Lecture 14 Linear Equalizers
 February 27, 2024

John M. Cioffi
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS6 due tomorrow
- FB PS5:
- 10-18 hours
- Interleavers less covered, but on homework
- LLRs?

```
Problem Set 7 = PS7 due Wednesday March 6
    1. 3.7 DFE is even better
    2. 3.8 Noise Predictive DFE
    3. 3.19 Two-Band Equalizer
    4. 3.23 Finite-Delay Tree Search
    5. 3.28 IIR channel DFE
```

- Today
- Finish Zero-Forcing Equalization (3.4)
- MMSE-LE (3.5)
- Fractional Spacing and Passband Equalization (3.5)

Zero-Forcing Equalization (ZFE)

Section 3.4

ZFE - Just filter with channel inverse

- The ZFE Forces ISI to Zero.

```
Don't confuse Q's ! (sorry)
```


- Calculate $\sigma_{Z F E}^{2}=\frac{\mathcal{N}_{0}}{2} \cdot \frac{w_{Z F E, 0}}{\|h\|}$; where $w_{Z F E, 0}$ is the time-zero value of $w_{Z F E, k}$.
- SNR of SBS then is

$$
S N R_{Z F E}=\frac{\bar{\varepsilon}_{X}}{\sigma_{Z F E}^{2}}=S N R_{M F B} \cdot \gamma_{Z F E} .
$$

Loss Factor $\gamma_{Z F E}$

$$
\gamma_{Z F E}^{-1}=\frac{T}{2 \pi} \cdot \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{d \omega}{Q\left(e^{-j \omega T}\right)}=\left[q^{-1}\right]_{0}=w_{Z F E, 0} \cdot\|h\|
$$

Our Example channel: $H(D)=1+.9 \cdot D^{-1}$

$$
\begin{array}{r}
H(\omega)=\left\{\begin{array}{cl}
\sqrt{T} \cdot\left(1+.9 e^{\jmath \omega T}\right) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega|>\frac{\pi}{T}
\end{array} \quad \Phi_{h}(\omega)=\left\{\begin{array}{cl}
\sqrt{\frac{T}{1.81}} \cdot\left(1+.9 \cdot e^{\jmath \omega T}\right) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega|>\frac{\pi}{T}
\end{array}\right.\right. \\
\|h\|^{2}=1.81 \quad \sigma^{2}=0.181 \quad S N R_{M F B}=10(=10 \mathrm{~dB} \text { also })
\end{array}
$$

- Real baseband, so is symmetric lowpass about DC.
- It has significant ISI (2nd large tap).
- The SNR is already not so good.
- SNRmfb is 10 dB .
- So, design needs a code outside the receiver!
- One designed for AWGN.

Corresponding ZFE Spectrum and Time Response

- Edge noise increases 50 dB (with respect to center).
- Very long response (delay, or complexity if realized as FIR).
- The integral of $W_{z f e}\left(e^{-j \omega T}\right)$ can be done in closed form for this example $\rightarrow \sigma_{Z F E}^{2}=5.26 \cdot \sigma^{2}$ (see Example 3.4.1)

$$
\gamma_{Z F E}=10 \log _{10}(1.81 \cdot 5.26) \approx 9.8 \mathrm{~dB}
$$

Big Loss!

How about 1+.9D¹ Eye?
 eye_eq.m software

- Thank former Students Dr. Jungsub Byun and Dr. Moshe Malikin (at web site).

```
>> help eye_eq
function []= eye_eq(h,Ex,noise_var,eq_type);
INPUTS
h = pulse response, example [a*\mp@subsup{D}{}{\wedge}-1+1] ==> [a 1]
Ex = average energy of signals, Ex_bar
noise_var = noise variance (sigma squared)
eq_type = Z => ZERO FORCING (may have numerical issues, so use M with zero
noise instead.)
    M => MMSE
    D => MMSE-DFE
OUTPUTS, some are graphs
outputs: pe_(zfe/mmle_dfe/mmse_le)= probability of error with Equalizer from N
input 2PAM[+1/-1] data sequences
outputs: pe_no_eq = probability of error without Equalizer
outputs: dfseSNR = receiver(equalizer)SNR, unbiased in dB
outputs: pe_SNR = error probability estimation from receiver(equalizer)SNR, Pe =
Q function of sqrt(dfseSNR)
this function shows Frequency response of the channel p and equalizer filter, eye
diagram, receiver SNR, and probability of error.
N = 250; % # of input 2 PAM[+1/-1] data, you can increase the N of input data
sequences in order to calculate the Pe accurately
created 1/06 by Jungsub Byun and M. Malkin EE379A
```


