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Abstract

This paper characterizes the capacity region of a Gaussian multiple access channel with
vector inputs and a vector output with or without intersymbol interference. The problem of
finding the optimal input distribution is shown to be a convex programming problem, and an
efficient numerical algorithm is developed to evaluate the optimal transmit spectrum under
the maximum sum data rate criterion. The numerical algorithm has an iterative water-filling
interpretation. It converges from any starting point and it reaches within K−1

2 nats per
output dimension per transmission from the K-user multiple access sum capacity after just
one iteration. These results are also applicable to vector multiple access fading channels.
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1 Introduction

One of the fundamental results in the multiuser information theory is the single-letter char-
acterization of the capacity region for a multiple access channel. The capacity region of a
discrete-time synchronous memoryless multiple access channel with two input terminals x1

x2 and an output terminal y with a joint distribution p(y|x1,x2)p1(x1)p2(x2) is a pentagon
region represented by:

R1 ≤ I(x1;y|x2);

R2 ≤ I(x2;y|x1);

R1 + R2 ≤ I(x1,x2;y), (1)

where the mutual information expressions are computed with the joint distribution [1]. When
the input distribution of a multiple access channel is not fixed, but constrained in some ways,
the capacity region is the convex hull of the union of all capacity pentagons whose corre-
sponding input distributions, after the convex hull operation, satisfy the input constraint
[2] [3]. This is true for Gaussian multiple access channels under power constraints, where
different points on the capacity region boundary generally correspond to different input dis-
tributions (or different time-sharing of distributions). However, when the Gaussian multiple
access channel is memoryless and when it has only scalar inputs, the union and the convex
hull operation turns out to be superfluous. The capacity region in this case is the well-known
Cover-Wyner pentagon region [4] and every boundary point on the capacity region can be
achieved with the same optimal input distribution, namely, a Gaussian distribution whose
variance is equal to the power constraint. Such is not the case for the more general Gaussian
multiple access channel with vector inputs. Here, the characterization of the capacity region
involves an optimization over vector input distributions, and the power constraints become
constraints on the trace of the covariance matrices. The Gaussian vector multiple access
channel is important in practice because it is often used to model wireless communication
channels with multiple transmitter and receiver antennas, and to model channels with mem-
ory, or channel with time-varying fading statistics. This paper will focus on the Gaussian
vector multiple access channels. Our aim is to characterize the capacity region and to show
that the optimal input distribution for vector multiple access channels can be computed
efficiently by numerical methods.

Communication situations where the input and output signals are vector-valued and the
noise signal is Gaussian can be modeled as a Gaussian vector channel. The single-user vector
channel is represented by:

y = Hx + n, (2)

where x and y are input and output vector signals, H is the channel represented by a
matrix, and n is the Gaussian noise vector. The capacity for the single-user channel is the
maximum mutual information between x and y optimized over all input distributions subject
to the power constraint. Assuming that the noise vector n is Gaussian with a covariance
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equal to an identity matrix, this input optimization problem has a vector-coding solution
based on the singular-value decomposition of the matrix channel H = FSMT , where F

and M are orthogonal matrices, and S is the diagonal matrix containing the singular values
[5]. In this case, the capacity-achieving input distribution is a Gaussian vector with the
following two properties. First, the eigenvectors of the input covariance matrix must align
with M , the right singular vectors of the channel matrix. By doing so, the matrix channel is
decomposed into parallel independent additive white Gaussian (AWGN) sub-channels with
gains corresponding to the singular values. Secondly, the amount of power allocated to
each sub-channel must be a water-filling allocation with respect to the singular values. This
maximizes the total data rate from all sub-channels.

