
Lecture 10
Constraints & LDPC Codes

February 13, 2024

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A – Winter 2024

JOHN M . C IOFF I

February 13, 2024

Announcements & Agenda
§ Announcements

L10: 2

§ Today
• Midterm Review
• Turbo-Code Completion
• Soft Information from constraints
• LDPC Codes
• Hard/Soft concatenation – Reed Solomon outer

§ Problem Set 5 = PS5 due Wednesday February 21
1. 8.12 Turbo Design and Coding
2. 8.13 Constraints and BICM
3. 8.14 LDPC Use
4. 8.15 Subsymbol- vs Symbol-Level Deterministic Interleaving
5. 8.16 Wireless Hard-Soft Interleaving Challenge

February 13, 2024

Solutions

1. QAM Design
a. Attenuation -63-(-40-70) = 47 dB; SNR =-110-(-142+3) = 29dB

b. 𝑷𝒆 = 4 1 − "
"#

𝑄 $%"&!.#

'((
= .0042

c. 𝓒 = 10) , 𝑙𝑜𝑔' 1 + 10'.+ = 96Mbps
d. SNRnew = 10*log10(255/3*(qfuncinv(1e-6/3.75))^2) = 33.3 +.2, 𝛾 = 4.5 𝑜𝑟 𝟒. 𝟖 dB

a. dfree=6 and G=[17 13] from tables.
e. 𝑺𝑵𝑹𝒎𝒊𝒏 = 𝟎 (−∞𝒅𝑩) and 𝑺𝑵𝑹𝒎𝒂𝒙 = +∞𝒅𝑩 (also +26 and smaller)

f. 𝑷𝒆 = $
! 1 −

1234
12345"

= .0248

g. SNRnew = 10*log10(63/3*(qfuncinv(1e-6/3.5))^2) = 27.3 dB
• This is 1.7 dB below average at 29 dB ; 10%&.' = .6761
• Coding of course will help.

L10: 3

SQ QAM

ℰ! = −63	'()/+,

×

ℎ

ℰ! $ ℎ "

% = −40	+,-

ℎ "= ℎ#$!%&
" . ℎ'()*%$+,-

"

SQ QAM detector+

/" = −142	+,-/34

5
input
bits receiver

input

2. Bridge SOVA / APP
a. 2! = 𝟔𝟒 paths ; 2" = 𝟒 survivors
b. 2! x 2#$ table entries
c. BSC for 2 successive bits

d. No, encoder has memory
e. 4 survivors

f. Non-survivors’ prob

g. 𝑳𝑳𝑹𝟑 = 𝒍𝒏(𝟕
𝟒
)

h. Less confidence than APP, better than SOVA

1
𝑇
= 10'

Soft Information from
Constraints

February 13, 2024 L1:4

Section 7.4

February 13, 2024

Block Codes aggregate many tiny codes

§ Constraints
• 𝑝)/𝒚 is the probability of 𝑥 given that the decision based on 𝒚meets code/modulation constraints.

§ 𝑝!/#$%&'()*%'& ∝ 𝑝!,#$%&'()*%'& = 𝑝*%'(*%&*#
#,((-%' !,&

$ 𝑝-!'(*%&*#
$'.-(!,&

L10-: 5

§ For instance, the parity-check equation 𝒗 $ 𝐻 = 𝟎 provides 𝑛 − 𝑘 parity constraints.

§ So 𝑝!/#$%&'()*%'& essentially means the MAP finds the 𝑥 most likely to satisfy all these parity constraints.

§ There are other types of constraints also:
• Equality constraints – These basically recognize that any 𝑥 (often a bit) must have common decision in every constraint in

which it participates.
• Modulator constraints – Only certain constellation-to-bit mappings may occur for particular modulator (BICM).
• Channel-Model constraints – Certain bit/𝑥 combinations may not be likely, given a certain channel filter.

• These sometimes have the name “turbo equalization.”

Section 7.4

Each row in an arbitrary linear encoder’s parity matrix can be viewed as a simple linear parity code.

