

Lecture 11 Outer Hard-Code Concatenation February 15, 2024

JOHN M. CIOFFI

Hitachi Professor Emeritus (recalled) of Engineering

Instructor EE379A – Winter 2024

Announcements & Agenda

Announcements

• PS5 due 2/23

PS4 Feedback

- 9.5-20 hours
- Some matlab complaints (diff in notation)
 - This is much harder to edit than students may realize.
 - Projects welcome in this area.
- Short period (needed for test study)
 - PS8/final builds in longer time
- Viterbi coverage was short
 - Torn here between Viterbi becoming obsolete, but older systems using it are deployed widely.
- May delete it in future (constraint/iteration , GRAND)

Today

- Last 3 slides of L10 are for information only.
- Deterministic Interleaving
- Design with Reed Solomon to zero gap (nearly)
- Cyclic Codes Overview
- Retransmission Error-Detecting Codes (CRC)

Deterministic Interleaving

Section 8.4

February 15, 2024

Redistribute the Inner Codes' errors

- Inner code will make "whole-codeword" errors P_e. (This might be already a turbo or LDPC code.)
 - There are many **bit/subsymbol** errors correspondingly i.e., an "error burst."
 - Error bursts also occur from nonstationary effects, such as:
 - random fades in wireless, or
 - impulse noise in wireline (or wireless).
- Outer Code design assumes that bursts are significantly separated (good inner code design, low $P_{e,inner} \sim 10^{-3 \text{ to } -7}$).
- **Deterministic interleaving** disperses these bursts evenly over **depth** \mathcal{J} different codewords.
- Thus, $d_{free} \rightarrow \mathcal{J} \cdot d_{free}$, and really the entire distance d_i distribution increases by \mathcal{J} .
 - This *interleave gain* applies to a burst, not overall; but does thereby add ~ 0.5 1 dB more coding gain.
 - The aggregate design operates close to capacity and $P_e \rightarrow 0$
 - $\frac{dP_e}{dSNR} \rightarrow -\infty$; Pe versus energy becomes very steep/sensitive.
 - So operation at/very-near capacity is requires highly stationary channel to be effective.
 - Whence our EE379 "margin" concept. (Design for capacity at presumed larger noise, but operate with the actual noise.)

Sec 8.6

L11-: 4

Formal (deterministic-interleaver) Depth

• depth **Definition 8.6.1** [Interleaver Depth] The depth \mathcal{J} of an interleaver is the minimum separation in subsymbol periods at the interleaver output between any two subsymbols that are adjacent at the interleaver input. $\mathcal{J} = \min_{k=0,\dots,L-1} |\pi^{-1}(k) - \pi^{-1}(k+1)|$

• period **Definition 8.6.2** [Interleaver Period] The period L of an interleaver is the shortest time interval for which the re-ordering algorithm used by the interleaver repeats.

• Distance magnification is $d_{free} \rightarrow \mathcal{J} \cdot d_{free}$; but introduces delay $\propto \mathcal{J} \cdot L$.

- The outer code is typically cyclic, specifically Reed Solomon (coming) and not binary (usually ss = bytes).
- System-design perspective:
 - Pick an RS code with high rate $r \to R = K/N$ and just enough distance (so rate is high) to meet target $[P_e \quad \overline{P}_b]$.
 - Design outer code for inner-code's eventual hard-decoded output, and model as a symmetric DMC.
 - Design for "not too much delay in the interleaving and de-interleaving."

February 15, 2024

Sec 8.6.1

L11:5

Classical Block Interleaver

Two transmit memories: read and write Write Buffer Read Buffer 9 6 3 3 6 q 0 0 0 0 0 read 7 10 write 7 10 4 0 11 5 8 5 8 11 Byte clock D' leave 0 L = 12; J = 312 ou5put clock 0 $3 \cdot T_{ss}$ $4 \cdot T_{ss}$ $\overline{4 \cdot T_{cc}}$ T_{SS} $3 \cdot T_{ss}$ $\overline{T_{ss}}$ 12 • 1 G = \bigcirc (\circ) $\overline{T_{ss}}$ I' leave D'leave input input clock clock channel 0 0 0 7 10 10 4 Read Buffer Write Buffer $N_{out} = 3$ 0 0 0 8 11 8 11 2 5 Data sequence on channel [03691471025811]write Total delay is $24 \cdot T_{ss}$ read 0 0 0

 $\boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{G}$

- Write Buffer inputs 4 blocks of 3 subsymbols each.
- Read Buffer outputs 3 blocks of 4 subsymbols each.
- De-interleave reverses interleaver.
- Delay is 12 units on each side, so 24 total.

