Lecture 15
 Decision Feedback Equalizers

February 29, 2024
JOHN M. CIOFFI
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements
- PS7 due next Wed (March 6) - last required
- PS8 is optional (but relatively easy) and due March 12 (solutions immediate)
- Today
- Continue Decision Feedback MMSE
- Examples
- The Whitened Matched Filter and Zero Forcing
- FIR Implementation

Decision Feedback (successive decoding)

Section 3.6

Add previous-decision use

- DFE Subtracts (cancels) trailing ISI

- MMSE optimizes both feedforward, $W(D)$, and feedback, $B(D)$, filters.

Definition 3.6.1 [Mean Square Error (for DFE)] The MMSE-DFE error signal is

$$
\begin{equation*}
e_{k}=x_{k}-z_{k}^{\prime} \tag{3.218}
\end{equation*}
$$

The MMSE for the MMSE-DFE is

$$
\begin{equation*}
\sigma_{M M S E-D F E}^{2} \stackrel{\Delta}{=} \min _{w_{k}, b_{k}} \mathbb{E}\left[\left|x_{k}-z_{k}^{\prime}\right|^{2}\right] \tag{3.219}
\end{equation*}
$$

- Subtraction of ISI eliminates noise enhancement (almost entirely, even though only "past" ISI),
- but lowers received message energy w.r.t. MFB.

MMSE-DFE Solution

- MMSE estimates are linear (see Appendix D), so for any given $B(D)$ acting on x_{k} :

$$
W_{M M S E-D F E}(D)=B(D) \cdot W_{M M S E-L E}(D)=\frac{B(D)}{\|h\| \cdot\left[Q(D)+\frac{1}{S N R_{M F B}}\right]}
$$

Full math

 details in 3.6$$
E_{M M S E-D F E}(D)=B(D) \cdot E_{M M S E-L E}(D)
$$

- Further

$$
R_{e e, d f e}(D) \quad=B(D)
$$

$$
R_{e e, l e}(D)
$$

LE error autocorellation

LE error autocorellation

- Optimization considers all causal monic $\left(b_{0}=1\right) B(D)$.
- The LE had autocorrelation

$$
R_{e e, l e}(D)=\frac{\frac{\mathcal{N}_{0}}{2}}{\|h\|^{2} \cdot\left(Q(D)+1 / S N R_{M F B}\right)}
$$

USE: Canonical (Spectral) Factorization (D.3.4)

- Realizes a spectrum magnitude with white input into a causal, and 1-to-1 invertible, filter.

stationary

- The power spectral density of x_{k} is $R_{x x}(D)$ with $D=e^{-j \omega T}$.
- Find $G_{x}(D)$?

$$
R_{x x}(D)=\underbrace{G_{x}(D)}_{\substack{\text { monic } \\ \text { min-phase }}} \cdot \underbrace{S_{x}}_{\substack{>0 \\ \text { real }}} \cdot G_{x}^{*}\left(D^{-*}\right)
$$

$$
G_{x}(D)=1+g_{1} \cdot D+g_{2} \cdot D^{2}+\cdots
$$

All poles/zeros outside unit circle

$$
G_{x}^{*}\left(D^{-*}\right)=1+g_{1}^{*} \cdot D^{-1}+g_{2}^{*} \cdot D^{-2}+\cdots
$$

All poles/zeros inside unit circle

Spectral factorization

of $R_{x x}(D)$

Paley Weiner Criterion

- Well, but we cannot always do this factorization (even if it is a power spectral density); it must satisfy:
- No "dead zones"

$$
\frac{1}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}}\left|\ln R_{x x}\left(e^{-\jmath \omega}\right)\right| d \omega<\infty
$$