February 13, 2024

Basics PRIOR to the constraint
§ BSC for 𝑖 = 1,2, 9

• Before constraint:

L10: 6

§ AWGN for 𝑖 = 1,2, 9
• Before constraint:

Section 7.4.1

𝑝 𝑣*, 𝑦* = 𝑝 𝑦*/𝑣* $ 𝑝 𝑣*	

Extrinsic
Info	on	𝑖	from	𝑗 ≠ 𝑖

𝑝 𝑣! , 𝑦! =

1 − 𝑝 (𝑝! 	 𝑦!= 1, 𝑣! = 1
𝑝 (1 − 𝑝! 	 𝑦!= 1, 𝑣! = 0
𝑝 (𝑝! 	 𝑦!= 0, 𝑣! = 1
1 − 𝑝 (1 − 𝑝! 𝑦! = 0, 𝑣! = 0
intrinsic

February 13, 2024

Example parity constraint
§ Example has 3 bits in a specific parity equation (row of 𝐻, call it ℎE, or column of 𝐻F) ; 𝐻 → 𝐺.

• Generator 𝐺'𝒔 output is such that 𝑣(⊕𝑣)⊕𝑣* = 0; this corresponds to 1’s in positions 1,2, and 9 in a row of 𝐻.
• First: A BSC with bit-error parameter 𝑝 has channel outputs 𝑦(, 𝑦) , 𝑦* and encoder outs 𝑣(, 𝑣) , 𝑣* .

§ 𝑆G is a subset 𝑆G = 𝒗 | 𝐸 𝒗 = 0 - all the bit combinations that satisfy the constraint:
• 𝑆+ = 0,0,0 , 1,1,0 , 1,0,1 , 0,1,1

§ 𝑆G\E(𝑦E) fixes each set-codeword’s position 𝑖 to be the specific value 𝑦E.
• 𝑆+\-(𝑦- = 𝟎) = 0,0,0 , 0,1,1

§ MAP decoder to 𝑣EIJ for this event satisfies max
K.∈ M,O

𝑝K./0

L10: 7Section 7.4.1

𝑝-).(𝑣/	/𝐸, 𝑦/)∝ =
Pr 𝑣/ = 𝑦/ = 0 =𝑝# @ 𝑝$ + 1 − 𝑝# @ 1 − 𝑝$
Pr 𝑣/ = 𝑦/ = 1 =𝑝# @ 1 − 𝑝$ + 1 − 𝑝# @ 𝑝$

𝑝"P	/% ∝ 𝑝"P,%= 𝑝'()(𝑣*	/𝐸, 𝑦*) (𝑝!+) 𝐸, 𝑦*Example
𝐺,𝐻 as parity check

+

𝑣#

𝑣$

𝑝#

𝑝$ 𝑝/ 𝑣/

𝑝*%'(𝐸, 𝑦>)∝ (
	 𝑝>	 ;	𝑦> = 1	
1 − 𝑝>	 ; 	𝑦> = 0

𝑝/ = 𝑝012 = 𝑝

February 13, 2024

MAP Decoder maximizes 𝑝!𝒊 /#
§ For bit 𝑖 = 3:

L10: 8

𝑝39 ,5 =
1
𝑐/6
@ =
𝑝# @ 𝑝$ @ 1 − 𝑝/ + 1 − 𝑝# @ 1 − 𝑝$ @ 1 − 𝑝/ 	 𝑣/ = 0
𝑝# @ 1 − 𝑝$ @ 𝑝/ + 1 − 𝑝# @ 𝑝$ @ 𝑝/ 	 𝑣/= 1

§ For bit 𝑖 = 2:
𝑝3: ,5 =

1
𝑐$6
@ =𝑝# @ 𝑝/ @ 1 − 𝑝/ + 1 − 𝑝# @ 1 − 𝑝/ @ 1 − 𝑝$ 	 𝑣$ = 0
𝑝# @ 1 − 𝑝/ @ 𝑝$ + 1 − 𝑝# @ 𝑝$ @ 𝑝/ 	 𝑣$= 1

§ For bit 𝑖 = 1:
𝑝3; ,5

1
𝑐#6
@ =𝑝/ @ 𝑝$ @ 1 − 𝑝# + 1 − 𝑝/ @ 1 − 𝑝$ @ 1 − 𝑝# 	 𝑣# = 0
𝑝/ @ 1 − 𝑝$ @ 𝑝# + 1 − 𝑝/ @ 𝑝$ @ 𝑝# 	 𝑣#= 1

February 13, 2024

Events and their probability calculation
§ Satisfaction of parity check is an example of, more generally, an event 𝐸 𝒗 = 0.

§ 𝑆G is a subset 𝑆G = 𝒗 | 𝐸 𝒗 = 0 - all the bit combinations that satisfy the constraint.
• 𝑆+\1(𝑦1) fixes each set-codeword’s position 𝑖 to be the specific value 𝑦1.