At least $\mathcal{J} = 3$ subsymbols between adjacent de-interleaver outputs, e.g. 11 and 10 are 4 apart. (delay ss 11 by 12 ss times to avoid being next to next period's ss 0).

We could reverse to $\mathcal{J} = 4$ with $N_{out} = 4$.

Sec 8.6.1.1

Minimum (block-ileave)Memory Implementation

write order write order 0,1,2,3,4,5

6,7,8,9,10,11

- Overwrite memory cells as they become available,

See right-side table.

	1	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0
	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0
c _	0	0	0	0	0	0	0	0	0	1	0	0
u –	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0
as	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0	0	0	0
as												
as	0	0	0	0	0	0	0	1	0	0	0	0
as	0 0	0 0	0 0	0 0	0	0 0	0 0	1 0	0 0	0	0	0 1

m	read	write	cell
0			pass
1	Past 3	Currrent 1	А
2	Past 6	Current 2	В
3	Past 9	Current 3	С
4	Current 1	Current 4	А
5	Current 4	Current 5	А
6	Past 7	Current 6	D
7	Past 10	Current 7	E
8	Current 3	Current 8	С
9	Current 5	Current 9	А
10	Current 8	Current 10	С
11	Past 11	Current 11	F

6 Memory Cells Needed

This is ½ delay (12 end-to-end, not 24) and ¼ memory of classical block interleaver (12 instead of 48)

Sec 8.6.1.1

L11:7

Convolutional Interleaver Generator

- G(D) must be causal linear; D corresponds to a delay of one interleaver period.
 - If G(D) = G(0), then block interleaver, otherwise a convolutional interleaver.
 - Subsymbols interleaved may themselves be vectors.
- A period has *L* subsymbols within it. *D* delays one period, *D*_{ss} delays one subsymbol period.
- To relate roughly to an ss-based convolutional code, $D \rightarrow D_{SS}^{L}$, a period is L subsymbol periods.

$$\boldsymbol{X}(D_{ss}) = \begin{bmatrix} D_{ss}^{L-1} \cdot x_{L-1}(D) \Big|_{D=D_{ss}^{L}} & D_{ss}^{L-2} \cdot x_{L-2}(D) \Big|_{D=D_{ss}^{L}} & \dots & x_{0}(D) \Big|_{D=D_{ss}^{L}} \end{bmatrix}$$

Specific examples in following slides

Sec 8.6.1

Convolutional/Triangular Interleaver, $\mathcal{J} = 4$, L = 3

~ delay/2 and memory/2 w.r.t. block

$$\Delta_i = i \cdot L = i \cdot (\mathcal{J} - 1)$$
 symbol periods $i = 0, ..., L - 1$

Convolutional Interleavers, coprime L, $\mathcal J$

 $delay = (\mathcal{J} - 1) \cdot (L - 1) = 8$ subsymbol periods

• The delays are in D_{ss} , not D. It still looks triangular, except for the time-slot interchange order.

• Is not triangular with D, see also example with $\mathcal{J} = 4$; L = 5 in Section 8.6.1.3.

February 15, 2024

Sec 8.6.1.3

PS5.4 (8.15)

L11: 10

Minimum Memory Requirement in cells

	Table 2 for $J=3$ and $L=5$															
L/t	0	1	2	3	4	0'	1'	2'	3'	4' 0'' 1'		1''	2''	3''	4''	
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1	-	B1	B1	-	-	-	B1'	B1'	-	-	-	B1''	B1''	-	-	
2	-	-	B2	B2	B2	B2	-	B2'	B2'	B2'	B2'	-	B2''	B2''	B2''	
3	-	-	-	В3	B3	B3	B3	B3	B3 B3'	В3'	В3'	B3'	B3'	B3'' B3'	В3''	
4	-	-	-	-	B4	B4	B4	B4	B4	B4 B4'	B4 B4'	B4 B4'	B4'	B4'	B4'' B4'	
CELL1	-	B1	B1	B3	B3	B3	B3	B3	В3	B4'	B4'	B4'	B4'	B4'	B4'	
CELL2	-	-	B2	B2	B2	B2	B1'	B1'	В3'	В3'	B3'	B3'	B3'	B3'	В4''	
CELL3	-	-	-	-	B4	B4	B4	B4	B4	B4	B4	B4	B2''	B2''	B2''	
CELL4								B2'	B2'	B2'	B2'	B1''	B1''	В3''	В3''	

• Can do it with $\frac{1}{2} \cdot (\mathcal{J} - 1) \cdot (L - 1)$ CELLS in general (so yet another factor of 2 less)

Generalized Triangular

• Group *M* subsymbols

February 15, 2024

PS6.4 (8.15)

