
Lecture 12
Guessing Decoders and Product Codes

February 20, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

JOHN M . C IOFF I

February 15, 2024

Announcements & Agenda
§ Announcements

• PS5 due tomorrow.

L12: 2

§ Today
• Retransmission – Error Detection
• Guessing Random Additive Noise Decoding
• GRAND Soft Information
• Product Codes & GRAND
• Matlab software (MIT education-use

permitted)

Hot Off the Presses

§ Problem Set 6 = PS6 due Wednesday February 28
1. 3.3 379 Model
2. 3.4 Bias and SNR
3. 3.6 Noise Enhancement
4. 3.21 ISI Quantification
5. 3.24 Peak Distortion

Retransmission – Error-
Detecting Codes

February 15, 2024 L1:3

Section 8.6.3

February 15, 2024

CRC Error Detection and Retransmission
§ Cyclic Redundancy Check codes are (usually) binary and only detect errors (so 𝑠 𝐷 ≠ 0).

• CRCs mostly use simple binary versions of the previous encoders/decoders.
• Table below lists some with 𝑑!"## = 4 and 𝑛$%& = 2'! − 1.

§ These detect:
• all single and 2-bit errors, and also any odd number of bit errors. The 𝐷 + 1 factor forces even distance between codewords.
• any burst of length ≤ 𝑛 − 𝑘 (because this is the length of 𝑔 𝐷 - such a burst is not divisible by 𝑔 𝐷).

L11: 4

Name 𝒈 𝑫 factored
CRC-7 𝐷(+ 𝐷) + 𝐷* + 1 𝐷* + 𝐷+ + 1 - 𝐷' + 𝐷 + 1 - 𝐷 + 1

CRC-8 𝐷, + 𝐷' + 𝐷	 + 1 𝐷(+ 𝐷) + 𝐷. + 𝐷* + 𝐷+ + 𝐷' + 1 - 𝐷 + 1

CRC-12 𝐷/' + 𝐷// + 𝐷+	 + 𝐷'	 + 𝐷 + 1 𝐷// + 𝐷' + 1 - 𝐷 + 1

CRC-16 USA 𝐷/) + 𝐷/. + 𝐷'	 + 1 𝐷/. + 𝐷	 + 1 - 𝐷 + 1

CRC-16 Euro 𝐷/) + 𝐷/. + 𝐷.	 + 1 𝐷/. + 𝐷/* + 𝐷/+ + 𝐷/' + 𝐷* + 𝐷+ + 𝐷' + 𝐷 + 1 - 𝐷 + 1

CRC-24 𝐷'* + 𝐷'+ + 𝐷/*	 + 𝐷/' + 𝐷,	 + 1 𝐷/0 + 𝐷, + 𝐷(+ 𝐷) + 𝐷. + 𝐷* + 𝐷+ + 𝐷 + 1 -
𝐷/0 + 𝐷1	 + 𝐷)	 + 𝐷*	 + 1 - 𝐷 + 1

CRC-32 𝐷+' + 𝐷') + 𝐷'+	 + 𝐷'' + 𝐷/)	 + 𝐷/' + 𝐷// + 𝐷/0	 + 𝐷, + 𝐷(+ 𝐷. + 𝐷* + 𝐷'	 + 𝐷	 + 1
(appears prime, not sure)

Sec 8.6.3

February 15, 2024

Analysis – CRCs are for detection ONLY.
§ 𝑃. ≜ undetected error probability 𝑃. < 2/01 % &𝑃2 3 ; 𝑠 = 0	for wrong codeword.

