

Lecture 13 Intersymbol Interference, MMSE, & SNR February 22, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

- Announcements
 - PS5 due today
 - PS6 next Wednesday
 - PS8 remains optional can substitute if better grade for an earlier
 - Final is take-home March 14-15

- Today
 - Intersymbol Interference (3.1)
 - Receiver SNR (3.2)
 - Nyquist Criterion and pulse shaping (3.3) ٠
 - Zero-Focing Equalization (3.4)

Now with good codes – we can use them with (little) AWGN channels Keeping in mind that bandwidth/dimensions may be limited.

Intersymbol Interference and Equalization

13	2/22	Intersymbol Interference, MMSE, & SNR	3.1-3,3	-/-	
14	2/27	Linear Equalizers	3.4-3.5	7/6 (2/23)	
15	2/29	Decision Feedback Equalizers	3.6	-/-	
16	3/5	FIR Equalizer Design & Software	3.7	8/7 (3/6)	
17	3/7	Precoders and Diversity	3.8-9	-/-	
18	3/12	Transmit Optimization and Waterfilling	3.11-12	-/8	
Eab 22, 2024			L	L13: 2	

Feb 22, 2024

Intersymbol Interference

Section 3.1

Feb 22, 2024

Pulse Response and Intersymbol Interference

- Channel stretches basis functions
- Successive symbols

•
$$x_0 \rightarrow x_0 \cdot h(t)$$

•
$$x_1 \rightarrow x_1 \cdot h(t-T)$$

•
$$x_2 \rightarrow x_2 \cdot h(t-2T)$$

Two successive symbols, opposite sign

- Amplitude reduces
- Peak shifts
- *d_{min}* reduces

So how bad is it?

Feb 22, 2024

Depends on how fast

- As T decreases, R increases,
- but the amplitude shrinks further.
- This is not an equal-factor trade of bandwidth/dimensions for energy.
 - Designer is forced to take power.

Sec 3.1.2

Noise Equivalent Channel Review

But WAIT!

This filter only exists, and is 1-to-1 causal and causally invertible, IF

Theorem 1.3.6 [Paley-Wiener Criterion] If $\int_{-\infty}^{\infty} \frac{|\ln S_n(f)|}{1+f^2} df < \infty , \qquad (1.434)$ then there exists a G(f) satisfying below with a realizable inverse. (Thus the filter g(t) is a 1-to-1 mapping).

$$\left[\bar{\mathcal{S}}_n(f)\right]^{-1} = |G(f)|^2$$

- See Appendix D on canonical factorization of autocorrelation/power spectra:
 - Such a filter exists for any noise typically found in practice.
 - Notice this says "noise" does not necessarily apply to systems that optimize transmit power spectra.

January 16, 2024

Section 1.3.7.2

Nonwhite, Noise Equivalent to ISI

- Narrowband noise is equivalent to channel with frequency notch (significant ISI).
 - Sharp edge in radio band \rightarrow long ISI effect in h(t).

Feb 22, 2024

Sec 3.1.2.1

L13: 9

EE379 ISI Model

• The overall channel filtering includes the receiver's matched pulse-response filter:

Recalled that the matched filter maximizes SNR.

Feb 22, 2024

- The sampled MF (at times kT, i.e. the symbol rate) is a sufficient statistic:
 - Nothing is lost in samples from continuous time see proof in Section 3.1.
- Equivalent sampled model:

Example pulse and peak distortion

PS5.5 (3.24)

$$h(t) = \sqrt{\frac{1}{T}} \cdot \left\{ \operatorname{sinc}\left(\frac{t}{T}\right) + .25 \cdot \operatorname{sinc}\left(\frac{t-T}{T}\right) - .125 \cdot \operatorname{sinc}\left(\frac{t-2T}{T}\right) \right\}$$

• Pulse response has two nonzero ISI samples and no energy outside $f \in \left[-\frac{1}{2T}, \frac{1}{2T}\right]$.

