Lecture 2
 The AWGN

January 11, 2024
John M. Cioffi
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- Homework - please start/look, due next Wed (1/17)
- Submit by email to emliang@stanford.edu for now (he'll give to grader).
- See Homework Helper documents (HWH) at website if needed.
- Use off hours, help, emails, canvas notes, other students
- EE379B pages significantly updated

Today

- Review, Irrelevance, and Reversibility (1.1.5)
- Bit-error probability (1.1.6)
- AWGN Definition/Basics (1.3)
- ML/MAP on AWGN (1.3.1-2)
- Pe calculations and bounds (1.3.2)
- Measures \& Fair Comparisons (1.3.3)

Review, Irrelevance, \& Reversibility

Review of "modem" and discrete channel

- The modulator/demodulator match to the "analog-world" channel.
- Apply common analysis to all.
- This forms a strong basis for all modern digital transmission.

MAP Detector Example/Review

Example's Pe calculation in matlab

$$
P_{c}=\sum_{x} \sum_{y \in \mathcal{D}_{x}} p_{y / x} \cdot p_{x}
$$

```
>> pygx=[pygx1' ; pygxm1'] =
    0.4336}00.4115 0.0519 0.1029
    0.0482 0.0726 0.4675 0.4118
>> pxgy=[.9 . 85 .1 .2 ; .1 .15 .9 .8]=
    0.9000}00.8500 0.1000 0.200
    0.1000 0.1500 0.9000 0.8000
>> pxgy*py =
    0.5000
    0.5000 (checks)
>> pxy = pxgy.*[py' ; py'] =
    0.2168}00.2058 0.0260 0.051
    0.0241}00.0363 0.2337 0.205
>> sum(pxy) =
    0.2409 0.2421 0.2597 0.2573
>> sum(sum(pxy)) = 1% checks
>> px=[0.5;0.5];
>> pygx.*[px px px px] =
    0.2168}00.2058 0.0260 0.0515 
    0.0241 0.0363 0.2337 0.2059 %checks again
>> Pc= (pygx(1,1)+pygx(1,2)+pygx(2,3)+pygx(2,4))*.5= 0.8622
    % sum over only y in decision region (each x)
>Pe=1-ans=0.1378
```

- 14% errors is not good, so this channel's input encoding could improve.
- Perhaps the design spec is $P_{e} \leq 10^{-3}$?
- Maybe repeat 7 times with majority vote, so need 4 errors?
- $(.1378)^{\wedge} 4 \cdot\binom{7}{4}=0.0126 \ll .1378$.
- But data rate is $\bar{b}=1 / 7 \ll 1$?
- Coding in Chapter 2
- A good design can xmit at $\mathrm{Pe} \rightarrow 0$ on this channel with rate $\bar{b}=0.998$, so almost 1 bit/dimension, with the use of more sophisticated codes.
- In general, a multilevel channel output (more levels than input, e.g. redundancy) often provides coding opportunity.

Irrelevant Channel Outputs

- Sometimes extra output components $\left(\boldsymbol{y}_{2}\right)$ contribute nothing more than others already used $\left(\boldsymbol{y}_{1}\right)$.

Theorem 1.1.3 [Theorem on Irrelevance] If

$$
p_{\boldsymbol{x} /\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)}=p_{\boldsymbol{x} / \boldsymbol{y}_{1}}
$$

or equivalently if the channel-related probability distribution

$$
p_{\boldsymbol{y}_{2} /\left(\boldsymbol{y}_{1}, \boldsymbol{x}\right)}=p_{\boldsymbol{y}_{2} / \boldsymbol{y}_{1}}
$$

then \boldsymbol{y}_{2} is not needed in the optimum receiver, that is, \boldsymbol{y}_{2} is irrelevant.

- Receiver design may discard \boldsymbol{y}_{2} without loss.
- Examples (\boldsymbol{n}_{2} independent of \boldsymbol{n}_{1})
- Both independent of \boldsymbol{x}


```
Hmmm .....
y}\mp@subsup{y}{2}{}\mathrm{ is all noise, must be useless, right?
```

- Noise cancellation - \boldsymbol{y}_{2} cannot be discarded because it has an \boldsymbol{n}_{1} component that could be (partially) used to cancel noise in output \boldsymbol{y}_{1}.
- Suppose $\boldsymbol{n}_{2}=0$, then $\boldsymbol{y}_{2}=\boldsymbol{n}_{1}$, which means \boldsymbol{n}_{1} could be subtracted (cancelled), $\boldsymbol{y}_{1}=\boldsymbol{x}$.
- MAP detector has no errors!

