

Lecture 18 Transmit Optimization and Waterfilling March 12, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

- Optional PS8 due today solutions early tomorrow (Wed)
 - This assignment is optional the last two problems are from today and Thursday's lectures, respectively; Great on those looking ahead!
- Final end of class on Thursday take home, 25 hours
 - Does anyone want a blue book or prefer to use your own paper/scan/laptop-direct?
- Feedback PS7
 - 6-12 hours
 - Concept of equalizers (see side →) and L13-14
 - DFEs and root finding
 - $b^* \cdot D^{-2} + a^* \cdot D^{-1} + \tilde{q}_0 + a \cdot D + b \cdot D^2$
 - r=roots([b',a',qt0,a,b]) % for ZF-DFE, q
 [^]₀=1
 - $(1-r(i) \cdot D)$ factors for all roots with $|r| \le 1$. That is G(D).
 - gam0=qt(highest)/G(highest) see L15:13,17

Today

- DFE RAKE aond soft equalization (carried from L17)
- MMSE DFE Transmit Optimization
 - Water Filling
- Suboptimal Transmitter Loss
- MMSE-LE Transmit Optimization
 - Slush Packing

Equalizers (LE, DFE, MS,ZF) all try to create an equivalent A(W)GN channel so that uur codes apply

March 12, 2024

DFE RAKE and soft equalization

Section 3.8

March 12, 2024

DFE Rake Program

>> help dfeRAKE

function [dfseSNR,W,b]=dfeRAKE(l,h,nff,nbb,delay,Ex,noise); DFE design program for RAKE receiver

Inputs

l = oversampling factor

- L is derived as No. of fingers in RAKE (number of rows in h)
- h = pulse response matrix, oversampled at l (size), each row corresponding to a diversity path
- nff = number of feedforward taps for each RAKE finger
- nbb = number of feedback taps
- delay = delay of system <= nff+length of p 2 nbb
- Ex = average energy of signals
- noise = noise autocorrelation vector (size L x l*nff)
- NOTE: noise is assumed to be stationary, but may be spatially correlated

outputs: dfseSNR = equalizer SNR, unbiased in dB ------

Student Project: Add the -1 = delay option to find best delay.

Stanford University

Few taps, matches infinite-length result.

March 7, 2023

Section 3.9.4

L18: 4

DFE Rake Plots

The MS-WMF's try to align to on another as well as in time to their respective paths.

• The equalized channel clearly looks causal in last 3 positions, and the two outputs align the large first tap.

Turbo Equalization

- These are packet adaptive equalizers where L16:26's channel identification (of H) or partial-response equalization (L17:13) is used.
- A MLSE (Viterbi Detector) for the channel ISI is used in place of the feedback section.

• The channel's memory is treated like a code with the SOVA generation of soft information

The intrinsic channel information

- Initially, Viterbi/SOVA produces ratios:
 - Sum of such terms if $M^{\nu} > 2$.
 - Evaluate each stage 0/1 among survivors.

$$e^{-\frac{1}{2\sigma^2}\cdot\left\|\boldsymbol{y}-\boldsymbol{H}\cdot\boldsymbol{x}_{k,0}\right\|^2}$$

$$e^{-\frac{1}{2\sigma^2}\cdot\left\|\mathbf{y}-\mathbf{H}\cdot\mathbf{x}_{k,1}\right\|^2}$$

- Later runs
 - Include the code's soft extrinsic information in the Viterbi partialresponse updates.
- The MLSD on channel trellis is optimum lower initial Pe
 - But loses advantage as number of levels increase in PAM/QAM
 - Precoder can reduce this loss, but not eliminate it.

March 7, 2023

- The code and channel may interleave order w.r.t. each other.
 - The SNRmfb attained by Viterbi does NOT add to coding gain.

Turbo Equal tends to complicate/prevent transmit-filter optimization.

MMSE DFE Transmit Optimization

<u>Section 3.12</u>

March 12, 2024

MMSE for DFE (frac-spacing \rightarrow optimize 1/T)

- Sections 3.11-12 review information-theoretic formulation, following Section 2.3.
 - That approach is further developed in EE379B next quarter.
- Only continuous-frequency theoretical optima appears in this EE379A lecture, see L15:10.