•
$$\varphi_{h,k} = \begin{bmatrix} 1 & .25 & -.125 \end{bmatrix} / \sqrt{1 + .25^2 + .125^2}$$

- $q_k = \varphi_h(t) * \varphi_h^*(-t)|_{t=kT} = [-.1159 \ .2029 \ 1 \ .2029 \ -.1159]$
- Peak Distortion

$$\mathcal{D}_{p} \triangleq |x|_{max} \cdot ||h|| \cdot \sum_{\substack{m \neq 0}} |q_{m}|$$
$$P_{e} \leq N_{e} \cdot Q \left[\frac{||h|| \cdot \frac{d_{min}}{2} - \mathcal{D}_{p}}{\sigma}\right]$$
$$|x|_{max} = 3 \text{, this is}$$

• With 4PAM and $|x|_{max} = 3$, this is

Feb 22, 2024

 $\mathcal{D}_p = 3 \cdot \|h\| \cdot (.1159 + .2029 + .2029 + .1159) = 3 \cdot \sqrt{1.078} \cdot .6376 \cong 2.0.$

This is really large Pe degradation, and overly pessimistic.

L13: 11

Mean Square Distortion

- The worst-case pattern leading to peak distortion may have very low probability.
- Computing D_p over all patterns is complex.
- Instead use Mean-Square Distortion:

$$P_e \cong N_e \cdot Q \left[\frac{\|h\| \cdot d_{min}}{2 \cdot \sqrt{\sigma^2 + \mathcal{D}_{ms}}} \right]$$

$$\mathcal{D}_{ms} \triangleq \mathbb{E} \left\{ \left| \sum_{m \neq k} x_{h,m} \cdot q_{k-m} \right|^2 \right\}$$
$$= \mathcal{E}_{\mathbf{x}} \cdot \|h\|^2 \cdot \sum_{m \neq 0} |q_m|^2$$

PS6.4 (3.21)

Eye Diagrams

• High-speed oscilloscope triggers on the symbol rate (or graph in software/matlab), $h(t) = \frac{1}{1+(3t/T)^2}$.

Binary: Lorentzian pulse

4PAM: Lorentzian pulse

Receiver SNR

Section 3.2

Feb 22, 2024

Receiver to minimize ISI impact

- SBS = Symbol By Symbol (detector) SBS is not necessarily ML, nor optimum, but maybe much cheaper.
 - All the QAM/PAM, coding formulas apply to this new channel $\bar{b} \cong \frac{1}{2} \cdot \log_2(1 + SNR/\Gamma)$, so receiver converts to AWGN (or tries to).
- Receiver may be any, some, or all of:
 - linear filter that tries to Minimize Mean-Square Error (max SNR),
 - nonlinear processor that successively detects over sequence removing past ISI, also MMSE,
 - neural network (recurrent: two stages, first is single ReLU, second provides feed back of past state(s) influence,
 - Viterbi Detector (or other sequence detector) for ISI's trellis, which is NOT an SBS (more in L17).

Beware of coding theorist's fallacy, 1/T fixed

Feb 22, 2024

Sec 3.2.1

L13: 15

MMSE Receiver Biases

• MMSE has a "feature" or bias:

Definition 3.2.1 [Receiver SNR] The receiver SNR, SNR_R for any receiver R with (pre-decision) output z_k , and decision regions based on x_k (see Figure 3.14) is

$$SNR_R \stackrel{\Delta}{=} \frac{\mathcal{E}_{\boldsymbol{x}}}{E|e_k|^2} \quad , \tag{3.35}$$

where $e_k \stackrel{\Delta}{=} x_k - z_k$ is the receiver error. The denominator of (3.35) is the meansquare error⁷, $MSE = \mathbb{E} \left[|e_k|^2 \right]$ that is the same as the mean-square distortion. When $\mathbb{E} \left[z_k | x_k \right] = x_k$, the receiver is unbiased (otherwise biased) with respect to the decision regions for x_k .

