Lecture 11
 Outer Hard-Code Concatenation

February 15, 2024
JOHN M. CIOFFI
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- PS5 due 2/23

- PS4 Feedback

- 9.5-20 hours
- Some matlab complaints (diff in notation)
- This is much harder to edit than students may realize.
- Projects welcome in this area.
- Short period (needed for test study)
- PS8/final builds in longer time
- Viterbi coverage was short
- Torn here between Viterbi becoming obsolete, but older systems using it are deployed widely.
- May delete it in future (constraint/iteration, GRAND)

- Today

- Last 3 slides of L10 are for information only.
- Deterministic Interleaving
- Design with Reed Solomon to zero gap (nearly)
- Cyclic Codes Overview
- Retransmission - Error-Detecting Codes (CRC)

Deterministic Interleaving

Section 8.4

Redistribute the Inner Codes' errors

- Inner code will make "whole-codeword" errors P_{e}. (This might be already a turbo or LDPC code.)
- There are many bit/subsymbol errors correspondingly - i.e., an "error burst."
- Error bursts also occur from nonstationary effects, such as:
- random fades in wireless, or
- impulse noise in wireline (or wireless).
- Outer Code design assumes that bursts are significantly separated (good inner code design, low $P_{e, i n n e r} \sim 10^{-3}$ to -7).
- Deterministic interleaving disperses these bursts evenly over depth \mathcal{J} different codewords.
- Thus, $d_{\text {free }} \rightarrow \mathcal{J} \cdot d_{\text {free }}$, and really the entire distance d_{i} distribution increases by \mathcal{J}.
- This interleave gain applies to a burst, not overall; but does thereby add $\sim 0.5-1 \mathrm{~dB}$ more coding gain.
- The aggregate design operates close to capacity and $P_{e} \rightarrow 0$
- $\frac{d P_{e}}{d S N R} \rightarrow-\infty$; Pe versus energy becomes very steep/sensitive.
- So operation at/very-near capacity is requires highly stationary channel to be effective.
- Whence our EE379 "margin" concept. (Design for capacity at presumed larger noise, but operate with the actual noise.)

Formal (deterministic-interleaver) Depth

- depth Definition 8.6.1 [Interleaver Depth] The $\operatorname{depth} \mathcal{J}$ of an interleaver is the minimum separation in subsymbol periods at the interleaver output between any two subsymbols that are adjacent at the interleaver input.

$$
\mathcal{J}=\min _{k=0, \ldots, L-1}\left|\pi^{-1}(k)-\pi^{-1}(k+1)\right|
$$

- period Definition 8.6.2 [Interleaver Period] The period L of an interleaver is the shortest time interval for which the re-ordering algorithm used by the interleaver repeats.

- Distance magnification is $d_{\text {free }} \rightarrow \mathcal{J} \cdot d_{\text {free }}$; but introduces delay $\propto \mathcal{J} \cdot L$.
- The outer code is typically cyclic, specifically Reed Solomon (coming) and not binary (usually ss = bytes).
- System-design perspective:
- Pick an RS code with high rate $r \rightarrow R=K / N$ and just enough distance (so rate is high) to meet target $\left[\begin{array}{ll}P_{e} & \bar{P}_{b}\end{array}\right]$.
- Design outer code for inner-code's eventual hard-decoded output, and model as a symmetric DMC.
- Design for "not too much delay in the interleaving and de-interleaving."

Classical Block Interleaver

- Two transmit memories: read and write
$\boldsymbol{G}=\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right.$
- Write Buffer inputs 4 blocks of 3 subsymbols each.
- Read Buffer outputs 3 blocks of 4 subsymbols each.
- De-interleave reverses interleaver.
- Delay is 12 units on each side, so 24 total.

At least $\mathcal{J}=3$ subsymbols between adjacent de-interleaver outputs, e.g. 11 and 10 are 4 apart. (delay ss 11 by 12 ss times to avoid being next to next period's ss 0).

We could reverse to $\mathcal{J}=4$ with $N_{\text {out }}=4$.

Minimum (block-ileave)Memory Implementation

First 6		$2^{\text {nd }} 6$	
0	3	6	9
1	4	7	10
2	5	8	11

write order	write order
$0,1,2,3,4,5$	$6,7,8,9,10,11$

- Overwrite memory cells as they become available, See right-side table.

$$
\boldsymbol{G}=\left[\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline \mathbf{0} & \mathbf{0} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right]
$$

read	write	cell	
0	---	---	pass
1	Past 3	Currrent 1	A
2	Past 6	Current 2	B
3	Past 9	Current 3	C
4	Current 1	Current 4	A
5	Current 4	Current 5	A
6	Past 7	Current 6	D
7	Past 10	Current 7	E
8	Current 3	Current 8	C
9	Current 5	Current 9	A
10	Current 8	Current 10	C
11	Past 11	Current 11	F

