Lecture 16
 FIR Equalizer Design \& Software

March 5, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- Final
- Distribute end of class Thursday March 14
- Due 25 hours later - designed for in-class
- Few hours, but want to avoid time pressure
- PS8 Can read ahead and do PS8.4-5 (3.59 and 6.2 early)
- Or just use the solutions to study and leave them out of PS8
- Grader will adjust score accordingly on any PS8's to 35 problems (those attempted).
- Feedback (PS6)
- 9-14 hours
- $S N R_{M F B}=\bar{\varepsilon}_{x} \cdot\|h\|^{2} / \sigma^{2}$ is
- upper bound on best receiver SNR
- $S N R=\overline{\mathcal{E}}_{x} / \sigma^{2}$ is at transmitter.
- $\gamma_{M M S E-L E}=S N R_{M M S E-L E, U} / S_{S N R_{M F B}}$
- Loss w.r.t. best possible receiver SNR
- $\|h\|^{2}=\|p\|^{2}$ if you see a p anywhere.
- PS7 - Pos-real R(D) factors if PWC satisfied.
- See Appendix D for Proof.

FIR ZFE

- Design applies MMSE-LE with infinite SNR.
- Finite taps cannot guarantee zero ISI, so there is:

$$
\sigma_{Z F E-I S I}^{2}=\bar{\varepsilon}_{x}-w \cdot R_{Y x}
$$

```
H=[.9 100
0.910
0.9 1];
>> wzfe=H(:,4)'*inv(H*H')= 0.2702 -0.5434 0.8227
>> MMSEzfisi=1-wzfe*H(:,4) = 0.1773
```

- The FIR ZFE can still be biased - look at position of $x_{k-\Delta}$ so $\boldsymbol{w} \cdot \boldsymbol{H}$ in position $\Delta+1$

```
chan=wzfe*H= 0.2432 -0.2189 0.1970 0.8227
```

- Bias removal thus inverts, so $\omega_{F I R-Z F E}=1 / \boldsymbol{w} \cdot \boldsymbol{H} \cdot \mathbf{1}_{\Delta}$; this means residual ISI and noise increase by this factor also.
- Analysis must also add the scale the enhanced noise $\sigma_{Z F E}^{2}=w \cdot R_{n n} \cdot w^{*}$.
- Total is $\sigma_{F I R-Z F E}^{2}=\omega_{F I R-Z F E} \cdot\left(\bar{\varepsilon}_{x}-w \cdot R_{Y x}+w \cdot R_{n n} \cdot w^{*}\right)$

```
>> chan = wzfe*H % = 0.2432 -0.2189 0.1970 0.8227
>> wnobias=1/chan(4) %= 1.2155
>> SNRzfu=1/MMSEzfisi -1 % = 4.6402
>> (SNRzfu+1)/SNRzfu = 1.2155 % checks bias removal
>> enoise=.181*norm(wzfe)^2 = 0.1892
>> SNRall=10*log10(1/(wnobias*(MMSEzfisi+enoise))) = 3.512 dB (< 3.78 dB for MMSE-LE,U)
```


