
Lecture 11
Outer Hard-Code Concatenation

February 15, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

JOHN M . C IOFF I

February 15, 2024

Announcements & Agenda
§ Announcements

• PS5 due 2/23

L11: 2

§ Today
• Last 3 slides of L10 are for information only.
• Deterministic Interleaving
• Design with Reed Solomon to zero gap (nearly)
• Cyclic Codes Overview
• Retransmission - Error-Detecting Codes (CRC)

Simpler, more useful way to approach capacity

𝑆𝑁𝑅

𝑃!
@	𝒞

§ PS4 Feedback
• 9.5-20 hours
• Some matlab complaints (diff in notation)

• This is much harder to edit than students may realize.
• Projects welcome in this area.

• Short period (needed for test study)
• PS8/final builds in longer time

• Viterbi coverage was short
• Torn here between Viterbi becoming obsolete, but older

systems using it are deployed widely.
• May delete it in future (constraint/iteration , GRAND)

Deterministic Interleaving

February 15, 2024 L11:3

Section 8.4

February 15, 2024

Redistribute the Inner Codes’ errors

§ Inner code will make ”whole-codeword” errors 𝑃!. (This might be already a turbo or LDPC code.)
• There	are	many	bit/subsymbol errors	correspondingly	– i.e.,	an	“error	burst.”
• Error bursts also occur from nonstationary effects, such as:

• random fades in wireless, or
• impulse noise in wireline (or wireless).

L11-: 4

channelInner
encode

Inner
decode

𝜋!"	De-
interleave

Interleave
𝜋

Outer
encode

Outer
decode

§ Outer Code design assumes that bursts are significantly separated (good inner code design, low 𝑃#,%&&#'~10!(*+	!,).

§ Deterministic interleaving disperses these bursts evenly over depth 𝒥 different codewords.

§ Thus, 𝑑"#!! → 𝒥 % 𝑑"#!! , and really the entire distance 𝑑$ 	distribution increases by 𝒥.
• This interleave gain applies to a burst, not overall; but does thereby add ~ 0.5 - 1 dB more coding gain.
• The aggregate design operates close to capacity and 𝑃! → 0
• "#!

"$%& → −∞	;	Pe versus energy becomes very steep/sensitive.
• So operation at/very-near capacity is requires highly stationary channel to be effective.
• Whence our EE379 “margin” concept. (Design for capacity at presumed larger noise, but operate with the actual noise.)

Sec 8.6

February 15, 2024

Formal (deterministic-interleaver) Depth
§ depth

L11: 5

§ Distance magnification is 𝑑@ABB → 𝒥 $ 𝑑@ABB ; but introduces delay ∝ 𝒥 $ 𝐿.

§ The outer code is typically cyclic, specifically Reed Solomon (coming) and not binary (usually ss = bytes).

§ System-design perspective:
• Pick an RS code with high rate 𝑟 → 𝑅 = 𝐾/𝑁 and just enough distance (so rate is high) to meet target 𝑃# .𝑃- .

• Design outer code for inner-code’s eventual hard-decoded output, and model as a symmetric DMC.
• Design for “not too much delay in the interleaving and de-interleaving.”

§ period

Inner Channel
DMC, 𝐺𝐹 2" , 𝑝##

Interleave
𝜋

Outer
encode

𝜋!"	De-
interleave

Outer
decode

Sec 8.6.1

ss ≜ subsymbol

February 15, 2024

Classical Block Interleaver
§ Two transmit memories: read and write

L11: 6

§ Write Buffer inputs 4 blocks of 3 subsymbols each.
§ Read Buffer outputs 3 blocks of 4 subsymbols each.
§ De-interleave reverses interleaver.
§ Delay is 12 units on each side, so 24 total.

At least 𝒥 = 3 subsymbols between adjacent
de-interleaver outputs, e.g. 11 and 10 are 4 apart.
(delay ss 11 by 12 ss times to avoid being next to
next period’s ss 0).

We could reverse to 𝒥 = 4 with 𝑁+.* = 4.

Sec 8.6.1.1

0 3 6 9

1 4 7 10

2 5 8 11

0 3 6 9

1 4 7 10

2 5 8 11

write

1
𝑇!!

write

Byte
clock

I’leave
input
clock

Write Buffer

Read Buffer

Read Buffer

Write Buffer

D’leave
ou5put
clock

D’leave
input
clock

Data sequence on channel
[0 3 6 9 1 4 7 10 2 5 8 11]

Total delay is 24) 𝑇""

1
𝑇++

1
3 $ 𝑇!!

read

1
4 $ 𝑇!!

1
12) 𝑇""

𝐿 = 12	; 	ℐ = 3

0 3 6 9

1 4 7 10

2 5 8 11

1
4 $ 𝑇!!

channel

read

1
3 $ 𝑇!!

