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Announcements & Agenda

= Announcements

= Today
*  Midterm Review
*  Turbo-Code Completion
* Soft Information from constraints
* LDPC Codes
* Hard/Soft concatenation — Reed Solomon outer

=  Problem Set 5 = PS5 due Wednesday February 21

pis February 13,2024

1. 8.12 Turbo Design and Coding
2. 8.13 Constraints and BICM
3. 8.14 LDPC Use
4. 8.15 Subsymbol- vs Symbol-Level Deterministic Interleaving
5. 8.16 Wireless Hard-Soft Interleaving Challenge
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1.

Ex - |h? 02 = —142 dBm/Hz

Ex = —?3 dBm/Hz T = —40dBm /l\
input 0\ ‘
input 1
h |h|2=|hfixed|2 . |hruyleight|z T =107
QAM Design
a. Attenuation -63-(-40-70) =47 dB; SNR =-110-(-142+3) = 29dB
1 3-1029
b P.=4(1 —1—6)Q< —— | = .00a2
¢. €=107-log,(1+ 10%9)=96Mbps ;
d. SNRnew = 10*log10(255/3*(qfuncinv(1le-6/3.75))*2) =33.3+.2, ¥y = 4.5 0r 4.8 dB
a. dfree=6 and G=[17 13] from tables. :
e. SNR,,;, = 0 (—ocodB) and SNR,,,,, = +oodB (also +26 and smaller)
, KSNR
£ (P,)= [ KSNR+1] L
g. SNRnew = 10*log10(63/3*(gfuncinv(le-6/3.5))*2) =27.3 dB

*  Thisis 1.7 dB below average at29dB ; 10717 = 6761

*  Coding of course will help. 6761 1
Pout = / 5 € /P dw =102 = 2868
0

g > —17-63=-8dB =.1585
Py = .1—e158/2 = 0762 or 7.6%
g > —14.6 dB(.0316)
Pt = 1—¢9%" = 0157 0or 1.6 %

February 13,2024

2. Bridge SOVA / APP

a. 2% =64 paths ; 2V = 4 survivors
b.  2°x 22 table entries

c. BSC for 2 successive bits (1-p)?2 v=00

(1-p):p v=01

Pv'=00/v = p(l_p) v =10
p? v=11
d. No, encoder has memory
e. 4 survivors
Pu—oooor1jr = P (1—p)'°
Pu=110110/0" p*- (1—p)°
4 8
Pu=110101/v’ p - (1-p)
_ 4 8
Pu=110100v' = P -(1—p)
f.  Non-survivors’ prob
4
—p*-(1-p)"°=p’-1-p)°-2p" (1 -p)°

g LLR3=In()
1branch 1-{p?-(1-p)"} = .0035
3 branches 2- {p4 S1- p)s} + {p3 e —p)g} =.0020

uz = 0 :

U3=1:

h. Less confidence than APP, better than SOVA

L10:3
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Soft Information from

Constraints

Section 7.4

February 13, 2024 L1:4



Block Codes aggregate many tiny codes

Each row in an arbitrary linear encoder’s parity matrix can be viewed as a simple linear parity code.

= Constraints
* Dx/y is the probability of x given that the decision based on y meets code/modulation constraints.

px/constraints X px,constraints = DPintrinsic * Pextrinsic

current x's other x's

= For instance, the parity-check equation v - H = 0 provides n — k parity constraints.
" SO Pyx/constraints €ssentially means the MAP finds the x most likely to satisfy all these parity constraints.

= There are other types of constraints also:

* Equality constraints — These basically recognize that any x (often a bit) must have common decision in every constraint in
which it participates.

* Modulator constraints — Only certain constellation-to-bit mappings may occur for particular modulator (BICM).