FIR DFE

Section 3.7.4

Extend FIR to DFE

- Extend MMSE FIR criterion to feedback $e_{k}=x_{k-\Delta}-\boldsymbol{w} \cdot \boldsymbol{Y}_{k}+\boldsymbol{b} \cdot \boldsymbol{x}_{k-\Delta-1} ; \quad \sigma_{M M S E-L E}^{2}=\mathbb{E}\left[\left|e_{k}\right|^{2}\right]$
- where $\boldsymbol{b}=\left[\begin{array}{lll}b_{1} & \cdots & b_{N_{b}}\end{array}\right]$ and
- Define $\widetilde{\boldsymbol{w}} \triangleq\left[\begin{array}{ll}\boldsymbol{w} & \boldsymbol{b}\end{array}\right]$ and $\widetilde{\boldsymbol{Y}}_{k} \triangleq\left[\begin{array}{c}Y_{k} \\ \boldsymbol{x}_{k-\Delta-1}\end{array}\right]$ and then $\sigma_{M M S E-L E}^{2}=\mathbb{E}\left\{\left|x_{k-\Delta}-\widetilde{\boldsymbol{w}} \cdot \widetilde{\boldsymbol{Y}}_{k}\right|^{2}\right\}$.
where J_{Δ} is an $\left(N_{f}+\nu\right) \times N_{b}$ matrix of 0 's and 1's, which has the upper $\Delta+1$ rows zeroed and an identity matrix of dimension $\min \left(N_{b}, N_{f}+\nu-\Delta-1\right.$) with zeros to the right (when $N_{f}+\nu-\Delta-1<N_{b}$), zeros below (when $N_{f}+\nu-\Delta-1>N_{b}$), or no zeros to the right or below exactly fitting in the bottom of $J_{\Delta}\left(\right.$ when $\left.N_{f}+\nu-\Delta-1=N_{b}\right)$.
- Auto and cross correlation are:
- $R_{\widetilde{\gamma} \widetilde{Y}} \triangleq\left[\begin{array}{cc}R_{Y Y} & \bar{\varepsilon}_{x} \cdot \boldsymbol{H} \cdot J_{\Delta} \\ \bar{\varepsilon}_{x} \cdot J_{\Delta}^{*} \cdot \boldsymbol{H}^{*} & \bar{\varepsilon}_{x} \cdot I_{N_{b}}\end{array}\right]$ and $R_{\widetilde{Y} x} \triangleq\left[\begin{array}{c}\bar{\varepsilon}_{x} \cdot \boldsymbol{H} \cdot \mathbf{1}_{\Delta} \\ 0\end{array}\right]$.

> | Detailed algebra in Sec 3.7.4 |
| :--- |
| Including some interesting |
| interpretations (see EE379B) |

- The solution is

- $\widetilde{\boldsymbol{w}}=R_{x \widetilde{\boldsymbol{Y}}} \cdot R_{\tilde{Y} \tilde{Y}}^{-1} ; \boldsymbol{w}=\boldsymbol{H}_{\Delta}^{*} \cdot\left(\boldsymbol{H} \cdot \boldsymbol{H}^{*}-\boldsymbol{H} \cdot \boldsymbol{J}_{\Delta} \cdot \boldsymbol{J}_{\Delta}^{*} \cdot \boldsymbol{H}_{\widetilde{w}}^{*}+\frac{1}{\varepsilon_{x}} \cdot R_{N N}\right)^{-1} ; \boldsymbol{b}=\boldsymbol{w} \cdot \boldsymbol{H} \cdot \boldsymbol{J}_{\Delta}$,
- $\sigma_{M M S E-D F E}^{2}=\overline{\mathcal{E}}_{x}-\boldsymbol{w} \cdot R_{\boldsymbol{Y} x} ; S N R_{M M S E-D F E, U}=\frac{\widetilde{\boldsymbol{w}} \cdot R_{\widetilde{\boldsymbol{Y}} x}}{\bar{\varepsilon}_{x}-\widetilde{\boldsymbol{w}} \cdot R_{\widetilde{\boldsymbol{Y}} x}} ; \gamma_{M M S E-D F E, U}=\frac{S N R_{M M S E-D F E, U}}{S N R_{M F B}}$.

Return to $1+.9 \mathrm{D}^{-1}$ example

- $N_{f}=2 ; \bar{\varepsilon}_{x}=1 ; N_{b}=1 ; \Delta=1 ; \sigma^{2}=.181$

```
>> H=
    0.9000 1.0000 0
        0.9000 1.0000
>> Jdel=[0;0;1]; % Nf x nu with top delta+1 rows zeroed
>> sigdfe=1-wdfe*H*onedel = 0.1542
>> SNRdfeu=10*log10(1/sigdfe-1) = 7.3911 (Wow!)
>> >> gammadfe=10-SNRdfeu = 2.6 dB
```

Now we're cooking!

Block Diagram of MMSE-DFE Example

- Feedforward section is "noncausal" (with delay largest tap is last), "maximum phase."
- This is consistent with infinite-length being anticausal.
- Implementation absorbs the bias-removal scaling into both taps and save one multiply
- Feedback is $B(D)=1+.76 \cdot D$ causal, and not ZF's .9 but already close to infinite length unbiased .725 .
- Unbiasing incorporation is:

[wdfe b]*(SNRdfeu+1)/SNRdfeu \%=	0.1767	0.8706	0.8706

Increase number of forward taps

8.4dB, fairly low complexity

There is still more yet Anyone guess where?