§ MAP decoder for this event satisfies max
K2∈ M,O

𝑝K2/0 .

L10: 9Section 7.4.1

§ BSC/AWGN 𝑝-!' 𝑦*	/	𝐸, 𝑦* = 𝑐*	 4 5
𝒗∈C7\9 D9

6
EFG
EH*

%

𝑝E 𝐸, 𝑦*

𝑐: = G
𝒗∈1<

H
=>#

?

𝑝= 𝐸, 𝑦:

@#

𝑝-).(𝑣/	/	𝐸, 𝑦/)∝ =
Pr 𝑣/ = 𝑦/ = 0 =𝑝# @ 𝑝$ + 1 − 𝑝# @ 1 − 𝑝$
Pr 𝑣/ = 𝑦/ = 1 =𝑝# @ 1 − 𝑝$ + 1 − 𝑝# @ 𝑝$

Recall L10:7

Similarly, for 𝑣# and 𝑣$ - send 𝑝-). to 3 other constraint decoders𝑐/ =
1

1 − 2 @ 𝑝# @ 𝑝$

February 13, 2024

Soft Bits
§ The soft bit is 𝜒E = 2 6 𝑃𝑟 𝑣E = 0 − 1 = 1 − 2 6 𝑃𝑟 𝑣E = 1 .

• A soft bit accepts any probability (extrinsic , intrinsic, …) for 𝑃𝑟 𝑣1 = 0 .

§ The soft bit relates to LLR as 𝐿𝐿𝑅E = l𝑛 Q2RO
Q2SO

or 𝜒E = −𝑡𝑎𝑛ℎ TTU2
V

.

§ By induction (with 𝑡W = # of 1’s in a row)

L10: 10

𝜒: =H
=>#
=A:

.=

𝜒= 	.

§ Use this soft bit with extrinsic information for all the “other” bits:

§ Define the involution

§ So then

§ And finally: 𝜒* 4 𝜒E ↔ 𝜙 𝐿𝐿𝑅* +𝜙 𝐿𝐿𝑅E .
• This means no multiplication, just adds and table look-up 𝜙 𝑥 . Illustration on next slide

Section 7.4.1.1

February 13, 2024

Parity Constraint Soft-Information Flows

§ So each bit, considered like a tiny code, sends receives extrinsic info and sends intrinsic info, to all others in 𝐸.

L10: 11

+

𝜙

𝜙

𝜙

has - if the sign of two
input LLRs match sign

𝐿𝐿𝑅:?. 1
𝐿𝐿𝑅-). 1

𝜙-). 1 = 𝜙:?. 2 + 𝜙:?. 3

𝐿𝐿𝑅:?. 2
𝐿𝐿𝑅-). 2

±𝜙 3(𝜙
:?. 1

𝜙 𝑥 = 𝜙@# 𝑥 = −𝑙𝑛 tanh
𝑥
2

= 𝑙𝑛
𝑒) + 1
𝑒) − 1

𝜙-). 3 = 𝜙:?. 1 + 𝜙:?. 2

𝜙:?. 3

±𝜙3(

𝐿𝐿𝑅:?. 3
𝐿𝐿𝑅-). 3

𝜙-). 2 = 𝜙:?. 1 + 𝜙:?. 3

𝜙:?. 2

±𝜙
3(

±𝜙3(

Section 7.4.1.1

February 13, 2024

Equality Constraints
§ Each bit may participate in many constraints – it should ultimately have same value in them all.

L10: 12

Example
equality constraint

=

𝑎(

𝑎)

𝑎-

𝑣1 1

𝑣1 2

𝑣1 3

𝑆5 = 0,0,0 , 1,1,1

𝑝-).(𝑣$	/	𝐸, 𝑦$) = 𝑐$ @ =
𝑎# @ 𝑎/ 𝑣:(2) = 1

1 − 𝑎# @ 1 − 𝑎/ 𝑣:(2) = 0

𝑐$ =
1

𝑎# @ 𝑎/ + 1 − 𝑎# @ 1 − 𝑎/

Section 7.4.2

𝑝:?.(𝐸, 𝑦$)∝ =
	 𝑝$;	𝑦$ = 1	
1 − 𝑝$; 	𝑦$ = 0

𝑝3>,5 = 𝑐:6 @ =
𝑎# @ 𝑎$ @ 𝑎/ 𝑣: = 1

1 − 𝑎# @ 1 − 𝑎$ @ 1 − 𝑎/ 𝑣: = 0

𝑐:6 =
1

𝑎# @ 𝑎$ @ 𝑎/ + 1 − 𝑎# @ 1 − 𝑎$ @ 1 − 𝑎/

Equality-Constraint Decoder maximizes

February 13, 2024

Equality Constraint Soft-Information Flows
§ The extrinsic information returns to other (e.g., parity) constraints, and the constraint

accepts intrinsic from others

L10: 13

§ The Equality and Parity constraints for a binary block code can thus cycle soft information.
§ This is another form of iterative decoding.