L11: 5

Name 𝑃$/ $𝑃% & 1 − 𝑃$/ $𝑃% & Reliability
CRC-7 22(.99221875 2 nines

CRC-8 22, .99609375 3 nines

CRC-12 22/' .999755859375 4 nines

CRC-16 USA 22/) 0.999984741210938 5 nines

CRC-16 Euro 22/) 0.999984741210938 5 nines

CRC-24 22'* 0.999999940395355 7 nines

CRC-32 22+' 0.999999999767169 9 nines

+
	

𝑐𝑜𝑟𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
	

+
	

𝑣𝑜𝑖𝑐𝑒	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
	

{𝑣𝑖𝑑𝑒𝑜	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

{𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
{𝑠𝑡𝑜𝑟𝑎𝑔𝑒	

§ These are link-layer reliabilities - &𝑃! could be high within a CRC codeword if large−𝑁 inner-code fails,
• but still, even if 4𝑃3=.1, these get very low.

§ TCP-IP and higher-level session/application CRC checks (possibly using RS codes for detection) would
create super reliability with “once in a century” level failures.

§ These are cyclic codes so use earlier simple generators and receiver-syndrome calculation circuits.

High 4𝑃3 if inner code fails

Sec 8.6.3

February 15, 2024

Retransmission
§ Automatic Repeat Request (ARQ): If the CRC detects an error, resend the codeword.
§ ARQ requires a mechanism for acknowledgment (back-channel) or ACK/NAK.

• The NAK returns upon the receiver’s non-zero CRC syndrome calculation.
• 𝑃! is the correct receipt probability (syndrome is zero).

L11: 6

𝔼 𝐿'()'*+, =*
-./

0

𝑙 , 𝑃1 , 1 − 𝑃1 - =
1
𝑃1

§ Throughput = /
1 % 𝑃6 % 𝑅 bps

§ Throughput represents the “real data rate” with code redundancy and retransmission accounted.
• Throughput assumes infinite buffer delay is possible.

§ There are entire courses in this network/queuing area, see EE384S (Bambos, Spring Q).

Sec 8.6.3

February 15, 2024

Hybrid ARQ (HARQ)

§ HARQ: A cyclic code is used with both detection and correction.
• If the correction part works, there is no need to retransmit.
• If the detection part discovers an error, and then retransmission occurs.
• Reed Solomon cyclic codes can split the parity bytes into those for correction and those for detection (sum is the

allowed maximum P).

§ HARQ with soft decoding
• Chase Decoding – use all instances of (re-) transmitted codeword (form of diversity) to decode.
• Incremental Redundancy – only retransmit additional parity bits (this is what 5G uses).

L11: 7

GRAND

February 15, 2024 L1:8

Eventually Section 7.6.1

Medard (MIT) & Duffy (Northeastern)
https://www.granddecoder.mit.edu

Also, see Liang (our Ethan!) and Yang work
Globecom 2019 [1],[2] –Serial-List Viterbi Algorithm

February 15, 2024

Intelligent guessing of codewords

§ If (sub) symbol-by-symbol-sequence guessed decision is not a codeword already (stop if codeword):
• GRAND	reorders	the	subsymbols	(bits)	in	terms	of	likelihood	and
• Guess(es)	other	ss	value(s)	–	usually	means	flipping	𝑛"	bit	decision(s)	–	for	least	reliable	LLRs.
• Each failed guess not revisited, and it’s possible (but not likely) to have up to |𝐶|# guesses, more like |𝐶|#$%

• Grows as
𝑛

𝑛!"#$$%&	((guesses at each stage, usually 𝑔 = 0,… , 𝜌 for good codes because codewords not more than ρ = 𝑛 − 𝑘 bits
apart.

• Expected number of steps to find codeword is 𝔼 𝑔 = 2).
• Ensure any “give-up” point occurs less frequently than the target 𝑃% .

§ With the ss reordering from worst to best, the first codeword found is the ML decision (low SNR).