- This is typical of DFE on channels with severe ISI - much better than LE.
- We will deal shortly with issue of "suppose the decision is wrong" (error propagation).

Eliminates Noise Enhancement

- Noise enhancement no longer occurs.
- FF is almost all pass, except for MMSE trade of noise reduction with residual ISI.

dfecolor.m

Section 3.7.6

- This program created, and heavily used, by former students - many cases beyond class.

```
>> help dfecolor
[dfseSNR,w_t] = dfecolor(l,p,nff,nbb,delay,Ex,noise);
INPUTS
I = oversampling factor
h = pulse response, oversampled at l (size)
nff = number of feed-forward taps
nbb = number of feedback taps
delay = delay of system <= nff+length of p-2 - nbb
    if delay = -1, then this program chooses best delay
Ex = average energy of signals
noise = noise autocorrelation vector (size l*nff)
so white noise is [1 zeros( ( \({ }^{*}\) nff-1)]
NOTE: noise is assumed to be stationary
OUTPUTS
dfseSNR = equalizer SNR, unbiased in dB
\(\mathrm{w} \_\mathrm{t}=\) equalizer coefficients [ \(\mathrm{w}-\mathrm{b}\) ]
opt_delay = optimal delay found if delay \(=-1\) option used.
otherwise, returns delay value passed to function
created 4/96;
```

The program allows "colored" noise (as any noise whitening in practice absorbes into the equalizer)

Return to $H(D)=1+.9 \cdot D^{-1}$

- The command is $l=1 ; h=[.91], ; N_{f}=3 ; N_{b}=0 ; \Delta=-1 ; \bar{\varepsilon}_{x}=1$; noise $=.181 \&$ white
>> [SNRle, wle, msdelay]=dfecolor(1,[.9 1],3,0,-1,1,.181*[1 zeros(1,2)])
SNRIe $=3.7979 \mathrm{~dB}$
wle $=-\begin{array}{llll}-0.2277 & 0.5038 & 0.2243\end{array}$
msdelay $=2$
- For the MMSE-LE with 7 taps:
- For Slide 11's SNR graph:

```
[SNRle, wle, msdelay ]=dfecolor(1,[.9 1],7,0,-1,1,.181*[1 zeros(1,6)])
```

[SNRle, wle, msdelay]=dfecolor(1,[.9 1],7,0,-1,1,.181*[1 zeros(1,6)])
SNRle = 5.3956 dB
SNRle = 5.3956 dB
wle= -0.0789 0.1745
wle= -0.0789 0.1745
msdelay= 4

```
msdelay= 4
```

>> for nff=1:20 [dfseSNR(nff),~]=dfecolor(l,h,nff,nbb,-1,Ex,.181*[1 zeros(1,nff-1)])); end >> plot(dfseSNR)

```
>> plot(dfseSNR)
```

- For the 3-tap ZFE:

```
>> [SNRzfu,w ]=dfecolor(1,[.9 1],3,0,-1,1,0*[1 zeros(1,2)])
>> chan=conv(wzfe,[.9 1]) = 0.2432 -0.2189 0.1970 0.8227
>> SNRzfu=10^(SNRzfu/10) % = 4.6404
>> wnobias = (SNRzfu+1)/SNRzfu = 1.2155
>> MMSEzf=1/(SNRzfu+1) = 0.1773
>> enoise=.181*norm(wzfe)^2 = 0.1892
>> SNRall=10*}\operatorname{log}10(1/(wnobias*(MMSEzf+enoise))) = 3.5120 d
```

March 5, 2024

For the DFE with various number of taps

- 3-tap MMSE-DFE

```
>> [SNRdfeu, wdfe, msdelay ]=dfecolor(1,[.9 1],2,1,-1,1,.181*[1 zeros(1,1)])
SNRdfeu= 7.3911 dB
wdfe= 0.1556 0.7668 -0.7668 this is the feedback filter green is feedforward filter
msdelay = 1
```