We would like to generalize these ideas to the multiuser case. However, in a vector
multiple access channel, each user has a different matrix channel with different eigen-modes.
Moreover, because signals from different users interfere into each other, the optimal signaling
direction and the optimal power allocation depend not only on each user’s individual channel
but also on the structure of the interference from all other users. In this light, it is perhaps
surprising that the input optimization problem can indeed be solved by a generalization of the
traditional water-filling algorithm. As this paper will show, the optimal signaling direction
and optimal power allocation that maximize the sum capacity can be found by an iterative
water-filling procedure over the users. Such an iterative procedure will be able to find the
right compromise among different user’s signaling strategies.

Recent interests in multiple access channels have been motivated by the fact that the
single-cell wireless communication scenario can be modeled by a multiple access channel [6]
[7]. The capacity region of multiple access channels has been studied extensively in the
literature. For example, multiple access channels with intersymbol interference was studied
by Cheng and Verdu [8], where they characterized the optimal power allocation across the
frequencies. The analogous situation in the time domain for i.i.d. fading channels was studied
by Knopp and Humblet [9] and Tse and Hanly [10] where the optimal power allocation over
time was characterized. Both the scalar frequency selective channel and the scalar i.i.d. fading
channel can be thought of as special cases of the vector multiple access channel considered
in this paper. In both cases, individual channels can be decomposed into independent sub-
channels in a way that is independent of individual channels. For time-invariant frequency
selective channels, cyclic prefix can be appended to the input signal so that the channel can be
diagonalized in the frequency domain by a discrete Fourier transform, and for the i.i.d fading
channel, the independence among the sub-channels in time is explicitly assumed. In both
cases, the optimal signaling direction is just the direction of the simultaneous diagonalization,
and the input optimization problem is reduced into the power allocation problem among the
sub-channels.

The situation becomes considerably more complicated when such simultaneous diago-
nalization cannot be found. This more general setting corresponds to the wireless multiple
access situation where both transmitters and the receiver are equipped with multiple an-
tenna elements. In the spatial domain, signal from each transmit antenna could experience
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an arbitrary channel gain to each receive antenna, thus creating an arbitrary matrix channel.
It is in general not possible to simultaneously decompose an arbitrary set of matrix channels
into parallel independent sub-channels. This is so because unlike the stationary ISI channels
where the time-invariance property gives the special toeplitz structure to the channel ma-
trix, antenna gain matrix does not follow spatial-invariance. Consequently, the equivalence
of cyclic prefix does not exist in the spatial domain, and the transmitter optimization prob-
lem becomes a combination of choosing the optimal signaling directions for each user (e.g.
“beamforming”) and allocating the correct amount of power in each signaling direction. Such
joint optimization is considerably more difficult because the optimal solution is a compromise
between maximizing each user’s data rate and minimizing its interference into other users. In
this regard, only asymptotic results have been reported so far [11]. A similar situation exists
for CDMA systems, where the matrix channel is created by each user’s spreading sequence.
In this situation, the aim is not just power allocation, but also the assignment of optimal
sequence. Recent results have been obtained in [12].

The rest of the paper is organized as follows. Section 2 provides a general formulation
for the Gaussian vector multiple access capacity region problem in the convex programming
framework. Section 3 focuses on the rate-sum point, derives the iterative water-filling al-
gorithm, studies its convergence property, and provides a lower and a upper bound on the
general capacity region. Section 4 extends the result to the Gaussian vector multiple access
channel with intersymbol interference. The results there are also applicable to the multiple
access fading channels. Conclusions are drawn in section 5.

2 Vector Gaussian Multiple Access Channel

A memoryless two-user Gaussian vector multiple access channel is shown in Figure 1:

y = H1x1 + H2x2 + n, (3)

where x1, x2 are input vector signals with dimensions n1 and n2 respectively, y is the m

dimensional output vector signal, n is the m dimensional vector additive Gaussian noise
whose covariance matrix is denoted as Z, and H1, H2 are channel matrices of dimensions
m × n1 and m × n2 respectively. The attention is restricted to the two-user case first for
notational convenience, but all development can easily be generalized to cases with more
than two users.