Sec 8.6.1.2

L11: 12

ITU Generalized Triangular

_			l .		Parameter		Value						
•	Used some wi	reline standar	as	Ir	nterleaver block length	(K)	K = L subsymbols (equal to or divisor of N)						
					Interleaving Depth (\mathcal{J})		$\mathcal{J}=M\cdot K+1$					
				(C	De)interleaver memory	size		$M \cdot K \cdot K \cdot (^{K-1}/_2)$ subsymbols					
				Corr th	rection capability (block at corrects t symbol err With <i>q=N/K</i>)	code ors)	$ \begin{bmatrix} \frac{t}{q} \end{bmatrix} \cdot (M \cdot K + 1) \text{ subsymbols} \\ \begin{bmatrix} \frac{t}{q} \end{bmatrix} \cdot (\mathcal{J}) $						
					End-to-end delay		$M \cdot K \cdot (K-1)$ subsymbols						
	Rate (Mbps)	Interleaver parameters	Interleav (ver depth J)	(De)interleaver memory size	Erasuı correcti	re ion	End-to-end delay					
	50x1024	K = 72 $M = 13$	937 I of 72	olocks bytes	33228 bytes	3748 by 520 n	tes s	9.23 μs					
	24x1024	K = 36 $M = 24$	865 I of 36	olocks bytes	15120 bytes	1730 by 500 n:	tes s	8.75 μs					
	12x1024	K = 36 $M = 12$	433 I of 36	olocks bytes	7560 bytes	s 866 byt 501 n		8.75 μs					
	6x1024	K = 18 $M = 24$	433 I of 18	olocks bytes	3672 bytes 433 50		es s	8.5 µs					
	4x1024	K = 18 $M = 16$	289 I of 18	olocks bytes	2448 bytes	8 bytes 289 by 501 r		8.5 µs					
	2x1024	K = 18 $M = 8$	145 l of 18	olocks bytes	1224 bytes	145 byt 503 n	es s	8.5 µs					

February 15, 2024

Sec 8.6.1.2

Design with Reed Solomon Codes

Section 8.6.2

Channel is typically the **SDMC**, Symmetric Discrete Memoryless Channel

February 15, 2024

Block (Outer) Code Performance

The codeword error probability is

$$P_e = \sum_{i=\left\lfloor \frac{d_{free}+1}{2} \right\rfloor}^{N} {N \choose i} \cdot p_{ss}^i \cdot (1-p_{ss})^{N-i}$$

- p_{ss} is the **subsymbol (byte) error** rate on the "hard" SDMC $\approx \tilde{b} \cdot \bar{P}_b$; hard subsymbol decisions.
- Outer code's \overline{P}_b :

$$\bar{P}_{b} = \frac{\mathbf{2}^{\tilde{b}-1}}{\left(\mathbf{2}^{\tilde{b}}-1\right)\cdot N} \sum_{i=\left\lfloor\frac{d_{free}+1}{2}\right\rfloor}^{N} \mathbf{i} \cdot \binom{N}{i} \cdot p_{ss}^{i} \cdot (1-p_{ss})^{N-i}$$

half C points have a bit incorrect, on average Total number of points – correct point

Semi-soft direct Gray-Map to 2^m -ary subsymbol (SQ-QAM/PAM, ... without BICM) reduces to ($\tilde{b} > 2$):

$$\overline{P}_{b} = \frac{1}{\widetilde{\mathbf{b}} \cdot N} \sum_{i = \left\lfloor \frac{d_{free} + 1}{2} \right\rfloor}^{N} i \cdot {\binom{N}{i}} \cdot p_{ss}^{i} \cdot (1 - p_{ss})^{N-i}$$

Gray has only 1 bit on each symbol error Total number of bits in C

February 15, 2024

Sec 8.6.2

L11: 15 Stanford University

Reed Solomon Code Performance

- Typically, RS codes are ss=byte oriented or GF(256) with max codeword length $N_{out} \le 255 = 2^8 1$ bytes.
- $\tilde{b} = m$ in $GF(2^m)$ more generally ($\tilde{b} = 8$ for bytes).
- There are *P* parity bytes (preferred implementation is systematic).
 - So $K = N_{out} P$ information bytes, $r = R = \frac{K}{N_{out}}$, &