6 Memory Cells Needed

- This is $1 / 2$ delay (12 end-to-end, not 24) and $1 / 4$ memory of classical block interleaver (12 instead of 48)

Convolutional Interleaver Generator

- $G(D)$ must be causal linear; D corresponds to a delay of one interleaver period.
- If $G(D)=G(0)$, then block interleaver, otherwise a convolutional interleaver.
- Subsymbols interleaved may themselves be vectors.
- A period has L subsymbols within it. D delays one period, $D_{S S}$ delays one subsymbol period.
- To relate roughly to an ss-based convolutional code, $D \rightarrow D_{S S}^{L}$, a period is L subsymbol periods.

$$
\boldsymbol{X}\left(D_{s s}\right)=\left[\left.\left.\left.D_{s s}^{L-1} \cdot x_{L-1}(D)\right|_{D=D_{s s}^{L}} D_{s s}^{L-2} \cdot x_{L-2}(D)\right|_{D=D_{s s}^{L}} \ldots x_{0}(D)\right|_{D=D_{s s}^{L}}\right]
$$

Specific examples in following slides

Convolutional/Triangular Interleaver, $\mathcal{J}=4, L=3$

- ~ delay/2 and memory/2 w.r.t. block
$\Delta_{i}=i \cdot L=i \cdot(\mathcal{J}-1)$ symbol periods $i=0, \ldots, L-1$

Convolutional Interleavers, coprime L, \mathcal{J}

- The delays are in $D_{S S}$, not D. It still looks triangular, except for the time-slot interchange order.
- Is not triangular with D, see also example with $\mathcal{J}=4 ; L=5$ in Section 8.6.1.3.

Minimum Memory Requirement in cells

Table 2 for $J=3$ and $L=5$															
L/t	0	1	2	3	4	0 '	1 '	2 '	3 '	4'	0' ${ }^{\prime}$	1' ${ }^{\prime}$	2^{\prime}	3'	4' ${ }^{\prime}$
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	B1	B1	-	-	-	B1'	B1'	-	-	-	B1' ${ }^{\prime}$	B1' ${ }^{\prime}$	-	-
2	-	-	B2	B2	B2	B2	-	B2'	B2'	B2'	B2'	-	B2' ${ }^{\prime}$	B2' ${ }^{\prime}$	B2' ${ }^{\prime}$
3	-	-	-	B3	B3	B3	B3	B3	B3,	B3'	B3'	B3'	B3'	$\begin{aligned} & \text { B3' }^{\prime} \\ & \text { B3' } \end{aligned}$	B3' ${ }^{\prime}$
4	-	-	-	-	B4	B4	B4	B4	B4	$\begin{aligned} & \text { B4 } \\ & \text { B4 } \end{aligned}$	$\begin{aligned} & \text { B4 } \\ & \text { B4 } \end{aligned}$	$\begin{aligned} & \text { B4 } \\ & \text { B4 } \end{aligned}$	B4'	B4'	$\begin{aligned} & \mathrm{B} 4{ }^{\prime}, \\ & \text { B4' } \end{aligned}$
CELL1	-	B1	B1	B3	B3	B3	B3	B3	B3	B4'	B4'	B4'	B4'	B4'	B4'
CELL2	-	-	B2	B2	B2	B2	B1'	B1'	B3'	B3'	B3'	B3'	B3'	B3'	B4' ${ }^{\prime}$
CELL3	-	-	-	-	B4	B2' ${ }^{\prime}$	B2' ${ }^{\prime}$	B2' ${ }^{\prime}$							
CELL4								B2'	B2'	B2'	B2'	B1' ${ }^{\prime}$	B1' ${ }^{\prime}$	B3',	B3' ${ }^{\prime}$

- Can do it with $\frac{1}{2} \cdot(\mathcal{J}-1) \cdot(L-1)$ CELLS in general (so yet another factor of 2 less)

Generalized Triangular

- Group M subsymbols

$$
\mathrm{M}=D_{S S}^{M \cdot L}
$$

ITU Generalized Triangular

- Used some wireline standards

Parameter	Value
Interleaver block length (K)	$K=L$ subsymbols (equal to or divisor of N)
Interleaving Depth (J)	$\mathcal{J}=M \cdot K+1$
(De)interleaver memory size	$M \cdot K \cdot K \cdot\left({ }^{K-1} / 2\right)$ subsymbols
Correction capability (block code that corrects t symbol errors) With $q=N / K)$	$\left\lfloor\frac{t}{q}\right\rfloor \cdot(M \cdot K+1)$ subsymbols
$\left\lfloor\frac{t}{q}\right\rfloor \cdot(\mathcal{J})$	
End-to-end delay	$M \cdot K \cdot(K-1)$ subsymbols

