P{e 7} 2 Prix,, = Xz}

Plemn} <3 \/Py/a(v,@n) - py/z(v,2m)
(%

Simple proof — see text, Section 1.1.7 ; most often used for symbols that are groups of bits (codewords).

When I3b_j = p, the error event’s B-Bound takes the simple, often-encountered, form where x,,, and x4 differ in only
Hamming distance dj positions:

dH
Plemm} < [4-p-(1—p)] /2

Suggestive of an inner channel where a first decision is made with Fb,]- = p, and then a second outer bit-level code is present.
* Symbols are bit vectors carefully chosen to have separation (two MAP decoders).

For binary channels where the error probability interchanges for 1 and 0 as the only two messages, Griot, Weng, and Wesel
d
(GWW) tightened the B-Bound to P{e;, 5} < 3[4 -p - (1 —p)] ¥z

* The extra factor of 1/2 can overly burden some analyses an so original B-Bound form is often used.

January 11,2024 Sec 117 L2:11 Stanford University



Return to Example on slide 5

= Pp; = p on this channel was equal to P jnner =.1378 .

= Simple outer code with b = 1/7 (so all zeros or all ones) would have:

P, outer < 1/2 - [4+.1378 - .8622]/2=0.0012

(pretty close to value on slide L2:6)

Eﬁ
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The AWGN

Section 1.3

January 11, 2024 L2:13



Additive White Gaussian Noise (AWGN)

N,
Tl(t) white Gaussian noise (1) 2 E[n(t) -n(t—1)] = 70 - 6(7)
0 T
modulated signal x(t) y(t) received signal , N
0= —
2

y 3
v

This channel is the most common in all wireless/wireline communication.
* Most variants use it as foundation. f

Central Limit Theorem (see A.1.8) — large number of noise events added together are Gaussian.
N
2

III

*  White means “all frequencies equa

* Thatis “flat”
* Flat has the same energy a2 on any basis function (on any dimension).

power spectra density, or S, (f) == = §{nr, ()} (Fourier Transform).

Thermal Noise (kpoitz - Temp) = -174 dBm/Hz at room temperature) is an example, but also:
analogy amplifiers front-end noise, ADC quantization noise (with enough bits quantizing), or even
many crosstalking interference signals from other sources (especially if they use good “Gaussian” codes).

January 11,2024 Sec13 L2: 14 Stanford University



AWGN discrete channel loses nothing!

» @1(T—1) —— Ny =Xty
R, 2 E[n-nt] = 70-1
N\ . .
t > (T —t) — — =x,4+n Autocorrelation matrix,
y( ) ‘Pz( ; ) & ? 2 See Appendix D.1
. N Ryy = Ryxt Ryn
» on(T—t) —— > yn=xy +ny

t=T
= This conversion to discrete demodulated vector y loses some of white noise, but that part is irrelevant.
= See proof in Section 1.3.1.
Rule 1.3.1 [The Vector AWGN Channel| The vector AWGN channel is given by

y=z+n (1.85) —
= MAP for y still minimizes P,.

and is equivalent to the channel illustrated in Figure 1.26. The noise vector m is an

N-dimensional Gaussian random vector with zero mean, equal-variance, uncorrelated |

For AWGN Channel, analysis need
components in each dimension. The noise distribution is

not know the modulator type

N _N
a5 2

pn(u) = (7No)~ e~ mllul® = (2m0?) e aonliul® (1.86)

ul

January 11,2024 Sec13.1 L2:15 Stanford University



Irrelevant White-Noise Concept

RE D
l_\ \ i W o “C‘— MOIS €
e o (F )

= (Clearly independent noise where there is no signal does not help estimate x

January 11,2024 L2: 16 Stanford University



The Q-function (A.1.7)

1 o) 2

Qx) = —f e 7-du  PAWGN (02=1) (w)

ul

Q(x)=Pr{n > g}

Measures probability that AWGN noise exceeds a

certain level (relative to standard deviati
Matlab

function gfunc(x);
Computes the q function
gfunc(x) =.5 erfc(x/sqrt(2))

>>gfunc(l) = 0.1587

>>gfunc(3)= 0.0013

>> gfunc(5) = 2.8665e-07

>>qfunc(107(13.5/20)) = 1.1143e-06 (13.5dB > 10%)

>>20*log(3) = 21.9722 dB (sample amplitude)
>>10%log(372) = 21.9722 dB (energy)

January 11,2024 L2:17
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SectionA.1.7

Q-function value

1

11

Argum

13,

ent (

15 16

dB)




MAP/ML on the AWGN

= ML AWGN detector (if the inputs are not equally likely, your source can be improved):

Rule 1.3.3 [AWGN ML Detection Rule]

= mi if o -l < o - a2 ¥ jAi

= ML is simple (conceptually) with AWGN — pick the closest symbol value (to y ).