1
12 1 𝑇""

1
𝑇++

0 3 6 9

1 4 7 10

2 5 8 11

𝐺 =

	
1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

𝒗 = 𝒖 / 𝐺

𝑁+.* = 3

𝐺 =

	

February 15, 2024

Minimum (block-ileave)Memory Implementation

L11: 7

2nd 6

6 9
7 10
8 11

First 6

0 3

1 4

2 5

write order
0,1,2,3,4,5

write order
6,7,8,9,10,11

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

6 Memory Cells Needed

§ This is ½ delay (12 end-to-end, not 24) and ¼ memory of classical block interleaver (12 instead of 48)

𝒎 read write cell

0 --- ---- pass

1 Past 3 Currrent 1 A

2 Past 6 Current 2 B

3 Past 9 Current 3 C

4 Current 1 Current 4 A

5 Current 4 Current 5 A

6 Past 7 Current 6 D

7 Past 10 Current 7 E

8 Current 3 Current 8 C

9 Current 5 Current 9 A

10 Current 8 Current 10 C

11 Past 11 Current 11 F

Sec 8.6.1.1

§ Overwrite memory cells as
they become available,

§ See right-side table.

February 15, 2024

Convolutional Interleaver Generator

§ 𝐺 𝐷 must be causal linear; 𝐷 corresponds to a delay of one interleaver period.
• If 𝐺 𝐷 = 𝐺 0 , then block interleaver, otherwise a convolutional interleaver.
• Subsymbols interleaved may themselves be vectors.

§ A period has 𝐿 subsymbols within it. 𝐷 delays one period, 𝐷FF delays one subsymbol period.

§ To relate roughly to an ss-based convolutional code, 𝐷 → 𝐷FFG , a period is 𝐿 subsymbol periods.

L11: 8

Interleaver
𝜋(𝑘)

period 𝐿
𝐺(𝐷)

𝑥$ 7𝑥$
𝑿 𝐷 = K

-./

𝒙-01023 ⋯ 𝒙-013 𝒙-0 N 𝐷- O𝑿 𝐷 = K
-./

P𝒙-01023 ⋯ P𝒙-013 P𝒙-0 N 𝐷- = 𝑿 𝐷 N 𝐺 𝐷

Sec 8.6.1

Specific examples in following slides

𝑟 = 1

L11: 9

§ ~ delay/2 and memory/2 w.r.t. block

𝐷##

𝐷## 𝐷##

De-interleaver

bits
out

0 1 2 0 1 20 1 2 0 1 22

0 1 2 0 21 2 0 1 22 0 1

February 15, 2024

𝒥 = 4, 𝐿 = 3
6 = 𝑑𝑒𝑙𝑎𝑦 = ⏟𝐿	

𝒥!"

C 𝐿 − 1 ≅ 𝑏𝑙𝑜𝑐𝑘	
"5

/2

𝐷##

𝐷## 𝐷##

Interleaver

bits
in

channel

𝐷	& = 𝐷##&

6 = 𝑚𝑒𝑚𝑜𝑟𝑦 = 𝐿5 − 𝐿 ≅ 𝑏𝑙𝑜𝑐𝑘	
56

/2
Sec 8.6.1.2

Convolutional/Triangular Interleaver, 𝒥 = 4, 𝐿 = 3

𝐺 𝐷77 =
𝐷778!" 0
0 ⋱

0 0
0 0

0 0
0 0

𝐷77
0 1

February 15, 2024

Convolutional Interleavers, coprime 𝐿 , 𝒥

§ The delays are in 𝐷'' , not 𝐷 . It still looks triangular, except for the time-slot interchange order.
• Is not triangular with 𝐷 , see also example with 𝒥 = 4 ; 𝐿 = 5 in Section 8.6.1.3.

L11: 10Sec 8.6.1.3 PS5.4 (8.15)

Time-slot
Interchange

order
0,2,4,1,3

interleaver

de-interleaver

𝐷##
𝒥()

𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥()

𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥() 𝐷##

𝒥() 𝐷##
𝒥()

𝐷##
𝒥() 𝐷##

𝒥()

𝐷##
𝒥()

𝑑𝑒𝑙𝑎𝑦 = 𝒥 − 1 / 𝐿 − 1 = 8	subsymbol periods

Line 0

Line 1

Line 2

Line 3

Line 4

𝐿 = 5

𝒥 = 3

February 15, 2024

Minimum Memory Requirement in cells

§ Can do it with <
= $ 𝒥 − 1 $ 𝐿 − 1 CELLS in general (so yet another factor of 2 less)

L3: 11

Table 2 for J=3 and L=5

4’’3’’2’’1’’0’’4’3’2’1’0’43210L/t

---------------0

--B1’’B1’’---B1’B1’---B1B1-1

B2’’B2’’B2’’-B2’B2’B2’B2’-B2B2B2B2--2

B3’’B3’’
B3’

B3’B3’B3’B3’B3
B3’

B3B3B3B3B3---3

B4’’
B4’

B4’B4’B4
B4’

B4
B4’

B4
B4’

B4B4B4B4B4----4

B4’B4’B4’B4’B4’B4’B3B3B3B3B3B3B1B1-CELL1

B4’’B3’B3’B3’B3’B3’B3’B1’B1’B2B2B2B2--CELL2

B2’’B2’’B2’’B4B4B4B4B4B4B4B4----CELL3

B3’’B3’’B1’’B1’’B2’B2’B2’B2’CELL4

February 15, 2024

Generalized Triangular
§ Group 𝑀 subsymbols

L11: 12PS6.4 (8.15) Sec 8.6.1.2

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M M

00

1

2

...