(a) - yes	$\frac{\square}{-\pi}$		$\begin{gathered} S_{x}\left(e^{-j \omega T}\right)=1 \\ G_{x}(D)=1 ; S_{x}=\bar{S}_{x}=1 \end{gathered}$
(b) - yes			$\begin{gathered} S_{x}\left(e^{-j \omega T}\right)=2-2 \cdot \cos (\omega T) \\ G_{x}(D)=1-D ; S_{x}=\bar{S}_{x}=1 \end{gathered}$
(c) - no			$\begin{gathered} \text { Needs resampling @ } \frac{\zeta}{T} \\ \text { Then @ } \frac{\zeta}{T} ; G_{x}(D)=1 ; \bar{S}_{x}=1 \end{gathered}$

Back to DFE MMSE (error autocorrelation)

$$
Q(D)+\frac{1}{S N R_{M F B}}=\gamma_{0} \cdot G(D) \cdot G^{*}\left(D^{-*}\right)
$$

- Always satisfies PWC for finite $S N R_{M F B}>0$.

$$
\begin{aligned}
\bar{R}_{e e}(D) & =\frac{B(D) \cdot B^{*}\left(D^{-*}\right)}{Q(D)+1 / S N R_{M F B}} \cdot \frac{\frac{\mathcal{N}_{0}}{2}}{\|h\|^{2}} \\
& =\frac{B(D)}{G(D)} \cdot \frac{B^{*}\left(D^{-*}\right)}{G^{*}\left(D^{-*}\right)} \cdot \frac{\frac{\mathcal{N}_{0}}{2}}{\gamma_{0} \cdot\|h\|^{2}}=\frac{\frac{\mathcal{N}_{0}}{2} \cdot\|b / g\|^{2}}{\gamma_{0} \cdot\|h\|^{2}} \\
\bar{r}_{e e, 0} & \geq \frac{\frac{\mathcal{N}_{0}}{2}}{\gamma_{0} \cdot\|h\|^{2}}
\end{aligned}
$$

The fractional polynomial inside the squared norm b/g is necessarily monic and causal, and therefore the squared norm has a minimum value of 1 .

Minimum when $B(D)=G(D)$

Minimum value for MSE-DFE

MMSE-DFE Best Settings

- Detailed math to check previous slides sketch is in Section 3.6.

Lemma 3.6.1 [MMSE-DFE] The MMSE-DFE has feedforward section

$$
\begin{equation*}
W(D)=\frac{1}{\|h\| \cdot \gamma_{0} \cdot G^{*}\left(D^{-*}\right)} \tag{3.232}
\end{equation*}
$$

(realized with delay, as it is strictly noncausal) and feedback section

$$
\begin{equation*}
B(D)=G(D) \tag{3.233}
\end{equation*}
$$

$$
\begin{gathered}
\text { MS-WMF }= \\
\text { WMF, if infinite SNR }
\end{gathered}
$$

where $G(D)$ is the unique canonical factor of:

$$
\begin{equation*}
Q(D)+\frac{1}{S N R_{M F B}}=\gamma_{0} \cdot G(D) \cdot G^{*}\left(D^{-*}\right) \tag{3.234}
\end{equation*}
$$

This text also calls the joint matched-filter/sampler/W(D) combination in the forward path of the DFE the "Mean-Square Whitened Matched Filter (MS-WMF)". These settings for the MMSE-DFE minimize the MSE as was shown above.

- Take log of factorization:

$$
\begin{align*}
\frac{T}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \ln \left(Q\left(e^{-\jmath \omega T}\right)+\frac{1}{S N R_{M F B}}\right) \cdot d \omega & =\ln \left(\gamma_{0}\right)+\frac{T}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \ln \left(G\left(e^{-\jmath \omega T}\right) \cdot G^{*}\left(e^{-\jmath \omega T}\right)\right) \cdot d \omega \\
& =\ln \left(\gamma_{0}\right) \tag{3.236}
\end{align*}
$$

- Salz Formula (1977):

$$
\sigma_{M M S E-D F E}^{2}=\frac{\frac{\mathcal{N}_{0}}{2}}{\|h\|^{2}} \cdot e^{-\frac{T}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \ln \left(Q\left(e^{-\jmath \omega T}\right)+\frac{1}{S N R_{M F B}}\right) \cdot d \omega}
$$