=

𝐿𝐿𝑅:?. 1

𝐿𝐿𝑅:?. 3𝐿𝐿𝑅:?. 2

𝐿𝐿𝑅-). 1 = 𝐿𝐿𝑅:?. 2 + 𝐿𝐿𝑅:?. 3

𝐿𝐿𝑅-). 2 = 𝐿𝐿𝑅:?. 1 + 𝐿𝐿𝑅:?. 3

𝐿𝐿𝑅-). 3 = 𝐿𝐿𝑅:?. 1 + 𝐿𝐿𝑅:?. 2

𝐿𝐿𝑅 𝑗 =G
=>#
=A:

.?

𝐿𝐿𝑅 𝑖

Section 7.4.2.1

February 13, 2024

Simple Iterative Decoder Illustration
§ It’s called a “Tanner Graph” or “Factor Graph.”

§ Decoding may take multiple iterations:
• When extrinsic data from an equality node cycles back to

that same node, the soft-information can become “biased.”
• Such a biased decoder then loses exact MAP quality.

§ Good codes try to make the cycle longer than the
number of iterations that lead to convergence.
• This can only be done approximately in practice.

§ Good LDPC codes achieve this.
• Designers actually design the 𝐻matrix .
• And then just use a corresponding systematic 𝐺.

• Do this by simple row add operations to designed 𝐻 to 𝐻@A@ = ℎ 𝐼 .
• 𝐺= 𝐼 ℎB so then 𝐺 , 𝐻B = 𝐺 , 𝐻@A@B = 0 .

L10: 14Section 7.5.3

+

=

=

=

=

.

.

.

+

+

!!"!"# #$%

!!"!"# $$%

!!"&̀)*$+*$ %$

!!"	 %$

!&

!'

!(

!)

Variable
nodesCheck

nodes

February 13, 2024

Soft-Information from constellation
§ Example for 1 dimension of Gray Code:

• E.g., 64QAM, 𝑦#

L10: 15

-7
(000)

-5
(001)

-3
(010)

-1
(011)

+1
(111)

+3
(110)

+5
(100)

+7
(101)

𝑦1 = −5.5 (𝑣/ 𝑣$ 𝑣#)

§ Basically, sum contributions for common 𝑣* values of 0 and then 1, normalizing the constant as follows:

Section 7.4.3

LDPC Codes

February 13, 2024 L10:16

Section 8.3.3

February 13, 2024

LDPC as “almost random” codes
§ R. Gallager (MIT), early 1960’s, designed the parity check matrix 𝐻 directly (e.g., design the null space / checks).

• His code ensemble averaged 𝑛 − 𝑘 parity bits that were randomly placed in 𝐻 for given large 𝑛.
• 𝑟 = 𝑘/𝑛 is finite.
• The “low density” (LD) part è SPARSE BINARY MATRIX (see matlab’s “sparse.m” and “nnz.m” commands).

§ The ensemble works at capacity limit; RG even found some codes that were really good.

§ However, the consequent ML Decoders however were too complex!

§ 1990’s – Turbo/Iterative Decoding suggests revisit of LDPC codes.
• The decoders were feasible to implement 30 years later, reviving LDPC.

§ 2020’s – LDPC codes find heavy use in modern designs.
• 5G Wireless
• Wi-Fi 5, 6, 7
• High-speed Fiber

§ Polar Codes (Arikan) – 2009 (use another suboptimal “successive-decoding” method).
• Even better for binary AWGN, but the BICM-ID does not work with PC’s successive decoding and limits polar codes’ applicability.

L10: 17Section 8.3.3

February 13, 2024

Some 𝐻-Related Definitions
§ 4 Cycle – two rows have at least two 1’s in same columns.

• This is not good. Why?
• Equality constraint à to parity à equality à parity à back again!
• Biases accumulate quickly in constraint-based iterative decoding.