• This maximizes equivalently the $SNR(\Phi) = SNR_U(\Phi) + 1$ for all MMSE receivers.

• The side energy constraint is
$$\frac{T}{2\pi} \cdot \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} S_{\chi}(\omega) \cdot d\omega = \bar{\mathcal{E}}_{\chi}$$
.
March 12, 2024 Section 3.12.3

L18:9

Solution by Calculus of Variations

Maximize instead

$$ln\left\{\frac{S_{x}(\omega)}{\sigma^{2}}\cdot S_{h}(\omega)+1\right\}+\lambda\cdot S_{x}(\omega)$$

 $S_{\chi}(\omega) + \frac{\sigma^2}{S_h(\omega)} = K$

$$\frac{\frac{1}{\sigma^2} \cdot S_h(\omega)}{\frac{1}{\sigma^2} \cdot S_x(\omega) \cdot S_h(\omega) + 1} + \lambda = 0$$

$$S_{x}(\omega) \geq 0$$

$$S_{x}(\omega)$$

$$\sigma^{2}$$

$$Water k water level
$$\pi/T - W$$

$$W$$$$

- Blue "water/energy" poured from above into noise-referred-to-channel-input curve.
- Waterfilling maximizes SNR (for MMSE-DFE).
- Well, almost anyone see a problem here?
 - Uh-oh; Paley-Wiener violated.

March 12, 2024

L18: 10

Return to the 1+.9D⁻¹ example

Assume
$$T = 1 \sec P_x = \int_{-W}^{W} \left(K - \frac{.181}{1.81 + 1.8 \cdot cos(\omega)} \right) \cdot \frac{d\omega}{2\pi}$$

$$\pi = \int_{0}^{W} \left(K - \frac{.181}{1.81 + 1.8 \cdot cos(\omega)} \right) \cdot d\omega$$

$$= K \cdot W - .181 \cdot \left\{ \frac{2}{\sqrt{1.81^2 - 1.8^2}} \right\} \cdot \arctan \left[\frac{\sqrt{1.81^2 - 1.8^2}}{1.81 + 1.8} \tan \left(\frac{W}{2} \right) \right]$$

$$W = .88\pi \frac{1}{T_{opt}} = .88$$
- Change symbol rate so that PWC is satisfied.
$$C = \frac{2}{2\pi} \int_{0}^{.88\pi} \frac{1}{2} \log_2 \left(\frac{1.33}{.181} (1.81 + 1.8 \cos \omega) \right) d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{.88\pi} \log_2 7.35 d\omega + \frac{1}{2\pi} \int_{0}^{.88\pi} \log_2 (1.81 + 1.8 \cos \omega) d\omega$$

$$= 1.266 + .284$$

$$\approx 1.55 \text{bits/second} .$$
March 12, 2024
- Section 3.12.4
- Content of the section section

ß

The MMSE-DFE fix? – change the symbol rate(s)

Not so easy to do in practice (we see ways to do this digitally in 379B).

March 12, 2024

Section 3.12.4

L18: 12

Optimum Carrier (center) Frequency

Multiple Bands ?

- Need a separate optimized carrier frequency and symbol rate for each discontiguous band.
- Transmitters blasting through the zeroed bands often experience large performance reduction,
 - especially if the applied code has nonzero gap

Sec 3.12.6

L18: 14

Multiband DFEs equivalent rate/SNR

Add/stack used optima bandwidths

Add the bands' data rates:

 $\bar{T}_i^{opt} = cb \cdot T_i^{opt} (1 \text{ or } 2 \text{ for complex or real, respectively})$

• Each band has a data rate.

$$R_{i} = \frac{1}{\bar{T}_{i}^{opt}} \cdot \log_{2} \left(1 + \frac{SNR_{i}(T_{i}^{opt})}{\Gamma} \right)$$

