Lecture 17 Precoders and Diversity

March 7, 2024

John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements
- PS8 is due March 12
- Solutions immediately available, thus no late homework
- Final distributed March 14,end of lecture. Due 5 pm on Friday 3/15.
- Today
- Announcing our winner on the "chirp" sequence
- Transmit Precoders
- Partial-response channels
- Diversity and Turbo Equalizers

(Normalized) DFT

$$
\begin{aligned}
& X_{n}=\frac{1}{\sqrt{N}} \cdot \sum_{k=0}^{N-1} x_{k} \cdot e^{-j \frac{2 \pi}{N} k n} \\
& x_{k}=\frac{1}{\sqrt{N}} \cdot \sum_{n=0}^{N-1} X_{n} \cdot e^{j \frac{2 \pi}{N} k n}
\end{aligned}
$$

Norm Tap Error

- Parsevals $\|\boldsymbol{h}\|^{2}=\|\boldsymbol{H}\|^{2}$
- And all other frequency-domain/time-domain vectors.

$$
\begin{gathered}
\hat{H}_{n}=H_{n}+\sum_{l=1}^{L} \frac{U_{l, n}}{L \cdot X_{l, n}}, \\
\Delta_{n}=-\sum_{l=1}^{L} \frac{U_{l, n}}{L \cdot X_{l, n}} . \\
E_{n}=Y_{n}-\hat{H}_{n} \cdot X_{n}=\Delta_{n} \cdot X_{n}+U_{n} \\
= \\
U_{n}+\frac{1}{L} \cdot \sum_{l=1}^{L} U_{l, n} \cdot e^{\jmath\left(\theta_{n}-\theta_{l, n}\right)}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{NTE} & \triangleq E\left\{\|\boldsymbol{h}-\hat{\boldsymbol{h}}\|^{2}\right\}=E\left\{\|\boldsymbol{\delta}\|^{2}\right\} \\
& =E\left\{\|\boldsymbol{H}-\hat{\boldsymbol{H}}\|^{2}\right\}=E\left\{\|\boldsymbol{\Delta}\|^{2}\right\} \\
& =\sum_{n=0}^{\bar{N}-1}\left|H_{n}-\hat{H}_{n}\right|^{2}=\sum_{k=0}^{\bar{N}-1}\left|h_{k}-\hat{h}_{k}\right|^{2}
\end{aligned}
$$

$$
S N R_{\widehat{H}, n}=\frac{R_{x x, n} \cdot\left|H_{n}\right|^{2}}{R_{e e, n}-R_{u u, n}}=\frac{S N R_{n}}{1 / L}=L \cdot \operatorname{SNR}(\text { all } n)
$$

- Same in all dimensions
- The $L=40$ leaves 0.1 dB gain-estimation error ($1+1 / 40=0.1 \mathrm{~dB}$)
- Constant magnitude in both domains
- "White"
- Lowest peak-to-average

Good training sequence?

$$
\begin{gathered}
x_{k}=e^{j \frac{2 \pi}{N} \cdot k^{2}} \\
\text { (chirp) } \\
\text { DFT is } \\
X_{n}=\frac{1}{\sqrt{N}} \cdot e^{-j \frac{\pi}{4 N} \cdot n^{2}} \\
\text { Another chirp }
\end{gathered}
$$

Noise Estimation

- Average the errors in frequency domain

$$
\hat{\sigma_{n}^{2}}=\frac{1}{L} \cdot \sum_{l=1}^{L}\left|E_{l, n}\right|^{2}
$$

$$
\operatorname{var}\left(\hat{\sigma_{n}^{2}}\right)=\frac{1}{L^{2}}\left(3 \cdot L \cdot \sigma_{n}^{4}-L \cdot\left(\sigma_{n}^{2}\right)^{2}\right)=\frac{2}{L} \sigma_{n}^{4}
$$

- Noise miss only reduces with sqrt(L).

$$
\sqrt{2 / L} \cdot \sigma_{n}^{2}
$$

Precoders

Section 3.8

Channel Inversion at the transmitter?

- So why not "pre-equalize" and remove ISI? Indeed, there is no noise enhancement at transmitter, so?
- Transmit energy exceeds the limit. Pre-inversion design reduces distance, and thus incurs a loss.
- But it still can be a good idea with a little help

Modulo Arithmetic

- Mod arith wraps the real line around circle of circumference $2 M ; \Gamma_{M}(x)=x-M \cdot d \cdot\left[\frac{x+\frac{M \cdot d}{2}}{M \cdot d}\right\rfloor$,