- Finally, back to our receiver SNR-based analysis:

$$
S N R_{M M S E-D F E}=\frac{\overline{\mathcal{E}}_{\boldsymbol{x}}}{\sigma_{M M S E-D F E}^{2}}=\gamma_{0} \cdot S N R_{M F B}
$$

$$
\begin{gathered}
\hline S N R_{M M S E-D F E, U}=S N R_{M M S E-D F E}-1 \\
\leq S N R_{M F B}
\end{gathered}
$$

Unbiased MMSE-DFE

- Final result

$$
G_{U}(D)=1+\frac{S N R_{M M S E-D F E}}{S N R_{M M S E-D F E, U}} \cdot[G(D)-1]
$$

- Can absorb unbiasing multiply into feedforward filter
- Must always perform at least as well as LE, why?

Examples

Section 3.6.4

Return to $H(D)=1+.9 \cdot D^{-1}$

- Refresh $\|h\|^{2}=1.81$, SNR $_{M F B}=10$

$$
H(\omega)=\left\{\begin{array}{cl}
\sqrt{T} \cdot\left(1+.9 e^{\jmath \omega T}\right) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega|>\frac{\pi}{T}
\end{array}\right.
$$

$$
\begin{aligned}
& Q(D)+\underbrace{1 / 10=(\underbrace{\frac{1}{1.81}}_{\|h\|^{2}}) \cdot\left[9 \cdot D^{-1}+1.991+.9 \cdot D\right]}_{1 / S N R_{M F B}} \\
& =\underbrace{785 \cdot \underbrace{(1+.6334 \cdot D)}_{G(D)=B(D)} \cdot \underbrace{\left(1+.6334 \cdot D^{-1}\right)}_{G\left(D^{-1}\right)}}_{\gamma_{0}} \\
& W(D)=\frac{1}{\sqrt{1.81}(.785)\left(1+.633 \cdot D^{-1}\right)}=\frac{.9469}{1+.633 \cdot D^{-1}}
\end{aligned}
$$

```
>> 7.85/6.85*.6334 = 0.7259
```

>> .9469*(7.85/6.85) $=1.0851$

```
%Q is positive real - roots are in
```

%Q is positive real - roots are in
conjugate-reciprocal pairs.
conjugate-reciprocal pairs.
>> roots([.9 1.991 .9]) =
>> roots([.9 1.991 .9]) =
-1.5788
-1.5788
-0.6334
-0.6334
>> .9/(1.81*.6334)= 0.7850
>> .9/(1.81*.6334)= 0.7850
% follows from last (or first) coefficient

```
% follows from last (or first) coefficient
```

- Performance $S N R_{M M S E-D F E, U}=.785 \cdot 10-1=6.85 \cdot(8.4 \mathrm{~dB})$
- 1.6 dB less than MFB -
- $G_{U}(D)=(1+.7259 \cdot D)$

Example continued

FF filter magnitude

Feedback filter magnitude

- FF is single pole (anticausal) IIR filter, while FB is two-tap causal FIR filter (really 1 tap implemented).
- The anticausal FF is implemented by FIR approximation with delay.

Eliminates Noise Enhancement

- The MS-WMF is nearly flat (so noise/error stays pretty flat, and error itself is white.
- It is nearly an "all-pass" filter (MS-WMF just adjusts phase to minimum phase channel):
- Minimum phase channel has maximum energy at left for all phase equivalents (helpful for best "feedback" to have no advance ISI).

Add a Code?