§ Regular Parity Matrix (sparse)
• All rows have 𝑡C 1’s.
• All columns have 𝑡D 1’s.
• So 𝑛 − 𝑘 @ 𝑡C =𝑘 @ 𝑡D .
• Otherwise, it is an irregular parity matrix.

L10: 18

1 0
0 𝟏

⋯ ⋯
0 𝟏

1 0
0 0

	⋮ 0
	⋮ ⋮

⋱ 0
⋱ ⋱

⋮ ⋮	
1 0

0 𝟏
0 0

⋯ 𝟏
⋯ ⋯

⋱ 0
0 1

𝑟 = 1 −
𝑡,
𝑡-

§ Density-Limit bound:
• avoids all 4 cycles,
• ensures sparse 𝐻 for finite 𝑟,&
• basically means 𝑛 will be large.

𝑛 − 𝑘

𝑛

Large 𝒏 helps for “random coding” also ; so, how can a designer get such a code with
implementable decoder? (typical 𝒏 > 𝟏𝟎𝟎𝟎)

Section 8.3.3

§ There can be an SNR (equivalently 𝑟) dependence.
§ Designers don’t really want to design a new code for each channel.
§ The code’s amenability to puncturing/rate-variation is important.

February 13, 2024

Some LDPC Design Choices

L10: 19

Name Quasi-Cyclic Generic
Irregular

Application
Specific

Reg/irreg regular Slightly irregular irregular

Uses Wi-Fi General 5G, DVB

positives Matlab functions 379A class
Matlab,
no restrictions
Good for M’ary

Puncturing
Parallelism
Special matlab

negatives Not quite
optimum

Not as well
known/supported

Perhaps too
specific

Section 8.3.3.1,3

February 13, 2024

Shaping Gain Offset
§ Review Lecture 6

• Turbo, LDPC, polar, …
• DO NOT ADDRESS Shaping Gain

§ See Section 8.5 for shaping codes
• Can get up to 1.2 dB of the 1.53 dB
• 𝛾E,FGGE-. is shaping gain for particular

constellation size (or _𝑏)

L10: 20

																				"!	
#$%&'()
)%'(

																					""
*+,-./0,1.2

)%'(

	

0 < 𝛾. < 1.53
	

This is what the LDPC/Turbo works improve.
Eb/N0 only equals SNR when 𝑟 = 1/2.

Section 8.3.3

Regular codes’ cannot get to capacity:
Richardson/Urbanke, 𝛾@,DEE@FB added here

February 13, 2024

Galois Field 𝑝 reminder from L6:24-25
§ 𝐺𝐹 𝑝 = 0,1,… , 𝑝 − 1

• Addition is modulo 𝑝.
• Multiplication is close, with division defined by inverse, and follows from any prime element 𝛼 ∈ 𝐺𝐹 𝑝 .

L10: 21

0=p=5

1

23

4

+

140 ==aa

1a

2a

3a

2=a

3=a

3a
1a

2a

1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

´

a a2 a3 a4

2 4 3 1

3 4 2 1

𝐺𝐹 5 = 0	 1	 𝛼	 𝛼/	 𝛼*	

GF exists for any prime 𝑝
or product of such primes.

Appendix B.1

February 13, 2024

Prelude to Quasi-Cyclic LDPC
§ LDPC Design Goals:

• Design avoids 4-cycles.
• 𝐻 should have rank 𝑛 − 𝑘.
• 𝐻 should have low density of 1’s.

§ Design should have good performance (including all neighbors at all distances),
• but still have some structure to help encoder and especially decoder implementation.

L10: 22

§ 𝑊	is a Latin-Square Matrix.
• Each row/col contains each set element once.
• 𝑊	 is clearly nonsingular.

𝑊 =
0 1 2
1 2 0
2 0 1

§ 𝐽	is a right-shift matrix (applied to row vector) that
• circularly shifts rows of matrix (on right) to the right, 𝑝×𝑝. 𝐽 =

0 1 0
0 0 1
1 0 0

§ 𝐻	 is the dispersion of 𝑊 using 𝐽	over 𝐺𝐹 𝑝 that
• replaces each element 𝑤:,= by 𝑝 − 1 × 𝑝 − 1 matrix 𝐽H>,G.