Following the development in [2] (see also [3]), define the directly achievable region of a
memoryless synchronous Gaussian vector multiple access channel with power constraints q1

and q2 as:

A(q1, q2) =
⋃

p1(x1)p2(x2)


(R1, R2) :

R1 ≤ I(x1;y|x2);
R2 ≤ I(x2;y|x1);

R1 + R2 ≤ I(x1,x2;y).


 (4)
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Figure 1: A two-user vector multiple access channel.

where the union is taken over all independent input distributions p1(x1)p2(x2) that satisfy
the power constraints:

tr(E[x1xT
1 ]) ≤ q1, (5)

tr(E[x2xT
2 ]) ≤ q2, (6)

where “tr” denotes the matrix trace operator. For each fixed input distribution p1(x1)p2(x2),
let S1 and S2 be the covariance matrices of x1 and x2 under the respective marginals:

S1 = E[x1xT
1 ], (7)

S2 = E[x2xT
2 ]. (8)

The first mutual information expression in (4) can be expanded as:

I(x1;y|x2) = h(y|x2) − h(y|x1,x2)

= h(H1x1 + n) − h(n)

≤ 1
2

log
|H1S1H

T
1 + Z|

|Z| ,

where | · | denotes the determinant operator, and the last inequality follows from the fact that
Gaussian distribution maximizes entropy for a given covariance. It is then easy to see that,
under fixed covariance matrices, the Gaussian distributions x1 ∼ N (0, S1) and x2 ∼ N (0, S2)
simultaneously maximize all mutual information bounds in (4).

The mutual information bounds for given covariances S1 and S2 can be explictly computed
using entropy expression for Gaussian random vectors:

C1(S1) = max I(x1;y|x2) =
1
2

log
|H1S1H

T
1 + Z|

|Z| , (9)

C2(S2) = max I(x2;y|x1) =
1
2

log
|H2S2H

T
2 + Z|

|Z| , (10)
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and

C12(S1, S2) = max I(x1,x2;y) =
1
2

log
|H2S2H

T
2 + H1S1H

T
1 + Z|

|Z| . (11)

Denote the achievable region with covariance matrices (S1, S2) as:

B(S1, S2) =


(R1, R2) :

R1 ≤ C1(S1);
R2 ≤ C2(S2);

R1 + R2 ≤ C12(S1, S2).


 . (12)

The directly achievable region A(q1, q2) can then be expressed as,

A(q1, q2) =
⋃

tr(S1) ≤ q1,

tr(S2) ≤ q2,

S1, S2 ≥ 0

B(S1, S2), (13)

where S ≥ 0 means that S is non-negative semidefinite. At this point, it is tempting to
jump to the conclusion that the capacity region of a multiple access channel under power
constraints P1 and P2 is simply A(P1, P2). This would be true if the multiple access channel
is totally asynchronous [13]. For synchronous multiple access channels, however, the input
terminals have the ability to coordinate the timing, and thus achieving the time-sharing or
convex combination of directly achievable rate pairs. For channels with input constraints,
such convex hull operation is in general necessary and it must be taken over the constraint
set as well as the rate regions themselves. More precisely, as characterized in [2] and [3], the
capacity region can be expressed as:

C(P1, P2) = closure


(R1, R2) :

((R1, R2), (P1, P2)) ∈
convex

⋃
q1,q2≥0

(A(q1, q2), (q1, q2))


 . (14)

It turns out, however, for Gaussian channels under power constraints, the capacity region is
just the directly achievable region, and the convex hull operation is not necessary after all.
This, we shall prove next.