Reversible Transformations are OK

- Special case of irrelevance:

Theorem 1.1.4 [Reversibility Theorem] The application of an invertible transformation to the channel output vector \boldsymbol{y} does not affect the performance of the MAP detector.

Proof: Using the Theorem on Irrelevance, if the channel output is \boldsymbol{y}_{2} and the result of the invertible transformation is $\boldsymbol{y}_{1}=G\left(\boldsymbol{y}_{2}\right)$, with inverse $\boldsymbol{y}_{2}=G^{-1}\left(\boldsymbol{y}_{1}\right)$ then $\left[\boldsymbol{y}_{1} \boldsymbol{y}_{2}\right]=$ $\left[\boldsymbol{y}_{1} G^{-1}\left(\boldsymbol{y}_{1}\right)\right]$. Then, $\mathrm{p}_{\boldsymbol{x} /\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)}=\mathrm{p}_{\boldsymbol{x} / \boldsymbol{y}_{1}}$, which is the definition of irrelevance. Thus, either of \boldsymbol{y}_{1} or \boldsymbol{y}_{2} is sufficient to detect \boldsymbol{x} optimally and attain the same minimum error probability or equivalently the same optimum performance.QED.

- VERY useful - MAP receiver may simplify greatly after transformation.

Bit-Error Probability Calculation

- Message has b bits $u_{j} \in\{0,1\} ; j=1, \ldots, b$.
- Receiver can (instead) use a MAP/ML detector that minimizes bit-error probability.
- For a MAP that maximizes bit-a-posteriori probability, $p_{u_{j} \in\{0,1\} / y}$.
- Each bit could have different decision region $\mathcal{D}_{j}(\boldsymbol{y}) \rightarrow$ more complex, or could just use common $\mathcal{D}(\boldsymbol{y})$ for P_{e}.

$$
\begin{aligned}
\bar{P}_{b, j} & =\operatorname{Pr}\left\{\hat{u}_{j} \neq u_{j}\right\}=1-\sum_{u_{j}=0}^{1}\left[\sum_{\boldsymbol{v} \in \mathcal{D}_{j}} P_{\boldsymbol{y} / u_{j}}\left(\hat{u}_{j}=u_{j}, \boldsymbol{v}\right)\right] \cdot p_{u_{j}} \\
& =1-\sum_{u_{j}=0}^{1}\left[\sum_{\boldsymbol{v} \in \mathcal{D}_{j}} p_{u_{j} \mid \boldsymbol{y}}\left(u_{j}, \boldsymbol{v}\right) \cdot p_{\boldsymbol{y}}(\boldsymbol{v})\right] .
\end{aligned}
$$

- $\bar{P}_{b, j}$ can vary with j.
- LLR's often used for MAP of each bit:

Definition 1.1.5 [Log Likelihood Ratio (LLR)] A log likelihood ratio for a bit u_{j} is the logarithm of probability ratio that bit takes the values 0 and 1. Often convention considers the bit value 0 as correct and the bit value 1 as incorrect, without loss of generality.

$$
\begin{aligned}
L L R_{u_{j}}(\boldsymbol{v}) & \triangleq \ln \left(\frac{P_{u_{j}=0}(\boldsymbol{v})}{P_{u_{j}=1}(\boldsymbol{v})}\right) \\
& =\ln \left(\frac{\sum_{\boldsymbol{u} \backslash u_{j}} p_{\boldsymbol{y} \mid \boldsymbol{u}}\left(\boldsymbol{v},\left.\boldsymbol{u}\right|_{u_{j}=0}\right) \cdot p_{\boldsymbol{u}}\left(\left.\boldsymbol{u}\right|_{u_{j}=0}\right)}{\sum_{\boldsymbol{u} \backslash u_{j}} p_{\boldsymbol{y} \mid \boldsymbol{u}}\left(\boldsymbol{v},\left.\boldsymbol{u}\right|_{u_{j}=1}\right) \cdot p_{\boldsymbol{u}}\left(\left.\boldsymbol{u}\right|_{u_{j}=1}\right)}\right)
\end{aligned}
$$

When $u_{j} \rightarrow \hat{u}_{j}$ above for a decoder with average bit-error rate \bar{P}_{b}, then

- Examples later in course

Bhattacharya Bound

- B-Bound is based on the MAP detector's specific error events (needs to be averaged over all such events).