Eye Diagram, before EQ and After, 1+.9D-1

>> eye_eq([.9 1], Ex,noise,'M')

- Essentially ZFE produces "perfect" eye opening, but of course the noise is huge (not shown).

Matlab assistance for this equalizer

- Find $Q(D)$ and invert

```
>> [r,p,k]=residue([sqrt(1.81) 0],[.9 1.81 .9])
\(r=\)
    7.8676
    -6.3728
\(\mathrm{p}=\)
    -1.1111
    -0.9000
\(\mathrm{k}=[\mathrm{]} \% \mathrm{k}\) is only relevant if num degree \(\geq\) denom degree
```

- $p(m)$ and ${ }^{1} / p^{*}(m)$ are always both ZFE poles.
- because $Q(D)$ and $W(D)$ are pos-real (autocorrelation functions).
- Choose $|p(m)| \leq 1$ for the following, with corresponding $r(m)$,
- So choose -. 9 and -6.3728.

$$
\begin{aligned}
Q\left(e^{-\jmath \omega T}\right) & =\frac{1}{T} \cdot\left|\Phi_{h}(\omega)\right|^{2} \\
& =\frac{1}{1.81}\left|1+.9 \cdot e^{\jmath \omega T}\right|^{2} \\
& =\frac{1.81+1.8 \cdot \cos (\omega T)}{1.81} \\
Q(D) & =\frac{.9 \cdot D^{-1}+1.81+.9 \cdot D}{1.81}
\end{aligned}
$$

$$
W(D)=\frac{\sqrt{1.81} \cdot D}{.9+1.81 \cdot D+.9 \cdot D^{2}}
$$

- Write for each pair m as

- $W(D)=k+\frac{r(m) / p(m)}{1-p(m) \cdot D}+\frac{r(m) \cdot D^{-1}}{1-p^{*}(m) \cdot D^{-1}} \rightarrow k \cdot \delta_{k}-r(m) \cdot[p(m)]^{k-1} \cdot u_{k}-r(m) \cdot\left[p^{*}(m)\right]^{-k-1} \cdot u_{1-k}$

$$
W(D)=\underbrace{\frac{7.0809}{1+.9 \cdot D}}_{\text {causal, } k=0 \ldots \infty}-\underbrace{\frac{6.3728 \cdot D^{-1}}{1+.9 \cdot D^{-1}}}_{\text {anticausal, } k=-1 \ldots-\infty} \quad W_{0}=7.0809 \quad \gg 10^{\star} \log 10\left(7.0809^{\star} \operatorname{sqrt}(1.81)\right)=9.8 \mathrm{~dB}
$$

Complex Baseband ISI Example

$$
h(t)=\frac{1}{\sqrt{T}}\left\{-\frac{1}{2} \cdot \operatorname{sinc}\left(\frac{t+T}{T}\right)+\left(1+\frac{\jmath}{4}\right) \cdot \operatorname{sinc}\left(\frac{t}{T}\right)-\frac{\jmath}{2} \cdot \operatorname{sinc}\left(\frac{t-T}{T}\right)\right\}
$$

$$
\sigma^{2}=0.15625
$$

$\gg \mathrm{h}=[-1 / 2(1+\mathrm{i} / 4)-\mathrm{i} / 2]$;
$\gg \operatorname{conv}(h, h(e n d:-1: 1))=0.0000+0.2500 \mathrm{i}-0.3750-0.6250 \mathrm{i}$
$0.9375+0.5000 i-0.3750-0.6250 i \quad 0.0000+0.2500 i$
$\gg \operatorname{norm}(\mathrm{h})^{\wedge} 2=1.5625$

$$
S N R_{M F B}=10(=10 \mathrm{~dB} \text { also })
$$

$$
W_{Z F E}(D)=\frac{\sqrt{1.5625}}{\left(-.25 \jmath \cdot D^{-2}+.625(-1+\jmath) \cdot D^{-1}+1.5625-.625(1+\jmath) \cdot D+.25 \jmath \cdot D^{2}\right)}
$$

- Magnitude shows channel inversion

Eye Diagram, before EQ and After, complex

eye_eq(h,1,0,'M')

- However, as with real case, there is enhanced noise.