Rate (Mbps)	Interleaver parameters	Interleaver depth (J)	(De)interleaver memory size	Erasure correction	End-to-end delay
50×1024	$\begin{aligned} & K=72 \\ & M=13 \end{aligned}$	937 blocks of 72 bytes	33228 bytes	$\begin{gathered} 3748 \text { bytes } \\ 520 \mathrm{~ns} \end{gathered}$	$9.23 \mu \mathrm{~s}$
24×1024	$\begin{aligned} & K=36 \\ & M=24 \end{aligned}$	865 blocks of 36 bytes	15120 bytes	$\begin{aligned} & 1730 \text { bytes } \\ & 500 \mathrm{~ns} \end{aligned}$	$8.75 \mu \mathrm{~s}$
12×1024	$\begin{aligned} & K=36 \\ & M=12 \end{aligned}$	433 blocks of 36 bytes	7560 bytes	866 bytes 501 ns	$8.75 \mu \mathrm{~s}$
6×1024	$\begin{aligned} & K=18 \\ & M=24 \end{aligned}$	433 blocks of 18 bytes	3672 bytes	433 bytes 501 ns	$8.5 \mu \mathrm{~s}$
4×1024	$\begin{aligned} & K=18 \\ & M=16 \end{aligned}$	289 blocks of 18 bytes	2448 bytes	$\begin{aligned} & 289 \text { bytes } \\ & 501 \mathrm{~ns} \end{aligned}$	$8.5 \mu \mathrm{~s}$
2×1024	$\begin{gathered} K=18 \\ M=8 \end{gathered}$	145 blocks of 18 bytes	1224 bytes	145 bytes 503 ns	$8.5 \mu \mathrm{~s}$

Design with Reed Solomon Codes

Section 8.6.2

Channel is typically the SDMC, Symmetric Discrete Memoryless Channel

Block (Outer) Code Performance

- The codeword error probability is

$$
P_{e}=\sum_{i=\left\lfloor\frac{d_{f r e e}+1}{2}\right\rfloor}^{N}\binom{N}{i} \cdot p_{s S}^{i} \cdot\left(1-p_{s S}\right)^{N-i}
$$

- $p_{s s}$ is the subsymbol (byte) error rate on the "hard" SDMC $\approx \tilde{b} \cdot \bar{P}_{b}$; hard subsymbol decisions.
- Outer code's \bar{P}_{b} :

$$
\bar{P}_{b}=\frac{2^{\tilde{b}-1}}{\left(2^{\tilde{b}}-1\right) \cdot N} \sum_{i=\left\lfloor\frac{d_{\text {free }}+1}{2}\right\rfloor}^{N} \boldsymbol{i} \cdot\binom{N}{i} \cdot p_{s s}^{i} \cdot\left(1-p_{s s}\right)^{N-i}
$$

half C points have a bit incorrect, on average
Total number of points - correct point

- Semi-soft direct Gray-Map to 2^{m}-ary subsymbol (SQ-QAM/PAM, ... without BICM) reduces to ($\tilde{b}>2$):

$$
\bar{P}_{b}=\frac{1}{\tilde{b} \cdot N} \sum_{i=\left\lfloor\left[\frac{d_{\text {free }}+1}{2}\right\rfloor\right.}^{N} i \cdot\binom{N}{i} \cdot p_{S S}^{i} \cdot\left(1-p_{s S}\right)^{N-i}
$$

Gray has only 1 bit on each symbol error
Total number of bits in C

Reed Solomon Code Performance

- Typically, RS codes are ss=byte oriented or $G F(256)$ with max codeword length $N_{\text {out }} \leq 255=2^{8}-1$ bytes.
- $\tilde{b}=m$ in $G F\left(2^{m}\right)$ more generally ($\tilde{b}=8$ for bytes).
- There are P parity bytes (preferred implementation is systematic).
- So $K=N_{\text {out }}-P$ information bytes,
- $r=R=\frac{K}{N_{\text {out }}}$, \&
- $d_{\text {free }}=P+1$, so if $P \in 2 \mathbb{Z}^{+}$(even), then RS ML decoder corrects $\left[\frac{d_{\text {free }}-1}{2}\right\rfloor=P / 2$ erred subsymbols.
- To correct error bursts, use interleave depth \mathcal{J}, so that effectively $d_{\text {free }} \rightarrow d_{\text {free }} \cdot \mathcal{J}$, or correct ${ }^{P \cdot \mathcal{J} / 2}$,
- as long as error bursts are sufficiently separated.
- If burst-length $=$ inner codeword length $N_{i n}$, then select $\frac{P}{2} \cdot \mathcal{J} \geq \frac{N_{i n}}{2}$ roughly, so $\mathcal{J} \geq \frac{N_{\text {in }}}{P}$.
- So, design selects: $N_{\text {out }}, P$, and \mathcal{J}
- But larger depth means more memory and more delay - and also, bursts must be sufficiently separated!
- Higher P corrects more errors, but reduces the rate $r=R=\frac{N_{\text {out }}-P}{N_{\text {out }}}$.
- Usually pick maximum (or close to it) $N_{\text {out }} \leq 2^{m}-1$ (255 for bytes).
- Clearly $N_{\text {out }}=2^{m}-1$ yields highest rate for any given P.
- But, there are also more chances for errors to occur with larger $N_{\text {out }}$, and $d_{\text {free }}$ remains same even if $N_{\text {out }}<2^{m}-1$.