Theorem 1 For a Gaussian vector multiple access channel y = H1x1 + H2x2 + n under
a power constraint P1, P2, the capacity region C(P1, P2) is precisely A(P1, P2) without the
need of convex hull and union operations. The capacity region is convex and its extreme
points may be found by maximizing a weighted sum of data rates µ1R1 +µ2R2, where µ1 ≥ 0,
µ2 ≥ 0, and µ1 + µ2 = 1. When µ1 ≤ µ2, the optimization problem is:

maximize µ1 · 1
2 log |H1S1H

T
1 + H2S2H

T
2 + Z| +

(µ2 − µ1) · 1
2 log |H2S2H

T
2 + Z| − µ2 · 1

2 log |Z|
subject to tr(S1) ≤ P1, (15)

tr(S2) ≤ P2,

S1, S2 ≥ 0.
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When µ1 ≥ µ2, the optimization problem is,

maximize µ2 · 1
2 log |H1S1H

T
1 + H2S2H

T
2 + Z| +

(µ1 − µ2) · 1
2 log |H1S1H

T
1 + Z| − µ1 · 1

2 log |Z|
subject to tr(S1) ≤ P1, (16)

tr(S2) ≤ P2,

S1, S2 ≥ 0.

Lemma 1 log |M | is concave in the space of semidefinite matrices M .

Proof: See [14, p.466], [17, p.48], or [18]. ✷

Proof of Theorem 1: The main claim here is that the convex hull operation on the
rate region and the constraints is not necessary, and the capacity region C(P1, P2) is just
A(P1, P2), a union of pentagons, and it is a convex set without time-sharing. If this is true,
the boundary points of the capacity region can then be found by maximizing the weighted
sums of the data rates, µ1R1 + µ2R2. Because A(P1, P2) is the union of pentagons, the
maximization can be done in two steps: first for each pentagon, next over all pentagons.
Assuming µ1 ≤ µ2, the maximizing point in each pentagon is the upper corner point R2 =
C2(S2), R1 = C12(S1, S2) − C2(S2). Then, the maximization of over all pentagons is just
a maximization over upper corner points. Substituting the expression for R1 and R2 gives
(15). An identical approach gives (16).

Thus it remains to prove that the convex hull operation in (14) may be removed. This is
a direct consequence of Lemma 1. First, let’s consider the convex combination of two rate-
power pairs ((R1, R2), q1, q2) and ((R′

1, R
′
2), q

′
1, q

′
2), where (R1, R2) ∈ A(q1, q2) and (R′

1, R
′
2) ∈

A(q′1, q′2). Since A(q1, q2) is a union of pentagons, there exist (S1, S2) and (S′
1, S

′
2) such that

(tr(S1), tr(S2)) ≤ (q1, q2), (tr(S′
1), tr(S

′
2)) ≤ (q′1, q′2), (R1, R2) ∈ B(S1, S2) and (R′

1, R
′
2) ∈

B(S′
1, S

′
2). (“≤” here means less than or equal to in each component.) Now, consider any

convex combination of the rate-power pairs:

α((R1, R2), q1, q2) + (1 − α)((R′
1, R

′
2), q

′
1, q

′
2), (17)

where α ≥ 0. For this convex combination to be in C(P1, P2), we need, α(q1, q2) + (1 −
α)(q′1, q′2) ≤ (P1, P2). Thus, we have, α(tr(S1), tr(S2)) + (1 − α)(tr(S′

1), tr(S
′
2)) ≤ (P1, P2).

Define Ŝ1 = αS1 + (1 − α)S′
1, and Ŝ2 = αS2 + (1 − α)S′

2. We have

(tr(Ŝ1), tr(Ŝ2)) ≤ (P1, P2), (18)

and also

αR1 + (1 − α)R′
1 ≤ αC1(S1) + (1 − α)C1(S′

1) ≤ C1(Ŝ1)
αR2 + (1 − α)R′

2 ≤ αC2(S2) + (1 − α)C2(S′
2) ≤ C2(Ŝ2)

α(R1 + R2) + (1 − α)(R′
1 + R′

2) ≤ αC12(S1, S2) + (1 − α)C12(S′
1, S

′
2) ≤ C12(Ŝ1, Ŝ2).

(19)
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Figure 2: Capacity region of a two-user vector multiple access channel.