* Channel-Model constraints — Certain bit/x combinations may not be likely, given a certain channel filter.
* These sometimes have the name “turbo equalization.”

o February 13,2024 Section 7.4 L10-:5 Stanford University



Basics PRIOR to the constraint

= BSCfori=1,2,9

* Before constraint: p(v;, y;) = p(v;i/v) - p(v;)
((1-p)-)  y=1lvy =1
p-(1—p;) yi=1Lv; =0
Vi, Vi) = A
p(vi, i) P D yi=0,v; =1
(L=p)-A=p) y»=0,v;=0

intrinsic Extrinsic
Infoonifromj # i

( 1 /& _\2
. e—if(y— 5:13) | pi v; = 1
\\/27702 Blnad
= AWGN fori =1,2,9 J o Peat
* Before constraint: p(vi,y) = - o 2k w/Zp)?), (1—p) | vi=0
o )
% ivel j \W—/
~~ Pex
\ Pint ‘
February 13, 2024 Section 7.4.1 L10:6 Stanford University




Example parity constraint

Example has 3 bits in a specific parity equation (row of H, call it h;, or column of HY) ; H - G.
* Generator G's output is such that v; @ v, @ v9 = 0; this corresponds to 1’s in positions 1,2, and 9 in a row of H.
e First: A BSC with bit-error parameter p has channel outputs y; , y,, Y9 and encoder outs v; , v, Vg.

Sg is asubset S = {v | E(v) = 0} - all the bit combinations that satisfy the constraint:
.« Sz ={(0,0,0),(1,1,0),(1,0,1), (0,1,1)}

Se\i (¥;) fixes each set-codeword’s position i to be the specific value y;.
° SE\3(y3 = 0) = {(0,0,0), (0;1;1)}

MAP decoder to v;_3 for this event satisfies max Pvs i

v3€{0,1}
21 Example e — va JE, o (E, )
G, H as parity check Pvs /B % PusE Pext (V3 /E,y3) * Dint (E, 3
Pr{vs =y; =0} =p; - p; + (L =p1) - (1 = p2)
1 pext(v3 /E;YS)OC{PF{UB =y; = 1} =p; - (1 — pz) + (1 _ pl) . Dy
v, P2 =04p3 -

P3 ;y3 =1 P3 = Ppsc =P
int(E,y3)xX
plnt( }/3) {1_293 ; y3=0
pid February 13, 2024 Section 7.4.1 L10: 7 Stanford University



MAP Decoder maximizes p,,. /g

= Forbiti = 3:
p =1.{p1-p2-<1—p3>+(1—p1>-(1—p2)-(1—p3) v; =0
Vsl i (pr-(A=p2)-p3+(Q—py)-p2- 3 vy3=1
" Forbiti=2: =i,{p1-p3-(1—p3)+(1—p1)-(1—p3)-<1—p2> v, =0
vk c; (P (A=p3)-p2+(A—p1)-p2- D3 v,=1
= Forbiti = 1:
p l.{pg‘pz'(1—p1)+(1—p3)'(1—p2)°(1—p1) v; =0
vl'EC{ p3-(1—p2) - p1+(1—p3)- P2 p1 =1
[3

pid February 13,2024 L10: 8 Stanford University



Events and their probability calculation

Satisfaction of parity check is an example of, more generally, an event E(v) = 0.

Sg isasubset Sy = {v | E(v) = 0} - all the bit combinations that satisfy the constraint.

* Sp\i(y) fixes each set-codeword’s position i to be the specific value y;.

-1

C; = z ﬁpj(E»J’i)

VESE j=1

_ 1
1-2:p1-p;

C3

C_J

pis February 13, 2024

MAP decoder for this event satisfies max_p,

v;€{0,1}" "VE "’

BSC/AWGN Pext Vi / E,yi) = ¢ - Z HPJ(E'YL')

VESE\i(¥i) J=1

j#i . Recall L10:7

Pr{iv;=y3=0}=p;-p, + (1 —py) - (1 —py)

Pext(Vs / E, Y3)OC{P1“{173 =y3=1}=p;-(1—-p)+ (1 —p1) - p;

Similarly, for v; and v, - send p,.,.; to 3 other constraint decoders

Section 7.4.1 L10:9 Stanford University



The soft bitis y; =2-Pr{v;=0}—-1=1-2-Pr{v; = 1}.