Example

- Inner code is LDPC with $N_{\text {in }}=1000$ bytes (so $n=8000$ bits or 1 kB).
- Delay specification: The bit rate is $R=8 \mathrm{Gbps}(1 \mathrm{~GB} / \mathrm{s})$; an inner codeword occurs every $1 \mu \mathrm{~s}$.
- The specification's maximum delay is 1 ms , so 1000 outer codewords (1 MB) in 1 ms .
- Then $1 \mathrm{MB} \cong 250 \cdot \mathcal{J}$ bytes. Thus, $\mathcal{J}<4000$ maintains sub-ms delay.

$$
\underbrace{}_{N_{\text {out }}}
$$

- Error-correction: Inner system has $P_{e}=10^{-3}$.
- Inner decoder error bursts of up to 1000 erred bytes each arrive every 1 ms , on average.
- To correct the error burst of 1000 bytes using $\frac{P}{2}$. erred bytes per codeword means:
- the RS code needs $P=20$ parity bytes and $\mathcal{J}=100$.
- $r=R=\frac{230}{250}$, so a fairly high rate will cause almost no errors with depth 100 (and delay $25 \mu \mathrm{~s}$).
- This design should cause high reliability (larger coding gain in effect or really very low \bar{P}_{b}) if - The inner system satisfies $P_{e}=10^{-3}$.
- Expect rapid degradation if inner system has slight increase in error probability (slight noise increase)
- This is true of any system with $\Gamma \rightarrow 0 \mathrm{~dB}$ (which is often why positive noise margin is also a design objective).

Matlab RS Encoder Program

- The inputs are m-bit elements in $G F\left(2^{m}\right)$

This means they must be specially set in matlab to be elements in such a field using the gf command.

As an example with $m=3$ so GF(8)

- There are $K=4$ input bytes / codeword
- $N=7$ output bytes include the $P=3$ parity bytes.
rsenc Reed-Solomon encoder.

CODE $=$ rsenc(MSG,N,K) encodes the message in MSG using an (N,K) ReedSolomon encoder with the narrow-sense generator polynomial. MSG is a Galois array of symbols over GF($\left.2^{\wedge} m\right)$. Each K-element row of MSG represents a message word, where the leftmost symbol is the most significant symbol. If N is smaller than $2^{\wedge} m-1$, then rsenc uses a shortened Reed-Solomon code. Parity symbols are at the end of each word in the output Galois array code.
--- deleted long comment on polynomal specification, allows more than Matlab's default RS polynomial to be used ----

CODE $=$ rsenc(...,PARITYPOS) specifies whether rsenc appends or prepends the parity symbols to the input message to form code. The string PARITYPOS can be either 'end' or 'beginning'. The default is 'end'.

```
Examples:
    N=7; K=3; 首 % Codeword and message word lengths
```

genpoly $=$ rsgenpoly (N, K); \% Default generator polynomial
code1 = rsenc(msg,N,K,genpoly); \% code and code1 are the same codewords
genpoly2 $=$ rsgenpoly(N,K,primpoly); \% primitive poly is octal G(D), see L11:21-25

```
>> msg
= GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
    5 2 3
    0 17
>> code
= GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
    5 2 3 5 4 4 2
    0 1 7 6 6 0 7
```


Matlab RS Decoder Program

- It accepts N bytes of (de-interleaved) channel output and decodes them.
- Result is correct if $\leq P / 2$ erred bytes.
- The decoder algorithm is basically a pseudoinverse in a finite field:
- It's nontrival.
- See text or EE387.
- It is Max Likelihood for SDMC.

```
N=7; K=3; % Codeword and message word lengths
    m=3; % Number of bits per symbol
    msg = gf([7 4 3;6 2 2;3 0 5],m) % Three k-symbol message words
msg=GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
    7 4 3
    6 2 2
    3 0 5
    code = rsenc(msg,N,K);
    7437004
    6 2 27673
    3055606
```

rsdec Reed-Solomon decoder.