𝐻 =
𝐼 𝐽 𝐽/

𝐽 𝐽/ 𝐼
𝐽/ 𝐼 𝐽

Not in text yet

February 13, 2024

Quasi-Cyclic LDPC
§ Special Latin-Square 𝑊 𝑝×𝑝 matrix for any 𝜂 ∈ 𝐺𝐹 𝑝 :

L10: 23

𝜂 − 𝛼I 𝜂 − 𝛼 ⋯ 𝜂 − 𝛼J@$ 𝜂

𝛼 @ 𝜂 − 𝛼I 𝛼 @ 𝜂 − 𝛼 ⋯ 𝛼 @ 𝜂 − 𝛼J@$ 𝛼 @ 𝜂

⋮ ⋮ ⋮ ⋮ ⋮

𝛼J@$ @ 𝜂 − 𝛼I 𝛼J@$ @ 𝜂 − 𝛼 ⋯ 𝛼J@$ @ 𝜂 − 𝛼J@$ 𝛼J@$ @ 𝜂

−𝛼I −𝛼# ⋯ −𝛼J@$ 0

𝑊 =

	

§ 𝑊’s dispersion (with 𝑝 − 1 × 𝑝 − 1 	 𝐽) is the QC-LDPC matrix 𝐻 and has no 4-cycles (Zhang et al.).
• Usually 𝑝 = 27.

§ These codes are regular (because of the 𝐽 matrix and its shifts).

§ Matlab ldpcQuasiCyclicMatrix.m command produces these:
• Inputs are 𝑝 − 1 and 𝑊 (which is a Latin-Square matrix with rules on how to create it).

Not in text yet

February 13, 2024

QC-LDPC codes and Sparse matrices

§ ldpc..ze is for large spare matrices, like LDPC matrices 𝐻.

L10: 24

>> i=[1 3]; % rows
>> j=[2 5]; % columns
>> v=[1 1]; % values to insert
>> S=sparse(i,j,v,5,5)
 (1,2) 1
 (3,5) 1
>> nnz(S) = 2
>> full(S) =
 0 1 0 0 0
 0 0 0 0 0
 0 0 0 0 1
 0 0 0 0 0
 0 0 0 0 0

>> spy(S)

0 1 2 3 4 5 6
nz = 2

0

1

2

3

4

5

6

% Wi-FI code 802.11 (Wi-Fi 5,6,7)’s parity-check matrix with r=3/4 LDPC
 P = [
 16 17 22 24 9 3 14 -1 4 2 7 -1 26 -1 2 -1 21 -1 1 0 -1 -1 -1 -1
 25 12 12 3 3 26 6 21 -1 15 22 -1 15 -1 4 -1 -1 16 -1 0 0 -1 -1 -1
 25 18 26 16 22 23 9 -1 0 -1 4 -1 4 -1 8 23 11 -1 -1 -1 0 0 -1 -1
 9 7 0 1 17 -1 -1 7 3 -1 3 23 -1 16 -1 -1 21 -1 0 -1 -1 0 0 -1
 24 5 26 7 1 -1 -1 15 24 15 -1 8 -1 13 -1 13 -1 11 -1 -1 -1 -1 0 0
 2 2 19 14 24 1 15 19 -1 21 -1 2 -1 24 -1 3 -1 2 1 -1 -1 -1 -1 0
]; % 6 x 24 matrix
 blockSize = 27;
>> H = ldpcQuasiCyclicMatrix(blockSize, P); % creates dispersion of P with 𝒥('
>> size(H) = 162 648

Not in text yet

% Example 1:
 blockSize1 = 3;
 P1 = [0 -1 1 2; 2 1 -1 0];
 H1 = ldpcQuasiCyclicMatrix(blockSize1,P1)
 6 x12 sparse logical array

 (1,1) 1
 (5,1) 1
 (2,2) 1
 (6,2) 1
 (3,3) 1
 (4,3) 1
 (6,4) 1
 (4,5) 1
 (5,6) 1
 (3,7) 1
 (1,8) 1
 (2,9) 1
 (2,10) 1
 (4,10) 1
 (3,11) 1
 (5,11) 1
 (1,12) 1
 (6,12) 1
>> size(H1) = 6 12
>> full(H1) =
 1 0 0 0 0 0 0 1 0 0 0 1
 0 1 0 0 0 0 0 0 1 1 0 0
 0 0 1 0 0 0 1 0 0 0 1 0
 0 0 1 0 1 0 0 0 0 1 0 0
 1 0 0 0 0 1 0 0 0 0 1 0
 0 1 0 1 0 0 0 0 0 0 0 1

February 13, 2024

QC-LDPC encoder and decoder
§ With the H matrix, create objects with ldpcEncoderConfig and ldpcDecoderConfig