- BICM, 64-state code with 4PAM
- Maintains $\bar{b}=1, r=\frac{1}{2}$
- $\mathcal{E}_{4 P A M}=5=5 \cdot \mathcal{E}_{2 P A M}$, so 7 dB loss
- $d_{\text {free }}=10$, and each code gets $r=1 / 2$ resources
- $r \cdot d_{\text {free }} \cdot S N R=6.4+7=13.4 \mathrm{~dB}$

Thanks to DFE we've maintained the data rate And reduced error prob to $P_{e} \cong 10^{-6}$

- See a problem perhaps?
- Decision delay of code means FB input could be incorrect

Complex Example?

$$
h_{k}=\frac{1}{\sqrt{T}} \cdot\left[-\frac{1}{2}\left(1+\frac{\jmath}{4}\right)-\frac{\jmath}{2}\right] .
$$

The $S N R_{M F B}=10 \mathrm{~dB}$. Then,

$$
\tilde{Q}=\frac{-.25 \jmath \cdot D^{-2}+.625(-1+\jmath) \cdot D^{-1}+1.5625(1+.1)-.625(1+\jmath) \cdot D+.25 \jmath \cdot D^{2}}{1.5625}
$$

```
>>p= transpose(roots([-i/4 (5/8)*(-1+i) 1.5625*(1+.1) (5/8)*(-1-i) i/4])) =
    2.2130-0.1356i-0.1356+2.2130i 0.4502-0.0276i-0.0276+0.4502
>> gamma0}=(\textrm{i}/4)/(\textrm{p}(3)*\textrm{p}(4)*1.5625)=0.7865-0.0000
>> SNRdfeu=10*log10(10*gamma0-1)= 8.3665 dB
```

$\gg \operatorname{conv}([1-p(3)],[1-p(4)])=$
$1.0000+0.0000 \mathrm{i}-0.4226-0.4226 \mathrm{i}-0.0000+0.2034 \mathrm{i}$
>> nh=sqrt(1.5625);
$\gg 1 /\left(\right.$ nh * gamma0 $)=1.0171$
$W(D)=\frac{1.0171}{1-.4226(1+j) \cdot D^{-1}+.2034 j \cdot D^{-2}}$
$G(D)=(1-(.4502-j .0276) \cdot D) \cdot(1-(-.0276+.4502 j) \cdot D)$

- $S N R_{M M S E-D F E, U}=.7865 \cdot 10-1=7.88 \cdot(\sim 8.4 \mathrm{~dB}$ also - coincidence $)$.
$\gg G U=1+(S N R d f e u+1) /(S N R d f e u)^{\star}(1-\operatorname{conv}([1-p(3)],[1-p(4)]))=1.0000 \quad 2.5926+0.4731 \mathrm{i} \quad 2.1195-0.2277 \mathrm{i}$

Whitened Matched Filter and the ZF-DFE

Section 3.6.3

ZF-DFE

- Set $S N R_{M F B}=\infty$, so then the spectral factorization is directly of $Q(D)=\eta_{0} \cdot P_{c}(D) \cdot P_{c}^{*}\left(D^{-*}\right)$.
- $B(D)=P_{c}(D) ; \eta_{0}=1 /\left\|P_{c}\right\|^{2}$
- $\mathrm{W}(D)=\left[\eta_{0} \cdot\|h\| \cdot P_{c}^{*}\left(D^{-*}\right)\right]^{-1}$
- $S N R_{Z F-D F E}=\eta_{0} \cdot S N R_{M F B}$
- However, the spectral factorization is not guaranteed to exist (might not satisfy PWC).
- Subtle mistake is "ZF-DFE has no noise enhancement so same as MMSE-DFE" ?
- Zero noise enhancement is true ONLY if the entire transmit band is energized.
- And still not as good as MMSE-DFE even then.

The issue is that best transmit spectrum almost never satisfies PWC

- We'll see as 379 's progress that this optimized-input modulator needs care with DFEs.
- Mistakes dwarf coding-gain improvements.
- Indeed, using nonero-gap code magnifies the loss.