DECODED $=\operatorname{rsdec}(C O D E, N, K)$ attempts to decode the received signal in CODE using an (N, K) Reed-Solomon decoder with the narrow-sense generator polynomial. CODE is a Galois array of symbols over $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, where m is the number of bits per symbol. Each N-element row of CODE represents a corrupted systematic codeword, where the parity symbols are at the end and the leftmost symbol is the most significant symbol. If N is smaller than $2^{\wedge} \mathrm{m}-1$, then rsdec assumes that CODE is a corrupted version of a shortened code.

```
% Add }1\mathrm{ error in the 1st word, 2 errors in the 2nd, 3 errors in the 3rd
>> errors = gf([300000 0;450000 0;6770000],m);
>> codeNoi = code + errors
    = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
    44 3 7 0 0 4
    2727673
    5725606
```

```
[dec,cnumerr] = rsdec(codeNoi,N,K) % Decoding failure : cnumerr(3) is -1
dec =GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
    743
    6 2 2
    5 7 2
cnumerr = % recall dfree=5 for this code
    1 % corrected one error
    2 % corrected two errors
    -1 % detects error
```


Cyclic Code Basics

Section 8.4 and Appendix B

See also Chap 8 References [30] Blahut book and [31] Gill's EE387 Class Notes

Galois Field with $p=\mathbf{2}^{m}$

- $G F\left(2^{m}\right)=\left\{0,1, \ldots, 2^{m}-1\right\}$ - but elements are viewed as binary polynomials of degree m.
- Addition/multiplication is modulo a degree-m prime binary polynomial.
- $\mathrm{g}(D)=g_{0}+g_{1} \cdot D+\cdots+g_{m-1} \cdot D^{m-1}$ has no factor in $G F(2)$ but itself is factor of $D^{2^{m}-1}+1=0$, a root of 1 .
- This D is for a binary polynomial.

$$
G F\left(2^{m}\right)=\left\{\begin{array}{llllll}
0 & 1 & \alpha & \alpha^{2} & \ldots & \alpha^{2^{m}-2}
\end{array}\right\}
$$

- Multiplication is modulo this prime polynomial.
- So multiply and set $g(D)=0$

$$
\begin{aligned}
& x(D) \cdot y(D)=d(D) \cdot g(D)+r(D) \\
& (x(D) \cdot y(D))_{g(D)}=r(D)
\end{aligned}
$$

See example multiplication tables in Appendix
B.1, as well as back-up slides

Cyclic Codes

- Every codeword is cyclic shift of others.
- Subsymbols are elements in $G F\left(2^{m}\right)$.
- More generally, $G F\left(p^{m}\right)$, see EE387.
- If $v(D) \in C$, then $\left(D^{i} \cdot v(D)\right)_{1-D^{N}} \in C$
- Right circular shift by i places.

$$
\begin{aligned}
& v(D)=v_{0}+v_{1} \cdot D+\cdots+v_{N-1} \cdot D^{N-1} \\
& v_{n} \in G F\left(2^{m}\right) ; n=0, \ldots, N-1, \text { so } v(D) \in\left[G F\left(2^{m}\right)\right]^{N} \\
& (D \cdot v(D))_{1-D^{N}}=v_{N-1}+v_{0} \cdot D+\cdots+v_{N-2} \cdot D^{N-1}
\end{aligned}
$$

- Some (like Reed Solomon) have $d_{f r e e}=N-K+1$; MDS code (meets Singleton Bound).
- Further, any $G F\left(2^{m}\right)$ linear combination of codewords $\left(\bmod 1-D^{N}\right)$ is $\in C$.
- $G F\left(2^{m}\right)$ defines the arithmetic, while an irreducible polynomial $G_{j}(D)$ defines the code
- $1-D^{N}=\prod_{j=1}^{J} G_{j}(D)$ where each $G_{j}(D)$ is irreducible polynomial in $G F\left(2^{m}\right)$.
- Clearly
$\left(G_{j}(D) \cdot H_{j}(D)\right)_{1-D^{N}}=0$ where $H_{j}(D)=\prod_{i \neq j} G_{i}(D)$.

Note: The irreducible polynomial is NOT the Same binary polynomial used to define arithmetic in $G F\left(2^{m}\right)$ that was vector of bits This $G(D)$ is for a vector of bytes/subsymbols

- A cyclic code can be defined by each $G_{j}(D)$, with degree determining $N-K$, as
- $C_{i}(D)=D^{N-K} \cdot u(D)+\left(D^{N-K} \cdot u(D)\right)_{G_{j}(D)}$ - delay the input ss's by $N-K$ and add the remainder in remaining $N-K$ positions.