...

I-2

I-1

0

1

2

...

...

I-2

I-1

M

M

M

M

M

0

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M M

Channelin out

 1 I-1... K-1

M = 𝐷##*+,

𝐿 − 2

𝐿 − 1

𝐿 − 2

𝐿 − 1

𝐿 − 1

February 15, 2024

ITU Generalized Triangular
§ Used some wireline standards

L11: 13

Parameter Value

Interleaver block length (𝐾) 𝐾 = 𝐿 subsymbols (equal to or divisor of 𝑁)

Interleaving Depth (𝒥) 𝒥=𝑀) 𝐾 + 1

(De)interleaver memory size 𝑀) 𝐾) 𝐾) ⁄#$% & subsymbols

Correction capability (block code
that corrects t symbol errors)

With q=N/K)

!
"
) 𝑀) 𝐾 + 1 subsymbols

!
"
) 𝒥

End-to-end delay 𝑀) 𝐾) 𝐾 − 1 subsymbols

Rate (Mbps) Interleaver
parameters

Interleaver depth
(J)

(De)interleaver
memory size

Erasure
correction

End-to-end
delay

50x1024 K = 72
M = 13

937 blocks
of 72 bytes

33228 bytes 3748 bytes
520 ns

9.23 𝜇s

24x1024 K = 36
M = 24

865 blocks
of 36 bytes

15120 bytes 1730 bytes
500 ns

8.75 𝜇s

12x1024 K = 36
M = 12

433 blocks
of 36 bytes

7560 bytes 866 bytes
501 ns

8.75 𝜇s

6x1024 K = 18
M = 24

433 blocks
of 18 bytes

3672 bytes 433 bytes
501 ns

8.5 𝜇s

4x1024 K = 18
M = 16

289 blocks
of 18 bytes

2448 bytes 289 bytes
501 ns

8.5 𝜇s

2x1024 K = 18
M = 8

145 blocks
of 18 bytes

1224 bytes 145 bytes
503 ns

8.5 𝜇s

Sec 8.6.1.2

Design with Reed Solomon
Codes

February 15, 2024 L1:14

Section 8.6.2

Channel is typically the SDMC, Symmetric Discrete Memoryless Channel

February 15, 2024

Block (Outer) Code Performance
§ The codeword error probability is

L11: 15

𝑃# = L

%>
?'())@"

5

A
𝑁
𝑖 C 𝑝77% C 1 − 𝑝77	 A!%

• 𝑝77 is the subsymbol (byte) error rate on the “hard” SDMC ≈ P𝑏 C .𝑃-; hard subsymbol decisions.

§ Semi-soft direct Gray-Map to 2W-ary subsymbol (SQ-QAM/PAM, … without BICM) reduces to (-𝑏 > 2):

.𝑃-=
1
P𝑏 C 𝑁

L

%>
?'())@"

5

A

𝑖 C 𝑁
𝑖 C 𝑝77% C 1 − 𝑝77	 A!%

.𝑃-=
2 B-!"

2 B- − 1 C 𝑁
L

%>
?'())@"

5

A

𝒊 C 𝑁
𝑖 C 𝑝77% C 1 − 𝑝77	 A!%

§ Outer code’s 0𝑃X:

Sec 8.6.2

ℎ𝑎𝑙𝑓 𝐶 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑎𝑣𝑒 𝑎 𝑏𝑖𝑡 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑖𝑛𝑡

𝐺𝑟𝑎𝑦 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 1 𝑏𝑖𝑡 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑠𝑦𝑚𝑏𝑜𝑙 𝑒𝑟𝑟𝑜𝑟
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝐶

.

February 15, 2024

Reed Solomon Code Performance
§ Typically, RS codes are ss=byte oriented or 𝐺𝐹(256) with max codeword length 𝑁>?@ ≤ 255 = 2A − 1 bytes.
§ 9𝑏 = 𝑚 in 𝐺𝐹 2- more generally (9𝑏 = 8 for bytes).

§ There are 𝑃 parity bytes (preferred implementation is systematic).
• So 𝐾 = 𝑁*+, − 𝑃 information bytes,
• 𝑟 = 𝑅 = -

.'()
, &

• 𝑑/011 = 𝑃 + 1 , so if 𝑃 ∈ 2ℤ2 (even), then RS ML decoder corrects
3*+!!45

6
= ⁄7 6 erred subsymbols.