Infer an average (geometric) SNR:

$$SNR_{_{MMSE-DFE,U}}^{opt} \stackrel{\Delta}{=} \Gamma \cdot \left\{ \left[\prod_{i=1}^{M} \left(1 + \frac{SNR_{i}(T_{i}^{opt})}{\Gamma} \right)^{T^{opt}/\bar{T}_{i}^{opt}} \right] - 1 \right\}$$
$$\bar{b}^{opt} \stackrel{\Delta}{=} \frac{1}{2} \cdot \log_{2} \left(1 + \frac{SNR_{_{MMSE-DFE,U}}^{opt}}{\Gamma} \right) \text{ bits/dimension } .$$

Sec 3.12.6

Suboptimal Transmitter Loss

Section 3.12

March 12, 2024

Half-Band Example

• $SNR_{MMSE-DFE,U}(T^{opt})$ is 3 dB higher than the "full" bandwidth example.

This amount is amplified below capacity by non-unity (not 0 dB) gap-margin product.

margin difference for half-band optimum versus full band

Using wrong transmit bandwidth has performance loss, and this loss amplifies with code imperfection.

This effect can be enormous, often dwarfing code-selection as a contributor to system performance

margin difference for half-band optimum versus full band

- Capacity of AWGN with WF is 8 bits/subsymbol (4 bits/dimension)
- So in addition to the 9 dB (say uncoded QAM) loss, there is another 7 dB margin loss (16 dB total loss, not 3 dB).

March 12, 2024

L18: 18

Dead-band DFE example – 2 Transmitters

- Use a set of (up to 8) transmitters.
 - Waterfill WF integral separates into narrow bands or tones.
 - MMSE-DFE trivializes to simple SBS (no FF nor FB sections needed)
 - bits/subsymbol, per tone relation to capacity still holds $SNR = 2^{C} 1$
 - All have same 1/T.

- set of 2 transmitters
 - Variable 8-tone bits/dim means there is now ISI.
 - They carry the same data rate.
 - MMSE-DFE is in same relation to capacity (CDEF) holds $SNR = 2^{C} 1$.

• EE379B examines multi-tone transmitters (set of $\phi_{n,m}$'s) that allow the water-fill-energized "tones" to stack continuously next to one another and keep simple AWGNs (no ISI) that won't need any DFE rcvrs.

March 12, 2024

Sec 3.12.6 and PS8.4

L18: 19

Dead-band DFE example - Receivers

Set of receivers

Symbol rate = 1 MHz Data rate = 26 Mbps

s

- Both systems have same performance (at same gap).
- Both create parallel AWGN channels with $SNR = 2^C 1$.
- One has fewer, but more complex receivers.

Sec 3.12.6

L18: 20

More detailed dead-band analysis (L18:14,15)

n	g_n	\mathcal{E}_n	b_n
1	15.2	1.50	2
2	30.3	1.75	3
3	121.4	1.9375	5
4	242.7	1.97	6
5	2	0	0
6	60.7	1.875	4
7	242.7	1.97	6
8	2	0	0

- Optimum symbol rate $\frac{1}{T^{opt}} = 4 + 2 = 1 + 1 + 1 + 1 + 1 + 1 = 6 \cdot 1$ MHz
- Overall data rate = 26 Mbps (=2+3+5+6 + 6+4) · 1 MHz
- Ave bits/6MHz-symbol is 26/6 = 4.33 bits/subsymbol.
- $SNR_{MMSE-DFe,U}(^{1}/_{T^{*}} = 6MHz) = 10 \cdot \log_{10}(\Gamma \cdot [2^{4.33} 1]) = 21.6 \text{ dB}.$
- Ave bits/8MHz-symbol is 26/8 3.25 bits/subsymbol.
- $SNR_{sum \ tones}(\frac{1}{T^*} = 8MHz) = 10 \cdot \log_{10}(\Gamma \cdot [2^{3.25} 1]) = 18.1 \ \text{dB}.$
 - $\tilde{b}_{ave} = 3.25 \frac{bits}{tone}$ so lower corresponding ave SNR still yields $P_e = 10^{-6}$.
 - Different ${}^{1}/{}_{T^{*}}$, but same data rate R = 26 Mbps, same $P_{e} = 10^{-6}$.
 - 8 tones is simple implementation with two zeroed, the remaining DFE's trivialize.
- System A has 16 Mbps and $SNR_{MMSE-DFe,U} \left(\frac{1}{T_A^*} = 4MHz \right) = 20.6 \text{ dB}$
 - Complex MMSE-DFE
- System B has 10 Mbps and $SNR_{MMSE-DFe,U} \left(\frac{1}{T_{R}^{*}} = 2MHz \right) = 23.7 \text{ dB}$
 - Complex MMSE-DFE