* A soft bit accepts any probability (extrinsic, intrinsic, ...) for Pr{v; = 0}.

The soft bit relates to LLR as LLR; = In X‘—+1 or y; = —tanh (%)

ty
By induction (with t, = # of 1’s in a row) X = 1_[)(]. _
j=1

J#I
Use this soft bit with extrinsic information for all the “other” bits:

Define the involution ¢(x) =¢ (z) = —In [tanh (g)] =In (em + 1)

e* —1
LLReyt,i
A e itenti ] LLRcyt ;
So then A(LLRezt ;) = +1n (eLLRm’i — 1) = —1In (tanh [TtD
And finally: x; - x; © ¢(LLR;) + qb(LLRj) :
* This means no multiplication, just adds and table look-up ¢ (x) . llustration on next slide

February 13,2024 Section 7.4.1.1 L10: 10
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d)ext(l) = ¢int(2)+ ¢int(3)
¢int(2)

¢ext(3) = ¢int(1)+ d)int(z)

to!

" LLR.»(3)

¢

 LLRin(3)

¢int (3)

&& Gext(2) = Pine (D Pine (3)

LLR3:(2)
LLR.x(2)

+¢?

has - if the sign of two
input LLRs match sign

= So each bit, considered like a tiny code, sends receives extrinsic info and sends intrinsic info, to all others in E.

[3

wl

February 13,2024

Section 7.4.1.1
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Equality Constraints

= Each bit may participate in many constraints — it should ultimately have same value in them all.

v;(1) equality constraint o0 /By = e { 0 - a, 2(2) = 1
PextlV2 [ 22720 =2 (1 - a)) - (1 - a3)  vy(2) = 0
1
Cz ==
v;(2) a;-az+(1—-a)-(1-az)
p ;Y2 =1
pint(E:yZ)oc{l_pzz . yz =0
v;(3) Equality-Constraint Decoder maximizes
o a; - az-as vp=1
Pk =G (1-a)-(1—a)-(1—-az) 1,=0
1

¢ =
' agrayrazt+(1-a)-(1—ay)-(1-az)

s February 13, 2024 Section 7.4.2 L10:12 Stanford University



Constraint Soft-Information Flows

= The extrinsic information returns to other (e.g., parity) constraints, and the constraint
accepts intrinsic from others

LLRn (1)

LLRext(1) = LLRin(2) + LLR;5,(3) LLRext(3) = LLRint (1) + LLR; (2)

—— te
j=1
LLRext(Z) = LLRint(l) + LLRint(g) J#i

= The Equality and Parity constraints for a binary block code can thus cycle soft information.
= This is another form of iterative decoding.

[3
o February 13,2024 Section 7.4.2.1 L10:13 Stanford University



le Iterative Decoder lllustration

= |t’s called a “Tanner Graph” or “Factor Graph.” LLRext(pif) LRapriori (1)
LLR 4t (a;j) LLR (v)

= Decoding may take multiple iterations:

* When extrinsic data from an equality node cycles back to
that same node, the soft-information can become “biased.”

* Such a biased decoder then loses exact MAP quality.

= Good codes try to make the cycle longer than the
number of iterations that lead to convergence.

* This can only be done approximately in practice.

Variable
) nodes

= Good LDPC codes achieve this.
* Designers actually design the H matrix .

* And then just use a corresponding systematic G.
* Do this by simple row add operations to designed H to Hg, =[n 1].
* G=[I ht]sothenG-H'=G -Hi{s=0.