Cyclic Code Continued

- $C_{i}(D)$ is cyclic because

$$
v_{N-1}+v_{0} \cdot D+\cdots+v_{N-2} \cdot D^{N-1}=D \cdot v(D)+v_{N-1} \cdot\left(1-D^{N}\right)
$$

- Since $G(D)$ divdes both $v(D)$ and $\left(1-D^{N}\right)$, then $\left(D^{j} \cdot v(D)\right)_{1-D^{N}}$ is also a codeword (any j).
- $H(D)=\frac{1-D^{N}}{G(D)}$ is parity polynomial
- corresponding to an $(N, N-K)$ dual cyclic code with generator $D^{K} \cdot H\left(D^{-1}\right)$
- So unlike convolutional code where $H(D)$ is both parity matrix and dual code, with cyclic-generator simplifications for cyclic block codes, the dual code essentially reverses time w.r.t. $H(D)$.
- This time reversal corresponds to circular convolution in $\left[G F\left(2^{m}\right)\right]^{N}$
- Syndrome calculation is then $\left(y(D) \cdot D^{K} \cdot H\left(D^{-1}\right)\right)_{G(D)}=s(D)=\left(e(D) \cdot D^{K} \cdot H\left(D^{-1}\right)\right)_{G(D)}$
- ML decoder finds minimum Hamming weight $e(D)$ as solution (often nontrivial to find).

Encoder Circuit

- $G(D)$ is the cyclic code's generator (like convolutional) prime polynomial:

- $G(D)$ is the cyclic code's generator (like convolutional) prime polynomial with degree $N-K$.
- $D^{N-K} \cdot u(D)=q(D) \cdot G(D)+R(D)$ where $R(D)$ contains parity bytes/subsymbols.
- By subtracting $R(D)$, this encoder's output becomes a multiple of $G(D)$.

Decoder Circuit using G(D)

- $s(D)$ is the syndrome and equivalent to $v \cdot H$, which is zero if no errors w.r.t. any codeword.
- $s(D)=\left(e(D) \cdot D^{K} \cdot H\left(D^{-1}\right)\right)_{G(D)}$, so the ML decoder must find smallest $\left(w_{H}\right) e(D)$ that causes $s(D)$.
- Then $\hat{u}(D)=D^{K-N} \cdot(y(D)-e(D))$ - the decoder ignores any negative-power $D^{i<0}$ terms.
- Dark Blue Box is nontrivial for cyclic codes (Berlekamp-Massey, Forney,) - finite-field pseudoinverse, - which has structure that avoids a huge list-based ML decoder's complexity, unlike a more general block code might need.

Decoder Circuit using H(D)

- $G(D)$ or $\mathrm{H}(D)$ other will be simpler for any specific code.

Reed Solomon Generators (Cyclic Code)

- The blocklength is $N=2^{m}-1$;
- but can reduce K and N together by same number of ss, keep P constant.
- $2 t=N-K$ or $d_{\text {free }}=N-K+1$ (achieve Singleton Bound Maximum)
- $t=$ number of errors corrected.
- For any primitive element $\alpha \in G F\left(2^{m}\right)$:

$$
G(D)=\prod_{i=1}^{N-K}\left(D+\alpha^{i}\right)
$$

- Error prob for SDMC with subsymbol hard error $P_{S S}$

$$
P_{e} \leq \sum_{i=t+1}^{N}\binom{N}{i} \cdot P_{S S}^{i} \cdot\left(1-P_{x S}\right)^{N-i}
$$

$$
P_{e, S S} \leq \sum_{i=t+1}^{N} \frac{i}{N} \cdot\binom{N}{i} \cdot P_{S S}^{i} \cdot\left(1-P_{x S}\right)^{N-i}
$$

$$
N_{e, i}=\binom{N}{i} \cdot N \cdot \sum_{j=0}^{i-d_{\text {free }}}(-1)^{j} \cdot\binom{i-1}{j} \cdot(N+1)^{i-j-d_{\text {free }}}
$$

$$
\bar{P}_{b}=\frac{2^{m-1}}{2^{m}-1} \cdot P_{e, s s}
$$

Retransmission - ErrorDetecting Codes

Section 8.6.3

CRC Error Detection and Retransmission

- Cyclic Redundancy Check codes are (usually) binary and only detect errors (so $s(D) \neq 0$).
- CRCs mostly use simple binary versions of the previous encoders/decoders.
- Table below lists some with $d_{\text {free }}=4$ and $n_{\max }=2^{2^{r}}-1$.
- These detect:
- all single and 2-bit errors, and also any odd number of bit errors. The $(D+1)$ factor forces even distance between codewords.
- any burst of length $\leq n-k$ (because this is the length of $g(D)$ - such a burst is not divisible by $g(D)$).