 - $d_{free} = P + 1$, so if $P \in 2\mathbb{Z}^+$ (even), then RS ML decoder corrects $\left|\frac{d_{free}-1}{2}\right| = \frac{P}{2}$ erred subsymbols.
- To correct error bursts, use interleave depth \mathcal{J} , so that effectively $d_{free} \rightarrow d_{free} \cdot \mathcal{J}$, or correct $\frac{P \cdot \mathcal{J}}{2}$,
 - as long as error bursts are sufficiently separated.
- If burst-length = inner codeword length N_{in} , then select $\frac{P}{2} \cdot \mathcal{J} \geq \frac{N_{in}}{2}$ roughly, so $\mathcal{J} \geq \frac{N_{in}}{2}$.
 - So, design selects: N_{out} , P , and \mathcal{J} .
 - But larger depth means more memory and more delay and also, bursts must be sufficiently separated!
- Higher *P* corrects more errors, but reduces the rate $r = R = \frac{N_{out} P}{N_{out}}$.
- Usually pick maximum (or close to it) $N_{out} \leq 2^m 1$ (255 for bytes).
 - Clearly $N_{out} = 2^m 1$ yields highest rate for any given *P*.
 - But, there are also more chances for errors to occur with larger N_{out} , and $\frac{d_{free}}{d_{free}}$ remains same even if $N_{out} < 2^m 1$.

February 15, 2024

Sec 8.6.2

PS5.5 (8.16)

L11:16

Example

- Inner code is LDPC with $N_{in} = 1000$ bytes (so n = 8000 bits or 1kB).
- **Delay specification:** The bit rate is R = 8 Gbps (1 GB/s); an inner codeword occurs every 1 μ s.
 - The specification's maximum delay is 1 ms, so 1000 outer codewords (1MB) in 1 ms.
 - Then 1MB $\cong 250 \cdot \mathcal{J}$ bytes. Thus, \mathcal{J} <4000 maintains sub-ms delay.

 $\widetilde{N_{out}}$

- Error-correction: Inner system has $P_e = 10^{-3}$.
 - Inner decoder error bursts of up to 1000 erred bytes each arrive every 1ms, on average.
 - To correct the error burst of 1000 bytes using $\frac{P}{2}$ erred bytes per codeword means:
 - the RS code needs P = 20 parity bytes and $\mathcal{J} = 100$.
 - $r = R = \frac{230}{250}$, so a fairly high rate will cause almost no errors with depth 100 (and delay 25 μ s).
- This design should cause high reliability (larger coding gain in effect or really very low \overline{P}_b) if
 - The inner system satisfies $P_e = 10^{-3}$.
- Expect rapid degradation if inner system has slight increase in error probability (slight noise increase)
 - This is true of any system with $\Gamma \rightarrow 0$ dB (which is often why positive noise margin is also a design objective).

February 15, 2024

Not in text yet

Matlab RS Encoder Program

• The inputs are *m*-bit elements in $GF(2^m)$

- This means they must be specially set in matlab to be elements in such a field using the gf command.
- As an example with m = 3 so GF(8)
 - There are K = 4 input bytes / codeword
 - N = 7 output bytes include the P = 3 parity bytes.

rsenc Reed-Solomon encoder.

>> msg

Array elements = 5 2 3 0 1 7 >> code

Array elements =

5 2 3 5 4 4 2

0176607

CODE = rsenc(MSG,N,K) encodes the message in MSG using an (N,K) Reed-Solomon encoder with the narrow-sense generator polynomial. MSG is a Galois array of symbols over GF(2^m). Each K-element row of MSG represents a message word, where the leftmost symbol is the most significant symbol. If N is smaller than 2^m-1, then rsenc uses a shortened Reed-Solomon code. Parity symbols are at the end of each word in the output Galois array code.

--- deleted long comment on polynomal specification, allows more than Matlab's default RS polynomial to be used ----

CODE = rsenc(...,PARITYPOS) specifies whether rsenc appends or prepends the parity symbols to the input message to form code. The string PARITYPOS can be either 'end' or 'beginning'. The default is 'end'.

= GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

= $GF(2^3)$ array. Primitive polynomial = D^3+D+1 (11 decimal)

Examples:										
N=7; K=3; % Codeword and message word lengths										
m=3; % Number of bits per symbol										
msg = gf([5 2 3; 0 1 7],m); % Two K-subsymbol message words										
code = rsenc(msg,N,K); % Two N-subsymbol codewords										
<pre>genpoly = rsgenpoly code1 = rsenc(ms</pre>	ly(N,K); % Default generator polynomial g,N,K,genpoly); % code and code1 are the same codewords									

genpoly2 = rsgenpoly(N,K,primpoly); % primitive poly is octal G(D), see L11:21-25

February 15, 2024

PS5.5 (8.16)

Not in text yet

L11: 18

Matlab RS Decoder Program

- It accepts N bytes of (de-interleaved) channel output and decodes them.
- Result is correct if $\leq P/2$ erred bytes.
- The decoder algorithm is basically a pseudoinverse in a finite field:
 - It's nontrival.
 - See text or EE387.
 - It is Max Likelihood for SDMC.