Return to $H(D)=1+.9 \cdot D^{-1}$

- Refresh $\|h\|^{2}=1.81, S N R_{M F B}=10$

$$
H(\omega)=\left\{\begin{array}{cl}
\sqrt{T} \cdot\left(1+.9 e^{\jmath \omega T}\right) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega|>\frac{\pi}{T}
\end{array}\right.
$$

$$
\begin{aligned}
Q(D) & +1 / 10=\left(\frac{1}{1.81}\right) \cdot\left[9 \cdot D^{-1}+1.81+.9 \cdot D\right] \\
& =\underbrace{.5525}_{\eta_{0}} \cdot \underbrace{(1+.9 \cdot D)}_{P_{c}(D)=B(D)} \cdot \underbrace{\left(1+.9 \cdot D^{-1}\right)}_{P_{c}\left(D^{-1}\right)}
\end{aligned}
$$

$$
W(D)=\frac{\sqrt{1.81}}{1+.9 \cdot D^{-1}} \quad M W F=\frac{1+.9 \cdot D}{1+.9 \cdot D^{-1}} \quad(\text { all pass filter, exactly })
$$

- Performance $S N R_{Z F-D F E}=.5525 \cdot 10=5.25 \cdot(7.4 \mathrm{~dB})$

L phases, FSE - same, but for FF only

- There are l phases of input samples for each symbol-sample-time output ("polyphase system")

$$
y_{i}(k T)=y(k T-i T / l), i=0, \ldots, l-1
$$

- Each phase has a D-Transform $Y_{i}(D)=H_{i}(D) * X(D)+N_{i}(D)$
- This is a form of what is called "diversity" where several channels carry the same input to different outputs

$$
\underbrace{\boldsymbol{Y}(D)}_{l \times 1}=\underbrace{\boldsymbol{H}(D)}_{l \times 1} \cdot X(D)+\underbrace{\boldsymbol{N (D)}}_{l \times 1}
$$

- Retains all timing-offset benefits, matched-filter absorption, etc.

FIR Implementation

Section 3.7

Sample Fast enough - absorb MF

- Continue polyphase channel model l / T where $l>1$:
- Initial example is integer (more generally rational fraction).
- Channel model is FIR (like with DMT earlier).
$y(k-i T / l)=\sum_{m=k-v}^{k} x_{m} \cdot h\left(k T-\frac{[l-1] T}{l}-m T\right)+n(k-i T / l) \quad x_{k} \xrightarrow{\bullet} \xrightarrow{\longrightarrow}$
- Each mini channel corresponds to one of the l sampling phases per symbol period.

Creating a matrix FIR channel

- Creates a vector channel $\boldsymbol{y}_{k}=\sum_{m=k-v}^{k} x_{m} \cdot \boldsymbol{h}_{k-m}+\boldsymbol{n}_{k}=\sum_{m=0}^{v} x_{k-m} \cdot \boldsymbol{h}_{m}+\boldsymbol{n}_{k}$
- where

$$
\boldsymbol{y}_{k}=\left[\begin{array}{c}
y(k T) \\
y(k-T / l) \\
\vdots \\
y(k-(l+1) T / l)
\end{array}\right] \quad \boldsymbol{h}_{k}=\left[\begin{array}{c}
h(k T) \\
h(k-T / l) \\
\vdots \\
h(k-(l+1) T / l)
\end{array}\right] \quad \boldsymbol{n}_{k}=\left[\begin{array}{c}
n(k T) \\
n(k-T / l) \\
\vdots \\
n(k-(l+1) T / l)
\end{array}\right]
$$