§ To correct error bursts, use interleave depth 𝒥, so that effectively 𝑑BC!! → 𝑑BC!! + 𝒥 , or correct ⁄#)𝒥
D ,

• as long as error bursts are sufficiently separated.

§ If burst-length = inner codeword length 𝑁EF , then select #
D
+ 𝒥 ≥ %89

D
roughly, so 𝒥 ≥ %89

#
.

• So, design selects: 𝑁*+, , 𝑃 , and 𝒥 .
• But larger depth means more memory and more delay – and also, bursts must be sufficiently separated!

§ Higher 𝑃 corrects more errors, but reduces the rate 𝑟 = 𝑅 = %:;<2#
%:;<

.

§ Usually pick maximum (or close to it) 𝑁>?@ ≤ 2- − 1 (255 for bytes).
• Clearly 𝑁*+, = 2= − 1 yields highest rate for any given 𝑃.
• But, there are also more chances for errors to occur with larger 𝑁*+, , and 𝑑/011 remains same even if 𝑁*+, < 2= − 1 .

L11: 16Sec 8.6.2 PS5.5 (8.16)

February 15, 2024

Example

§ Inner code is LDPC with 𝑁$7 = 1000 bytes (so 𝑛 = 8000 bits or 1kB).

§ Delay specification: The bit rate is 𝑅 =8 Gbps (1 GB/s); an inner codeword occurs every 1 𝜇s.
• The specification’s maximum delay is 1 ms, so 1000 outer codewords (1MB) in 1 ms.
• Then 1MB ≅n250

%'()

N 𝒥 𝑏𝑦𝑡𝑒𝑠. Thus, 𝒥<4000 maintains sub-ms delay.

§ Error-correction: Inner system has 𝑃! = 1089.
• Inner decoder error bursts of up to 1000 erred bytes each arrive every 1ms, on average.
• To correct the error burst of 1000 bytes using #D N erred bytes per codeword means:
• the RS code needs 𝑃 = 20 parity bytes and 𝒥 = 100.
• 𝑟 = 𝑅 = DG/

DH/ , so a fairly high rate will cause almost no errors with depth 100 (and delay 25 𝜇𝑠).

§ This design should cause high reliability (larger coding gain in effect or really very low 2𝑃:) if
• The inner system satisfies 𝑃! = 102G.

§ Expect rapid degradation if inner system has slight increase in error probability (slight noise increase)
• This is true of any system with Γ → 0 dB (which is often why positive noise margin is also a design objective).

L11: 17Not in text yet

February 15, 2024

Matlab RS Encoder Program
§ The inputs are 𝑚-bit elements in 𝐺𝐹 2W

§ This means they must be specially set in matlab to
be elements in such a field using the gf command.

§ As an example with 𝑚 = 3 so GF(8)
• There are 𝐾 = 4 input bytes / codeword
• 𝑁 = 7 output bytes include the 𝑃 = 3 parity bytes.

L11: 18

rsenc Reed-Solomon encoder.

 CODE = rsenc(MSG,N,K) encodes the message in MSG using an (N,K) Reed-
 Solomon encoder with the narrow-sense generator polynomial. MSG is a
 Galois array of symbols over GF(2^m). Each K-element row of MSG
 represents a message word, where the leftmost symbol is the most
 significant symbol. If N is smaller than 2^m-1, then rsenc uses a
 shortened Reed-Solomon code. Parity symbols are at the end of each word
 in the output Galois array code.
 --- deleted long comment on polynomal specification, allows more than
 Matlab’s default RS polynomial to be used ----

 CODE = rsenc(...,PARITYPOS) specifies whether rsenc appends or prepends
 the parity symbols to the input message to form code. The string
 PARITYPOS can be either 'end' or 'beginning'. The default is 'end'.

Not in text yet

>> msg
 = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
 5 2 3
 0 1 7
>> code
= GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
 5 2 3 5 4 4 2
 0 1 7 6 6 0 7

PS5.5 (8.16)

Examples:
 N=7; K=3; % Codeword and message word lengths
 m=3; % Number of bits per symbol
 msg = gf([5 2 3; 0 1 7],m); % Two K-subsymbol message words
 code = rsenc(msg,N,K); % Two N-subsymbol codewords

genpoly = rsgenpoly(N,K); % Default generator polynomial
 code1 = rsenc(msg,N,K,genpoly); % code and code1 are the same codewords
genpoly2 = rsgenpoly(N,K,primpoly); % primitive poly is octal G(D), see L11:21-25

February 15, 2024

Matlab RS Decoder Program
§ It accepts 𝑁 bytes of (de-interleaved) channel

output and decodes them.

§ Result is correct if ≤ 𝑃/2 erred bytes.

§ The decoder algorithm is basically a
pseudoinverse in a finite field:
• It’s nontrival.
• See text or EE387.
• It is Max Likelihood for SDMC.