N=7; K=3; % Codeword and message word lengths m=3; % Number of bits per symbol msg = gf([7 4 3;6 2 2;3 0 5],m) % Three k-symbol message words msg = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 7 4 3 6 2 2 3 0 5 code = rsenc(msg,N,K); 7 4 3 7 0 0 4 6 2 2 7 6 7 3 3 0 5 5 6 0 6 rsdec Reed-Solomon decoder.

DECODED = rsdec(CODE,N,K) attempts to decode the received signal in CODE using an (N,K) Reed-Solomon decoder with the narrow-sense generator polynomial. CODE is a Galois array of symbols over GF(2^m), where m is the number of bits per symbol. Each N-element row of CODE represents a corrupted systematic codeword, where the parity symbols are at the end and the leftmost symbol is the most significant symbol. If N is smaller than 2^m-1, then rsdec assumes that CODE is a corrupted version of a shortened code.

% Add 1 error in the 1st word, 2 errors in the 2nd, 3 errors in the 3rd >> errors = gf([3 0 0 0 0 0;4 5 0 0 0 0;6 7 7 0 0 0 0],m); >> codeNoi = code + errors = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 4 4 3 7 0 0 4 2 7 2 7 6 7 3 5 7 2 5 6 0 6

<pre>[dec,cnumerr] = rsdec(codeNoi,N,K) % Decoding failure : cnumerr(3) is -1 dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 7 4 3 6 2 2 5 7 2</pre>
cnumerr = % recall dfree=5 for this code
1 % corrected one error
2 % corrected two errors
-1 % detects error

February 15, 2024

PS5.5 (8.16)

Not in text yet

L11: 19

Cyclic Code Basics

Section 8.4 and Appendix B

See also Chap 8 References [30] Blahut book and [31] Gill's EE387 Class Notes

February 15, 2024

Galois Field with $p = 2^{m}$

- $GF(2^m) = \{0, 1, \dots, 2^m 1\}$ but elements are viewed as binary polynomials of degree m.
 - Addition/multiplication is modulo a degree-*m* prime **binary** polynomial.
 - $g(D) = g_0 + g_1 \cdot D + \dots + g_{m-1} \cdot D^{m-1}$ has no factor in GF(2) but itself is factor of $D^{2^{m-1}} + 1 = 0$, a root of 1.
 - This *D* is for a binary polynomial.

$$GF(2^m) = \{0 \ 1 \ \alpha \ \alpha^2 \ \dots \ \alpha^{2^m-2} \}$$

- Multiplication is modulo this prime polynomial.
- So multiply and set g(D) = 0

$$x(D) \cdot y(D) = d(D) \cdot g(D) + r(D)$$
$$(x(D) \cdot y(D))_{g(D)} = r(D)$$

See example multiplication tables in Appendix B.1, as well as back-up slides

January 30, 2024

Sec B.1.2

Cyclic Codes

- Every codeword is cyclic shift of others.
 - Subsymbols are elements in $GF(2^m)$.
 - More generally, $GF(p^m)$, see EE387.
- If $v(D) \in C$, then $(D^i \cdot v(D))_{1-D^N} \in C$
 - Right circular shift by *i* places.

$$\begin{aligned} v(D) &= v_0 + v_1 \cdot D + \dots + v_{N-1} \cdot D^{N-1} \\ v_n \in GF(2^m); \ n &= 0, \dots, N-1, \text{ so } v(D) \in [GF(2^m)]^N \\ (D \cdot v(D))_{1-D^N} = v_{N-1} + v_0 \cdot D + \dots + v_{N-2} \cdot D^{N-1} \end{aligned}$$

- Some (like Reed Solomon) have $d_{free} = N K + 1$; MDS code (meets Singleton Bound).
- Further, any $GF(2^m)$ linear combination of codewords (mod $1 D^N$) is $\in C$.
 - $GF(2^m)$ defines the arithmetic, while an irreducible polynomial $G_j(D)$ defines the code
- $1 D^N = \prod_{j=1}^J G_j(D)$ where each $G_j(D)$ is irreducible polynomial in $GF(2^m)$.
 - Clearly

s

$$\left(G_j(D) \cdot H_j(D)\right)_{1-D^N} = 0 \text{ where } H_j(D) = \prod_{i \neq j} G_i(D).$$

Note: The irreducible polynomial is NOT the Same binary polynomial used to define arithmetic in $GF(2^m)$ that was vector of bits This G(D) is for a vector of bytes/subsymbols

Stanford University

- A cyclic code can be defined by each $G_j(D)$, with degree determining N K, as
 - $C_i(D) = D^{N-K} \cdot u(D) + (D^{N-K} \cdot u(D))_{G_i(D)}$ delay the input ss's by N K and add the remainder in remaining N K positions.