[3

wl

-1 D0 Dl +1 -1 D0 Dl +1
r L] ra PP FFEFFFE %% %% %50 (p
?1 A A A A AR — P4
Xg v<O0 v>0 X X UZOZ [(o) X1
o Dy ]

LX0)

e, =

ML MAP

January 11, 2024 Section 1.3.1.1

4SQ (QPSK)
@2
X2 X1
B @
D3-4-Dy . P1
Dy D,
. @)
X3 X0
L2:18 Stanford University



AWGN ML Detector

= |Implement closest point?

m=>m; if (y,z;)+c > (y,x;)+c;Vj #1i

Co
\ (
» 91(T—t) ——> Matrix a No Ny le]?
| . o 220 gy ) - 1
Multiply c1
. K Max
y(t) s 02(T—t) | ——p Foly & —> M
‘ x* - : « g ” _ . is?
y M-1 .5 DeCOde Machine Leaners” - recognize this?
It is a ReLU (rectified linear unit, 1.5.2;
. (T - t) | N, MxN where we already know the coefficients,
P ‘ bias terms, and use hard nonlinearity.
t=T
Co
—
= Or perhaps simpler? R
¢ Max
y(®) x (T — t) ——\_><-|§—> & L M
: Decode
CM=-1
N\ Section 1.3.1.2
o [REas _,é)_' ection o
g January 11,2024 ‘ feT L2:19 Stanford University




Matched Filter SNR Maximization

n(t) SNRis max when h(t)=x (T — t)

x(t) —»é—)—» h(t)=x(T, —t) \ —>

t=T,

Convolution reverses and multiplies — when the two convolved signals align perfectly, the SNR is largest.
Matched filter essentially aligns filter with the pre-noise signal (“matched”) to align/boost maximally.
MF is fundamental in many detection/receiver strategies.

See Section 1.3.1 (proof is there).

January 11,2024 Section 1.3.1.3 L2:20 Stanford University



Pe Calculations and Bounds

(Section 1.3.2)

Januar y 11,2024 L2:21



Translational Invariance (AWGN)

a

= This does not change the distances between constellation points. (It is a reversible transformation.)

= Thus, the detector simply subtracts the known a soy — y — a and proceeds the same way (note this
is 1-to-1 so reversibility applies).

= Minimum Energy translate?

Definition 1.3.1 [Minimum-Energy Translate] A constellation’s minimum en-

ergy translate is obtained by subtracting the constant vector E [x] from each data
symbol.

= Section 1.3.2.1 — saves energy, no performance loss (AWGN) — PS1.5’s “tilt.”

C_J

ul

January 11, 2024 PS1.5 (1.10) and Sec 1.3.2.1 L2: 22 Stanford University



Rotational Invariance (AWGN

WGN has same ML error n=0n
probability as l
T y-oy P *-0F (D=
rotated Output Un-rotated constellation

symbol constellation (& define ay) with corresponding noise

" The unitary matrix Q - Q* =1 = Q" - Q is 1-to-1 (reversible).

= Also, the energy does not change E[[x]?] = E[[Q - x]?].

AWGN ML-Detect performance is invariant to rotation and/or translation.

[3
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Minimum Distance & AWGN’s Union Bound

Definition 1.3.2 [Minimum Distance, d;,| The minimum distance for a con-

stellation with symbol vectors x 2 {:}izo,.. M1, 18 dpipn () and measures the smallest
separation between any two different constellation symbol (or “codeword”) values. The

argument (x) is often dropped when the specific signal constellation is obvious from the
context, thus leaving

dipin = min |l — ]| Vi.j . (1.122)
(]

D D

d n
1 D 41 P, < (M —1) .0 (M)
7 P11 20
X; X; no more than M—1 events —

noise big enough

»
»

L. domi
x; + n this big causes an error, or [n| > %

= Union Bound is thus P, < (M — 1) - Q (d;n%)

= At worst, any constellation point can be confused for any of the M — 1 other points, which are at least at
[3 minimum distance.

wl January ll, 2024 Sec1.3.2.2 L2:24 Stanford UI’liVeI'Sity



Example 8 PSK

= 8 messages (M =8,b =3 ;N = 2) - same basis functions as BPSK (and QPSK)

Overkill? Well, yes, especially if M is large.

Double counts the red-shaded region for ¢;;

Can you do better? \
N

How about P, < 2 - Q (dm"") ?

20

P {8 ij } includes this region

January 11, 2024 Sec1.3.2.2 L2:25

P,<7-Q (d’"i")

/4
Po{x;, x;}

Should omit this region

Stanford University



[3

wl

Nearest Neighbor Union Bound
: <n,-o(%)

2

Where N, £ the number of nearest neighbors .