- 7-tap MMSE-DFE

```
>> [SNRdfeu, wdfe, msdelay ]=dfecolor(1,[.9 1],6,1,-1,1,.181*[1 zeros(1,5)])
SNRdfeu= 8.3259
wdfe= 0.0290
msdelay= 5
```

- 3-tap ZF-DFE

```
>> [SNRzdfeu, wzdfe, msdelay ]=dfecolor(1,[.9 1],2,1,-1,1,0*[1 zeros(1,0)])
SNRzdfeu= 159.5459 dB
wzdfe= 0 1.1111 -1.1111 (10/9)
msdelay= 1
>>.181*(10/9)^2 = 0.2235
>> 10* }\operatorname{log}10(1/\mathrm{ ans ) = 6.5081 dB < }7.4\textrm{dB}<8.3\textrm{dB
ZF-DFE will need many feedforward taps to convert the channel to minimum phase and then work
properly, while MMSE-DFE sees such conversion as insignificant anyway w.r.t. noise.
```


Some other related uses

```
21 taps, LE?
>> [SNRlsu, wlse21, msdelay ]=dfecolor(1,[.9 1],21,0,-1,1,.181*[1
zeros(1,20)])
SNRlsu = 5.6830 dB
msdelay = 11
>>plot(wlse21)
[snrdfeu,wdfe7, del]=dfecolor(1,[.9 1],7,1,-1,1,.181*[1 zeros(1,6)])
snrdfeu = 8.3447
wdfe7 =
    -0.0184 0.0408
del=6
>> plot(wdfe7(1:7))
```

- Note LE delay $=10+1$ (center tap + nu positions) anticaus chan - Need to count from time zero for DFE, this is max phase.
- DFE delay is all FF section as anticausal (7-1 = 6).

7-tap MMSE-DFE FF Section

L16: 14
Stanford University

Complex Example?

```
>> [snrdfeu,wdfe7]=dfecolor(1,[-1/2 (1+i/4) -i/2],7,2,-1,1,.15625*[1 zeros(1,6)])
snrleu = 8.3651
wdfe7 =
0.0088+0.0019i 0.0248+0.0046i 0.0637+0.0128i 0.1319+0.0382i 0.2578+0.0395i 0.6417-0.0315i -0.4070 + 0.0000i
0.4227+0.4226i-0.0000-0.2035i
Delta =6
plot([0:6], abs(wdfe7(1:7))) ; plot([0:8],abs(conv(wdfe7(1:7),[-1/2 (1+i/4) -i/2])))
```


FSE Example for $1+.9 \mathrm{D}^{-1}$ interpolated

- Interpolate $1+.9 D^{\wedge}\{-1\}$ channel to $2 x$ (no longer "sharp cut off" at Nyquist)

```
newchan=interp([.9 1 zeros(1,8)],2); 0.5*norm(newchan)^2 % = 1.6461<1.81 % sets receiver input SNR the same.
>> plot(newchan)
>> [snrnewchan,wdfenewchan,delnewchan]=dfecolor(2,newchan,7,1,-1,1,.1646*[2 zeros(1,13)])
snrnewchan= 8.8578
wdfenewchan = 0.0133
delnewchan = 5
```


Why isn't fb tap $=.633$ (or .73 if unbiased)? What is this .55 ? It's actually outperforming earlier infinite-length MMSE-DFE, why?

Error Propagation

Section 3.7.7

Error Propagation

- If one error is made, then another is likely because of its feedback.
- This error propagation can seriously reduce performance if not addressed properly.
- With large coded constellations with small individual subsymbol's $d_{\text {min,ss }}$ (not the overall code $d_{\text {min }}$):
- Error propagation has higher probability (so may require a "list" of feedback outputs).
- FDTS problem on PS7.

There are many good solutions that eliminate or reduce error prop, but each can introduce additional issues.