L11: 22

Cyclic Code Continued

- $C_i(D)$ is cyclic because $v_{N-1} + v_0 \cdot D + \dots + v_{N-2} \cdot D^{N-1} = D \cdot v(D) + v_{N-1} \cdot (1 D^N)$
- Since G(D) divdes both v(D) and $(1 D^N)$, then $\left(D^j \cdot v(D)\right)_{1-D^N}$ is also a codeword (any j).

•
$$H(D) = \frac{1-D^N}{G(D)}$$
 is parity polynomial

- corresponding to an (N, N K) dual cyclic code with generator $D^K \cdot H(D^{-1})$
 - So unlike convolutional code where H(D) is both parity matrix and dual code, with cyclic-generator simplifications for cyclic block codes, the dual code essentially reverses time w.r.t. H(D).
 - This time reversal corresponds to circular convolution in $[GF(2^m)]^N$
- Syndrome calculation is then $(y(D) \cdot D^K \cdot H(D^{-1}))_{G(D)} = s(D) = (e(D) \cdot D^K \cdot H(D^{-1}))_{G(D)}$
 - ML decoder finds minimum Hamming weight e(D) as solution (often nontrivial to find).

Encoder Circuit

• G(D) is the cyclic code's generator (like convolutional) prime polynomial:

- G(D) is the cyclic code's generator (like convolutional) prime polynomial with degree N K.
- $D^{N-K} \cdot u(D) = q(D) \cdot G(D) + R(D)$ where R(D) contains parity bytes/subsymbols.
- By subtracting R(D), this encoder's output becomes a multiple of G(D).

Decoder Circuit using G(D)

- s(D) is the syndrome and equivalent to $v \cdot H$, which is zero if no errors w.r.t. any codeword.
- $s(D) = (e(D) \cdot D^K \cdot H(D^{-1}))_{g(D)}$, so the ML decoder must find smallest $(W_H) e(D)$ that causes s(D).
- Then $\hat{u}(D) = D^{K-N} \cdot (y(D) e(D))$ the decoder ignores any negative-power $D^{i<0}$ terms.
- Dark Blue Box is nontrivial for cyclic codes (Berlekamp-Massey, Forney,) finite-field pseudoinverse,
 - which has structure that avoids a huge list-based ML decoder's complexity, unlike a more general block code might need.
 February 15, 2024
 Sec 8.4
 L11: 25
 Stanford University

Decoder Circuit using H(D)

• G(D) or H(D) other will be simpler for any specific code.

February 15, 2024

Sec 8.4

L11:26

Reed Solomon Generators (Cyclic Code)

- The blocklength is $N = 2^m 1$;
 - but can reduce K and N together by same number of ss, keep P constant.
- 2t = N K or $d_{free} = N K + 1$ (achieve Singleton Bound Maximum)
 - t = number of errors corrected.
- For any primitive element $\alpha \in GF(2^m)$:

$$G(D) = \prod_{i=1}^{N-K} (D + \alpha^i)$$

Error prob for SDMC with subsymbol hard error P_{SS}

$$P_e \leq \sum_{i=t+1}^{N} {N \choose i} \cdot P_{ss}^i \cdot (1 - P_{xs})^{N-i}$$

 $N_{e,i} = \binom{N}{i} \cdot N \cdot \sum_{i=1}^{j \neq i} (-1)^{j} \cdot \binom{i-1}{j} \cdot (N+1)^{i-j-d_{free}}$

$$P_{e,ss} \leq \sum_{i=t+1}^{N} \frac{i}{N} \cdot \binom{N}{i} \cdot P_{ss}^{i} \cdot (1 - P_{xs})^{N-i}$$

$$\overline{P}_b = \frac{2^{m-1}}{2^m - 1} \cdot P_{e,ss}$$

February 15, 2024

L11: 27

Retransmission – Error-Detecting Codes

Section 8.6.3

February 15, 2024

CRC Error Detection and Retransmission

- Cyclic Redundancy Check codes are (usually) binary and only detect errors (so $s(D) \neq 0$).
 - CRCs mostly use simple binary versions of the previous encoders/decoders.
 - Table below lists some with $d_{free} = 4$ and $n_{max} = 2^{2^r} 1$.
- These detect:
 - all single and 2-bit errors, and also any odd number of bit errors. The (D + 1) factor forces even distance between codewords.
 - any burst of length $\leq n k$ (because this is the length of g(D) such a burst is not divisible by g(D)).