Name	$\boldsymbol{g}(\boldsymbol{D})$	factored
CRC-7	$D^{7}+D^{6}+D^{4}+1$	$\left(D^{4}+D^{3}+1\right) \cdot\left(D^{2}+D+1\right) \cdot(D+1)$
CRC-8	$D^{8}+D^{2}+D+1$	$\left(D^{7}+D^{6}+D^{5}+D^{4}+D^{3}+D^{2}+1\right) \cdot(D+1)$
CRC-12	$D^{12}+D^{11}+D^{3}+D^{2}+D+1$	$\left(D^{11}+D^{2}+1\right) \cdot(D+1)$
CRC-16 USA	$D^{16}+D^{15}+D^{2}+1$	$\left(D^{15}+D+1\right) \cdot(D+1)$
CRC-16 Euro	$D^{16}+D^{15}+D^{5}+1$	$\left(D^{15}+D^{14}+D^{13}+D^{12}+D^{4}+D^{3}+D^{2}+D+1\right) \cdot(D+1)$
CRC-24	$D^{24}+D^{23}+D^{14}+D^{12}+D^{8}+1$	$\left(D^{10}+D^{8}+D^{7}+D^{6}+D^{5}+D^{4}+D^{3}+D+1\right) \cdot$ $\left(D^{10}+D^{9}+D^{6}+D^{4}+1\right) \cdot(D+1)$
CRC-32	$D^{32}+D^{26}+D^{23}+D^{22}+D^{16}+D^{12}+D^{11}+D^{10}+D^{8}+D^{7}+D^{5}+D^{4}+D^{2}+D+1$	
(appears prime, not sure)		

Analysis - CRCs are for detection ONLY.

- $P_{u} \triangleq$ undetected error probability $P_{u}<2^{k-n} \cdot\left(\bar{P}_{b}\right)^{4} ; s=0$ for wrong codeword.

Name	$P_{u} /\left(\bar{P}_{b}\right)^{4}$	$1-P_{u} /\left(\bar{P}_{b}\right)^{4}$	Reliability	High \bar{P}_{b} if inner code fails$\{$ voice reliability)
CRC-7	2^{-7}	. 99221875	2 nines	
CRC-8	2^{-8}	. 99609375	3 nines	
CRC-12	2^{-12}	. 999755859375	4 nines	\{video reliability
CRC-16 USA	2^{-16}	0.999984741210938	5 nines	(core network reliability)
CRC-16 Euro	2^{-16}	0.999984741210938	5 nines	(
CRC-24	2^{-24}	0.999999940395355	7 nines	\{critical reliability
CRC-32	2^{-32}	0.999999999767169	9 nines	\{storage

- These are link-layer reliabilities $-\bar{P}_{b}$ could be high within a CRC codeword if large $-N$ inner-code fails, - but still, even if $\bar{P}_{b}=.1$, these get very low.
- TCP-IP and higher-level session/application CRC checks (possibly using RS codes for detection) would create super reliability with "once in a century" level failures.
- These are cyclic codes so use earlier simple generators and receiver-syndrome calculation circuits.

Retransmission

- Automatic Repeat Request (ARQ): If the CRC detects an error, resend the codeword.
- ARQ requires a mechanism for acknowledgment (back-channel) or ACK/NAK.
- The NAK returns upon the receiver's non-zero CRC syndrome calculation.
- P_{c} is the correct receipt probability (syndrome is zero).

$$
\mathbb{E}\left[L_{\text {retrans }}\right]=\sum_{l=1}^{\infty} l \cdot P_{c} \cdot\left(1-P_{c}\right)^{l}=\frac{1}{P_{c}}
$$

- Throughput $=\left(\frac{k}{n}\right) \cdot P_{c} \cdot R$ bps
- Throughput represents the "real data rate" with code redundancy and retransmission accounted.
- Throughput assumes infinite buffer delay is possible.
- There are entire courses in this network/queuing area, see EE384S (Bambos, Spring Q).

Hybrid ARQ (HARQ)

- HARQ: A cyclic code is used with both detection and correction.
- If the correction part works, there is no need to retransmit.
- If the detection part discovers an error, and then retransmission occurs.
- Reed Solomon cyclic codes can split the parity bytes into those for correction and those for detection (sum is the allowed maximum P).
- HARQ with soft decoding
- Chase Decoding - use all instances of (re-) transmitted codeword (form of diversity) to decode.
- Incremental Redundancy - only retransmit additional parity bits (this is what 5G uses).

End Lecture 11

GF4 Tables

- $g(D)=1+D+D^{2}$ is a primitive polynomial in GF(2) on which GF(4) is based" $1+D^{3}=(1+D) \cdot\left(1+D+D^{2}\right)=0$
- So, setting $g(D)=0$ leads to $D^{2}=1+D$.
- A consequent GF4 primitive element is $\alpha=D$ and $\alpha^{2}=D^{2}=1+\mathrm{D} ; \alpha=1+\mathrm{D}$ also works.