Un

[3

pis February 13, 2024 Section 7.5.3 L10: 14 Stanford University



Soft-Information from constellation

= Example for 1 dimension of Gray Code: y1=-55 (V3 V2 V1)
* E.g., 640AM, y, -0 o O O O O o} o—
-7 5 3 -1 +1 +3 +5 +7
(000) (001) (010) (011) (111) (110) (100) (101)

= Basically, sum contributions for common v; values of 0 and then 1, normalizing the constant as follows:

p(yr = =55,03=0) = ¢ - 21 2 (6_2"%('5)2 +e 579 4 T @9)7 52%2(45)2) - (1 - ps)
o
p(yr=-55v3=1) = c- /—ql 2 (6_#(6'5)2 + e mz®D 4 emgr (1097 6_#(12'5)2) ‘P3
1 —-15(.5)2 —=15(1.5)2 —=15(10.5)2 --15(12.5)?
p(yr=—-55,12=0) = c- (6 20705 4 g7 5z (19)7 4 o=5,2(10:5)7 4 o= 55z (12 ) (1= po)
V2mo?
pyr = =550 =1) = ¢ — : (e—ﬁf(“)z +e 22 g T (69 e‘#(“)z) ‘P2
2o
p(y1 = —5.5,v1=0) = c3- 21 2 e 50719 4 e 52 (29" | o5z (397 4 6_#(1015)2) (I =p1)
o
1
plyr = —55v1=1) = c3- N (e—jg(ﬁ)z e k(65 6_#(12.5)2) -
wo

pis February 13, 2024 Section 7.4.3 L10:15 Stanford University



LDPC Codes

Section 8.3.3

February 13,2024 L10:16



LDPC as “almost random” codes

ul

R. Gallager (MIT), early 1960’s, designed the parity check matrix H directly (e.g., design the null space / checks).
* His code ensemble averaged n — k parity bits that were randomly placed in H for given large n.
* 1 =k/n isfinite.
* The “low density” (LD) part =» SPARSE BINARY MATRIX (see matlab’s “sparse.m” and “nnz.m” commands).

The ensemble works at capacity limit; RG even found some codes that were really good.
However, the consequent ML Decoders however were too complex!

1990’s — Turbo/Iterative Decoding suggests revisit of LDPC codes.
* The decoders were feasible to implement 30 years later, reviving LDPC.

2020’s — LDPC codes find heavy use in modern designs.
*  5G Wireless
« WiFi5,6,7
* High-speed Fiber

Polar Codes (Arikan) — 2009 (use another suboptimal “successive-decoding” method).
* Even better for binary AWGN, but the BICM-ID does not work with PC’s successive decoding and limits polar codes’ applicability.

February 13, 2024 Section 8.3.3 L10: 17 Stanford University



Some H-Related Definitions

= 4 Cycle —two rows have at least two 1’s in same columns. 1 0 1 01
* This is not good. Why? I 0 1 O 1 0 0
* Equality constraint = to parity = equality = parity = back again! 0 0 >l
* Biases accumulate quickly in constraint-based iterative decoding. (n—k) . . 1 0
] ] l 0 1 1 -~ 0
= Regular Parity Matrix (sparse) 0 0o 0 1
e Allrows have t, 1’s. t
e All columns have t. 1’s. r=1-— d «——— n —»
* So (n—k)-t,=k-t,. Ly
* Otherwise, it is an irregular parity matrix.
= Density-Limit bound: (n — k) t, (n—k)-(n—Fk—1)
* avoids all 4 cycles, n < = N7
2 2 te- (tc —1)
* ensures sparse H for finiter, & ———
* basically means n will be large. choose 2 rows  choose 2 cols

Large n helps for “random coding” also ; so, how can a designer get such a code with
implementable decoder? (typicaln > 1000)

February 13, 2024 Section 8.3.3 L10:18
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Some LDPC Design Choices

Quasi-Cyclic Generic Application
Irregular Specific

Reg/irreg regular Slightly irregular irregular

Uses Wi-Fi General 5G, DVB

positives Matlab functions  379A class Puncturing
Matlab, Parallelism
no restrictions Special matlab
Good for M’ary

negatives Not quite Not as well Perhaps too

optimum known/supported specific

= There can be an SNR (equivalently r) dependence.
= Designers don’t really want to design a new code for each channel.
= The code’s amenability to puncturing/rate-variation is important.