Examine this complex-BB equalizer

- $W_{z f e}(D)$ directly as $1 /\|h\| \cdot Q(D)$

$$
W_{Z F E}(D)=\frac{\sqrt{1.5625}}{\left(-.25 \jmath \cdot D^{-2}+.625(-1+\jmath) \cdot D^{-1}+1.5625-.625(1+\jmath) \cdot D+.25 \jmath \cdot D^{2}\right)}
$$

```
>> [r,p,k]=residue([sqrt(1.5625) 0 0],[-i/4 (5/8)*(-1+i) 1.5625 -5/8*(1+j) i/4]);
>> transpose(r) = -1.9608+1.1765i 1.1765-1.9608i 0.2941+0.4902i 0.4902+0.2941i
>> transpose(p) = 2.0000-0.0000i -0.0000 + 2.0000i -0.0000+0.5000i 0.5000+0.0000i
>> k = []
>> r(3)/p(3)= 0.9804-0.5882i
>>r(4)/p(4)=0.9804 + 0.5882i
```

- $W(D)=k+\frac{r(m) / p(m)}{1-p(m) \cdot D}+\frac{r(m) \cdot D^{-1}}{1-p^{*}(m) \cdot D^{-1}} \rightarrow r(m) \cdot[p(m)]^{k-1} \cdot u_{k}-r(m) \cdot\left[p^{*}(m)\right]^{-k-1} \cdot u_{1-k}(\mathrm{k}>0$ terms $)$
causal, $k=0 \ldots \infty$

$$
w_{0}=1.9608
$$

See text for written details

$$
\gamma_{Z F E}=10 \cdot \log _{10}\left(w_{0} \cdot\|h\|\right)=3.9 \mathrm{~dB}
$$

Time Domain Equalizer

- Little easier channel (smaller loss w.r.t. MFB) - shorter equalizer.

MMSE-Linear Equalizer

Section 3.5

Linear Equalizer to minimize ISI/noise impact

- Like ZFE, SBS = Symbol By Symbol (detector) - not ML, not optimum, but maybe much cheaper.
- All the QAM/PAM, coding formulas apply to this new channel $\bar{b} \cong \frac{1}{2} \cdot \log _{2}(1+S N R)$, so receiver converts to AWGN (or tries to).
- Linear filter that minimizes Mean-Square Error (maximizes SNR).
- Clearly MMSE-LE can't do any worse than ZFE, and often should do better with nonzero noise.

MMSE Criterion

- The $S N R=\frac{\varepsilon_{x}}{\mathbb{E}\left[\left|z_{k}-x_{k}\right|^{2}\right]}$ is maximum.
- Output is biased when $W(D)$ is selected to minimize MSE.
- Appendix D's orthogonality principle, error is orthogonal to input, find $W(D)$.

$$
\mathbb{E}\left[E(D) \cdot Y^{*}\left(D^{-*}\right)\right]=0
$$

- Solution (see Sec 3.5) is

$$
W_{M M S E-L E}(D)=\frac{\bar{R}_{x y}(D)}{\bar{R}_{y y}(D)}=\frac{1}{\|h\| \cdot\left(Q(D)+1 / S N R_{M F B}\right)} \quad \begin{gathered}
R_{x y}(D)=\mathbb{E}\left[X(D) \cdot Y^{*}\left(D^{-*}\right)\right] \\
R_{y y}(D)=\mathbb{E}\left[Y(D) \cdot Y^{*}\left(D^{-*}\right)\right]
\end{gathered}
$$

- Differs from ZFE only in the extra $1 / S N R_{M F B}$ denominator term, which conditions/controls noise increase.
- Can't divide by zero or very small number

Limits noise enhancement

- Any very low energy region is offset by the $1 /$ SNRmfb term.
- If $S N R=\infty$, then $Z F$ and MMSE-LE are the same.
- Reminder

- Recall the best value of α, when the receiver minimizes MSE, is $\frac{S N R}{S N R-1}$.
- This boosts desired signal as well as distortion/noise, but in a way so that receiver's decision regions based on $p_{z_{k} / x_{k}}$ are correct.
- The correct new SNR is always (with any MMSE receiver bias removal) $S N R_{U}=S N R-1$.