L12-: 9

channel
Good
Code

Encoder

Subsymbol
Soft Info

Order SI
Worst to Best

“Flip” SS decisions
& Check if

Valid Codeword

yes

no

𝒙 .𝒙

January 30, 2024

Return to our L8 4-state example (stops 12 dim)

L12: 10

[-.9 .5]

0 1

0.25

2.26

3.86

2.28

10.28

8.28

7.48

6.53

7.86/7.984.53

7.73

10.53

6.66 / 7.76

6.67/7.77

7.86/8.98

7.46/5.38

7.87/8.99

11.07/8.99

11.47 /11.59

11.48/11.60

11.88/12.61

11.48 / 12.61

[-1.1 -.9] [-.5 1.0]
[-.8 -.7]

[.9 1.0]
[-.9 1.0]

3.61 0.25
0.01 2.25

4.41 3.61
0.01 0.01

2.25 0
0.25 4

3.24 2.89
0.04 0.09

0.01 0
3.61 4

3.61 0
0.01 4

0.02

8.02

4.42

3.62
0.25

4.25

2.25

0.13 / 1.25

0.13/1.253.33/4.45

2.93 /.85

0.010.01

3.61
4.01

3.61

4.01/3.62

3.61/3.62

0.01/.02

6.68 / 7.79

[-.8 .1] [-.9 .9]

3.24 1.21
0.04 0.81

3.61 0.01
0.01 3.61

-/3.62-/3.62

0.01/.02
2 3 4 5 6 7 8 9 10 11

Time 1 4 7 6 0 3 8 10 5 9 11 2

Guess 0 0 0 0 0 0 0 1 0 0 1 1 0

Guess 1 0 1 0 0 0 0 1 0 0 1 1 0

Guess 2 0 0 1 0 0 0 1 0 0 1 1 0

.. Guess 11 1

Guess 12 0 1 0 0 0 0 1 0 0 1 1 0

12 guesses
for black case

79 guesses
for red case
Times 1 & 5

Largest 2 soft info @ times 1 and 4

7
12
0	
/

+
7
12
1	
/'

+
7
12
2	
))

Sort soft information – ordered reliability bits (ORB)

February 15, 2024

Is it a codeword?

L12: 11

§ For the example 𝐻9 = 1 1 0	 0 0 0
	

;& <

1 0 1	 1 1 1
	

(*)

 , which checks (split 2 and 1).

§
§ Usually, the parity check is the least complex way to check for valid codewords (linear code).

§ Check after each guess to determine if ML estimate (which is first codeword to pass, given order).
• May continue also to create a list of codewords that are next-to-ML for some soft-decoding schemes.

§ For the example, choosing 2 bits from 12 eventually picks times 1 and 5, which is a codeword if both flipped.

Parity Matrix
𝐻)

.𝒚 =0
?

Yes
Done

No, try again 1 + 𝐷* 1 + 𝐷 + 𝐷*
	

+)

February 15, 2024

How many queries? à ORB (ordered reliability bits)
§ Upper bound is 26.
§ The guess-sequence strategy is important with good code.
§ Singleton bound suggests more like 2678 for good codes [1].

• Implementation has finite queries before exceeding compute budget.

L12: 12

§ |C| > 2 vastly increases guessing numbers, so GRAND compares better with binary codes.
§ GRAND originators say correlated (nonwhite) noise (or equivalently ISI) is also well handled.

• Not clear what convergence looks like because the number of levels per subsymbol rises
rapidly with ISI.

• As we’ll see in next section of 379A and also B, there are better ways to make an ISI or
correlated noise channel look like equivalent set of AWGNs to which usual good codes
apply in usual manner.

• Instructor presently believes these better match GRAND’s strengths.

§ GRAND example’s computation is largely the sort ≤ ,𝑵𝟐
𝟐

• Finding (next) largest/smallest value is 𝑛 − 𝑖	 (𝑖 = 1, …) compares
• So 11 + 10 + 9 = [21 30] for black/red to find the ML codeword (the

parity checks are trivial and number 13 and 79).
• Viterbi is 6 x 4 x 3 = 72, roughly 2x more operations to find the same

codeword (it searches unlikely paths unnecessarily).