$$
P\left\{\varepsilon_{m \tilde{m}}\right\} \triangleq \operatorname{Pr}\left\{\boldsymbol{x}_{m} \rightarrow \boldsymbol{x}_{\tilde{m}}\right\}
$$

$$
P\left\{\varepsilon_{m \tilde{m}}\right\} \leq \sum_{\boldsymbol{v}} \sqrt{p_{\boldsymbol{y} / \boldsymbol{x}}\left(\boldsymbol{v}, \boldsymbol{x}_{\tilde{m}}\right) \cdot p_{\boldsymbol{y} / \boldsymbol{x}}\left(\boldsymbol{v}, \boldsymbol{x}_{m}\right)}
$$

- Simple proof - see text, Section 1.1.7 ; most often used for symbols that are groups of bits (codewords).
- When $\bar{P}_{b, j} \equiv p$, the error event's B-Bound takes the simple, often-encountered, form where \boldsymbol{x}_{m} and $\boldsymbol{x}_{\widetilde{m}}$ differ in only Hamming distance d_{H} positions:

$$
P\left\{\varepsilon_{m \tilde{m}}\right\} \leq[4 \cdot p \cdot(1-p)]^{d_{H / 2}}
$$

- Suggestive of an inner channel where a first decision is made with $\bar{P}_{b, j} \equiv p$, and then a second outer bit-level code is present.
- Symbols are bit vectors carefully chosen to have separation (two MAP decoders).
- For binary channels where the error probability interchanges for 1 and 0 as the only two messages, Griot, Weng, and Wesel (GWW) tightened the B-Bound to $P\left\{\varepsilon_{m \tilde{m}}\right\} \leq \frac{1}{2}[4 \cdot p \cdot(1-p)]^{d_{H / 2}}$.
- The extra factor of $1 / 2$ can overly burden some analyses an so original B-Bound form is often used.

Return to Example on slide 5

- $\bar{P}_{b, j} \equiv p$ on this channel was equal to $P_{e, \text { inner }}=.1378$.
- Simple outer code with $\bar{b}=1 / 7$ (so all zeros or all ones) would have:

$$
P_{e, \text { outer }} \leq 1 / 2 \cdot[4 \cdot .1378 \cdot .8622]^{7 / 2}=0.0012
$$

(pretty close to value on slide L2:6)

The AWGN

Section 1.3

Additive White Gaussian Noise (AWGN)

modulated signal

- This channel is the most common in all wireless/wireline communication.
- Most variants use it as foundation.

- Central Limit Theorem (see A.1.8) - large number of noise events added together are Gaussian.
- White means "all frequencies equal" power spectra density, or $S_{n}(f)=\frac{\mathcal{N}_{0}}{2}=\mathfrak{F}\left\{r_{n}(\tau)\right\}$ (Fourier Transform).
- That is "flat."
- Flat has the same energy σ^{2} on any basis function (on any dimension).
- Thermal Noise ($k_{\text {boltz }} \cdot$ Temp $)=-174 \mathrm{dBm} / \mathrm{Hz}$ at room temperature) is an example, but also:
- analogy amplifiers front-end noise, ADC quantization noise (with enough bits quantizing), or even
- many crosstalking interference signals from other sources (especially if they use good "Gaussian" codes).

AWGN discrete channel loses nothing!

$$
\begin{array}{r}
R_{\boldsymbol{n} \boldsymbol{n}} \triangleq \mathbb{E}\left[\boldsymbol{n} \cdot \boldsymbol{n}^{t}\right]=\frac{\mathcal{N}_{0}}{2} \cdot I \\
\text { Autocorrelation matrix, } \\
\text { See Appendix D.1 } \\
R_{\boldsymbol{y} \boldsymbol{y}}=R_{\boldsymbol{x} \boldsymbol{x}}+R_{\boldsymbol{n} \boldsymbol{n}}
\end{array}
$$

- This conversion to discrete demodulated vector \boldsymbol{y} loses some of white noise, but that part is irrelevant.
- See proof in Section 1.3.1.