Name	g(D)	factored
CRC-7	$D^7 + D^6 + D^4 + 1$	$(D^4 + D^3 + 1) \cdot (D^2 + D + 1) \cdot (D + 1)$
CRC-8	$D^8 + D^2 + D + 1$	$(D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + 1) \cdot (D + 1)$
CRC-12	$D^{12} + D^{11} + D^3 + D^2 + D + 1$	$(D^{11} + D^2 + 1) \cdot (D + 1)$
CRC-16 USA	$D^{16} + D^{15} + D^2 + 1$	$(D^{15} + D + 1) \cdot (D + 1)$
CRC-16 Euro	$D^{16} + D^{15} + D^5 + 1$	$(D^{15} + D^{14} + D^{13} + D^{12} + D^4 + D^3 + D^2 + D + 1) \cdot (D + 1)$
CRC-24	$D^{24} + D^{23} + D^{14} + D^{12} + D^8 + 1$	$ \begin{array}{c} (D^{10} + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D + 1) \cdot \\ (D^{10} + D^9 + D^6 + D^4 + 1) \cdot (D + 1) \end{array} $
CRC-32	$D^{32} + D^{26} + D^{23} + D^{22} + D^{16} + D^{12}$ (appe	$+ D^{11} + D^{10} + D^8 + D^7 + D^5 + D^4 + D^2 + D + 1$ ears prime, not sure)
	February 15, 2024	Sec 8.6.3 L11: 29 Stanford Un

Analysis – CRCs are for detection ONLY.

• $P_u \triangleq$ undetected error probability $P_u < 2^{k-n} \cdot (\bar{P}_b)^4$; s = 0 for wrong codeword.

Name	$P_u / (\bar{P}_b)^4$	$1 - P_u / (\bar{P}_b)^4$	Reliability		High \bar{P}_b if inner code fails
CRC-7	2 ⁻⁷	.99221875	2 nines	<i>voice</i>	reliahility)
CRC-8	2 ⁻⁸	.99609375	3 nines	{	
CRC-12	2 ⁻¹²	.999755859375	4 nines	<i>videc</i>	o reliability
CRC-16 USA	2 ⁻¹⁶	0.999984741210938	5 nines	Coro	natuark raliabilita)
CRC-16 Euro	2 ⁻¹⁶	0.999984741210938	5 nines		πειωσικ Γεπαρπτιγ)
CRC-24	2 ⁻²⁴	0.999999940395355	7 nines	{critic	al reliability
CRC-32	2 ⁻³²	0.999999999767169	9 nines	{stora	ge

- These are link-layer reliabilities \overline{P}_b could be high within a CRC codeword if large -N inner-code fails,
 - but still, even if \overline{P}_b =.1, these get very low.
- TCP-IP and higher-level session/application CRC checks (possibly using RS codes for detection) would create super reliability with "once in a century" level failures.
- These are cyclic codes so use earlier simple generators and receiver-syndrome calculation circuits.

L11: 30

Retransmission

- Automatic Repeat Request (ARQ): If the CRC detects an error, resend the codeword.
- ARQ requires a mechanism for acknowledgment (back-channel) or ACK/NAK.
 - The NAK returns upon the receiver's non-zero CRC syndrome calculation.
 - P_c is the correct receipt probability (syndrome is zero).

$$\mathbb{E}[L_{retrans}] = \sum_{l=1}^{\infty} l \cdot P_c \cdot (1 - P_c)^l = \frac{1}{P_c}$$

- Throughput = $\left(\frac{k}{n}\right) \cdot P_c \cdot R$ bps
- Throughput represents the "real data rate" with code redundancy and retransmission accounted.
 - Throughput assumes infinite buffer delay is possible.
- There are entire courses in this network/queuing area, see EE384S (Bambos, Spring Q).

February 15, 2024

Sec 8.6.3

L11: 31

Hybrid ARQ (HARQ)

- HARQ: A cyclic code is used with both detection and correction.
 - If the correction part works, there is no need to retransmit.
 - If the detection part discovers an error, and then retransmission occurs.
 - Reed Solomon cyclic codes can split the parity bytes into those for correction and those for detection (sum is the allowed maximum P).
- HARQ with soft decoding
 - Chase Decoding use all instances of (re-) transmitted codeword (form of diversity) to decode.
 - Incremental Redundancy only retransmit additional parity bits (this is what 5G uses).

End Lecture 11

GF4 Tables

- $g(D) = 1 + D + D^2$ is a primitive polynomial in GF(2) on which GF(4) is based" $1 + D^3 = (1 + D) \cdot (1 + D + D^2) = 0$
 - So, setting g(D) = 0 leads to $D^2 = 1 + D$.
 - A consequent GF4 primitive element is $\alpha = D$ and $\alpha^2 = D^2 = 1 + D$; $\alpha = 1 + D$ also works.