$\begin{gathered} +4 \\ +30 \end{gathered}$	$M=4 ; d=2$	x_{k}	$\Gamma_{4}\left(x_{k}\right.$
		+3	+3
+19		-3	-3
0		-4.5	+3.5
	-3×-1	-6	+2
-30		+6.1	-1.9

$$
\begin{gathered}
\text { Maps uniform } \\
\text { Distribution } \\
{[-4 i \quad 4 i] i \in Z} \\
\text { to another uniform } \\
\text { Distribution } \\
{\left[\begin{array}{ll}
-4 & 4
\end{array}\right]}
\end{gathered}
$$

- Any two numbers with result on circle : $\quad x \oplus_{M} y \triangleq \Gamma_{M}(x+y)$
$x \ominus_{M} y \triangleq \Gamma_{M}(x-y)$
- Trivially:

$$
\begin{aligned}
& \Gamma_{M}(x+y)=\Gamma_{M}(x) \bigoplus_{M} \Gamma_{M}(y) \\
& \Gamma_{M}(x-y)=\Gamma_{M}(x) \bigoplus_{M} \Gamma_{M}(y)
\end{aligned}
$$

The Precoder

- Tomlinson - Harashima (and probably others) illustrates basics, not used to instructor's knowledge.

Approximately uniform
distribution over

$$
\left[-\frac{M d}{2}, \frac{M d}{2}\right)
$$

And i.i.d. ~ same as quantization noise

$$
\tilde{x}_{k}=x_{k}-\sum_{i=1}^{\infty} b_{i} \cdot x_{k-i}^{\prime}
$$

Implementation is for real baseband signals. $\quad x_{k}^{\prime}=\Gamma_{M}\left(\tilde{x}_{k}\right)=\Gamma_{M}\left(x_{k}-\sum_{i=1}^{\infty} b_{i} \cdot x_{k-i}^{\prime}\right)$

$$
z_{U, k}=\left(x_{k}^{\prime}+\sum_{i=1}^{\infty} g_{U, i} \cdot x_{k-i}^{\prime}\right)+e_{U, k}
$$

Another receiver modulo produces:

$$
\Gamma_{M}\left(z_{U, k}\right)=x_{k}+e_{U, k}^{\prime} \cong x_{k}+e_{U, k}
$$

No errors at transmitter!

$$
\begin{aligned}
\Gamma_{M}\left[z_{U, k}\right] & =\Gamma_{M}\left[\Gamma_{M}\left(x_{k}-\sum_{i=1}^{\infty} g_{U, i} \cdot x_{k-i}^{\prime}\right)+\sum_{i=1}^{\infty} g_{U, i} \cdot x_{k-i}^{\prime}+e_{U, k}\right] \\
& =\Gamma_{M}\left[x_{k}-\sum_{i=1}^{\infty} g_{U, i} x_{k-i}^{\prime}+\sum_{i=1}^{\infty} g_{U, i} \cdot x_{k-i}^{\prime}+e_{U, k}\right] \\
& =\Gamma_{M}\left[x_{k}+e_{U, k}\right] \\
& =x_{k} \oplus_{M} \Gamma_{M}\left[e_{U, k}\right] \\
& =x_{k}+e_{U, k}^{\prime}
\end{aligned}
$$

Receiver Block Diagram (no feedback)

(complex case has quadrature component in dotted lines)

- Receiver only needs (unbiased) feedforward filter (feedback already presubtracted in transmitter).

Transmit energy increases slightly

constellation

 energy\square

- The (Tomlinson) precoder output has (theoretically \& practically) continuous uniform dist'n and
- has uniform distribution over $\left[-\frac{M}{2} d,+\frac{M}{2} d\right]$. Mean-square (energy) $\frac{M^{2} \cdot d^{2}}{12}>$ PAM's $^{\prime} \frac{\left(M^{2}-1\right) \cdot d^{2}}{12}$.
- So there is a transmit energy effective loss of $\frac{M^{2}}{M^{2}-1}$.
- For binary, this is $4 / 3$ or 1.3 dB , as M increases, the loss becomes negligible.
- The same applies for SQ QAM with $M^{2} \rightarrow M$. Shaping is not possible with this precoder.

Laroia Precoder - accommodates shaping

- Laroia Precoder inverts channel independent of constellation size (used in voiceband modem standards).

- Energy increase is $\frac{\bar{\varepsilon}_{x}+\frac{d^{2}}{12}}{\bar{\varepsilon}_{x}}=\frac{M^{2}-1}{M^{2}-2}$, worse than Tomlinson (3/2 for $M=2$), preserves γ_{S} at large M.

Laroia's Receiver Circuit

- LP was used in some wireline standards. Fortunately, there is a better solution - see EE379B (Chapter 4), which can also preserve γ_{s}.
- In MIMO systems a "GDFE" is used (also see 379B, Chapter 5), and its error propagation is very finite and limited, so those GDFE systems can be used largely without error-propagation concern.