This follows from the fact that C1, C2 and C12 are all concave functions by lemma. There-
fore, any rate-power pair that can be achieved with the convex combination of two other
rate-power pairs may also be achieved without the need for the convex combination. This
argument works for arbitrary convex combinations, so the convex hull operation in (14) may
be removed. Finally, since A(q1, q2) ⊆ A(q′1, q

′
2) whenever (q1, q2) ≤ (q′1, q

′
2), the union oper-

ation also simplifies, and the capacity region C(P1, P2) is just A(P1, P2). This region itself is
also convex since this is a special case of the argument made before. This proves the main
claim. ✷

Figure 2 shows a typical capacity region of a Gaussian vector multiple access channel
as a union of pentagons. Each pentagon corresponds to a transmit covariance matrix pair.
Fixing the covariance matrices, different rate-pairs within the pentagon can be achieved with
time-sharing.

Aspects of Theorem 1 have been observed in the literature by several authors in many
different contexts. Most notably, the first part of this theorem is a special case of the Theorem
1 in [8], where multiple access channels with memory is treated. Here, we have chosen not
to use general results from channels with memory [15], and we deal with input constraints
explicitly. Similar results have also appeared in [10], [12] and [11] where the single-antenna
fading channel, CDMA channel, and vector fading channel, are treated respectively. The
concavity of the logdet function was previous observed in [16] and [11] for sum capacity. The
connection between concavity and the ability to remove the convex hull operation is shown
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explicitly here.
Concavity is a key observation not only in simplifying the capacity expression but also

in providing computationally efficient algorithms to numerically compute the capacity. The
optimization problem in Theorem 1 belongs to the class of convex programming problem for
which the global optimum can be found efficiently [17] [18]. In fact, the classical water-filling
and the multiuser water-filling algorithm in [8] can be thought of as special purpose convex
optimization algorithms.

For the sake of completeness, we state the analogous result for the general K-user multiple
access channel.

Theorem 2 The capacity region for a K-user multiple access channel y =
∑K

i=1 Hixi + n

with power constraints {Pi}K
i=1 is:

C =
⋃

tr(Si) ≤ Pi,

Si ≥ 0




(R1, · · · , RK) :
∑
i∈I

Ri ≤ 1
2

log

∣∣∣∣∣
∑
i∈I

HiSiH
T
i + Z

∣∣∣∣∣
|Z| ,∀I ⊆ {1, · · · ,K}




.

(20)

The capacity region is convex. Its extreme points are achieved with Gaussian input distrib-
utions with covariance matrices {Si}K

i=1, where Si may be found by maximizing a weighted
rate sum

∑K
i=1 µiRi, with µi ≥ 0 and

∑K
i=1 µi = 1. Without loss of generality, assume

µK ≥ µK−1 ≥ · · · ≥ µ1. In this case, the maximization problem is the following convex
programming problem:

maximize µ1 · 1
2

log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Z

∣∣∣∣∣− µK · 1
2

log |Z|+
K∑

j=2

(µj − µj−1) · 1
2

log

∣∣∣∣∣∣
K∑

i=j

HiSiH
T
i + Z

∣∣∣∣∣∣
subject to tr(Si) ≤ Pi, i = 1, · · · ,K

Si ≥ 0. i = 1, · · · ,K

(21)

The proof is an easy generalization of the two-user case, and is omitted here.

3 Sum Capacity

We have shown that the capacity for a vector Gaussian multiple access channel may be
computed via a convex programming problem. So, in theory, the optimization can be done
efficiently, and in practice, general purpose convex programming routines such as interior
point methods [16] can be used to solve such problems. For large dimension problems,
however, the optimization is computationally intensive because the optimization of {S1, S2}
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is performed in the space of non-negative semidefinite matrices, so the number of scalar
variables increases quadratically with the number of input dimensions. In the single-user
case, the transmitter optimization problem has a well-known water-filling solution. The
water-filling algorithm takes advantage of the problem structure by decomposing the channel
into orthogonal modes, which greatly reduces the computational complexity. It turns out
that this idea may be extended to the multiuser case under the objective of maximizing the
sum-rate.