• Encode
• Decode

L10: 25

>> wificonf=ldpcEncoderConfig(H)
 ParityCheckMatrix: [162×648 logical]
 Read-only properties:
 BlockLength: 648
 NumInformationBits: 486
 NumParityCheckBits: 162
 CodeRate: 0.7500
 wificonfdec=ldpcDecoderConfig(H,'norm-min-sum')
 ldpcDecoderConfig with properties:
 ParityCheckMatrix: [162×648 logical]
 Algorithm: 'norm-min-sum'
 Read-only properties:
 BlockLength: 648
 NumInformationBits: 486
 NumParityCheckBits: 162
 CodeRate: 0.7500
 NumRowsPerLayer: 27>> Y=ldpcEncode(X,wificonf);

>> X=prbs(7,486)';
>> Y=ldpcEncode(X,wificonf);
>> X1=ldpcDecode(1-2*Y,wificonfdec,6);
>> biterr(X,X1) = 0

>> error = [1 zeros(1,49) 1 zeros(1,49) 1 zeros(1,99) 1 zeros(1,45) 1 zeros(1,61)];
>> errorldpc=[error, error, zeros(1,32)];
>> X1=ldpcDecode(1-2*(Y+errorldpc'),wificonfdec,6);
>> biterr(X,X1) = 0

§ You can begin to experiment now:
• The decoder input is “LLR,” so you could:
• compute from a Gray mapped constellation,
• run for different SNR,
• compute error curves,
• etc

☠ Warning: I could not get the ‘bp’ (Belief PropagaIon) opIon
for ldpcDecode to work with noise UNLESS

the errorldpc/noise scales by <0.9; I think this relates
to soT-info scaling internal to “bp” opIon

Not in text yet

2nd decoder input can be 'bp', 'layered-bp’, 'norm-min-sum', or 'offset-min-sum' and the
corresponding algorithms are belief propagation decoding, layered belief propagation
decoding, normalized min-sum decoding, and offset min-sum decoding respectively.
https://www.mathworks.com/help/comm/ref/ldpcdecode.html

https://www.mathworks.com/help/comm/ref/ldpcdecode.html

February 13, 2024

Generic Irregular Codes
§ Thanks go to E. Eleftheriou and S. Olcer of IBM (> 20 years so public domain 😀).

• These use the shift-matrix dispersion concept and in easier way with 𝑝×𝑝 shift matrix 𝐽.
• Their design checks for 4-cycles and linear-dependence à irregular codes.

• Their construction deletes any row that causes 4 cycle or linear dependence on previous rows.
• The call the number of deleted rows 𝑚when the desired 𝑛 − 𝑘 linearly independent rows is achieved.

L10: 26

§ Starts with desired 𝑡(and 𝑡#
• Eventually 𝑛 − 𝑘 < 𝑡D −𝑝

Sec 8.3.3.3

function [H_no_dep H] = get_h_matrix(p,tr,tc,first_1);
 Generate LDPC H Matrix Uses Generic-LDPC Method As Per Cioffi's Class Notes
 Example: to Generate (529,462) code, p=23, rw=23, cw=3, first_1=2
 H = get_h_matrix(23,23,3,2);
--
 Definition of input variables
 p : Prime number of the size of base matrix of size p-by-p
 tr : Row weight = # of base matrices (or 1's) /row, equivalent to K
 tc : Col weight = # of base matrices (or 1's) per column,eq to J
 first_1: Set to 2 in generic LDPC code, so right shift by first_1-1

 Definition of output variables
 H_no_dep : the parity check matrix with no dependent rows
 H : without removing the dependent rows

EE379A, Chien-Hsin Lee, first version 06/2006, edits by J. Cioffi since

February 13, 2024

Generic Software (customized to 379A)
§ To get H (not yet in sparse format)

L10: 27

>> H = get_h_matrix(23,23,3,2);
>> size(H) = 67 529
>> 529-67 = 462
>> H=nonsinglastnk(H);
>> generic=ldpcEncoderConfig(logical(sparse(H)))
 ParityCheckMatrix: [67×529 logical]
BlockLength: 529
 NumInformationBits: 462
 NumParityCheckBits: 67
 CodeRate: 0.8733

>> X=prbs(7,462);
>> Y=ldpcEncode(X',generic);
>> genericdec=ldpcDecoderConfig(generic,"norm-min-sum");
>> errorgeneric=[error , 1 zeros(1, 99), 1 1 zeros(1,98) zeros(1,21)];
>> size(errorgeneric) % = 1 529
>> X1=ldpcDecode(1-2*(Y+1*errorgeneric'),genericdec,6);
>> biterr(X',X1) % = 0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7