[3

& February 13, 2024 Section 8.3.3.1,3 L10: 19 Stanford University



Shapin

= Review Lecture 6
* Turbo, LDPC, polar, ... Y

E4
* DO NOT ADDRESS Shaping Gain ( min %)/ w)

= See Section 8.5 for shaping codes
* Cangetuptol.2dBofthe1.53dB

*  Vsoffset iS shaping gain for particular
constellation size (or b)

(L) © 75 offset | deviation from C)c|—o
(3,6) 5 |.184dB | 1.1dB
(48 .5 |.184dB | 1.6 dB
(510) .5 | .184dB | 2.0 dB
(35) .4 |.051dB | 1.3dB
(46) 1/3 | .033dB | 1.4 dB

Regular codes’ cannot get to capacity:
Richardson/Urbanke, y; o ffse: added here

pid February 13,2024 Section 8.3.3

s (B @)/

(d2 , (:c))
min
V2/N (R)

.

d? . (&)
1 =

Yy
fundamental
gain

Vs
shaping
gain k

J0 <y, <153

This is what the LDPC/Turbo works improve.

Eb/NO only equals SNRwhenr = 1/2.

( 0.1-bdB
0.27-b—.057 dB
1.33-b— .48 dB
0.2-b+.084 dB
1-b—.72dB
0.2-b+.85dB
0.17-b+ .83 dB
1.53 dB

Vs,of fset = {

\

L10: 20

0<b<0.33
0.33<b6<04
0.4<b<0.5
0.5<b<1
1<b<2
2<b<3
3<b<4

b>4
Stanford University



Galois Field p reminder from L6:24-25

. GF(p) = {0,1, v, P — 1}
* Addition is modulo p.
* Multiplication is close, with division defined by inverse, and follows from any prime element a € GF (p).

X 112 |3 |4
_ 2 3
GF5)={01a a* a} 1212 13 |2
2 (2 (4 (1|3
3 (3 (1 (4|2
GF exists for any prime p N ERERE
or product of such primes.




Prelude to Quasi-Cyclic LDPC

LDPC Design Goals:
* Design avoids 4-cycles.
e H should have rankn — k.
* H should have low density of 1’s.

Design should have good performance (including all neighbors at all distances),
* but still have some structure to help encoder and especially decoder implementation.

= ¥ is a Latin-Square Matrix. 0 1 2]
* Each row/col contains each set element once. W=1]1 2 0
* W s clearly nonsingular. 2 0 1
= ] is a right-shift matrix (applied to row vector) that 0 1 O]
« circularly shifts rows of matrix (on right) to the right, pxp. J=10 0 1
1 0 O.
= H isthe dispersion of W using ] over GF (p) that I 2
N ] ]
* replaces each element w; ; by (p — 1)X(p — 1) matrix J"iJ. 2
H=1] ] I
2 I ]

C_J

pis February 13, 2024 Not in text yet L10: 22
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Quasi-Cyclic LDPC

= Special Latin-Square W (pXp) matrix for any n € GF (p):

n-a n—a n—aP U]
a-n—a a-n—a a-n—aP? a-n
W =
2?2 .g—a® P Z.n—q aP2.p—qp2 | gbZ.p
—a® —at —aP? 0

W'’s dispersion (with (p — 1)X(p — 1) J)is the QC-LDPC matrix H and has no 4-cycles (Zhang et al.).
e Usuallyp = 2™

These codes are regular (because of the ] matrix and its shifts).

Matlab ldpcQuasiCyclicMatrix.m command produces these:
* Inputsarep — 1 and W (which is a Latin-Square matrix with rules on how to create it).

s February 13, 2024 Not in text yet L10:23 Stanford University



= |dpc..

QC-LDPC codes and S

>>i=[1 3]; % rows >> Spy(S)

>>j=[2 5]; % columns

>>v=[1 1]; % values to insert 0
>> S=sparse(i,j,v,5,5)
(1,2) 1 't
3,5 1
>>nnz(S) =
>> full(S)
0

2

o O oo

O O OO
O O O o o
o O O oo
o O+ OO

N T e e

0 1 2 3 4 5

= =200 0oo~NO0OUuhr WWNNRFE -

ANNNRFRPWO MO PLWONOGO -
==}

ze is for large spare matrices, like LDPC matrices H.