Reminder/Refresher

Gain = 1

Example

- $1+.9 \cdot D^{-1}$ channel has $G_{U}(D)=1+.7 D$, so
- $y_{k}=x_{k}+.7 \cdot x_{k-1}$ with zero noise,
- $z_{U, k}=y_{k}-.7 \cdot \hat{x}_{k-1}$.

k	-1	0	1	2	3
x_{k}	-1	+1	-1	+1	+1
y_{k}	-	0.3	-0.3	0.3	1.7
$z_{U, k}$	-	-0.4	0.4	-0.4	2.4
\hat{x}_{k}	+1	-1	+1	-1	+1

- One error produces 3 more in this case:
- 1 error $\rightarrow 2$ errors with prob $1 / 2$,
- 1 error $\rightarrow 3$ errors with prob $1 / 4$,
- 1 error $\rightarrow 4$ errors with prob $\frac{1}{8}$, \&
- Infinite burst has probability 0 .

$$
N_{e}=\sum_{i=1}^{\infty} i \cdot\left(\frac{1}{2}\right)^{i-1}=2
$$

Ave N_{e} only doubled, but nasty burst can occur.

State-Machine Error Model

- It is possible to compute (with possibly enormous analysis calculations) the error-propagation-increased P_{e}.
$M=2$ with $N_{f b}=2$

- Error events: $\boldsymbol{\epsilon}_{k-1}=\left[\begin{array}{lll}x_{k-1}-\hat{x}_{k-1} & \cdots & x_{k-N_{b}}-\hat{x}_{k-N_{b}}\end{array}\right]$
- For $M=2$, each error-event element can be ± 2 or 0 .
- $\exists(2 M-1)^{N_{b}}$ possible states; each has $d_{\min }$ offset in P_{e} calculation.
- Analysis finds the state machine's Markov stationary probability distribution (largest eigenvalue's vector for transition-probability matrix, see Appendix A).
- Then, a Markov-stationary-prob weighted sum of all states' P_{e} 's leads to an exact overall P_{e} calculation.
- It can take much calculation - see Section 3.7.7.
- Designers prefer to avoid error propagation (and not then worry about computing it, nor incurring degradation).

Look ahead (general finite-delay tree search)

Look a bit complex?

It is, but sometimes done. There are other easier solutions though, although each has its own issue.

- FDTS essentially computes M^{v} FB section outputs and checks error magnitude on all. It uses the smallest.
- FDTS ensures (finite v) that $S N R_{M M S E-D F E, U}$ is attained (no error propagation loss), but complex.
- This is an intermediate step towards Chapter 7's sequence detection for ISI (Section 7.2).

FTDS computes a DFE soft metric for use in iterative decoding as extrinsic information from DFE.

Use packets with guard period.

Live Data	Dum my	Live Data	Dum my

- Data stream contains large packets with a few dummy symbols at end.
- Rate loss is few percent or less.
- Any error propagation stops at packet end.

Issues:

1. Slight rate loss
2. Delay of packet if outer code used.

- If packet length is shorter than P_{e}^{-1}, then erred packets occur infrequently.
- Outer code then (maybe with interleaving) obtains final desired performance.

Adaptive Equalizers \& Channel ID

Section 3.14

Continuous Adaptation

- Assuming decisions are correct ("decision-directed").
- The Least Mean Square (LMS) algorithm (Widrow-Hoff):

$$
\begin{gathered}
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}-\frac{\mu}{2} \cdot \nabla \boldsymbol{w}_{k} \mathbb{E}\left[\left|e_{k}\right|^{2}\right] \quad \begin{array}{r}
e_{k}=\hat{x}_{k-\Delta}-\boldsymbol{w}_{k}^{*} \cdot \boldsymbol{y}_{k} \\
\nabla_{\boldsymbol{w}_{k}}\left|e_{k}\right|^{2}=-2 \cdot e_{k}^{*} \cdot \boldsymbol{y}_{k} \\
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\mu \cdot e_{k}^{*} \cdot \boldsymbol{y}_{k}
\end{array} \quad \begin{array}{c}
\text { Orth principle - e, y orthogonal } \\
\text { stops updating }
\end{array}
\end{gathered}
$$

Look familiar?

One neuron with ReLU.

Indeed ReLU's came from adaptive equalizers (early 60's).