A+B, or two-tone DFE, or 8-tone trivial DFE all have same performance – CDEF result So, which is really simpler to implement? (EE379B)

March 12, 2024

Sec 3.12.6

L18: 21

Analysis of Loss

- Some designers want constant symbol rate with flat energy for each symbol (8MHz).
- Energy/1MHz is 11/8, which corresponds to:

• 17 dB =
$$SNR_{MMSE-DFe,flat}(1/T = 8MHz) = \Gamma \cdot \left\{ \left[\prod_{n=1}^{8} \left(1 + \frac{\frac{11}{8} \cdot g_n}{\Gamma} \right) \right]^{\frac{1}{8}} - 1 \right\}.$$

- Compared to the optimum transmitter's SNR of 18.1 dB, so a 1.1 dB loss .
- Another .4 dB loss for 16 QAM precoders, then 1.5 dB loss total w.r.t. 8-tone simple dec's.

1

- Suppose channel change causes only lower band to be passable (set B is zeroed)?
- Best places all 11 energy units in set A, increasing by 11/(1.5+1.75+1.9375+1.97) =1.9 dB
- So previous band A of 20.6+1.9=22.5dB, or 1 dB margin for 16 QAM
- A single 1/T=8 MHz flat transmit energy of 11/8 yields SNR=12.8 dB, which only would do 4QAM, or is roughly 8 dB worse, including 1.3 dB (4/3) precoder loss.

1

Olympics Results

- This CDEF result has some confused predecessors
 - Price MIT
 - Zervos Bell Labs
- These ignore the "+1" term, which is equivalent to assuming infinite energy available to water fill
 - And that full flat energy is optimum At any 1/T ??
 - Their erroneous conclusion "just use a ZFDFE on anything and its optimum."
- Lead to two "Bellcore" DSL Olympics
 - 1993 ADSL 11 dB to 30 dB margin differences across many channels
 - 2003 VDSL see lengths for 25 Mbps at right
- After this, use of water-filling (DMT at right) became common in wired and wireless
 - See Chapter 4 or 379B

1993 ADSL Olympics – Bellcore Margin differences at 1.6 Mbps, 4 miles, 11+dB DMT 4x faster (6 Mbps) at 2 miles

2003 VDSL Olympics - Bellcore

Sec 3.12.6

MMSE-LE Transmit Optimization

Section 3.13

March 12, 2024

Calculus of Variations

Minimize the MMSE for LE:

$$\sigma_{MMSE-LE}^{2} = \frac{T}{2\pi} \cdot \int_{-\pi/T}^{\pi/T} \frac{\sigma^{2} \cdot d\omega}{\|h\|^{2} \cdot \left[|\Phi(e^{-j\omega T})|^{2} \cdot |H(e^{-j\omega T})|^{2} + \frac{1}{SNR_{MFB}}\right]}$$

yields

$$\left|\Phi\left(e^{-j\omega T}\right)\right|^{2} = c \cdot \left|H\left(e^{-j\omega T}\right)\right| - \frac{1}{SNR \cdot |H(e^{-j\omega T})|^{2}}$$

$$c = \left[\frac{\mathcal{N}_0}{2} \cdot \frac{T^{opt}}{2\pi} \int_{-\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)| \cdot d\omega\right]^{-1} \left[1 + \frac{T^{opt}}{2\pi \cdot SNR} \int_{-\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)|^2 d\omega\right]$$

March 12, 2024

Sec 3.12.8

L18: 25

Slush Packing – may need iterative solution

• Solution iterates between constant c and $\frac{1}{T^{opt}}$.

If linear is desirable, use many tones and no equalizer, see Chapter 4/379B – not aware of any uses of slush packing.

Sec 3.12.8

L18: 26

End Lecture 18