- channel model $\boldsymbol{y}_{k}=\underbrace{\left[\begin{array}{llll}\boldsymbol{h}_{0} \boldsymbol{h}_{1} & \cdots & \boldsymbol{h}_{v}\end{array}\right]}_{\boldsymbol{h}} \cdot\left[\begin{array}{c}x_{k} \\ x_{k-1} \\ \vdots \\ x_{k-v}\end{array}\right]+\boldsymbol{n}_{k}$
- The values in the FIR equalizer's span are $\underbrace{}_{\boldsymbol{X}_{k}}$

$$
\boldsymbol{Y}_{k}=\left[\begin{array}{c}
\boldsymbol{y}_{k} \\
\boldsymbol{y}_{\boldsymbol{k}-1} \\
\vdots \\
\boldsymbol{y}_{k-N_{f}+1}
\end{array}\right]=\left[\begin{array}{ccccccc}
\boldsymbol{h}_{0} & \boldsymbol{h}_{1} & \cdots & \boldsymbol{h}_{\nu} & 0 & \cdots & 0 \\
0 & \boldsymbol{h}_{0} & \boldsymbol{h}_{1} & \cdots & \boldsymbol{h}_{\boldsymbol{v}} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \cdots & 0 \\
0 & \cdots & 0 & \boldsymbol{h}_{0} \boldsymbol{h}_{1} & \cdots & \boldsymbol{h}_{v}
\end{array}\right]\left[\boldsymbol{X}_{k}+\boldsymbol{N}_{k} \quad \boldsymbol{X}_{\boldsymbol{k}} \longrightarrow \boldsymbol{H} \xrightarrow{\boldsymbol{Y}_{k}} \xrightarrow{\text { FIR }} \xrightarrow{Z_{k}} \text { SBS } \hat{x}_{k}\right.
$$

Delay $\Delta-$ FIR is causal, estimates $\widehat{x}_{k-\Delta}$

- Implemented receivers must have delay Δ (making FIR filters causal)

- Try to estimate $x_{k-\Delta}$

$$
\Delta \approx \frac{N_{f}+v}{2}
$$

Not (usually) possible to have $\Delta=0$

- Precise delay may need to be optimized by trying a few (or via algorithm later).

MMSE-LE Design

- The error signal is $e_{k}=x_{k-\Delta}-z_{k} ; \quad \sigma_{M M S E-L E}^{2}=\mathbb{E}\left[\left|e_{k}\right|^{2}\right]$
- Orthogonality principle: $\mathbb{E}\left[e_{k} \cdot \boldsymbol{Y}_{k}\right]=0 \rightarrow \mathrm{MMSE}$

Detailed algebra in

- $\boldsymbol{w}=\boldsymbol{R}_{\boldsymbol{x Y}} \cdot \boldsymbol{R}_{Y Y}^{-1}$ and
- $\boldsymbol{R}_{X Y}=\mathbb{E}\left[\boldsymbol{x}_{k-\Delta} \cdot \boldsymbol{Y}_{k}^{*}\right]$
- $\boldsymbol{R}_{\boldsymbol{Y} Y}=\mathbb{E}\left[\boldsymbol{Y}_{k} \cdot \boldsymbol{Y}_{k}^{*}\right]$
- $\boldsymbol{R}_{x Y}=\bar{\varepsilon}_{x} \cdot H_{\Delta+1}^{*}$ basically energy $\mathrm{x}(\Delta+1)^{\text {th }}$ row of \boldsymbol{H}^{*} - $\boldsymbol{R}_{Y Y}=\bar{\varepsilon}_{x} \cdot \boldsymbol{H} \cdot \boldsymbol{H}^{*}+l \cdot \frac{\mathcal{N}_{0}}{2} \cdot \boldsymbol{R}_{N N}$

$$
\begin{gathered}
\boldsymbol{w}=H_{\Delta+1}^{*} \cdot\left(\boldsymbol{H} \cdot \boldsymbol{H}^{*}+\frac{l}{S N R} \cdot \boldsymbol{R}_{N N}\right)^{-1} \\
\sigma_{M M S E-L E}^{2}=\bar{\varepsilon}_{x}-\boldsymbol{w} \cdot \boldsymbol{R}_{\boldsymbol{Y} X}
\end{gathered}
$$