L11: 19

rsdec Reed-Solomon decoder.

 DECODED = rsdec(CODE,N,K) attempts to decode the received signal in
 CODE using an (N,K) Reed-Solomon decoder with the narrow-sense
 generator polynomial. CODE is a Galois array of symbols over GF(2^m),
 where m is the number of bits per symbol. Each N-element row of CODE
 represents a corrupted systematic codeword, where the parity symbols
 are at the end and the leftmost symbol is the most significant symbol.
 If N is smaller than 2^m-1, then rsdec assumes that CODE is a corrupted
 version of a shortened code.

PS5.5 (8.16) Not in text yet

N=7; K=3; % Codeword and message word lengths
 m=3; % Number of bits per symbol
 msg = gf([7 4 3;6 2 2;3 0 5],m) % Three k-symbol message words
msg = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 7 4 3
 6 2 2
 3 0 5
code = rsenc(msg,N,K);
 7 4 3 7 0 0 4
 6 2 2 7 6 7 3
 3 0 5 5 6 0 6

[dec,cnumerr] = rsdec(codeNoi,N,K) % Decoding failure : cnumerr(3) is -1
dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 7 4 3
 6 2 2
 5 7 2
cnumerr = % recall dfree=5 for this code
 1 % corrected one error
 2 % corrected two errors
 -1 % detects error

% Add 1 error in the 1st word, 2 errors in the 2nd, 3 errors in the 3rd
>> errors = gf([3 0 0 0 0 0 0;4 5 0 0 0 0 0;6 7 7 0 0 0 0],m);
>> codeNoi = code + errors
 = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 4 4 3 7 0 0 4
 2 7 2 7 6 7 3
 5 7 2 5 6 0 6

Cyclic Code Basics

February 15, 2024 L1:20

Section 8.4 and Appendix B

See also Chap 8 References [30] Blahut book and [31] Gill’s EE387 Class Notes

January 30, 2024

Galois Field 𝐰𝐢𝐭𝐡 𝑝 = 𝟐𝒎
§ 𝐺𝐹 2; = 0,1, … , 2; − 1 - but elements are viewed as binary polynomials of degree 𝑚.

• Addition/multiplication is modulo a degree-𝑚 prime binary polynomial.
• g 𝐷 = 𝑔/ + 𝑔3 + 𝐷 + ⋯+ 𝑔-23 + 𝐷-23 has no factor in 𝐺𝐹 2 but itself is factor of 𝐷D>23 + 1 = 0, a root of 1.

• This 𝐷 is for a binary polynomial.

L11: 21

𝐺𝐹 2" = 0	 1	 𝛼	 𝛼I 	 …	 𝛼I=(I	

§ So multiply and set 𝑔 𝐷 = 0

§ Multiplication is modulo this prime polynomial.

1	 𝛼	 𝛼5	

𝛼5	
𝛼"	

𝛼C = 𝛼5 = 1

×
×	𝛼 	

𝛼 	 = 1 + 𝐷	𝑜𝑟	𝐷

𝐷	𝑜𝑟	1 + 𝐷1 + 𝐷	 𝑜𝑟	𝐷

See example multiplication tables in Appendix
B.1, as well as back-up slides

Sec B.1.2

𝑚 = 2	(𝑝 = 4)

𝑥 𝐷 / 𝑦 𝐷 = 𝑑 𝐷 / 𝑔 𝐷 + 𝑟 𝐷

𝑥 𝐷 / 𝑦 𝐷 J K = 𝑟 𝐷

February 15, 2024

Cyclic Codes
§ Every codeword is cyclic shift of others.

• Subsymbols are elements in 𝐺𝐹 2- .
• More generally, 𝐺𝐹 𝑝- , see EE387.

§ If 𝑣 𝐷 ∈ 𝐶, then 𝐷$ % 𝑣 𝐷
>8?I

∈ 𝐶
• Right circular shift by 𝑖 places.

L11: 22

𝑣 𝐷 = 𝑣C + 𝑣" C 𝐷 + ⋯+ 𝑣A!" C 𝐷A!"

	𝑣&∈ 𝐺𝐹 2D ; 	 𝑛 = 0,… ,𝑁 − 1 , so 𝑣 𝐷 ∈ 𝐺𝐹 2D A

𝐷	 C 𝑣 𝐷
"!E?

= 𝑣A!" + 𝑣C C 𝐷 + ⋯+ 𝑣A!5 C 𝐷A!"

𝐺F 𝐷 C 𝐻F 𝐷
"!E?

= 0	where 𝐻F 𝐷 = ∏%GF 𝐺% 𝐷 .

§ Some (like Reed Solomon) have 𝑑@ABB = 𝑁 −𝐾 + 1 ; MDS code (meets Singleton Bound).