Rule 1.3.1 [The Vector AWGN Channel] The vector AWGN channel is given by

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{n} \tag{1.85}
\end{equation*}
$$

and is equivalent to the channel illustrated in Figure 1.26. The noise vector \boldsymbol{n} is an N-dimensional Gaussian random vector with zero mean, equal-variance, uncorrelated components in each dimension. The noise distribution is

[^0]\[

$$
\begin{equation*}
p_{\boldsymbol{n}}(\boldsymbol{u})=\left(\pi \mathcal{N}_{0}\right)^{-\frac{N}{2}} \cdot e^{-\frac{1}{\mathcal{N}_{0}}\|\boldsymbol{u}\|^{2}}=\left(2 \pi \sigma^{2}\right)^{-\frac{N}{2}} \cdot e^{-\frac{1}{2 \sigma^{2}}\|\boldsymbol{u}\|^{2}} \tag{1.86}
\end{equation*}
$$

\]

Irrelevant White-Noise Concept

- Clearly independent noise where there is no signal does not help estimate x

The Q-function (A.1.7)

$Q(x)=\frac{1}{\sqrt{2 \pi}} \cdot \int_{x}^{\infty} e^{-\frac{u^{2}}{2}} \cdot d u \quad p_{A W G N\left(\sigma^{2}=1\right)}(u)$

- $Q(x)=\operatorname{Pr}\left\{n \geq \frac{x}{\sigma}\right\}$
- Measures probability that AWGN noise exceeds a certain level (relative to standard deviation)
- Matlab

```
function qfunc(x);
Computes the q function
qfunc(x) = . 5 erfc(x/sqrt(2))
>> qfunc(1) = 0.1587
>> qfunc(3) = 0.0013
>> qfunc(5) = 2.8665e-07
>> qfunc(10^(13.5/20)) = 1.1143e-06 (13.5 dB }\boldsymbol{->}\mp@subsup{\mathbf{10}}{}{\mathbf{-6}}
>> 20* log(3) = 21.9722 dB (sample amplitude)
>> 10*}\operatorname{log}(\mp@subsup{3}{}{\wedge}2)=21.9722 dB (energy)
```


MAP/ML on the AWGN

- ML AWGN detector (if the inputs are not equally likely, your source can be improved):

Rule 1.3.3 [AWGN ML Detection Rule]

$$
\hat{m} \Rightarrow m_{i} \text { if }\left\|\boldsymbol{v}-\boldsymbol{x}_{i}\right\|^{2} \leq\left\|\boldsymbol{v}-\boldsymbol{x}_{j}\right\|^{2} \forall j \neq i
$$

- ML is simple (conceptually) with AWGN - pick the closest symbol value (to \boldsymbol{y}).

4SQ (QPSK)

AWGN ML Detector

- Implement closest point? $\quad \hat{m} \Rightarrow m_{i}$ if $\left\langle\boldsymbol{y}, \boldsymbol{x}_{i}\right\rangle+c_{i} \geq\left\langle\boldsymbol{y}, \boldsymbol{x}_{j}\right\rangle+c_{j} \forall j \neq i$

$$
c_{i} \triangleq \frac{\mathcal{N}_{0}}{2} \cdot \ln \left\{p_{\boldsymbol{x}}(i)\right\}-\frac{\left\|\boldsymbol{x}_{i}\right\|^{2}}{2}
$$

"Machine Leaners" - recognize this?
It is a ReLU (rectified linear unit, 1.5.2; where we already know the coefficients, bias terms, and use hard nonlinearity.

Section 1.3.1.2
L2: 19 Stanford University

Matched Filter SNR Maximization

- Convolution reverses and multiplies - when the two convolved signals align perfectly, the SNR is largest.
- Matched filter essentially aligns filter with the pre-noise signal ("matched") to align/boost maximally.
- MF is fundamental in many detection/receiver strategies.
- See Section 1.3.1 (proof is there).

Pe Calculations and Bounds

(Section 1.3.2)

Translational Invariance (AWGN)

- This does not change the distances between constellation points. (It is a reversible transformation.)
- Thus, the detector simply subtracts the known \boldsymbol{a} so $\mathbf{y} \rightarrow \mathbf{y}-\boldsymbol{a}$ and proceeds the same way (note this is 1-to-1 so reversibility applies).
- Minimum Energy translate?

Definition 1.3.1 [Minimum-Energy Translate] A constellation's minimum energy translate is obtained by subtracting the constant vector $E[\boldsymbol{x}]$ from each data symbol.

- Section 1.3.2.1 - saves energy, no performance loss (AWGN) - PS1.5’s "tilt."