0 1 2 3 4 5 6 7
Eb/N0

0

2

4

6

8

10

12

14

16

Av
e.

 n
um

 q
ue

rie
s

ORBGRAND, 379A [12,6], R=0.50
ORBGRAND, RLC [12,6], R=0.50
ORBGRAND 0x23, CRC [12,6], R=0.50

• So there are (12,6) codes that find ML sooner, on average.
• This curve was generated with MIT software (later).

0 1 2 3 4 5 6 7
Eb/N0

10-4

10-3

10-2

10-1

100

BL
ER

ORBGRAND, Cioffi [12,6], R=0.50
Max. Likelihood, Cioffi [12,6], R=0.50
ORBGRAND, RLC [12,6], R=0.50
ORBGRAND 0x23, CRC [12,6], R=0.50

Comp/bit
(I think …)

§ Follows same order really – just the soft information is equal for each output bit.
§ Thus, might have to go to guess 67 to get it right if unlucky (or 13 if lucky).
§ With 3-bit-error case, the search could go to 299 checks = 𝑛1 + 𝑛

1 + 𝑛
2 + 𝑛

3 with 𝑛=12
• Sort is somewhat trivial for BSC, 11+10+9 = 30 compares

January 30, 2024

GRAND with BSC?

L7: 13

00 00 00

0

00 11 01

0 10 0 1

Section 8.1.4

Time1 0 1 2 3 4 5 6 7 8 9 10 11

Guess 0 0 1 0 0 0 1 0 0 1 1 0 1

Guesses 1-12
(single flips)

0 1 1 (flips
Move) à

0 0 0 1 0 0 0 1 1

Guesses 13-67
(two flips)

0 0 0 0 0 0 0 0 1 1 0 1

MIT Matlab Software
(educational uses)

February 15, 2024 L1:14

Eventually Section 7.6.2

February 15, 2024

MIT programs
§ Web site https://github.com/kenrduffy/GRAND-MATLAB

L12: 15

function [y_decoded,err_vec,n_guesses,abandoned] = bin_ORBGRAND1(H,max_query,y_soft)
 1-line ORGBRAND (soft detection)

 From
 K. R. Duffy, W. An, and M. Medard, "Ordered reliability bits guessing
 random additive noise decoding,” IEEE Trans. Signal Process., vol. 70,
 pp. 4528-4542, 2022.
 Uses the Landslide algorithm from that paper and the light-weight
 1-line implementation introduced in
 K. Galligan, M. Médard, K. R. Duffy, "Block turbo decoding with ORBGRAND"
 arXiv:2207.11149, 2022.

 1-line ORBGRAND differs from Basic ORBGRAND by considering a dynamically
 determined intercept in its statistical model.

 Inputs:
 n - code length
 H - Parity check matrix or CRC function
 max_query - Maximum number of code-book queries to abandonment
 y_soft - Channel soft information

 Outputs:
 y_decoded - Decoded ML codeword
 err_vec - Putative noise
 n_guesses - Number of guesses performed
 abandoned - 1 if abandoned, 0 if found a codeword

§ Calls
• Landslide.m

§ bin_ORBGRAND.m
• Different guessing order

§ bin_GRAND.m
• Hard-coded channel output

https://github.com/kenrduffy/GRAND-MATLAB

February 15, 2024

Our Example with this software?
§ 6 subsymbols and terminate, same 𝐻 𝐷 = 1 + 𝐷; 1 + 𝐷 + 𝐷; has the block-code 𝐻