§ Further, any 𝐺𝐹 2W linear combination of codewords (mod 1 − 𝐷t) is ∈ 𝐶.
• 𝐺𝐹 2D defines the arithmetic, while an irreducible polynomial 𝐺F 𝐷 defines the code ….

§ 1 − 𝐷t = ∏uvw
x 𝐺u 𝐷 where each 𝐺u 𝐷 is irreducible polynomial in 𝐺𝐹 2W .

• Clearly

§ A cyclic code can be defined by each 𝐺@ 𝐷 , with degree determining 𝑁 − 𝐾, as
• 𝐶E 𝐷 = 𝐷%2J N 𝑢 𝐷 + 𝐷%2J N 𝑢 𝐷 K, L

- delay the input ss’s by 𝑁 − 𝐾 and add the remainder in remaining 𝑁 − 𝐾 positions.

Note: The irreducible polynomial is NOT the
Same binary polynomial used to define

arithmetic in 𝐺𝐹 2D that was vector of bits
This 𝐺(𝐷)	is for a vector of bytes/subsymbols

Sec 8.4

February 15, 2024

Cyclic Code Continued
§ 𝐶{ 𝐷 is cyclic because

L11: 23

𝑣A!" + 𝑣C C 𝐷 + ⋯+ 𝑣A!5 C 𝐷A!" = 𝐷 C 𝑣 𝐷 + 𝑣A!" C 1 − 𝐷A

§ Since 𝐺 𝐷 	divdes	both 𝑣 𝐷 and 1 − 𝐷A , then 𝐷@ % 𝑣 𝐷
>8?I

 is also a codeword (any 𝑗).

§ 𝐻 𝐷 = w|}H

~ }
 is parity polynomial

• corresponding to an 𝑁,𝑁 −𝐾 dual cyclic code with generator 𝐷I C 𝐻 𝐷!"
• So unlike convolutional code where 𝐻 𝐷 is both parity matrix and dual code, with cyclic-generator simplifications for cyclic block codes, the

dual code essentially reverses time w.r.t. 𝐻 𝐷 .
• This time reversal corresponds to circular convolution in 𝐺𝐹 2= .

§ Syndrome calculation is then 𝑦 𝐷 $ 𝐷� $ 𝐻 𝐷|w ~ } = 𝑠 𝐷 = 𝑒 𝐷 $ 𝐷� $ 𝐻 𝐷|w ~ }
• ML decoder finds minimum Hamming weight 𝑒 𝐷 as solution (often nontrivial to find).

Sec 8.4

February 15, 2024

Encoder Circuit
§ 𝐺 𝐷 is the cyclic code’s generator (like convolutional) prime polynomial:

L11: 24

𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

0𝑙𝑎𝑠𝑡	𝑁 − 𝐾

+

𝑓𝑖𝑟𝑠𝑡	𝐾

𝑙𝑎𝑠𝑡	𝑁 − 𝐾

𝑓𝑖𝑟𝑠𝑡	𝐾
𝑢I!"	 𝑢I!5 	 ⋯	𝑢C

𝑣A!"	 𝑣A!5 	 ⋯	𝑣C

𝑔C = 1 𝑔" 𝑔A!I!" = 1 𝑣 𝐷 = 𝐷A!I C 𝑢 𝐷
J E

§ 𝐺 𝐷 is the cyclic code’s generator (like convolutional) prime polynomial with degree 𝑁 −𝐾.
§ 𝐷t|� $ 𝑢 𝐷 = 𝑞 𝐷 $ 𝐺 𝐷 + 𝑅 𝐷 where 𝑅 𝐷 contains parity bytes/subsymbols.
§ By subtracting 𝑅 𝐷 , this encoder’s output becomes a multiple of 𝐺 𝐷 .

× −1

Not in text yet

February 15, 2024

Decoder Circuit using G(D)

L11: 25

𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

𝑦A!"	 𝑦A!5 	 ⋯	𝑦C

𝑔C = 1 𝑔" 𝑔A!I!" = 1

𝑓𝑖𝑟𝑠𝑡	𝐾

§ 𝑠 𝐷 is the syndrome and equivalent to 𝑣 % 𝐻 , which is zero if no errors w.r.t. any codeword.
§ 𝑠 𝐷 = 𝑒 𝐷 + 𝐷J + 𝐻 𝐷23

K L
, so the ML decoder must find smallest (𝑤K) 𝑒 𝐷 that causes 𝑠 𝐷 .

§ Then H𝑢 𝐷 = 𝐷M8A % 𝑦 𝐷 − 𝑒 𝐷 - the decoder ignores any negative-power 𝐷$NO terms.
§ Dark Blue Box is nontrivial for cyclic codes (Berlekamp-Massey, Forney, ….) – finite-field pseudoinverse,

• which has structure that avoids a huge list-based ML decoder’s complexity, unlike a more general block code might need.