If no noise, bias removal is $\alpha=1$.

MMSE Conclusion / Use

- So ok to use MMSE, just remove the bias before entering the SBS detector, and now we have P_{e}

$$
P_{e} \approx N_{e} \cdot Q\left(\sqrt{\kappa \cdot S N R_{M M S E-L E, U}}\right) \quad \kappa=\frac{3}{2^{2 \bar{b}}-1} \text { for SQ QAM/PAM }
$$

- Maximum value would occur when there is no ISI so that all signal energy at receiver MF output sampler is

$$
S N R_{M M S E, U} \leq \frac{\bar{\varepsilon}_{x} \cdot\|h\|^{2}}{\sigma^{2}} \triangleq \operatorname{SNR}_{M F B}
$$

```
Matched-Filter
    Bound SNR
```

- Bound attained with no ISI, so $Q(D)=1$ in

$$
Y(D)=\|h\| \cdot Q(D) \cdot X(D)+N(D)
$$

Two Major Repeated Concepts for the Designer

1. $P_{e} \approx N_{e} \cdot Q\left(\sqrt{\kappa \cdot S N R_{M M S E-L E, U} \cdot \gamma}\right)$ where γ is any coding gain.
2. Minimize MMSE, orthogonality, error and channel output

Return to $1+.9$ D$^{-1}$ ISI Example

- Reproduce ZFE commands for MMSE-LE

```
>> [r,p,k]=residue([sqrt(1.81) 0],[.9 1.991 .9]);
>> transpose(r) = 2.4962-1.0014
>> transpose(p) = -1.5788-0.6334
>> k= []
>>r(2)/p(2)=1.5811
\[
W(D)=\underbrace{\frac{1.5811}{1+.6334 \cdot D}}_{\text {causal, } k=0 \ldots \infty}-\underbrace{\frac{1.0014 \cdot D^{-1}}{1+.6334 \cdot D^{-1}}}_{\text {anticausal, } k=-1 \ldots-\infty}
\]
\[
\text { gamma= 10-5.7= } 4.3 \mathrm{~dB} \ll 9.8 \mathrm{~dB}!!
\]
```

```
>> w0=r(2)/p(2) %= 1.5811
>> SNRLE=1/(w0*.181/sqrt(1.81)) %= 4.7013
>> SNRLEU=SNRLE-1 %= 3.7013
>> 10*log10(SNRLEU) 5%= 5.6835 dB
>> WUO=(SNRLE/SNRLEU)*w0 %= 2.0082
```

$w_{U, 0} \cong 2$
5.5 dB !: MMSE effect can be large (\sim turbo/Idpc/GRAND fight for .2 dB)

Equalizer Comparison

- Less enhancement visible, and some ISI visible in equalized response.

Equalizer Outputs

- Less enhancement is visible, but some ISI is visible in equalized response.

Complex Example

$$
W(D)=\frac{\sqrt{1.5625}}{-.25 \jmath \cdot D^{-2}+.625(-1+\jmath) \cdot D^{-1}+1.5625(1+.1)-.625(1+\jmath) \cdot D^{1}+.25 \jmath \cdot D^{2}}
$$

```
> [r,p,k]=residue([sqrt(1.5625) 0 0],[-i/4 (5/8)*(-1+i) 1.5625*(1+.1) -5/8*(1+j) i/4]);
>> transpose (r) = 1.0079-1.5025i -1.5025+1.0079i 0.1662+0.3284i 0.3284+0.1662i
>> transpose(p) = -0.1356+2.2130i 2.2130-0.1356i-0.0276+0.4502i 0.4502-0.0276i
>> k= []
>> A=r(3)/p(3)= 0.7042-0.4123i
>> B=r(4)/p(4)= 0.7042 + 0.4123i
>> w0=A+B= 1.4084 + 0.0000i
SNRLE=1/(w0*.181/sqrt(1.81)) = 5.2776
SNRLEU=SNRLE-1 = 4.2776
10*log10(SNRLEU)=6.312 dB
```

- Loss is $3.7 \mathrm{~dB}<$ ZFE's 3.9 dB
- Why so small?