3.1 Single-User Water-filling

Before going into multiuser water-filling, let us first cast the single-user water-filling into the
convex programming framework. In the single-user case, the mutual information maximiza-
tion problem is the following:

maximize
1
2

log |HSHT + Z| − 1
2

log |Z|
subject to tr(S) ≤ P, (22)

S ≥ 0.

The analytical solution to this problem involves two steps. First, since Z is a symmetric
positive definite matrix, it has an orthogonal factorization Z = Q∆QT , where Q is an
orthogonal matrix QQT = I, and ∆ is a diagonal matrix of eigenvalues diag{δ1, · · · , δm}.
Defining Ĥ = ∆− 1

2QTH, the objective can then be re-written as

maximize
1
2

log |ĤSĤT + I|. (23)

Next, let Ĥ = FΣMT be the singular-value decomposition of Ĥ, where F and M are
orthogonal matrices, and Σ is a diagonal matrix of singular values diag(σ1, σ2, · · · σr), where
r is the rank of Ĥ. Consider Ŝ = MTSM as the new optimization variable, the problem is
then transformed into,

maximize
1
2

log |ΣŜΣT + I|
subject to tr(Ŝ) ≤ P, (24)

Ŝ ≥ 0.

Using Hadamard’s inequality [4], it is easy to show that the solution is the well-known water-
filling algorithm. The optimal Ŝ is a diagonal matrix, diag(p1, p2, · · · pr), such that,

pi + 1/σ2
i = K, if 1/σ2

i < K, (25)

pi = 0, if 1/σ2
i ≥ K, (26)

where K is a constant chosen so that
∑

i pi = P . Therefore, to achieve the single-user capac-
ity, first, the transmit directions need to align with the right singular-vectors of the effective
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channel. Secondly, the amount of energy in each direction depends on the noise to channel
gain ratio in that direction in a water-filling fashion. Solving the single-user input opti-
mization via water-filling is much more efficient than general purpose convex programming
algorithms, because water-filling takes advantage of the problem structure by decomposing
the equivalent channel into its eigen-modes.

3.2 Simultaneous Water-filling

In a vector Gaussian multiple access channel, if the objective is to maximize the sum of
the data rates, the optimal transmit covariance matrices satisfy a multiuser water-filling
condition.

Theorem 3 In a K-user multiple access channel, {Si} is an optimal solution to the rate-sum
maximization problem

maximize
1
2

log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Z

∣∣∣∣∣− 1
2

log |Z|

subject to tr(Si) ≤ Pi, i = 1, . . . ,K
Si ≥ 0, i = 1, . . . ,K

(27)

if and only if Si is the single-user water-filling covariance matrix of the channel Hi with
Z +

∑K
j=1,j �=i HjSjH

T
j as noise, for all i = 1, 2, · · ·K.

Proof: We prove the only if part first. Suppose that at the rate-sum optimum, there is
an Si which does not satisfy the single-user water-filling condition. Fix all other covariance
matrices, and water-fill Si regarding other users’ signal as noise. Since the single-user opti-
mization problem in Si differs from the rate-sum optimization problem only by a constant
when all other covariances are fixed, the water-filling adjustment on Si will strictly increase
the rate-sum objective. This contradicts the optimality of Si. Thus, at the optimum, all Si’s
must satisfy the single-user water-filling condition.

The if part also holds. To prove this, however, we will need some general results from
convex analysis. We will come back to the proof after the detour.