% Wi-Fl code 802.11 (Wi-Fi 5,6,7 )’s parity-check matrix with r=3/4 LDPC
P=[
16172224 9314-1427-126-12-121-110-1-1-1-1
251212 3326 621-11522-115-14-1-116-100-1-1-1
251826162223 9-10-14-14-182311-1-1-100-1-1
970117-1-173-1323-116-1-121-10-1-100-1
24526 71-1-1152415-18-113-113-111-1-1-1-100
22191424 11519-121-12-124-13-121-1-1-1-10
1; % 6 x 24 matrix
blockSize = 27;
>> H = ldpcQuasiCyclicMatrix(blockSize, P); % creates dispersion of P with -
>>size(H) = 162 648

arse matrices

% Example 1:
blockSizel =3;
P1=[0-112;21-10];

H1 = ldpcQuasiCyclicMatrix(blockSize1,P1)
6 x12 sparse logical array

1
1
1
1
1
1

February 13,2024

Not in text yet

Stanford University



QC-LDPC encoder and decoder

= With the H matrix, create objects with IdpcEncoderConfig and IdpcDecoderConfig

* Encode
* Decode

>> wificonf=ldpcEncoderConfig(H)
ParityCheckMatrix: [162 X 648 logical]
Read-only properties:
BlockLength: 648
NumlInformationBits: 486
NumParityCheckBits: 162
CodeRate: 0.7500
wificonfdec=ldpcDecoderConfig(H,'norm-min-sum’)
dpcDecoderConfig with properties:
ParityCheckMatrix: [162 X 648 logical]
Algorithm: 'norm-min-sum’
Read-only properties:
BlockLength: 648
NumInformationBits: 486
NumParityCheckBits: 162
CodeRate: 0.7500
NumRowsPerLayer: 27>> Y=|ldpcEncode(X,wificonf);

>> X=prbs(7,486)";
>>Y=|ldpcEncode(X,wificonf);

>> X1=ldpcDecode(1-2*Y,wificonfdec,6);
>> biterr(X,X1)= 0

>> errorldpc=[error, error, zeros(1,32)];
>> X1=ldpcDecode(1-2*(Y+errorldpc'),wificonfdec,6);
>> biterr(X,X1)= 0

>>error=[1zeros(1,49) 1 zeros(1,49) 1 zeros(1,99) 1 zeros(1,45) 1 zeros(1,61)];

**_ Warning: | could not get the ‘bp’ (Belief Propagation) option
for IdpcDecode to work with noise UNLESS
the errorldpc/noise scales by <0.9; | think this relates
to soft-info scaling internal to “bp” option

February 13, 2024

Not in text yet

2nd decoder input can be 'bp', 'layered-bp’, 'norm-min-sum’, or 'offset-min-sum' and the
corresponding algorithms are belief propagation decoding, layered belief propagation
decoding, normalized min-sum decoding, and offset min-sum decoding respectively.
https://www.mathworks.com/help/comm/ref/ldpcdecode.html

= You can begin to experiment now:

* The decoder input is “LLR,” so you could:
* compute from a Gray mapped constellation,

* run for different SNR,
* compute error curves,

* etc
L10:25
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https://www.mathworks.com/help/comm/ref/ldpcdecode.html

Generic Irregular Codes

= Thanks go to E. Eleftheriou and S. Olcer of IBM (> 20 years so public domain &)).
* These use the shift-matrix dispersion concept and in easier way with pXp shift matrix J.
* Their design checks for 4-cycles and linear-dependence -2 irregular codes.

= Starts with desired t,- and t,

ul

Their construction deletes any row that causes 4 cycle or linear dependence on previous rows.

* The call the number of deleted rows m when the desired n — k linearly independent rows is achieved.

* Eventuallyn—k <t.—p

I I
1 J J?