ISI is less

- See the vertical scale for ZFE
- MMSE is better when an equalizer is really needed

MMSE-LE for Complex Channel

Fractionally Spaced Equalizers

Section 3.5.4

Fractional Spacing (integer multiple l)

- There is some channel passband energy above the (designer selected) Nyquist frequency.
- Then simple sampling (without matched filter) at symbol rate is not sufficient.
- Designer wants the equalizer to absorb the matched filter.

L phases

- There are l phases of input samples for each symbol-sample-time output ("polyphase system")

$$
y_{i}(k T)=y(k T-i T / l), i=0, \ldots, l-1 .
$$

- Each phase has a D-Transform $Y_{i}(D)=H_{i}(D) * X(D)+N_{i}(D)$
- This is a form of what is called "diversity" where several channels carry the same input to different outputs.

$$
\underbrace{\boldsymbol{Y}(D)}_{l \times 1}=\underbrace{\boldsymbol{H}(D)}_{l \times 1} \cdot X(D)+\underbrace{\boldsymbol{N}(D)}_{l \times 1}
$$

- There is an $l \times 1$ channel-output vector for each symbol period, creating an FSE with l times more coefficients:

$$
\begin{gathered}
\mathbb{E}\left[E(D) \cdot \boldsymbol{Y}^{*}\left(D^{-*}\right)\right]=\boldsymbol{R}_{x \boldsymbol{Y}}(D)-\boldsymbol{W}(D) \cdot \boldsymbol{R}_{\boldsymbol{Y} \boldsymbol{Y}}(D)=0 \\
\boldsymbol{R}_{x \boldsymbol{Y}}(D) \triangleq \mathbb{E}\left[X(D) \cdot \boldsymbol{Y}^{*}\left(D^{-*}\right)\right]=\overline{\mathcal{E}}_{\boldsymbol{x}} \cdot \boldsymbol{H}^{*}\left(D^{-*}\right) \\
\boldsymbol{R}_{\boldsymbol{Y} \boldsymbol{Y}}(D) \triangleq \mathbb{E}\left[\boldsymbol{Y}(D) \cdot \boldsymbol{Y}^{*}\left(D^{-*}\right)\right]=\overline{\mathcal{E}}_{\boldsymbol{x}} \cdot \boldsymbol{H}(D) \cdot \boldsymbol{H}^{*}\left(D^{-*}\right)+\ell \cdot \frac{\mathcal{N}_{0}}{2} \cdot I
\end{gathered}
$$

MMSE-FSE otherwise follows same format

$$
W(D)=\boldsymbol{R}_{x \boldsymbol{Y}}(D) \cdot \boldsymbol{R}_{\boldsymbol{Y} \boldsymbol{Y}}^{-1}(D)=\boldsymbol{H}^{*}\left(D^{-*}\right) \cdot\left[\boldsymbol{H}(D) \cdot \boldsymbol{H}^{*}\left(D^{-*}\right)+\ell / S N R\right]^{-1}
$$

The corresponding error sequence has autocorrelation function

$$
\bar{R}_{e e}(D)=\overline{\mathcal{E}}_{\boldsymbol{x}}-\boldsymbol{R}_{x} \boldsymbol{Y}(D) \cdot \boldsymbol{R}_{\boldsymbol{Y} \boldsymbol{Y}}^{-1}(D) \boldsymbol{R}_{\boldsymbol{Y}_{x}}(D)=\frac{\ell \cdot \frac{\mathcal{N}_{0}}{2}}{\boldsymbol{H}^{*}\left(D^{-*}\right) \cdot \boldsymbol{H}(D)+\ell / S N R}
$$

The MMSE is then computed as
Time zero value is found from integration of Fourier Transform

$$
\operatorname{MMSE}_{M M S E-F S E}=\frac{T}{2 \pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{\ell \cdot \frac{\mathcal{N}_{0}}{2} d \omega}{\left\|\boldsymbol{H}\left(e^{-\jmath \omega T}\right)\right\|^{2}+\ell / S N R}=\mathrm{MMSE}_{M M S E-L E}
$$

- FSE only computes $1 / l$ FSE outputs (so the complexity only grows by l).
- Analysis no longer needs the $Q(D)$ explicitly because sampling rate is twice highest frequency.
- Everything else follows like earlier symbol-spaced, but matched filter is implemented within the FSE.