Generic Code Gaps to Capacity for SQ QAM

(529, 462)

(1369, 1260)

(2209, 2024)

(4489, 4158)Ga
p

to
 ca

pa
cit

y
(d

B)
4 SQ 16 SQ 64 SQ 256 SQ 1024 SQ 4096 SQ 16384 SQ

PS5.3 (8.14)

February 13, 2024

Other Irregular

§ Digital Video Broadcast standard has:
• 𝑟 =1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, or 9/10
• 𝑛 = 64,800
• Can then use ldpcencode.m and ldpcdecode.m .

L10: 28

>> Hdvb=dvbs2ldpc(r)

§ 5G standard (for 5G’s live data, not %G’s control channel):
• has good puncturing, parallelism, and gain (see slides 27,28)
• Is specific to this application, but may be good elsewhere also.
• Matlab commands are

>> nrLDPCEncode.m
>> nrLDPCDecode.m

Not in text yet.

February 13, 2024

5G Code
§ Using same “lifting” (Latin Squares) except with all-

zeros matrices also allowed in some positions (so 𝒥
→ 𝒥, 𝟎 = 𝑍).
• Many forms of the 𝑍 matrices to be lifted that use two

“base matrices.”
§ Former 379 student Rick Wesel (now UCLA Prof)

contributed concepts that allow:
• Scalable decoder complexity with rate choice over wide

range from 1/5 to 1/3
• See reference [7] in Ericsson article below.

§ See tutorial articles by
1. Qualcomm: Tom Richardson and Shrinivas Kudekar,

“Design of Low-Density Parity Check Codes for 5G New
Radio.” IEEE Communications Magazine (Volume:
56, Issue: 3, March 2018), pp. 28 - 34,
DOI: https://ieeexplore.ieee.org/document/8316763 .

2. Ericsson: Dennis Hui et al, “Channel Coding in 5G New
Radio,” IEEE Vehicular Technology Magazine (Volume:
13, Issue: 4, December 2018), 60 - 69,
DOI: 10.1109/MVT.2018.2867640 .

§ More parity bits sent upon CRC failure (see L11).
• Complexity scales with 𝑁 (rate increase)
• Unlike puncturing with turbo codes

L10: 29

𝐻

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8316570&punumber=35
https://ieeexplore.ieee.org/document/8316763
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10209
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8540328&punumber=10209
https://ieeexplore.ieee.org/document/8477009

February 13, 2024

More 5G codes (Ericsson paper)

§ 5G mandates base code use by rate and K

L10: 30

Polar Codes

February 13, 2024 L1:31

Section 8.3.4

§ Polar Codes – Positives (Arikan); PC are:
• not random,
• based on essentially finite-field Fourier Transform size 𝑛 ,
• have simpler suboptimal decoders (successive decoders) ,
• smaller gap for finite 𝑛,
• used for binary (BPSK) control channel in 5G, &
• lower delay.

February 13, 2024

Polar Codes Brief Commentary

L10: 32

§ Polar Codes – Negatives:
• Code design strong depends on SNR, instead of puncturing.
• The successive decoder is not really compatible with M’ary QAM.
• PC don’t provide that much more gain.

Limited course time and likely studied
in EE387 course

Not (yet) heavily used

So not in 379’s

There are much bigger impacts to
performance that arise from

a). Handling ISI/filtering – A and B
b). Optimizing transmit spectra, B

c). Allocation of dimensions/energy
to multiple users sharing channel (B)

GRAND Decoders (L12) get same or better gain for simple block codes used
as product codes, with yet lower decoder computation.

Not in text yet.

End Lecture 10

§ sd

February 13, 2024

backup

L1: 34

𝑝	(𝑣:) =
𝑃𝑟 𝑣: = 0 =

1 − 𝑎# @ 1 − 𝑎$ @ 1 − 𝑎/
𝑎# @ 𝑎$ @ 𝑎/ + 1 − 𝑎# @ 1 − 𝑎$ @ 1 − 𝑎/

Pr 𝑣: = 1 =
𝑎# @ 𝑎$ @ 𝑎/

𝑎# @ 𝑎$ @ 𝑎/ + 1 − 𝑎# @ 1 − 𝑎$ @ 1 − 𝑎/