L3: 16

H =[
 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 1 1 1];

ysoft=[
 -0.9000 0.5000 -1.1000 -0.9000 -0.5000 1.0000 -0.8000 -0.7000 0.9000 1.0000 -
0.9000 1.0000];
>> [y_decoded,err_vec,n_guesses,abandoned] = bin_ORBGRAND1(H,30,-ysoft)

y_decoded = 0 0 0 0 0 0 0 0 1 1 0 1
err_vec = 0 1 0 0 0 1 0 0 0 0 0 0
n_guesses = 30 % This is more than 12, but less than 79
abandoned = 0
>> [y_decoded,err_vec,n_guesses,abandoned] = bin_ORBGRAND1(H,10,-ysoft);
abandoned = 1
ysoft =
 -0.9000 0.5000 -1.1000 -0.9000 -0.5000 1.0000 -0.8000 0.1000 0.9000 1.0000 -
0.9000 0.9000
[y_decoded,err_vec,n_guesses,abandoned] = bin_ORBGRAND1(H,300,-ysoft)

y_decoded = 0 0 0 0 0 0 0 0 1 1 0 1
err_vec = 0 1 0 0 0 1 0 1 0 0 0 0
n_guesses = 77
abandoned = 0

§ Review of guessing:
• It tries all single errors first, and
• then pairs of errors, etc.

§ There are up to 122 = 66 patterns
• Difference between my 13 and this 30 is ties
• I resolved the ties favorably to my decoder’s specific out.

§ Need to reverse by 𝐺2/ to get original input bits
• The 𝐺 𝐷 is not simply transposing 𝐻 𝐷 because of the

block termination.

§ For this case, we can look at trellis
• Presumes starts in state 00.

§ More generally, the program does not appear to
provide the input estimate, so appears to presume
systematic – or that 𝐺2/ is available.

§ Did not need 299 guesses, only 77 for 3-error case.

Recall that LLRi is

𝑳𝑳𝑹𝒊 = −
𝟐
𝝈𝟐

O 𝒚𝒊

February 15, 2024

With Hard Decoded
§ Bin_GRAND.m

L12: 17

function [y_decoded,putative_noise,n_guesses,abandoned] =
bin_GRAND(H,max_query,y_demod)
 GRAND (hard detection, BSC)

 Inputs:
 n - code length
 H - Parity check matrix or CRC function
 max_query - Maximum number of code-book queries to abandonment
 y_demod - Channel hard output

 Outputs:
 y_decoded - Decoded codeword
 putative_noise - noise
 n_guesses - Number of guesses performed
 abandoned - 1 if abandoned, 0 if found a codeword

>> y=[0 1 0 0 0 1 0 0 1 1 0 1]

>> [y_decoded,err_vec,n_guesses,abandoned] = bin_GRAND(H,30,y)
y_decoded =

0 0 0 0 0 0 0 0 1 1 0 1
err_vec =
 0 1 0 0 0 1 0 0 0 0 0 0
n_guesses = 28
abandoned = 0
>> y =[0 1 0 0 0 1 0 1 1 1 0 1];
>> [y_decoded,err_vec,n_guesses,abandoned] = bin_GRAND(H,300,y)

y_decoded = 1 1 0 1 0 1 1 1 1 1 0 1
err_vec = 1 0 0 1 0 0 1 0 0 0 0 0
n_guesses = 101
abandoned = 0

§ The query count differs slightly because the hard-decoded example has different LLR inputs.

GRAND Soft Information

February 15, 2024 L1:18

Eventually Section 7.6.3

February 15, 2024

An incorrect codeword guess
§ ML codeword is not always correct – so GRAND may also guess this incorrect codeword.
§ This is an error.
§ A	guessE	𝒙	is correct with probability (from Chapter 1), call this guess 𝑞∗.

L12: 19

𝑝𝒙/𝚫 .𝒙/𝜹 , where 𝚫 ≜ 𝑦/ − %𝑥/ 𝟐 ⋯ 𝑦+ − %𝑥+ 𝟐 with/without reordering

§ Current/past guesses’ probability, when subtracted from 1, is soft information.
• This is, possibly with scaling (seq to code), proportional to the probability that the ML Q	𝒙	is incorrect.
• For guess 𝑞 , the intrinsic input probability will be 𝑝1,3 for 𝑖 = 1,… , 𝑛 , initially this is 𝑝4,3#5,3 = 2$6 .