Timing Phase compensation

- The FSE needs to know only the symbol rate (i.e, the frequency $\frac{1}{T}$), $k T+t_{0}$.
- The FSE's sampling device can use any time sampling time t_{0} - any phase is ok.

$$
y\left(k T+t_{0}\right)=\sum_{m} x_{m} \cdot\|h\| \cdot q\left(k T-m T+t_{0}\right)+n_{k},
$$

which corresponds to $q(t) \rightarrow q\left(t+t_{0}\right)$ or $Q(\omega) \rightarrow Q(\omega) e^{-\jmath \omega t_{0}}$. For the system with sampling offset,

$$
Q\left(e^{-\jmath \omega T}\right) \rightarrow \frac{1}{T} \cdot \sum_{n} Q\left(\omega-\frac{2 \pi n}{T}\right) \cdot e^{-\jmath\left(\omega-\frac{2 \pi n}{T}\right) t_{0}},
$$

- A $t_{0} \neq 0$ simply changes the matched-filter/sampler.
- This is tacitly included (optimized) in the FSE.

Rational fraction versions

- Suppose $l=2$ is too fast (think optical/fiber transmission)?
- Can we just do $\left(l^{\prime} / l\right) \cdot T$ where $l^{\prime}<l$ and both are integers (like $3 T / 4$)?
- Yes, there will be $l(4)$ input phases per every $l^{\prime}(3)$ output phases
- This creates 12 (more generally least-common multiple of l and l^{\prime}) different equalizers over 3 symbol periods of 4 samples (interpolated, ADC does not run this fast usually) samples each. Each equalizer is different (just as the l phases of T / l were.
- Fractions closer to 1 create yet more different equalizers for the different phases.
- The FSE becomes cyclostationary and the equalizers' performance needs to be averaged
- This simplified when $l^{\prime}=1$.

$$
\|\boldsymbol{H}\|^{2} \rightarrow{ }^{1} / l^{\prime} \cdot\|\boldsymbol{H}\|^{2} \text { in the integrals and formulas }
$$

Passband Equalization "Direct Conversion"

- As long as we're absorbing things into high sampling rate filters that decimate to symbol rate
- Essentially the equalizer for Chapter 1's carrierless amplitude-phase modulation.
- Why not get the Hilbert Transform / Phase splitter in there also (if carrier is synchronized as rational fraction to symbol clock)? (See Section 1.3.6.2.)

$$
\begin{aligned}
x_{A}(t) & =\sum_{k} x_{k} \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c} t} \\
& =\sum_{k} x_{k} \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c} t} \cdot e^{-\jmath \omega_{c} k T} \cdot e^{+\jmath \omega_{c} k T} \\
& =\sum_{k}\left(x_{k} \cdot e^{+\jmath \omega_{c} k T}\right) \cdot \varphi(t-k T) \cdot e^{\jmath \omega_{c}(t-k T)} \\
& =\sum_{k} \breve{x}_{k} \cdot \varphi_{A}(t-k T)
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{A}(t) & =\varphi(t) \cdot e^{\jmath \omega_{c} t} \text { and } \\
\breve{x}_{k} & =x_{k} \cdot e^{+\jmath \omega_{c} k T}
\end{aligned}
$$

- $y_{A}(t)=\sum_{k} \breve{x}_{k} \cdot h_{A}(t-k T)+n_{A}(t)$
- This estimates (using fractional spacing at sufficiently high sampling rate to be twice analytic signal's bandwidth) \breve{x}_{k} with MMSE-FSE directly. Then rotate by $e^{-j \omega_{c} k T}$ to get \hat{x}_{k} (1-to-1 reversibility).
- Modern wireless systems often do this below 6 GHz .

End Lecture 14