Definition 1.3.3 [Average Number of Nearest Neighbors] A constellation’s av-
erage number of nearest neighbors, N, is

M-1

N, = Z N; - px(i) (1.147)
i=0

where N; is the symbol x;’s number of neighboring constellation symbols, that is the
number of other symbol vectors sharing a common decision region boundary®® with x;.

= Count only those at distance d,,;,, (often easier to do) N, = Y ' N; - p,(i) ; N; counts only @ dmin .

= P,L=N,-Q (d;’;i") this is the nearest-neighbor union bound (usually very tight, often used).

January 11, 2024 Sec1.3.2.3 L2: 26 Stanford University



NNUB Example 85Q

Xy X
) 13 @
1
X, X
3 ® ° Rotate
| 1 f ; 45°
X
@ X, 1 @
7
% N Xs
) )
= This analysis counts only (so approximates) P - P P 1 p,.1
c — c/i pm c/i [
neighbors at minimum distance. Z & ;:4 /"8 24 8
* Others have smaller contribution. 6
> S1-Q)1-2Q)+ (1 -2Q)
" P <325-0Q - 2(1—3Q+2Q)+i(1—4Q+4Q2)
= 1-3.25Q+2.5Q% .
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Measures & Fair Comparisons

See 1.3.2.4
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Calculate ave bit error prob (symbol decoder)

Definition 1.3.4 [Average Bit Error Rate| The average bit error rate is =

ZZM Pley} - my(i, )

j#i

where ny (3, j) is the number of bit errors for the particular choice of encoder when symbol
i is erroneously detected as symbol j. This quantity, despite the label using P, is not
strictly a probability. It also related to the average total number of bit errors per error

Average Total Bit Errors per Error Event
N
(1152) | N, = Z P my(D)  where my(D) = D (0]
j=0

= Then

Py =~ N - Ql mam]

event.
M-1 N;
P, =~ Z px (i) - P{ei;j} - (1, 5)
=0 j=1
d & Lemma 1.3.2 [Average bit-error bability P,.] Th bability of
< min 3. g probability P,. e average probability o
< @ [ 20 ] Z an(z 7 bit error is defined by
i= _ P
d M- Py==" (1.155)
< Q[fmin] ¥ o) o) ;
P The corresponding average total number of bit errors per bit is
. - A N,
S N-Q dmm N, 222 (1.156)
20 b
A
7') == an(zaj )
E} =1
pid Sec1.3.2.4 January 11. 2024 L2: 29 Stanford University




Normalization to Dimensionality

= The measure, indicated by a bar, normalizes to the “resources” - the number of dimensions.

January 11,2024 Sec1.13 L2: 30 Stanford University



Fair Comparisons

* Fix 4 of these 5 — compare last

e DatarateR = g

£
* Power P, = ?"

* System bandwidth W
* Total transmission time or symbol period T

* Error probability P,

= Or fix 2 of these 3 — compare the last

. Bits/dimb =2

N
* Energy/dim &, =%
* Error Prob/dim P, =

pis January 11,2024

Pe
N

Many engineers, including some really famous ones,
have erred on comparisons

System 1: R = 10 Mbps, N = 1,41 (M = 2), z=10 MHz

(f)

]

-5 +5
W =5 MHz

@4(f)
J::l_ f (MHz)
+5

-5

Bigger d,,,;n, and twice rate ?

Not fair, both b and P, differ

(these two are really the same)

set b =1 and becomes QPSK, smaller d,,;,,

Sec1.3.3.1

f (MHz)

o o
-1 +1

Amin = 2

System 2: R = 20 Mbps, N = 2, +1 (M = 2), 1=10 MHz

®y(f)
| l | lf (MHz)
10 5 | 45 +10
W=10MHz
‘ [+1 ) +l]

['l ’ ‘l] ' ’ dmin = 2\/7

L2:31 Stanford University



Packet Error Rate

= Block error rate, P, ¢k, is the average probability that a packet or “block” of B bits contains at least one
erred bit.

Pe,block ~ B - Py,

= More accurately, P, p1ock cOunts the ways that bit errors can occur:

B
B 5 \B—i pi
Y (i) Q-PR)Pip
=1
= QOther examples

* An erred second is second in which at least one (uncorrectable) bit error occurred.
* Code violations — usually measured in 15min intervals -- and count the number of erred packets in that interval.

[3
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STANFORD

End Lecture 2

(Reversible) Transformations to simplify detectors
AWGN channel simplifications for ML detectors.
Pe calculations

Fair analysis

Stanford University