} JE;—l Jz(t}.—1)

February 13,2024

n—m t

~ A c
tC:(tC_l)'m_l_tc' - ’r':]_——
n t
T
I Ys,of fset _7 _7
6 1 (n, k) m p tc t. r {s71) T at 10 Yfeff at 10
Jtr (276,209) 2 23 3 12 7572 | 0.69dB | 45dB | 5.1dB
(529,462) 2 23 3 23 .8733 |093dB | 3.9dB 5.7dB
: (1369,1260) 2 37 3 37 .9204 | 1.01dB | 3.3dB | 6.3dB
J(tr_l)(gc_l) (2209,2024) 3 47 4 47 9163 | 1.01dB | 2.8 dB 6.8 dB
A (4489,4158) 4 67 5 67 .9263 | 1.03dB | 2.5 dB 7.1dB
(7921,7392) 5 89 6 89 .9332 | 1.04dB | 2.3dB 7.3 dB
Table 8.21: Generic LDPC code parameters.
Sec8.3.3.3 L10: 26 Stanford University



Generic Software (customized to 379A

To get H (not yet in sparse format)

function [H_no_dep H] = get_h_matrix(p,tr,tc,first_1);

Generate LDPC H Matrix Uses Generic-LDPC Method As Per Cioffi's Class Notes

Example: to Generate (529,462) code, p=23, rw=23, cw=3, first_1=2
H=get_h_matrix(23,23,3,2);

Definition of input variables

p : Prime number of the size of base matrix of size p-by-p

tr : Row weight = # of base matrices (or 1's) /row, equivalent to K
tc : Colweight =# of base matrices (or 1's) per column,eq to J
first_1: Setto 2 in generic LDPC code, so right shift by first_1-1

Definition of output variables
H_no_dep : the parity check matrix with no dependent rows
H : without removing the dependent rows

EE379A, Chien-Hsin Lee, first version 06/2006, edits by J. Cioffi since

>> X=prbs(7,462);

>>Y=|dpcEncode(X',generic);

>> genericdec=ldpcDecoderConfig(generic,"norm-min-sum");

>> errorgeneric=[error, 1 zeros(1, 99), 1 1 zeros(1,98) zeros(1,21)];
>>size(errorgeneric) %= 1 529
>>X1=ldpcDecode(1-2*(Y+1*errorgeneric'),genericdec,6);

>> biterr(X',X1) %= 0

>>H =get_h_matrix(23,23,3,2);
>>size(H)= 67 529
>>529-67 = 462
>> H=nonsinglastnk(H);
>> generic=ldpcEncoderConfig(logical(sparse(H)))
ParityCheckMatrix: [67 X 529 logical]
BlockLength: 529
NumlInformationBits: 462
NumParityCheckBits: 67

C_J CodeRate: 0.8733

Generic Code Gaps to Capacity for SQ QAM

PS5.3 (8.14)

5]
4.5
! \ (529, 462)
g 35
>
£ (1369, 1260)
@
o 25
3 (2209, 2024)
8 2
g
& 15 (4489, 4158)
1
0.5
0
1 2 3 4 5 6 7
4sQ 165Q 645Q  2565Q  1024SQ  40965Q 16384 5Q
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Other Irregular

= Digital Video Broadcast standard has:
1 =1/4,1/3,2/5,1/2,3/5, 2/3, 3/4, 4/5, 5/6, 8/9, or 9/10 >> Hdvb=dvbs2ldpc(r)
* n=64,800
* Can then use Idpcencode.m and ldpcdecode.m .

= 5G standard (for 5G’s live data, not %G’s control channel):
* has good puncturing, parallelism, and gain (see slides 27,28)
* Is specific to this application, but may be good elsewhere also.
* Matlab commands are

>>nrLDPCEncode.m
>> nrLDPCDecode.m

pis February 13, 2024 Not in text yet. L10:28 Stanford University



Using same “lifting” (Latin Squares) except with all-
zeros matrices also allowed in some positions (so J
- {J,0} = 7).
*  Many forms of the Z matrices to be lifted that use two
“base matrices.”
Former 379 student Rick Wesel (now UCLA Prof)
contributed concepts that allow:

* Scalable decoder complexity with rate choice over wide
range from 1/5 to 1/3

* See reference [7] in Ericsson article below.