- The minimized MSE reduces the desired x_k amplitude (often slightly) because that also reduces noise,
 - in a way that minimizes MSE.
- The min P_e , which arises from the ML detector $\max_{x_k} p_{z_k/x_k}$, is unbiased so MMSE is not quite ML.\,
 - unless, as we'll see in 379B, the code in use has zero gap where indeed they are the same.

Feb 22, 2024

Sec 3.2.2

L13: 16

Receiver Removal of Bias

- Best value of α when the receiver minimizes MSE is $\frac{SNR}{SNR-1}$ (see proof in Section 3.2 or Appendix D).
- This boosts desired signal as well as distortion/noise, but in a way so that receiver's decision regions based on p_{z_k/x_k} are correct.
- The correct new SNR is always (with any MMSE receiver bias removal) SNR_U = SNR 1 and it is the maximum unbiased SNR (see Theorem 3.2.1).

Sec 3.2.2 & Appendix D

PS6.2 (3.4)

L13:17

MMSE Conclusion / Use

- So it is ok to use MMSE, just remove the bias before entering the SBS detector.
- Maximum value occurs when there is no ISI, so that all signal energy at receiver MF output sampler is

$$SNR_{MMSE,U} \leq \frac{\bar{\mathcal{E}}_{\chi} \cdot \|h\|^2}{\sigma^2} \triangleq SNR_{MFB}$$
. Matched-Filter
Bound SNR

• Bound attained with no ISI, so Q(D)=1 in:

 $Y(D) = ||h|| \cdot Q(D) \cdot X(D) + N(D).$

- Argument of Q-function? (not same Qs)
 - For PAM and SQ QAM: the MFB then is $MFB = \sqrt{\frac{3}{4^b 1} \cdot SNR_{MFB}}$,
 - Cross, see Section 3.2

L13: 18

Trival, but helpful, Example

• The MMSE SNR would exceed the MFB SNR if bias were not removed

Feb 22, 2024

Sec 3.2.2

L13: 19

Nyquist Pulse Shaping

Section 3.3

Feb 22, 2024

Nyquist's Criterion

- When does a channel have no ISI? $q_k = 1$; Q(D) = 1
- The function q(t) passes through zero at all the right times (except time 0).
- Well, ok, but what does that mean in continuous time/frequency?

$$\begin{split} q(kT) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} Q(\omega) \cdot e^{j\omega kT} \cdot d\omega \\ &= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{\frac{(2n+1)\pi}{T}}^{\frac{(2n+1)\pi}{T}} Q(\omega) \cdot e^{j\omega kT} \cdot d\omega \\ &= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} Q(\omega + \frac{2\pi n}{T}) \cdot e^{j(\omega + \frac{2\pi n}{T})kT} \cdot d\omega \\ &= \frac{1}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} Q_{eq}(\omega) \cdot e^{j\omega kT} \cdot d\omega \quad, \end{split}$$

$$Q_{eq}(\omega) \stackrel{\Delta}{=} \sum_{n=-\infty}^{\infty} Q(\omega + \frac{2\pi n}{T}) = 1$$

Equivalent (aliased) frequency response is "flat."

Theoretical simple example

Nyquist Freqency

Cannot be realized in practice, only approximated (with typically long delay)

Sec 3.3

Excess Bandwidth

Percent excess bandwidth

Definition 3.3.2 [Percent Excess Bandwidth] The percent excess bandwidth α follows from a strictly band-limited $Q(\omega)$ and is the highest frequency in $Q(\omega)$ for which there is nonzero energy transfer. That is

$$Q(\omega) = \begin{cases} nonzero & |\omega| \le (1+\alpha) \cdot \frac{\pi}{T} \\ 0 & |\omega| > (1+\alpha) \cdot \frac{\pi}{T} \end{cases} .$$

$$(3.72)$$

• Can be approximated more easily if $0 < \alpha \le 1$:

$$1 = Q(e^{-j\omega T})$$

= $\frac{1}{T} \left\{ Q\left(\omega + \frac{2\pi}{T}\right) + Q(\omega) + Q\left(\omega - \frac{2\pi}{T}\right) \right\} - \frac{\pi}{T} \le \omega \le \frac{\pi}{T}$