\oplus	0	1	D	$1+\mathrm{D}$
0	0	1	D	$1+\mathrm{D}$
1	1	0	$1+\mathrm{D}$	D
D	D	$1+\mathrm{D}$	0	1
$1+\mathrm{D}$	$1+\mathrm{D}$	D	1	0

\oplus	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

\otimes	0	1	D	$1+\mathrm{D}$	or (lsb first)	\otimes	00	10	01	11	or (lsb last)	\otimes	0	1	2	3
0	0	0	0	0		00	00	00	00	00		0	0	0	0	0
1	0	1	D	$1+\mathrm{D}$		10	00	10	01	11		1	0	1	2	3
D	0	D	$1+\mathrm{D}$	1		01	00	01	11	10		2	0	2	3	1
$1+\mathrm{D}$	0	$1+\mathrm{D}$	1	D		11	00	11	10	01		3	0	3	1	2

GF8 Tables

\oplus	0	1	D	D^{2}	$1+D$	$D+D^{2}$	$1+D+D^{2}$	$1+D^{2}$
0	0	1	D	D^{2}	$1+D$	$D+D^{2}$	$1+D+D^{2}$	$1+D^{2}$
1	1	0	$1+D$	$1+D^{2}$	D	$1+D+D^{2}$	$D+D^{2}$	D^{2}
D	D	$1+D$	0	$D+D^{2}$	1	D^{2}	$1+D^{2}$	$1+D+D^{2}$
D^{2}	D^{2}	$1+D^{2}$	$D+D^{2}$	0	$1+D+D^{2}$	D	$1+D$	1
$1+D$	$1+D$	D	1	$1+D+D^{2}$	0	$1+D^{2}$	D^{2}	$D+D^{2}$
$D+D^{2}$	$D+D^{2}$	$1+D+D^{2}$	D^{2}	D	$1+D^{2}$	0	1	$1+D$
$1+D+D^{2}$	$1+D+D^{2}$	$D+D^{2}$	$1+D^{2}$	$1+D$	D^{2}	1	0	D
$1+D^{2}$	$1+D^{2}$	D^{2}	$1+D+D^{2}$	1	$D+D^{2}$	$1+D$	D	0

- $g(D)=1+D+D^{3}$, so $D^{3} \rightarrow 1+D$
- Primitive element is $\alpha=D$

i	$\mathrm{GF}(8)$ element		
	α^{i}	lsb first	lsb last
$-\infty$	0	000	0
0	1	100	1
1	D	010	2
2	D^{2}	001	4
3	$1+D$	011	6
4	$D+D^{2}$	110	3
5	$1+D+D^{2}$	111	7
6	$1+D^{2}$	010	5

\oplus	0	1	2	4	6	3	7	5
0	0	1	2	4	6	3	7	5
1	1	0	3	5	2	7	6	4
2	2	3	0	6	4	1	5	7
4	4	5	6	0	7	2	3	1
6	6	2	1	7	0	5	4	6
3	3	7	4	2	5	0	1	3
7	7	6	5	3	4	1	0	2
5	5	4	7	1	6	3	2	0

See Appendix B for matlab commands that will generate these tables.

Convolutional Interleaver Generator

$X(D)=\sum_{m=0}\left[x_{m L+L-1}\right.$

Interleaver
$\pi(k)$
period L
$G(D)$

$$
\begin{gathered}
\longrightarrow \tilde{\boldsymbol{X}}_{k} \\
\widetilde{\boldsymbol{X}}(D)=\sum_{m=0}\left[\begin{array}{lll}
\widetilde{\boldsymbol{x}}_{m L+L-1} & \cdots & \widetilde{\boldsymbol{x}}_{m L+1} \\
\widetilde{\boldsymbol{x}}_{m L}
\end{array}\right] \cdot D^{m}=\boldsymbol{X}(D) \cdot G(D)
\end{gathered}
$$

- $G(D)$ must be causal linear; D corresponds to a delay of one interleaver period.
- If $G(D)=G(0)$, then block interleaver, otherwise a convolutional interleaver.
- Subsymbols interleaved may themselves be vectors.
- A period has L subsymbols within it. D is one period, $D_{s s}$ is one subsymbol period.
- To relate roughly to convolutional code, $D \rightarrow D_{s s}^{L}$, a period is L subsymbol periods.

$$
\boldsymbol{X}\left(D_{s s}\right)=\left[\left.\left.\left.D_{s s}^{L-1} \cdot x_{L-1}(D)\right|_{D=D_{s s}^{L}} D_{s s}^{L-2} \cdot x_{L-2}(D)\right|_{D=D_{s s}^{L}} \ldots x_{0}(D)\right|_{D=D_{s s}^{L}}\right]
$$

- Simple Block Example
$\pi(k)= \begin{cases}k+1 & \text { if } k=0 \bmod 3 \\ k-1 & \text { if } k=1 \bmod 3 \\ k & \text { if } k=2 \bmod 3\end{cases}$

This one is trivial
or in tabular form:

$\pi(k):$	-1	1	0	2	4	3	5
$k:$	-1	0	1	2	3	4	5

$G(D)=G^{-1}(D)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

$k^{\prime}=\pi(k):$	-1	0	1	2	3	4	5
$\pi^{-1}\left(k^{\prime}\right)=k:$	-1	1	0	2	4	3	5

