WELCOME TO EE379A!! Data Transmission Design 2024 Winter Quarter

JOHN M. CIOffi
Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Lecture 1
 Discrete Message Encoding/Decoding

January 9, 2024
John M. Cioffi

Hitachi Professor Emeritus (recalled) of Engineering
Instructor EE379A - Winter 2024

Announcements \& Agenda

- Announcements

- People Introductions
- Web site EE379A (see also canvas)
- Chapters 1-8 on-line at this class web site (Course Reader)
- Sections 1.1 and 1.2 today
- See last/backup slide today for matlab toolboxes I use
- Qualcomm and/or Samsung internships (send me email)
- Apple, Intel, Ericsson

Welcome Course info Course Reader Lectures Handouts Homework Matlab Additional Topics

Winter Quarter 2023-2024

EE 379A - Data Transmission Design
Instructor : Prof. John Cioffi
Teaching Assistant: Ethan Liang

Today

- Course introduction
- Discrete Data Transmission \& Examples (1.1)
- Modulation and Demodulation (1.2)
- Detection(1.1.2)
- Vector Channels (1.1.1)
- Detection and Decision Regions (1.1.3)

```
- Problem Set 1 = PS1 due Wednesday Jan 17 at 17:00
    1. 1.1 a constellation
    2. 1.2 inner products
    3. 1.3 same constellation, different modulators
    4. 1.7 Irrelevancy and decision regions
    5. 1.10 constellation invariances
```


Intro: Why Communications?

This fundamental area is always needed. Many decades: it surges at times

If you love it, it is absolutely great area to enjoy working for your decades ahead.

Next Generation Connectivity

Rural, less-developed connect

Digital Twins used to forecast/emulate each

Defense ("5/6G.mil")
Clothing, Computing, ...

Broadband Internet Access (\$1.5T/year)

- Messages
- Internet
- Email
- Text
- video, audio
- Sensor/camera images

OSI Model

OSI = Open Systems Interconnect
SDN = Software Defined Network

this class

Metaverse - VR/AR focus and Bandwidth

VR and AR require efficient increase in wireless capacity

Constant up/download on an all-day wearable

Richer visual content

- Higher resolution, higher frame rate

Latency:

Edge $\sim 1 \mathrm{~ms}$
ISP Cloud 20-50 ms

Public Cloud 100 ms

International Mobile Telecommunications (IMT)

IMT-2030
ITU-R M.2160-0 (11/2023)

Communications Depth Sequence

EE 359 -Wireless Channels (antennas, models, software)
analytics, time - variation
channel modelling

- Modulation and Coding compliment one another
- Modulation = energy assignment to time/frequency/space, is separate from:
- Coding = distinct message mapping.
- If both done well, they separate.

Basic Communication (digital)

- The symbol \boldsymbol{x} and messages are in a 1-to-1 relationship.
- Finding the best $\widehat{\boldsymbol{x}}$ and designing \boldsymbol{x} well \rightarrow this class.
- Most general channel is represented by the conditional probability $p_{y / x}$.
- Partial source description is $p_{\boldsymbol{x}}$ - together, $p_{\boldsymbol{x} \boldsymbol{y}}$. (Mapping to \boldsymbol{x} is important.)
- Optimum detector (minimizes ave error probability) is Maximum a Posteriori (MAP), max $p_{x / y} \sim p_{x y}=p_{y / x} \cdot p_{x}$. (1.1.2.1)
- When input distribution is uniform (constant) $\rightarrow \mathrm{ML}$ (maximum likelihood), $\max _{x} p_{y / x} \cdot(1.1 .2 .2)$

3 Basic Problems to Solve

- CHANNEL IDENTIFICATION - what is $p_{y / x}$?
- CODING \& MODULATION - What are good (best) \boldsymbol{x} and $p_{\boldsymbol{x}}$ for a given channel?
- DETECTION - What is a good (best) receiver for deciding which \boldsymbol{x} ?