Return to $1+.9 \mathrm{D}^{-1}$ example

- $N_{f}=\infty ; \bar{\varepsilon}_{x}=1 ; N_{b}=1 ; \Delta=1 ; \sigma^{2}=.181$

Receiver

Partial Response \& Precoders

Section 3.8.2

Generally: "precoders" move decision feedback to the transmitter

Model ("equalize") channel to $h_{k} \in \mathbb{Z}$

- The precoder simplifies, and there is no transmit energy loss if $h_{k} \in \mathbb{Z}$.
- The receiver has ZF-DFE performance for this integer channel with no error propagation.
- A Viterbi Detector for ISI can be used - increases performance (often, not always) to $S N R_{M F B}$.
- Requires more receiver complexity.
- Often imposed at transmitter, but there may be an equalizer(with loss) to force the integer channel coefficients.
- Any external coding gain is largely lost unless iterative decoding is used (see Turbo Equalization at end of this L17.)

Partial-Response Channel Definition

- $H(D)$ has the monic finite-length form $H(D)=1+h_{1} \cdot D+h_{2} \cdot D^{2}+\cdots+h_{v} \cdot D^{v}$, AND
- $H(D)$ is minimum-phase (all roots/zeros outside or on unit circle), AND
- Integer coefficients $h_{k} \in \mathbb{Z}$.

- The channel may need equalization to such a response (See Section 3.13 - not taught).
- If the $H(D)$ is pretty close to actual channel, this equalization loss can be small.
- We're going to assume here the blue part is already done.

Precoding the PR's ZF-DFE is easy

Simple DFE operations

$$
\begin{aligned}
& \text { For } H(D)=1-D, z_{k}=y_{k}-\hat{x}_{k-1} \\
& \text { For } H(D)=1+D-D^{2}-D^{3}, z_{k}=y_{k}-\hat{x}_{k-1}+\hat{x}_{k-2}+\hat{x}_{k-3}
\end{aligned}
$$

- The original channel is minimum phase, monic, and ZF-DFE becomes trivial.
- The ZF-DFE has error propagation.
- The precoder is easier, has no energy increase, and preserves the constellation.

First, some popular PR channels

- Duobinary $H(D)=1+D$ - models lowpass channel.

- Modified Duobinary $H(D)=1-D^{2}$ - lowpass with DC notch "PR4/PRML" :), 3.13

- DC-Notch $H(D)=1-D$ - models highpass

A potential project: run Chap 7 dmin program for MLSD with Euclidean distance replace bdistance.m.

All have
0 dB loss w.r.t.
BINARY MFB

Extended Partial Response (Thapar)

- 1+D factors increase ISI / lowpass effect.
- $H(D)=(1+D)^{n} \cdot(1-D)$.
- EPR is often used in "recording" channels (disk).

MLSD losses are EPR4: 0 dB EPR6: 2.2 dB

EPR8: 3.7 dB EPR10: 4.5 dB

PR Precoders

- General error prob: $P_{e} \leq 2 \cdot\left(1-\frac{2}{M^{v+1}}\right) \cdot Q\left(\frac{d}{2 \sigma}\right)$
- For quadrature versions, see 3.8.6

Diversity Equalizers

Section 3.8.2

Multiple Received Signals

$$
\boldsymbol{y}_{h}(t)=\sum_{k} x_{k} \cdot \boldsymbol{h}(t-k T)+\boldsymbol{n}_{h}(t)
$$

- Multiple rcvr antennas (but single xmit antenna)
- Multiple repetitions (codes are form of diversity)
- MFB? (single no-ISI transmission)

$$
\boldsymbol{y}_{h}(t)=x_{0} \cdot \boldsymbol{h}(t)+\boldsymbol{n}_{h}(t)
$$

Noises independent, equal variance (requires scaling in practice to each \tilde{h}_{l})

$$
S N R_{M F B}=\frac{\bar{\varepsilon}_{x} \cdot\|\boldsymbol{h}\|^{2}}{\sigma^{2}}
$$

$$
\|\boldsymbol{h}\|^{2}=\sum_{l=0}^{L-1}\left\|\tilde{h}_{l}\right\|^{2}
$$

"RAKE" Receiver (P. Green)

- Infinite-length theory applies to the scalar $Y(D)=X(D) \cdot\|\boldsymbol{h}\|^{2} \cdot Q(D)+N(D)$.
- Receiver can be LE, DFE, MMSE or ZF (MLSD, etc).
- Can be implemented digitally with sufficiently high sampling rate preceding the matched filters.