𝑝6,8+),8= (<<=>
	

/9(<<=>
	 𝑝6,1:*+,8 =

𝑒;
<@,>

A

=>A

(2𝜋𝜎=)	
𝑝6,8 = 𝑝6,1:*+,8 0 𝑝6,8+),8

𝑃 𝐴 = 1 − 4
6.@

6∗

𝑃6 𝒏6

	
%(AB'(*+C	6∗

§ Probability guesses after 𝑞∗

𝑃 𝒏1 =Z
376

#

𝑝1,3∈ #+,-

	
O 1 − 𝑝1,3∈ #+,*

	

§ Probability of channel-output (noise seq) guess 𝑞

seq has 0
@ position 𝑖

seq has 1
@ position 𝑖

February 15, 2024

AEP-like GRAND Analysis
§ 25 possible 𝒚 (noise) guesses, 𝑆:

• Continuous to discrete dist’n

§ Grand guesses’ path eliminates
𝑞∗ of these guesses.

§ So, 1 − ∑C\ E 𝑃E 𝒏E is the
probability of the other outputs
not yet guessed, which is ∝
probability of ML error.

L12: 20

§ 2% possible E𝒙 guesses
• On average, each associates with

fraction *
.$6

*/$1∗

= #	:; :5(<= 	!:><?:=>@
#	:;	=<AB3#3#"	"C<@@<@ The ML codeword Q𝒙 and set of all others 𝑆𝒙\F𝒙	are mutually

exclusive, so can add their probabilities.

§ The sequence likelihood
of correct is

• E 𝒏G∗
E G HE 𝒏G∗

§ While incorrect is

• E G
E G HE 𝒏G∗

6𝒙

𝟐𝒌 codewords

21 channel outs

𝒚
GRAND
guess
path

1 − 4
E\ 6

𝑃6 𝒏6

𝑃1 𝒏1

𝒙′

𝒙′′ 𝑃 𝐴 ≜ 1 −^
174

1∗

𝑃 𝒏1 O
2% − 1
2# − 𝑞∗

	
IJKLM	NOP
!:><?:=>@

February 15, 2024

Bit-level Likelihood
§ When E𝒙J = 0 for guess 𝑞∗:

• 𝐿𝐿𝑅3 =
Q 𝒏+∗ SQ T UV+∗,2

6 7 8 /29"∗,%

L12: 21

§ These provide individual bit decision’s soft information based on the codeword likelihood.

§ These use the reordered 𝚫1 ‘s .

But what about Ext? Int?

§ After the above calculations are complete,
• 𝐿𝐿<W5,3 = 𝐿𝐿3 − 𝑙𝑜𝑔 𝑝1,!(B#,3 − 𝑙𝑜𝑔 𝑝1,3#5,3 - where 𝑝1,3 = 𝑝1,!(B#,3 O 𝑝1,3#5,3 is time	𝑖	only ss prob.
• Where the intrinsic is the a priori or previous decoder’s supplied extrinsic

A GRAND Iterative Decoder

𝑠𝑒𝑞	𝑝𝑟𝑜𝑏 + 0	𝑎𝑛𝑦𝑤𝑎𝑦	𝑤𝑖𝑡ℎ	𝑜𝑡ℎ𝑒𝑟𝑠
1	𝑤𝑖𝑡ℎ	𝑜𝑡ℎ𝑒𝑟𝑠

0	𝑤𝑖𝑡ℎ	𝑜𝑡ℎ𝑒𝑟𝑠
𝑠𝑒𝑞	𝑝𝑟𝑜𝑏 + 1	𝑎𝑛𝑦𝑤𝑎𝑦	𝑤𝑖𝑡ℎ	𝑜𝑡ℎ𝑒𝑟𝑠

§ When E𝒙J = 1 for guess 𝑞∗:
• 𝐿𝐿𝑅3 =

6 7 89"∗,%
3 𝒏"∗ 53 6 7 89$"∗,%

February 15, 2024

Examples?