Discrete Data Transmission \& Examples

Discrete Message Transmission

Channel $\in\{$ fiber, copper, wireless, disk/SSD, flesh, qubit, ...\}

- Designers identify a channel's vector conditional-probability description $p_{y / x}$.
- This allows a common design framework across different channel types/models.
- m_{i}, one of $M<\infty$ discrete messages (a vector "symbol" \boldsymbol{x}), is sent every symbol period of T seconds.
- Messages are represented by symbol vectors, 1-to-1 mapping from messages.
- Later $m_{i} \rightarrow m$.
- $b=\log _{2}(M)=$ number of bits (in message).
- Conversion to/from actual (often continuous-time "analog") is "modulation,"
- and left unspecified in this general discrete-message-transmission model.
- Many different modulation methods can conform to the same discrete message-transmission system.

Transmitted-Symbol Quantities

Name	Definition
$M=2^{b} \in \mathbb{Z}^{+}$	number of messages, corresponding to $b \geq 0$ information bits
$T \in \mathbb{R}$	symbol period; $1 / T$ is the symbol rate
$R=\frac{b}{T} \in \mathbb{R}$	data rate.
\boldsymbol{x}	transmitted symbol value (typically a real or complex vector)
$C \subset \mathbb{R}^{N}$	constellation that consists of all possible symbol values $\left\{\boldsymbol{x}_{i} i=0, \ldots\|C\|-1\right\}$ with $\|C\| \geq M$ and in this chapter, always equal.
$p_{m}(i) \in \mathbb{R}$	message's probability distribution, $i=0, \ldots, M-1$
$p_{\boldsymbol{x}}(i) \in \mathbb{R}$	symbol value's probability distribution $=p_{m}(i)$
$N \in Z^{+}$	number of real temporal dimensions per transmit symbol the receive symbol has $N+\nu$ dimensions with default $\nu=0$ and $\nu \in \mathbb{Z}$
$L_{x} \in \mathbb{Z}^{+}$	number of transmit spatial dimensions
$L_{y} \in \mathbb{Z}^{+}$	number of receive spatial dimensions

Table 1.1: Table of transmitted-symbol quantities' definitions.

- Derived:	Energy	$\mathcal{E}_{x}=\mathbb{E}\left[\\|x\\|^{2}\right]=\sum_{i=1}^{64} p_{x}(i) \cdot\left\\|x_{i}\right\\|^{2}$
	Power	$P_{x}=\frac{\mathcal{E}_{x}}{T}$

Example 1: Light-Pulse Bit Transmission

- On/off $-M=2$ and $b=1$ bit.
- If $T=10 \mathrm{ps}$, then $R=100 \mathrm{Gbps}\left(10^{11}\right)$ bits/second.
- $x \in\left\{0, X_{\max }\right\}$.
- "non-coherent" or "direct-detection" optical transmission.

Example 2: Wireless

- Channel adds noise and has multiple paths that can align positively or negatively.
- Discrete modulator $\boldsymbol{x}=A \cdot e^{j \theta}$ (64 complex vectors, one for each message); while $\boldsymbol{y}=H \cdot \boldsymbol{x}+\boldsymbol{n}$.
- $1 / T=100 \mathrm{MHz}$, so $R=600 \mathrm{Mbps}$.

4 megapixel photograph

- Number of dimensions $N=2280 \times 1640 \times 3$ (exactly $11,217,600$).
- $M=8 ; b=3$.
- $R=3$ bits/photo, where $T=1$ photo.

Today's machine-learned facial ID reduces to this basic system, with perhaps large M

distance measurement (radar, lidar)

Modulation and Demodulation

(a foundation: Sections 1.1-1.2)

See PS1.1 and PS1.2

Conversion to continuous-time ("analog")

- Modulator - converts the symbol vector \boldsymbol{x} to a continuous-time signal $x(t)$.
- Demodulator - reverses continuous time channel output $y(t)$ to the vector y.
- Detector - decides which symbol decision $\widehat{\boldsymbol{x}}$ minimizes the error probability that $\widehat{\boldsymbol{x}} \neq \boldsymbol{x}$.