DFE Version

- Use the same embedding concept
- $\widetilde{\boldsymbol{w}} \rightarrow\left[\begin{array}{ll}\boldsymbol{w} & b\end{array}\right]$
- Same update equation on $\widetilde{\boldsymbol{w}}$.

$$
0 \leq \mu \leq \frac{1}{N_{f f} \cdot \mathcal{E}_{\boldsymbol{y}}+N_{f b} \cdot \mathcal{E}_{\boldsymbol{x}}}
$$

- The step size , μ ?
- Leaky LMS?
- $\beta \approx .99$
- This ensures stability.
- Difficult channels (those with severe ISI) cause the LMS to converge slowly.
- Convergence accelerates through weighting the gradient estimate by $R_{y y}^{-1}$.
- But this means the receiver has to estimate $R_{y y}^{-1}$.
- It may be better to find \boldsymbol{h} instead \rightarrow channel identification.

Packet Adaptation

- Packet of \bar{N} dimensions
- In frequency domain here (no MIMO).
- Steepest descent and Hessian simplify
- Entire band is excited during training
- Usually
- Just divide Output of rcvr FFT by known input and average
- The (usually periodic) training sequence repeats L times
- Here assumed periodic

$$
\hat{H}_{n}=\frac{1}{L} \sum_{l=1}^{L} \frac{Y_{l, n}}{X_{l, n}}
$$

known periodic training sequence
u_{k} measures
all distortion y_{k}
(pulse response)

$$
y_{k}=h_{k} * x_{k}+u_{k}
$$

Norm Tap Error

- Parsevals $\|\boldsymbol{h}\|^{2}=\|\boldsymbol{H}\|^{2}$
- And all other frequency-domain/time-domain vectors.

$$
\hat{H}_{n}=H_{n}+\sum_{l=1}^{L} \frac{U_{l, n}}{L \cdot X_{l, n}}
$$

$$
\begin{aligned}
\mathrm{NTE} & \triangleq E\left\{\|\boldsymbol{h}-\hat{\boldsymbol{h}}\|^{2}\right\}=E\left\{\|\boldsymbol{\delta}\|^{2}\right\} \\
& =E\left\{\|\boldsymbol{H}-\hat{\boldsymbol{H}}\|^{2}\right\}=E\left\{\|\boldsymbol{\Delta}\|^{2}\right\} \\
& =\sum_{n=0}^{\bar{N}-1}\left|H_{n}-\hat{H}_{n}\right|^{2}=\sum_{k=0}^{\bar{N}-1}\left|h_{k}-\hat{h}_{k}\right|^{2}
\end{aligned}
$$

$$
\Delta_{n}=-\sum_{l=1}^{L} \frac{U_{l, n}}{L \cdot X_{l, n}}
$$

$$
\begin{aligned}
E_{n} & =Y_{n}-\hat{H}_{n} \cdot X_{n}=\Delta_{n} \cdot X_{n}+U_{n} \\
& =U_{n}+\frac{1}{L} \cdot \sum_{l=1}^{L} U_{l, n} \cdot e^{\jmath\left(\theta_{n}-\theta_{l, n}\right)}
\end{aligned}
$$

$$
S N R_{\widehat{H}, n}=\frac{R_{x x, n} \cdot\left|H_{n}\right|^{2}}{R_{e e, n}-R_{u u, n}}=\frac{S N R_{n}}{1 / L}=L \cdot S N R(\text { all } n)
$$

- Same in all dimensions
- The $L=40$ leaves 0.1 dB gain-estimation error

Good training sequence?

$$
x_{k}=e^{\jmath \frac{2 \pi}{N} k^{2}}
$$

Noise Estimation

- Average the errors in frequency domain

$$
\hat{\sigma_{n}^{2}}=\frac{1}{L} \cdot \sum_{l=1}^{L}\left|E_{l, n}\right|^{2}
$$

$$
\operatorname{var}\left(\hat{\sigma_{n}^{2}}\right)=\frac{1}{L^{2}}\left(3 \cdot L \cdot \sigma_{n}^{4}-L \cdot\left(\sigma_{n}^{2}\right)^{2}\right)=\frac{2}{L} \sigma_{n}^{4}
$$

- Noise miss only reduces with sqrt(L).

$$
\sqrt{2 / L} \cdot \sigma_{n}^{2}
$$

End Lecture 16