Sec 3.3.1

L13: 23

Vestigial Symmetry

Positive frequencies

$$1 = Q(e^{-j\omega T})$$
$$= \frac{1}{T} \left\{ Q(\omega) + Q\left(\omega - \frac{2\pi}{T}\right) \right\}$$

• 100% excess bandwidth example is $q(t) = sinc^2(t)$

Feb 22, 2024

Sec 3.3.1

L13: 24

Raised Cosine Rolloff (RCR) Pulses

RCR pulse responses have small excess bandwidth, but decay rapidly.

F

Feb 22, 2024

Sec 3.3.2

Raised Cosine Pulses mathmatically

Definition 3.3.3 [Raised-Cosine Pulse Shapes] The raised cosine family of pulse shapes (indexed by $0 \le \alpha \le 1$) is given by

$$q(t) = sinc\left(\frac{t}{T}\right) \cdot \left[\frac{\cos\left(\frac{\alpha\pi t}{T}\right)}{1 - \left(\frac{2\alpha t}{T}\right)^2}\right] \quad , \tag{3.79}$$

and have Fourier Transforms

$$Q(\omega) = \begin{cases} T & |\omega| \le \frac{\pi}{T} \cdot (1-\alpha) \\ \frac{T}{2} \cdot \left[1 - \sin\left(\frac{T}{2\alpha} \cdot \left\{|\omega| - \frac{\pi}{T}\right\}\right)\right] & \frac{\pi}{T} \cdot (1-\alpha) \le |\omega| \le \frac{\pi}{T} \cdot (1+\alpha) \\ 0 & \frac{\pi}{T} \cdot (1+\alpha) \le |\omega| \end{cases}$$
(3.80)

Really want square root in xmit and again in rcvr matched filter (because with no ISI, this maximizes SNR).

$$\begin{split} \sqrt{Q(\omega)} &= \begin{cases} \sqrt{T} & |\omega| \leq \frac{\pi}{T} \cdot (1-\alpha) \\ \sqrt{\frac{T}{2}} \cdot \left[1 - \sin\left(\frac{T}{2\alpha} \cdot (|\omega| - \frac{\pi}{T})\right)\right]^{1/2} & \frac{\pi}{T} \cdot (1-\alpha) \leq |\omega| \leq \frac{\pi}{T} \cdot (1+\alpha) \\ 0 & \frac{\pi}{T} \cdot (1+\alpha) \leq |\omega| \end{cases} \\ \varphi_h(t) &= \frac{4\alpha}{\pi\sqrt{T}} \cdot \frac{\cos\left(\left[1+\alpha\right]\frac{\pi t}{T}\right) + \frac{T \cdot \sin\left(\left[1-\alpha\right]\frac{\pi t}{T}\right)}{4\alpha t}}{1 - \left(\frac{4\alpha t}{T}\right)^2} \\ & \text{Feb 22, 2024} \end{cases}$$

L13: 26

Zero-Forcing Equalization (ZFE)

Section 3.4

Feb 27, 2024

ZFE – Just filter with channel inverse

• The ZFE **Forces** ISI to **Zero**.