GF8 Tables

		• ~													
	\oplus	0	1	D		D^2		1	+ D		D + D	2	1 + D	$D + D^2$	$1 + D^2$
	0	0	1	D		D^2		1	1 + D		D + D	2	$1 + D + D^2$		$1 + D^2$
	1	1	0	1 + 1	D	1 + D	2		D	$1 + D + D^2$			$D + D^2$		D^2
	D	D	1 + D	1 + D 0		D + L	D^2 1			D^2		1 +	$\cdot D^2$	$1 + D + D^2$	
	D^2	D^2	$1 + D^2$	D + D	D^2	0	-	1 + 1	$D + D^2$		D	-	1 -	+D	1
	$1 + D_{0}$	$1 + D_{0}$	D	1		1 + D +	$-D^2$		0		1 + D	2	L	5^{2}	$D + D^2$
	$D + D^2$	$D + D^2$	1 + D +	$D^2 D^2$	2	D		1 -	$+ D^2$		0			1	1 + D
	$1 + D + D_{2}$	$D^2 1 + D + D^2$	$D + D^{2}$	1 + I	D ²	1 + 1	D		D^2		1			0	D
	$1 + D^2$	$1 + D^2$	D^2	1 + D -	$+ D^2$	1			$+ D^2$		1 + D)	D		0
_	(D)	_ 1 I D I <i>Г</i>	3	ג 1 ו ₪											
	• $g(D) = 1 + D + D^3$, so $D^3 \to 1 + D$							1	2	Δ	6	3	7	5	
	• Primitive element is $\alpha = D$					\square		Т		Т	0	0		0	
	· · · ·							1	0	1	C	9	7	F	
	ı	GF'(8) element					T	\boldsymbol{Z}	4	0	3	(\mathbf{O}	
		$lpha^i$	lsb first	lsb last		1	1	0	3	5	2	7	6	Δ	
	$-\infty$	0	000	0		-	-	U	0	0		•	U	T	
		1	100	1		$\mid 2$	$\mid 2$	3	0	6	4	1	5	7	
	0	1	100	L				-	0	0	_	-	0		
	1	D	010	2		4	4	5	6	0	7	2	3	1	•
	2	D^2	001	4		6	6	ົງ	1	7	Ο	F	Λ	6	
	2	1⊥ ח	011	6		0	0	\boldsymbol{Z}	T	1	0	Э	4	0	
	J	$1 \pm D$	011	0		2	2	7	Λ	2	5	Ο	1	3	
	4	$D + D^2$	110	3		10	J	1	4		0	0	T	0	
	5	$1 + D + D^2$	111	7		7	7	6	5	3	4	1	0	2	
	6	$1 + D^2$	010	5					_	1	-	-	0	_	
			010	0		5	5	4	7	1	6	3	2	0	

See Appendix B for matlab commands that will generate these tables.

February 15, 2024

Sec B.1.2

Convolutional Interleaver Generator

$$\begin{array}{c} \chi_k \\ x_{k} \\ \chi_{(D)} = \sum_{m=0} [x_{mL+L-1} & \cdots & x_{mL+1} & x_{mL}] \cdot D^m \end{array} \xrightarrow{\text{Interleaver}} \widetilde{X}(D) = \sum_{m=0} [\widetilde{x}_{mL+L-1} & \cdots & \widetilde{x}_{mL+1} & \widetilde{x}_{mL}] \cdot D^m = X(D) \cdot G(D) \end{array}$$

- *G*(*D*) must be causal linear; *D* corresponds to a delay of one interleaver period.
 - If G(D) = G(0), then block interleaver, otherwise a convolutional interleaver.
 - Subsymbols interleaved may themselves be vectors.
- A period has *L* subsymbols within it. *D* is one period, *D*_{ss} is one subsymbol period.
- To relate roughly to convolutional code, $D \rightarrow D_{ss}^{L}$, a period is L subsymbol periods.

$$\boldsymbol{X}(D_{ss}) = \left[D_{ss}^{L-1} \cdot x_{L-1}(D) \left|_{D=D_{ss}^{L}} \right. D_{ss}^{L-2} \cdot x_{L-2}(D) \left|_{D=D_{ss}^{L}} \right. \dots x_{0}(D) \left|_{D=D_{ss}^{L}} \right] \right]$$

Simple Block Example

or in tabular form:

This one is trivial			$\frac{k'}{\pi^{-1}(k)} = \frac{1}{2}$	$\pi(k)$: $\kappa') = k$	- k: -	-1 (-1 1) 1	1 0	2 2	3 4	43	5 5				_	-
. ,	k	if $k = 2 \mod 3$	which	which has inverse de-interleaver											1	0	
$\pi(k) =$	$\begin{cases} k-1 \end{cases}$	if $k = 1 \mod 3$	k:	-1	0	1	2	3	4	5	,	G	(D) = 0	$G^{-1}(D)$	0 = 0	0	1
	k+1	if $k = 0 \mod 3$	$\pi(k)$:	-1	1	0	$2 \mid$	4	3	5					[1	0	[0

February 15, 2024

Sec 8.6.1