0Last 𝑁 − 𝐾

+
𝑠A!I!"	 𝑠A!I!5 	 ⋯	𝑠C

Find,
subtract
𝑒 𝐷

N𝑢 𝐷0
𝑓𝑖𝑟𝑠𝑡	𝐾

Last 𝑁 − 𝐾

Sec 8.4

February 15, 2024

Decoder Circuit using H(D)

L11: 26

𝐷 𝐷+ 𝐷 𝐷+⋯

×× ×

𝐹𝑖𝑟𝑠𝑡	𝐾

𝑠A!I!"	 𝑠A!I!5 	 ⋯	𝑠C

ℎC = 1ℎI!5ℎI!" = 1 s 𝐷 = 𝑦 𝐷 C 𝐷I C 𝐻 𝐷!"
J E

Find,
subtract
𝑒 𝐷

N𝑢 𝐷0

𝑦 𝐷

§ 𝐺(𝐷) or H(𝐷) other will be simpler for any specific code.

Last 𝑁 − 𝐾

𝐹𝑖𝑟𝑠𝑡	𝐾

Sec 8.4

February 15, 2024

Reed Solomon Generators (Cyclic Code)
§ The blocklength is 𝑁 = 2W − 1;

• but can reduce𝐾 and 𝑁 together by same number of ss, keep 𝑃 constant.

§ 2𝑡 = 𝑁 −𝐾 or 𝑑@ABB = 𝑁 −𝐾 + 1 (achieve Singleton Bound Maximum)
• 𝑡 = number of errors corrected.

§ For any primitive element 𝛼 ∈ 𝐺𝐹 2W :

L11: 27

𝐺 𝐷 = P
&O)

P(Q

𝐷 + 𝛼&

§ Error prob for SDMC with subsymbol hard error 𝑃FF

𝑃# ≤ L
%>*@"

A
𝑁
𝑖 C 𝑃77% C 1 − 𝑃Q7 A!%

𝑁#,% =
𝑁
𝑖 C 𝑁 C L

F>C

%!?'())

−1 F C 𝑖 − 1
𝑗 C 𝑁 + 1 %!F!?'())

𝑃#,77 ≤ L
%>*@"

A
𝑖
𝑁
C 𝑁
𝑖 C 𝑃77% C 1 − 𝑃Q7 A!%

.𝑃- =
2D!"

2D − 1
C 𝑃#,77

Sec 8.4

Retransmission – Error-
Detecting Codes

February 15, 2024 L1:28

Section 8.6.3

February 15, 2024

CRC Error Detection and Retransmission
§ Cyclic Redundancy Check codes are (usually) binary and only detect errors (so 𝑠 𝐷 ≠ 0).

• CRCs mostly use simple binary versions of the previous encoders/decoders.
• Table below lists some with 𝑑BC!! = 4 and 𝑛-MN = 2D+ − 1.

§ These detect:
• all single and 2-bit errors, and also any odd number of bit errors. The 𝐷 + 1 factor forces even distance between codewords.
• any burst of length ≤ 𝑛 − 𝑘 (because this is the length of 𝑔 𝐷 - such a burst is not divisible by 𝑔 𝐷).

L11: 29

Name 𝒈 𝑫 factored
CRC-7 𝐷O + 𝐷P + 𝐷Q + 1 𝐷Q + 𝐷G + 1 N 𝐷D + 𝐷 + 1 N 𝐷 + 1

CRC-8 𝐷A + 𝐷D + 𝐷 + 1 𝐷O + 𝐷P + 𝐷H + 𝐷Q + 𝐷G + 𝐷D + 1 N 𝐷 + 1

CRC-12 𝐷3D + 𝐷33 + 𝐷G + 𝐷D + 𝐷 + 1 𝐷33 + 𝐷D + 1 N 𝐷 + 1

CRC-16 USA 𝐷3P + 𝐷3H + 𝐷D + 1 𝐷3H + 𝐷 + 1 N 𝐷 + 1

CRC-16 Euro 𝐷3P + 𝐷3H + 𝐷H + 1 𝐷3H + 𝐷3Q + 𝐷3G + 𝐷3D + 𝐷Q + 𝐷G + 𝐷D + 𝐷 + 1 N 𝐷 + 1

CRC-24 𝐷DQ + 𝐷DG + 𝐷3Q + 𝐷3D + 𝐷A + 1 𝐷3/ + 𝐷A + 𝐷O + 𝐷P + 𝐷H + 𝐷Q + 𝐷G + 𝐷 + 1 N
𝐷3/ + 𝐷R + 𝐷P + 𝐷Q + 1 N 𝐷 + 1

CRC-32 𝐷GD + 𝐷DP + 𝐷DG + 𝐷DD + 𝐷3P + 𝐷3D + 𝐷33 + 𝐷3/ + 𝐷A + 𝐷O + 𝐷H + 𝐷Q + 𝐷D + 𝐷 + 1
(appears prime, not sure)

Sec 8.6.3

February 15, 2024

Analysis – CRCs are for detection ONLY.
§ 𝑃� ≜ undetected error probability 𝑃� < 2�|� $ 0𝑃X � ; 𝑠 = 0 for wrong codeword.