3.3 Convex Optimization

We briefly review convex optimization in this section. A general convex optimization problem
is of the form:

minimize f0(x)
subject to fi(x) ≤ 0 i = 1, . . . ,K,

(28)

where x ∈ R
n is the optimization variable, and f0, · · · , fK are convex functions. We call the

original problem the “primal” problem, and associate a dual variable λi with each primal
constraint fi(x) ≤ 0. The dual variable belongs to the dual space of the constraint space,
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and each dual variable defines a linear functional (or an inner product) from the constraint
space to the real line. For example, when the constraint space is a real line, the dual variable
is also real, and the inner product is just the usual product. When the constraint space is
the set of non-negative semidefinite matrices, the dual space (more precisely, the dual cone)
is the set of non-negative semidefinite matrices also, and the inner product in this case is the
trace of the matrix product. The dual variables always take on non-negative values.

The Lagrangian of an optimization problem is a linear combination of the primal objective
and the inner product defined by the dual variables:

L(x, λ) = f0(x) +
∑

i

〈λi, fi(x)〉, (29)

where 〈·, ·〉 denotes the inner product. The dual objective is defined to be

g(λ) = inf
x

L(x, λ). (30)

It is easy to see that g(λ) is a lower bound on the optimal f0(x):

f0(x) ≥ f0(x) +
∑

i

〈λi, fi(x)〉 (31)

≥ inf
z

(
f0(z) +

∑
i

〈λi, fi(z)〉
)

(32)

≥ g(λ). (33)

So,

max
λ

g(λ) ≤ min
x

f0(x), (34)

where the maximization is over all non-negative λi’s, and the minimization is over the original
constraint set. The difference between the primal objective f0(x) and the dual objective g(λ)
is called the duality-gap. A central result in convex analysis [17] is that when f0, · · · fK are
convex, under some technical conditions (called constraint qualifications) [19], the duality
gap reduces to zero at the optimal, i.e. (34) is achieved with equality for some x∗, λ∗. Thus,
one way to solve the original problem is to solve its dual problem.

Let x∗ and λ∗
i be the primal and dual variables at the optimum. If we substitute them

in the chain of inequalities (31) to (33), we see that each of the inequalities must be satisfied
with equality. Since λi ≥ 0 and fi(x) ≤ 0, the inner products are all less than or equal to
zero. Thus to have equality in (31), we must have 〈λ∗

i , fi(x∗)〉 = 0. This is the so-called
complementary slackness condition. Moreover, the inequality in (32) is also satisfied with
equality, so the infimum is achieved at x∗. When the functions f0, · · · fK ’s are differentiable,
the gradient of the Lagrangian with respect to x, ∇L(x, λ∗), must be zero at x∗. These two
facts, together with the constraints on the primal and dual variables form the Karush-Kuhn-
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Tucker (KKT) conditions:

fi(x∗) ≤ 0 (35)

λ∗
i ≥ 0 (36)

∇f0(x∗) + ∇〈λ∗
i , fi(x∗)〉 = 0 (37)

〈λ∗
i , fi(x∗)〉 = 0. (38)

Under some technical conditions, the KKT conditions are necessary and sufficient for opti-
mality. One simple version of the technical condition is Slater’s condition, which is satisfied
when there exists x such that fi(x) < 0, i = 1, · · · ,K [19] [17].

3.4 Proof of Theorem 3

We now prove the if part of theorem 3. First, (27) can be reformulated into the following
equivalent form:

minimize − log |T |

subject to T ≤
K∑

i=1

HiSiH
T
i + Z

tr(Si) ≤ Pi, i = 1, . . . ,K
Si ≥ 0, i = 1, . . . ,K

(39)

The coefficient 1/2 and the constant log |Z| are omitted for simplicity. Associate dual vari-
ables Γ, {λi}, {Ψi} to each of the constraints. Note that the first and the third constraints
are matrix inequalities, so the dual variables Γ and {Ψi} are matrices and the inner product
is the trace of the matrix product. The power constraint is a constraint on real numbers, so
its associated dual variable {λi} is real. The Lagrangian of the optimization problem is:

L({Si}, T,Γ, {λi}, {Ψi})

= − log |T | + tr

[
Γ

(
T −

K∑
i=1

HiSiH
T
i − Z

)]
+

K∑
i=1

λi(tr(Si) − Pi) −
K∑

i=1

tr(ΨiSi)