Rotational Invariance (AWGN)

- The unitary matrix $Q \cdot Q^{*}=I=Q^{*} \cdot Q$ is 1-to-1 (reversible).
- Also, the energy does not change $\mathbb{E}\left[\llbracket x \rrbracket^{2}\right]=\mathbb{E}\left[\llbracket Q \cdot \boldsymbol{x} \rrbracket^{2}\right]$.

AWGN ML-Detect performance is invariant to rotation and/or translation.

Minimum Distance \& AWGN's Union Bound

Definition 1.3.2 [Minimum Distance, $d_{\text {min }}$] The minimum distance for a constellation with symbol vectors $\boldsymbol{x} \triangleq\left\{\boldsymbol{x}_{i}\right\}_{i=0, \ldots, M-1}$, is $d_{\min }(\boldsymbol{x})$ and measures the smallest separation between any two different constellation symbol (or "codeword") values. The argument (\boldsymbol{x}) is often dropped when the specific signal constellation is obvious from the context, thus leaving

$$
\begin{equation*}
d_{\min } \triangleq \min _{i \neq j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| \quad \forall i, j . \tag{1.122}
\end{equation*}
$$

$x_{i}+n$ this big causes an error, or $|n|>\frac{d_{\text {min }}}{2}$

- Union Bound is thus $P_{e} \leq(M-1) \cdot Q\left(\frac{d_{\text {min }}}{2 \sigma}\right)$
- At worst, any constellation point can be confused for any of the $M-1$ other points, which are at least at minimum distance.

Example 8 PSK

- 8 messages ($M=8, b=3 ; N=2$) - same basis functions as BPSK (and QPSK)

$$
P_{e}<7 \cdot Q\left(\frac{d_{\min }}{2 \sigma}\right)
$$

- Overkill? Well, yes, especially if M is large.
- Double counts the red-shaded region for $\varepsilon_{i j}$
- Can you do better?
- How about $P_{e}<2 \cdot Q\left(\frac{d_{\text {min }}}{2 \sigma}\right)$?

Nearest Neighbor Union Bound

- $P_{e}<N_{e} \cdot Q\left(\frac{d_{\min }}{2 \sigma}\right)$.
- Where $N_{e} \triangleq$ the number of nearest neighbors.

Definition 1.3.3 [Average Number of Nearest Neighbors] A constellation's average number of nearest neighbors, N_{e} is

$$
\begin{equation*}
N_{e} \triangleq \sum_{i=0}^{M-1} N_{i} \cdot p_{\boldsymbol{x}}(i) \tag{1.147}
\end{equation*}
$$

where N_{i} is the symbol \boldsymbol{x}_{i} 's number of neighboring constellation symbols, that is the number of other symbol vectors sharing a common decision region boundary ${ }^{28}$ with \boldsymbol{x}_{i}.

- Count only those at distance $d_{\min }$ (often easier to do) $N_{e} \cong \sum_{i=0}^{M-1} \widetilde{N}_{i} \cdot p_{x}(i) ; \widetilde{N}_{i}$ counts only @ dmin.
- $P_{e} \cong N_{e} \cdot Q\left(\frac{d_{\text {min }}}{2 \sigma}\right)$ this is the nearest-neighbor union bound (usually very tight, often used).

NNUB Example 8SQ

- This analysis counts only (so approximates) neighbors at minimum distance.
- Others have smaller contribution.
- $P_{e}<3.25 \cdot Q$

$$
\begin{aligned}
P_{c} & =\sum_{i=0}^{7} P_{c / i} \cdot p_{\boldsymbol{x}}(i)=\sum_{i \neq 1,4} P_{c / i} \cdot \frac{1}{8}+\sum_{i=1,4} P_{c / i} \cdot \frac{1}{8} \\
& >\frac{6}{8}(1-Q)(1-2 Q)+\frac{2}{8}(1-2 Q)^{2} \\
& =\frac{3}{4}\left(1-3 Q+2 Q^{2}\right)+\frac{1}{4}\left(1-4 Q+4 Q^{2}\right) \\
& =1-3.25 Q+2.5 Q^{2} .
\end{aligned}
$$

Measures \& Fair Comparisons

See 1.3.2.4

Calculate ave bit error prob (symbol decoder)

Definition 1.3.4 [Average Bit Error Rate] The average bit error rate is

$$
\begin{equation*}
P_{b} \triangleq \sum_{i=0}^{M-1} \sum_{\substack{j \\ j \neq i}} p_{\boldsymbol{x}}(i) \cdot P\left\{\varepsilon_{i j}\right\} \cdot n_{b}(i, j) \tag{1.152}
\end{equation*}
$$

where $n_{b}(i, j)$ is the number of bit errors for the particular choice of encoder when symbol i is erroneously detected as symbol j. This quantity, despite the label using P, is not strictly a probability. It also related to the average total number of bit errors per error event.