§ I don’t have one yet.

§ There is no MIT publicly available software to compute this soft information.

§ It appears tedious, but probably not that much calculation in that the successive guesses only differ in
one or a few bit positions – so incrementally updated at only the guess-bit positions.

§ The inventors claim very significant decoding complexity reduction, on average.
• And it appears they are correct.

L3: 22

Great extra credit problem for motivated student,

But don’t underestimate this either.

Product Codes & GRAND

February 15, 2024 L1:23

Section 8.3.3

January 30, 2024

Product Codes (PCs) in General
§ Begin with Example (from J. Gill’s EE387)

• Two (8,4,4) expanded Hamming codes:

L12: 24

Code1 / Code 2 𝑘= = 4 𝑛= − 𝑘= = 4

𝑘/ = 4 Input data bits (16) Parity for code 2 (16)

𝑛/ − 𝑘/ = 4 Parity for code 1 (16) Parity on parity (16)

§ There are 𝑘K % 𝑘L input bits (so 16).
§ There are 𝑛K % 𝑛L output bits (so 64).
§ The rate is 𝑟 = 𝑟K % 𝑟L (so 1/4).
§ Free distance is 𝑑MNOO,K % 𝑑MNOO,L (so 16).
§ This product code corrects up to 7 errors.

Larger distance, lower rate

For AWGN, the ML decoder is difficult (like most serious block codes)

There are also product code of convolutional codes; this is turbo without the random interleaver

February 15, 2024

GRAND offers PC an iterative decoding solution
§ GRAND Code 1 (horizontally) – compute soft information (previous section).
§ GRAND Code 2 (vertically) -- use Code 1’s extrinsic information as intrinsic input
§ Repeat the cycle

• (16,11)~Exp Hamming

L12: 25

It’s not clear (to met yet) exactly how the 50 iterations LDPC compares to GRAND’s 20

February 15, 2024

Seems to be best codes yet (full circle to beginning)
§ It’s the decoder. Most codes are good, just AWGN-ML decoder previously appeared too complex.

§ via GRAND – perhaps ML decoding is not too complex after all on the simple product codes.

§ Puncturing and rate-adaptation?
• The product codes need not be the same for horizontal and vertical.
• This creates a lot of flexibility – perhaps more than puncturing (so punt the puncture? 😀)

§ High-speed parallel implementations
• Active research area.

L12: 26

Now, we have a few good methods for 𝚪 → 𝟎 dB
&

Can exploit them to optimize larger gains from other effects!

February 15, 2024

Comparing Ethan’s codes to ORBGRAND
§ It’s the decoder. Most codes are good, just AWGN-ML decoder previously appeared too complex.

§ via GRAND – perhaps ML decoding is not too complex.

L12: 27

𝐸%
𝑁@

= 𝑅 ⋅ SNR ⇒ SNR =
1
R
EG
N@

• Consider operating with SNR = 3dB:
• The previous ORBGRAND plot operates

at r < ½, which implies their HG
IH
= 3	dB

corresponds to a better channel than
the 3dB SNR in my channel. (There’s a
factor of 2 scaling somewhere).

• The list-decoded convolutional code
outperforms ORBGRAND in terms of
FER at higher code rate.

End Lecture 12

[1] Ethan Liang , Hengjie Yang , Dariush Divsalary, and Richard D. Wesel, “List-Decoded Tail-Biting
Convolutional Codes with Distance-Spectrum Optimal CRCs for 5G,” IEEE Globecom 2019.

 [2] Hengjie Yang , Ethan Liang , Hanwen Yaoy, Alexander Vardyy, Dariush Divsalarz, and Richard D. Wesel , A
List-Decoding Approach to Low-Complexity Soft Maximum-Likelihood Decoding of Cyclic Codes, Globecom 2019.