L11: 30

Name 𝑃R/ S𝑃S T 1 − 𝑃R/ S𝑃S T Reliability
CRC-7 22O .99221875 2 nines

CRC-8 22A .99609375 3 nines

CRC-12 223D .999755859375 4 nines

CRC-16 USA 223P 0.999984741210938 5 nines

CRC-16 Euro 223P 0.999984741210938 5 nines

CRC-24 22DQ 0.999999940395355 7 nines

CRC-32 22GD 0.999999999767169 9 nines

N
	

𝑐𝑜𝑟𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
	

N
	

𝑣𝑜𝑖𝑐𝑒	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
	

{𝑣𝑖𝑑𝑒𝑜	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

{𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
{𝑠𝑡𝑜𝑟𝑎𝑔𝑒	

§ These are link-layer reliabilities - 2𝑃: could be high within a CRC codeword if large−𝑁 inner-code fails,
• but still, even if �𝑃S=.1, these get very low.

§ TCP-IP and higher-level session/application CRC checks (possibly using RS codes for detection) would
create super reliability with “once in a century” level failures.

§ These are cyclic codes so use earlier simple generators and receiver-syndrome calculation circuits.

High �𝑃S if inner code fails

Sec 8.6.3

February 15, 2024

Retransmission
§ Automatic Repeat Request (ARQ): If the CRC detects an error, resend the codeword.
§ ARQ requires a mechanism for acknowledgment (back-channel) or ACK/NAK.

• The NAK returns upon the receiver’s non-zero CRC syndrome calculation.
• 𝑃R is the correct receipt probability (syndrome is zero).

L11: 31

𝔼 𝐿U!VUWX# =U
YO)

Z

𝑙 / 𝑃[/ 1 − 𝑃[Y =
1
𝑃[

§ Throughput = �
� $ 𝑃� $ 𝑅 bps

§ Throughput represents the “real data rate” with code redundancy and retransmission accounted.
• Throughput assumes infinite buffer delay is possible.

§ There are entire courses in this network/queuing area, see EE384S (Bambos, Spring Q).

Sec 8.6.3

February 15, 2024

Hybrid ARQ (HARQ)

§ HARQ: A cyclic code is used with both detection and correction.
• If the correction part works, there is no need to retransmit.
• If the detection part discovers an error, and then retransmission occurs.
• Reed Solomon cyclic codes can split the parity bytes into those for correction and those for detection (sum is the

allowed maximum P).

§ HARQ with soft decoding
• Chase Decoding – use all instances of (re-) transmitted codeword (form of diversity) to decode.
• Incremental Redundancy – only retransmit additional parity bits (this is what 5G uses).

L11: 32

End Lecture 11

February 15, 2024

GF4 Tables
§ 𝑔 𝐷 = 1 + 𝐷 + 𝐷D is a primitive polynomial in GF(2) on which GF(4) is based” 1 + 𝐷G = 1 + 𝐷 + 1 + 𝐷 + 𝐷D =0

• So, setting 𝑔 𝐷 =0 leads to 𝐷6 = 1 + 𝐷.
• A consequent GF4 primitive element is 𝛼 = 𝐷 and 𝛼6 = 𝐷6 = 1 + D; 𝛼 = 1 + D also works.

L11: 34Sec B.1.2

February 15, 2024

GF8 Tables

§ 𝑔 𝐷 = 1 +𝐷 +𝐷�, so 𝐷� → 1+𝐷
• Primitive element is 𝛼 = 𝐷

L11: 35Sec B.1.2

§ See Appendix B for matlab commands that will generate these tables.

February 15, 2024

Convolutional Interleaver Generator

§ 𝐺 𝐷 must be causal linear; 𝐷 corresponds to a delay of one interleaver period.
• If 𝐺 𝐷 = 𝐺 0 , then block interleaver, otherwise a convolutional interleaver.
• Subsymbols interleaved may themselves be vectors.

§ A period has 𝐿 subsymbols within it. 𝐷 is one period, 𝐷++ is one subsymbol period.
§ To relate roughly to convolutional code, 𝐷 → 𝐷++0 , a period is 𝐿 subsymbol periods.

L11: 36

Interleaver
𝜋(𝑘)

period 𝐿
𝐺(𝐷)

𝑥$ 7𝑥$
𝑿 𝐷 = K

-./

𝒙-01023 ⋯ 𝒙-013 𝒙-0 N 𝐷- O𝑿 𝐷 = K
-./

P𝒙-01023 ⋯ P𝒙-013 P𝒙-0 N 𝐷- = 𝑿 𝐷 N 𝐺 𝐷

§ Simple Block Example

𝐺 𝐷 = 𝐺() 𝐷 =
1 0 0
0 0 1
0 1 0

Sec 8.6.1

This one is trivial