See tutorial articles by

1. Qualcomm: Tom Richardson and Shrinivas Kudekar,
“Design of Low-Density Parity Check Codes for 5G New
Radio.” IEEE Communications Magazine ( Volume:

56, Issue: 3, March 2018), pp. 28 - 34,
DOI:_https://ieeexplore.ieee.org/document/8316763 .

2. Ericsson: Dennis Hui et al, “Channel Coding in 5G New
Radio,” |IEEE Vehicular Technology Magazine ( Volume:
13, Issue: 4, December 2018), 60 - 69,

DOI: 10.1109/MVT.2018.2867640 .

More parity bits sent upon CRC failure (see L11).
* Complexity scales with N (rate increase)
* Unlike puncturing with turbo codes

February 13, 2024

5G Code

Systematic Bits ~ Parity Bits

=

Additional Parity Bits

Y

{—
Punctured Systematic Bits

FIGURE 2 The structure of NR LDPC base matrix 1. Each square corresponds to one element in
the base matrix or a Z X Z subblock in the PCM.
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8316570&punumber=35
https://ieeexplore.ieee.org/document/8316763
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10209
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8540328&punumber=10209
https://ieeexplore.ieee.org/document/8477009

More 5G codes (Ericsson paper

Segmentation

: CRC
. Encoder

Uncoded Bits
(Payload)

LDPC

Encoder

Circular
Buffer

— Puncturing
— Repetition

TasLE 1 NR LDPC base matrix parameters.
Systematic-Bit-

Priority Interleaver

Hi

Coded Bits

atic columns

Maximum informa-
tion block size K

8,448 (= 22 x 384)

Number of nonzero 316
elements

FiGure 1 The NR LDPC coding chain.

= 5G mandates base code use by rate and K

R (I
0.95 -

0.67 - \7

0.25

Base Matrix 1

Base Matrix 2

308 3,840

8,448

FIGURE 3 The usage of the two base matrices specified for the NR

data channel. For K larger than the maximum information block
size, code block segmentation is applied.

February 13,2024

Parameter Base Matrix 1 Base Matrix 2
Minimum design 1/3 1/5

code rate

Base matrix size 46 x 68 42 x 52
Number of system- 22 10

3,840 (= 10 x 384)

197

R=1/2, QPSK, 20 lterations

[a
54,5 T T T T T T T
g 4 ——BLER Target = 10"
= ——BLER Target = 1072 | |
e ——BLER Target = 1073
8 & 3
=8
S 305
W 0C
€ 25N\
615\\\
N ——F
8 1 ' : : : : : : :
=
Q ) \\) QO ) Q Q Q Q
S & & & & & & S

PN Q3 3% % 039 bg AR <b9
Information Block Size

FIGURE 4 The performance of NR LDPC codes at code rate 1/2 for
QPSK modulation.
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Polar Codes

Section 8.3.4
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Polar Codes Brief Commentar

= Polar Codes — Positives (Arikan); PC are:

« not random, Limited course time and likely studied
* based on essentially finite-field Fourier Transform size n, in EE387 course

* have simpler suboptimal decoders (successive decoders),

* smaller gap for finite n, Not (yet) heavily used

* used for binary (BPSK) control channel in 5G, &

* lower delay. So not in 379’s

There are much bigger impacts to
performance that arise from
a). Handling ISI/filtering — A and B
b). Optimizing transmit spectra, B
c). Allocation of dimensions/energy
to multiple users sharing channel (B)

= Polar Codes — Negatives:
* Code design strong depends on SNR, instead of puncturing.
* The successive decoder is not really compatible with M’ary QAM.
e PCdon't provide that much more gain.

GRAND Decoders (L12) get same or better gain for simple block codes used
as product codes, with yet lower decoder computation.

2 February 13,2024 Not in text yet. L10: 32 Stanford University
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