2 Parallel Channels Example

$$
\|\boldsymbol{h}\|^{2}=1.81+\left(\frac{.181}{.164}\right) \cdot 1.64=2 \cdot 1.81=3.62
$$

$S N R_{M F B}=\frac{1 \cdot 3.62}{.181}=20(13) \mathrm{dB}$
$S N R_{M M S E-D F E, U}=.7082 \cdot 20-1=13.16(11.15 \mathrm{~dB})$

$$
\begin{aligned}
Q(D) & =\frac{1}{2(1.81)}\left[\left(1+.9 D^{-1}\right)(1+.9 D)+\frac{.181}{.164}(1+.8 D)\left(1+.8 D^{-1}\right)\right] \\
& =.492 D+1+.492 D^{-1} \\
& =.589 \cdot(1+.835 D) \cdot\left(1+.835 D^{-1}\right) \\
\tilde{Q}(D) & =.492 D+(1+1 / 20)+.492 D^{-1} \\
& =.7082 \cdot(1+.695 D) \cdot\left(1+.695 D^{-1}\right)
\end{aligned}
$$

- Once equivalent sum-channel is found, subsequent receiver analysis is the same as earlier (LE, DFE, even MLSD)

Combine with Precoder?

- Need $G_{U}(D)=1+\left(\frac{14.16}{13.16}\right) \cdot D=1+.75 \cdot D ;$ similarly $W_{U}(D)=\left(\frac{14.16}{13.16 \cdot 2.5637}\right) \cdot \frac{1}{1+695 \cdot D^{-1}} \cong \frac{.8}{1+.7 \cdot D^{-1}}$

- Precoder loss (binary) is $4 / 3$ or 1.3 dB , so $\mathrm{SNR}=11.2 \mathrm{~dB}-1.3=9.9 \mathrm{~dB}$.
- Note that multiple paths, with appropriate receiver design, always improves the performance w.r.t. either path individually

Multidimensional FIR Equalizer/DFE

- The design can again follow the single-channel case theory
- or use DFERake.m.
- "Diversity Receiver" is the modern name for it.

DFE Rake Program

```
>> help dfeRAKE
    function [dfseSNR,W,b]=dfeRAKE(l,h,nff,nbb,delay,Ex,noise);
    DFE design program for RAKE receiver
    Inputs
    | = oversampling factor
    L is derived as No. of fingers in RAKE (number of rows in h)
    h = pulse response matrix, oversampled at l (size),
        each row corresponding to a diversity path
    nff = number of feedforward taps for each RAKE finger
    nbb = number of feedback taps
delay = delay of system <= nff+length of p-2 - nbb
Ex = average energy of signals
noise = noise autocorrelation vector (size L x l*nff)
NOTE: noise is assumed to be stationary, but may be spatially
correlated
outputs:
dfseSNR = equalizer SNR, unbiased in dB
```

\qquad

- Few taps, matches infinite-length result.

```
>> hrake=[lll.9000 1.0000 0
    0 1.0500 0.8400];
>> [snr,W,b] = dfeRAKE(1,hrake,6,1,5,1,[.181 zeros(1,5) ; .181 zeros(1,5)])
snr}=11.1465\textrm{dB
W=
    0.0213
    -0.0027 0.0124 -0.0237 0.0382 0.4137 0.0000
b}=0.702
```


DFE Rake Plots

- The MS-WMF's try to align to on another as well as in time to their respective paths.

>> plot(conv(W(1,:),[. 91010$])$) >> hold
Current plot held
>> $\operatorname{plot}\left(\operatorname{conv}\left(W(2,:),(1.81 / 1.64)^{\star}\left[0 \begin{array}{lll}0 & 1 & .8\end{array}\right]\right)\right)$
- The equalized channel clearly looks causal in last 3 positions, and the two outputs align the large first tap.

Turbo Equalization

- These are packet adaptive equalizers where L16:26's channel identification (of H) or partial-response equalization (L17:13) is used.
- A MLSE (Viterbi Detector) for the channel ISI is used in stead of the feedback section.

- The channel's memory is treated like a code with the SOVA generation of soft information

The intrinsic channel information

- Initially, Viterbi/SOVA produces ratios:
- Sum of such terms if $M^{v}>2$.
- Evaluate each stage 0/1 among survivors.
- Later runs
- Include the code's soft extrinsic information in the Viterbi partialresponse updates.
- The MLSD on channel trellis is optimum - lower initial Pe
- But loses advantage as number of levels increase in PAM/QAM
- Precoder can reduce this loss, but not eliminate it.
- The code and channel may interleave order w.r.t. each other.
- The SNRmfb attained by Viterbi does not
- Tends to prevent transmit-filter optimization.

$$
\frac{e^{-\frac{1}{2 \sigma^{2}} \cdot\left\|\boldsymbol{y}-\boldsymbol{H} \cdot \boldsymbol{x}_{k, 0}\right\|^{2}}}{e^{-\frac{1}{2 \sigma^{2}} \cdot\left\|\boldsymbol{y}-\boldsymbol{H} \cdot \boldsymbol{x}_{k, 1}\right\|^{2}}}
$$

> Much better to use Decision Feedback \&
> Good Code

> Those can achieve reliable transmission at any rate up to capacity

End Lecture 17