Example BPSK (wireless revisited)

- Simple ± 1 inputs are not good for this channel, why?
- The modulator tries to match the signal vector to the channel;
- while the discrete optical-pulse channel appears similar, it has a different modulator.
- However, designers may apply the same analysis to both, as we'll see.

Formal Modulation - math model

- The basis functions match what the channel can pass well (in good designs).
- Symbol vector has a scalar component x_{n} for each dimension (one basis function/dimension, so N dimensions).
- The constellation $C=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{M}\right\}$ (note set of boldface vectors, one for each message).

Binary Phase-Shift Keying (BPSK) and Manchester Examples

- BPSK with $T=100 \mathrm{~ms}$ ($10 \mathrm{bits} /$ second):

$$
\begin{aligned}
& \varphi_{1}(t)=\sqrt{\frac{2}{T}} \cdot \cos \left(\frac{2 \pi t}{T}+\frac{\pi}{4}\right) 0 \leq t \leq T \\
& \varphi_{2}(t)=\sqrt{\frac{2}{T}} \cdot \cos \left(\frac{2 \pi t}{T}-\frac{\pi}{4}\right) \quad 0 \leq t \leq T
\end{aligned}
$$

- Manchester Code with $T=100 \mathrm{~ms}$ (10 bits/second) is better for simple channels with "binary" transmission:

Analysis will be same, but modulators differ (because symbols \boldsymbol{x}_{0} and \boldsymbol{x}_{1} are the same).

Common Constellations

- Common constellation:

- All such systems' performance follows from the constellation (space points as far apart as possible within limited energy constraint).
- Other Examples:

Demodulator

- Correlative demodulator

$$
\int_{-\infty}^{\infty} x(t) \cdot \varphi_{n}^{*}(t) \cdot d t=x_{n}
$$

Conjugate of real equals itself

BPSK matched-filter demodulator

- The BPSK modulator from slide 22 has corresponding matched-filter demodulator:

- The matched filter's convolution with original basis function produces unity norm at time T.
- The convolution is perfectly matched to maximize signal energy output at sampling time T.
- No other (unit-norm) filter sampled at any time can produce a larger SNR (see section 1.3.1.3 proof).

Inner Products

Definition 1.2.2 [Inner Product] The inner product of two (real) functions of time $u(t)$ and $v(t)$ is

$$
\begin{equation*}
\langle u(t), v(t)\rangle \triangleq \int_{-\infty}^{\infty} u(t) \cdot v(t) d t \tag{1.41}
\end{equation*}
$$

The inner product of two (real) vectors \boldsymbol{u} and \boldsymbol{v} is

$$
\begin{equation*}
\langle\boldsymbol{u}, \boldsymbol{v}\rangle \triangleq \boldsymbol{u}^{*} \boldsymbol{v}=\sum_{n=1}^{N} u_{n} \cdot v_{n} \tag{1.42}
\end{equation*}
$$

$$
u(t)=\sum_{n=1}^{N} u_{n} \cdot \varphi_{n}(t)
$$

$$
v(t)=\sum_{n=1}^{N} v_{n} \cdot \varphi_{n}(t)
$$

where $*$ denotes vector transpose (and conjugate vector transpose later when complex signals are introduced). $\quad\|\boldsymbol{u}\|^{2}=\langle\boldsymbol{u}, \boldsymbol{u}\rangle$

- Easy to prove that

$$
\langle u(t), v(t)\rangle=\langle\boldsymbol{u}, \boldsymbol{v}\rangle
$$

- And further that

Theorem 1.2.2 [Parseval's Identity] The following relation holds true for any modulated waveform

$$
\begin{equation*}
\mathcal{E}_{\boldsymbol{x}}=\mathbb{E}\left[\|\boldsymbol{x}\|^{2}\right]=\mathbb{E}\left[\int_{-\infty}^{\infty} x^{2}(t) d t\right] \tag{1.48}
\end{equation*}
$$

MIMO Channels

- There are L_{X} transmit spatial dimensions ("antennas") and each has an N-dimensional modulator for its temporal dimensions.