$$
S N R_{M M S E-L E}=\frac{\bar{\varepsilon}_{x}}{\sigma_{M M S E-L E}^{2}}
$$

$$
S N R_{M M S E-L E, U}=S N R_{M M S E-L E}-1
$$

$$
\gamma_{M M S E-L E}=\frac{S N R_{M M S E-L E, U}}{S N R_{M F B}}
$$

Return to $1+.9 \mathrm{D}^{-1}$ example

- Oversampling $l=1,3$ taps $N_{f}=3, \overline{\mathcal{E}}_{x}=1$, and $v=1$

```
>> H=[.9 1 0 0
0.910
0 0.9 1];
>> Hdelstar=[[0}00110]***H'= % 3 'rd row since Delta = 2
    0 1.0000 0.9000
>> RxY=Hdelstar;
>> RYY=H*H'+.181*eye(3) =
    1.9910 0.9000 0
    0.9000}1.9910\quad0.900
        0}0.90001.991
>> w=RxY*inv(RYY) =
    -0.2277 0.5038 0.2243
>> MMSE=1-w*RxY' = 0.2943
>> SNRU=10* }\operatorname{log}10(1/MMSE-1)=3.7979 dB
```


3-tap FIR MMSE-LE and output

3-tap MMSE-LE output channel

- This FIR MMSE LE tries to flatten channel, but not enough taps.

7-taps looks better

7-tap example MMSE-LE

7-tap MMSE-LE output channel example

- There will be diminishing performance improvement as length increases.


```
>> for n=1:20
[dfeSNR(n),~ ]=dfecolor(1,[-1/2 1+i/4 -i/2],n,0,-1,1,.15625*[1 zeros(1,n-1)]);
end
```

- More on dfecolor appears shortly.
- Here 8 taps is enough.

FIR ZFE

- Design applies MMSE-LE with infinite SNR.
- Finite taps cannot guarantee zero ISI, so there is:

$$
\sigma_{Z F E-I S I}^{2}=\bar{\varepsilon}_{x}-\boldsymbol{w} \cdot R_{\boldsymbol{Y} x}
$$

- The FIR ZFE can still be biased - look at position of $x_{k-\Delta}$ so $\boldsymbol{w} \cdot \boldsymbol{H}$ in position $\Delta+1$

$$
\text { chan=wzfe*H= } \begin{array}{lllll}
0.2432 & -0.2189 & 0.1970 & 0.8227
\end{array}
$$

- Bias removal thus inverts, so $\omega_{F I R-Z F E}=1 / \boldsymbol{w} \cdot \boldsymbol{H} \cdot \mathbf{1}_{\Delta}$ this means residual ISI and noise increase by this factor also
- Analysis must also add the scale the enhanced noise $\sigma_{Z F E}^{2}=\boldsymbol{w} \cdot R_{\boldsymbol{n} \boldsymbol{n}} \cdot \boldsymbol{w}^{*}$
- Total is $\sigma_{F I R-Z F E}^{2}=\omega_{F I R-Z F E} \cdot\left(\overline{\mathcal{E}}_{x}-\boldsymbol{w} \cdot R_{\boldsymbol{Y} x}+\boldsymbol{w} \cdot R_{\boldsymbol{n} \boldsymbol{n}} \cdot \boldsymbol{w}^{*}\right)$

```
>> chan=wzfe*H % = 0.2432 -0.2189 0.1970 0.8227
>> wnobias=1/chan(4) %= 1.2155
>> MMSEzf=1-wzfe*H(:,4) % = 0.1773
>> SNRzfu=1/MMSEzf -1 %= 4.6402
>> SNRzfu=1/sigzfe2 % = 0.6730
>> (SNRzfu+1)/SNRzfu = 1.2155 % checks bias removal
>> enoise=.181*norm(wzfe)^2 = 0.1892
>> SNRall=10*log10(1/(wnobias*(MMSEzf+enoise))) = 3.0813 dB (< 3.78 dB for MMSE-LE,U)
```


End Lecture 15