Don't confuse Q's ! (sorry)

- ZFE ignores the noise; this may lead to noise-energy increase (``noise enhancement").
- SBS ignores and views its input as AWGN with *SNR*_{ZFE} (uses AWGN's ML detector).

$$P_{ZFE,e} \approx N_e \cdot Q\left(\frac{d_{\min}}{2\sigma_{ZFE}}\right)$$

• Noise may no longer be white, $n(t) \triangleq n_h(t) * \varphi_h^*(-t)$.

$$\overline{R}_{nn}(D) = \frac{\mathcal{N}_0}{2} \cdot Q(D)$$

Feb 27, 2024

Sec 3.4

L14:28

ZFE Output Noise $Z(D) = X(D) + N_{ZFE}(D)$

• The ZFE further filters the noise, so $r_{ZFE,k} \triangleq \mathbb{E}[n_{ZFE,l} \cdot n^*_{ZFE,l}] = r_{nn,k} * w_{ZFE,k} * w^*_{ZFe,-k}$.

$$\bar{R}_{ZFE}(D) = \frac{\mathcal{N}_0}{2} \cdot \frac{Q(D)}{\|h\|^2 \cdot Q^2(D)} = \frac{\mathcal{N}_0}{2} \cdot \frac{W_{ZFE}(D)}{\|h\|} \qquad \qquad W_{ZFE}(D) = \frac{1}{\|h\| \cdot Q(D)}$$

• Calculate $\sigma_{ZFE}^2 = \frac{N_0}{2} \cdot \frac{w_{ZFE,0}}{\|h\|}$; where $w_{ZFE,0}$ is the time-zero value of $w_{ZFE,k}$.

Integral of the inverse-ISI function is important:

$$\gamma_{ZFE}^{-1} = \frac{T}{2\pi} \cdot \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{d\omega}{Q(e^{-j\omega T})} = w_{ZFE,0} \cdot ||h||$$

• SNR of SBS then is
$$SNR_{ZFE} = \frac{\bar{\varepsilon}_{\chi}}{\sigma_{ZFE}^2} = SNR_{MFB} \cdot \gamma_{ZFE}$$
.

Sec 3.4.1

Noise Enhancement

- Typical channels often are lowpass;
 - because they don't transfer infinite energy.
- There may also be in-band noise , multipath, or DC coupling (real baseband only) that cause bandpass, bandstop, or highpass effects.
- Noise "enhances" where channel attenuates.

My favorite Channel : $H(D) = 1 + .9 \cdot D^{-1}$

$$H(\omega) = \begin{cases} \sqrt{T} \cdot \left(1 + .9e^{j\omega T}\right) & |\omega| \le \frac{\pi}{T} \\ 0 & |\omega| > \frac{\pi}{T} \end{cases} \qquad \Phi_h(\omega) = \begin{cases} \sqrt{\frac{T}{1.81}} \cdot \left(1 + .9 \cdot e^{j\omega T}\right) & |\omega| \le \frac{\pi}{T} \\ 0 & |\omega| > \frac{\pi}{T} \end{cases}$$

 $||h||^2 = 1.81$ $\sigma^2 = 0.181$ $SNR_{MFB} = 10$ (= 10 dB also)

Feb 27, 2024

Sec 3.4.2

L13: 30

Example channel continued

- Real baseband, so is symmetric about DC.
- Lowpass
- Analysis ignores slight discontinuity at Nyquist frequency (makes math easier for students to follow, has negligible effect otherwise).
- It has significant ISI (2nd large tap).
- The SNR is already not so good.
 - SNRmfb is 10 dB.
 - So, design needs a code outside the receiver!
 - One designed for AWGN.

Sec 3.4.3

Corresponding ZFE Spectrum

- Edge noise increases 50dB (with respect to center).
- Very long response (delay, or complexity if realized as FIR).
- The integral of $W_{zfe}(e^{-j\omega T})$ can be done in closed form for this example $\rightarrow \sigma_{ZFE}^2 = 5.26 \cdot \sigma^2$ (see Example 3.4.1)

 $\gamma_{ZFE} = 10 \log_{10} (1.81 \cdot 5.26) \approx 9.8 \text{dB}$

Stanford University

Feb 27, 2024

Sec 3.4.3

End Lecture 13