- Average Total Bit Errors per Error Event
$N_{b}=\sum_{i=0}^{M-1} p_{x}(i) \cdot n_{b}(i) \quad$ where $\quad n_{b}(i)=\sum_{j=0}^{N_{i}} n_{b}(i, j)$
- Then

$$
P_{b} \approx N_{b} \cdot Q\left[\frac{d_{\min }}{2 \sigma}\right]
$$

$$
\begin{align*}
P_{b} & \approx \sum_{i=0}^{M-1} \sum_{j=1}^{N_{i}} p_{\boldsymbol{x}}(i) \cdot P\left\{\varepsilon_{i j}\right\} \cdot n_{b}(i, j) \\
& \leq Q\left[\frac{d_{\min }}{2 \sigma}\right] \cdot \sum_{i=0}^{M-1} p_{\boldsymbol{x}}(i) \sum_{j=1}^{N_{i}} n_{b}(i, j) \\
& \lesssim Q\left[\frac{d_{\min }}{2 \sigma}\right] \cdot \sum_{i=0}^{M-1} p_{\boldsymbol{x}}(i) \cdot n_{b}(i) \tag{1.155}\\
& \lesssim N_{b} \cdot Q\left[\frac{d_{\min }}{2 \sigma}\right] \tag{1.156}\\
& n_{b}(i) \triangleq \sum_{i=1}^{N_{i}} n_{b}(i, j),
\end{align*}
$$

Lemma 1.3.2 [Average bit-error probability \bar{P}_{b}.] The average probability of bit error is defined by

$$
\bar{P}_{b}=\frac{P_{b}}{b}
$$

The corresponding average total number of bit errors per bit is

$$
\bar{N}_{b} \triangleq \frac{N_{b}}{b}
$$

$$
\bar{A} \triangleq \frac{A}{N}
$$

- $\bar{P}_{e}, \bar{N}_{e}, \overline{\varepsilon_{x}}, \bar{b}, \ldots$.
- The measure, indicated by a bar, normalizes to the "resources" - the number of dimensions.

Fair Comparisons

- Fix 4 of these 5 - compare last
- Data rate $R=\frac{b}{T}$
- Power $P_{x}=\frac{\varepsilon_{x}}{T}$
- System bandwidth W
- Total transmission time or symbol period T
- Error probability P_{e}
- Or fix 2 of these 3 - compare the last
- Bits/dim $\bar{b}=\frac{b}{N}$
- Energy/dim $\bar{\varepsilon}_{x}=\frac{\varepsilon_{x}}{N}$
- Error Prob/dim $\bar{P}_{e}=\frac{P_{e}}{N}$

> Bigger $d_{\min }$ and twice rate? Not fair, both \bar{b} and \bar{P}_{e} differ (these two are really the same) set $\bar{b}=1$ and becomes QPSK, smaller $d_{\text {min }}$

Many engineers, including some really famous ones,

 have erred on comparisonsSystem 1: $R=10 \mathrm{Mbps}, N=1, \pm 1(M=2), \frac{1}{T}=10 \mathrm{MHz}$

System 2: $R=20 \mathrm{Mbps}, N=2, \pm 1(M=2), \frac{1}{T}=10 \mathrm{MHz}$

Packet Error Rate

- Block error rate, $P_{e, b l o c k}$, is the average probability that a packet or "block" of B bits contains at least one erred bit.

$$
P_{e, b l o c k} \approx B \cdot \bar{P}_{b}
$$

- More accurately, $P_{e, b l o c k}$ counts the ways that bit errors can occur:

$$
\sum_{i=1}^{B}\binom{B}{i}\left(1-\bar{P}_{b}\right)^{B-i} \bar{P}_{b}^{i}
$$

- Other examples
- An erred second is second in which at least one (uncorrectable) bit error occurred.
- Code violations - usually measured in 15 min intervals -- and count the number of erred packets in that interval.

End Lecture 2

- (Reversible) Transformations to simplify detectors
- AWGN channel simplifications for ML detectors.
- Pe calculations
- Fair analysis

[^0]: - MAP for \boldsymbol{y} still minimizes P_{e}.
 - For AWGN Channel, analysis need not know the modulator type