Optimum Detection

Section 1.1.2

See PS1.3 (Prob 4.18), PS1.4 (Prob 4.7), and PS1.5 (Prob 4.25)

Minimum Error Probability

Definition 1.1.3 [Error Probability] The Error Probability is

$$
P_{e} \triangleq P\{\hat{m} \neq m\}
$$

The corresponding probability of being correct is therefore

$$
P_{c}=1-P_{e}=1-P\{\hat{m} \neq m\}=P\{\hat{m}=m\}
$$

- maximum à posteriori (MAP) detector - given some observed channel output $\boldsymbol{y}=\boldsymbol{v}$ is $p_{x / \boldsymbol{y}}$.
- If $p_{x_{i}}=\frac{1}{M}$, then Maximum Likelihood (ML) is $p_{\boldsymbol{y} / \boldsymbol{x}}$.

The MAP and ML Rules

Rule 1.1.1 [MAP Detection Rule]

$$
\begin{equation*}
\hat{m} \Rightarrow m_{i} \text { if } p_{\boldsymbol{y} / m}(\boldsymbol{v}, i) \cdot p_{m}(i) \geq p_{\boldsymbol{y} / m}(\boldsymbol{v}, j) \cdot p_{m}(j) \forall j \neq i \tag{1.8}
\end{equation*}
$$

If equality holds in (1.8), then the decision can be assigned to either message m_{i} or m_{j} without changing the minimized error probability.

Rule 1.1.2 [ML Detection Rule]

$$
\begin{equation*}
\hat{m} \Rightarrow m_{i} \text { if } p_{\boldsymbol{y} / m}(\boldsymbol{v}, i) \geq p_{\boldsymbol{y} / m}(\boldsymbol{v}, j) \forall j \neq i . \tag{1.10}
\end{equation*}
$$

If equality holds in (1.10), then the decision can be assigned to either message m_{i} or m_{j} without changing the error probability.

- Assume that all messages are equally likely, use ML (almost always).

Examples in Lecture 2 and beyond.

- If the inputs have unequal probabilities, they can be compressed to lower rate with equally likely probabilities.

Decision Regions

Definition 1.1.4 [Decision Region] The decision region using a MAP detector for each message $m_{i}, i=0, \ldots, M-1$ is defined as

$$
\begin{equation*}
\mathcal{D}_{i} \triangleq\left\{\boldsymbol{v} \mid p_{\boldsymbol{y} / m}(\boldsymbol{v}, i) \cdot p_{m}(i) \geq p_{\boldsymbol{y} / m}(\boldsymbol{v}, j) \cdot p_{m}(j) \forall j \neq i\right\} \tag{1.12}
\end{equation*}
$$

- Detector "precomputes" the associated decision for every specific value of $\boldsymbol{y}=\boldsymbol{v}$.

Decision Regions and Error Probability

- For any decision region

$$
\mathbb{E}\left[P_{c}\right]=\sum_{i=0}^{M-1} \sum_{v \in \mathcal{D}_{\boldsymbol{i}}} P_{c}\left(\widehat{m}=m_{i}, \boldsymbol{y}=\boldsymbol{v} \in \mathcal{D}_{\boldsymbol{i}}\right)
$$

- For MAP

$$
\begin{aligned}
P_{c, \max } & =\mathbb{E}\left[P_{c}\right]=\sum_{i=0}^{M-1}\left\{\sum_{v \in \mathcal{D}_{\boldsymbol{i}}} P_{\boldsymbol{y} / m_{i}}\left(\boldsymbol{v}, m_{i}\right)\right\} \cdot p_{m_{i}} \\
P_{e, \min } & =1-P_{c, \max }
\end{aligned}
$$

These (double) sums often simplify greatly, as we'll see.

End Lecture 1

- Discrete Data Transmission \& Applications
- Encoding and Detection (decoding)
- Modulation and Demodulation
- Vector Channels
- Probability (see Appendix A) - happy to help, off hours, help
Comen