= − log |T | + tr(ΓT ) − tr(ΓZ) −
K∑

i=1

λiPi +
K∑

i=1

tr[(λiI −HT
i ΓHi − Ψi)Si] (40)

where the fact tr(AB) = tr(BA) is used. The objective of the dual program is

g(Γ, {λi}, {Ψi}) = inf
{Si},T

L({Si}, T,Γ, {λi}, {Ψi}). (41)

At the infimum, ∂L/∂Si must be zero. This leads to:

λiI = HT
i ΓHi + Ψi, i = 1, 2, · · · ,K. (42)

13



Further, the gradient with respect to T must also be zero:

∂

∂T
(− log |T | + tr(ΓT )) = 0, (43)

which implies that tr(T−1M) = tr(ΓM),∀M . So,

T−1 = Γ. (44)

Therefore, g(Γ, {λi}, {Ψi}) = log |Γ| + m − tr(ΓZ) −∑K
i=1 λiPi, where m is the number of

output dimensions. The dual problem of (27) is then,

maximize log |Γ| + m− tr(ΓZ) −
K∑

i=1

λiPi

subject to λiI ≥ HT
i ΓHi, i = 1, . . . ,K

Γ ≥ 0.

(45)

Note, the only constraints on {Ψi} are non-negative semi-definite constraints, so (42) is
equivalent to the inequality in (45). Because the primal program is convex, the dual problem
achieves a maximum at the minimum value of the primal objective.

The primal constraints are such that the Slater’s condition is satisfied, so the KKT
condition is sufficient and necessary. The KKT conditions include the stationarity conditions
on the Lagrangian (42) and (44), as well as the complementary slackness conditions:

tr

[
Γ

(
T −

K∑
i=1

HiSiH
T
i − Z

)]
= 0, (46)

λi(tr(Si) − Pi) = 0, i = 1, · · ·K (47)

tr(ΨiSi) = 0, i = 1, · · ·K (48)

Consider the original optimization problem. Observe that at the optimum, we must have
T =

∑K
i=1 HiSiH

T
i +Z, and tr(Si) = Pi, i = 1, . . . ,K (otherwise sum rate can be increased).

So, only the last complementary slackness condition (48) is useful. Because the stationary
and complementary slackness conditions, together with primal and dual constraints, are
necessary and sufficient, the optimization problem can be transformed into the problem of
finding primal variables {Si}, T , and dual variables Γ, {Ψi}, {λi} that satisfy:

λiI = HT
i


 K∑

j=1

HjSjH
T
j + Z




−1

Hi + Ψi,

tr(Si) = Pi,

tr(ΨiSi) = 0, (49)

Ψi, Si, λi ≥ 0,

for all i = 1, . . . ,K.
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Now, the above KKT condition is also valid for the single-user water-filling problem when
K is set to 1. In this case, it is easy to verify that the single-user solution (25) - (26) satisfies
the condition exactly. But, for each user i, the multiuser KKT condition and the single-user
KKT condition differ only by the additional noise term

∑K
j=1,j �=i HjSjH

T
j . So, if each Si

satisfies the single-user condition while regarding other users’ signals as additional noise,
then collectively, the set of {Si} must also satisfy the multiuser KKT condition. By the
sufficiency of the KKT condition, {Si} must then be the optimal covariance for the multiuser
problem. This proves the if part of the theorem. ✷

3.5 Iterative Water-filling

Since at the optimum, each user’s covariance is a water-filling of noise and all other users’
interference combined, we might expect that the rate-sum optimal covariance may be found
with an iterative algorithm.

Algorithm 1 Iterative water-filling algorithm for a vector Gaussian multiple access channel:
initialize Si = 0, i = 1, . . . K.

repeat
for i=1 to K

N =
K∑

j=1,j �=i

HjSjH
T
j + Z;

Si = arg max
S

1
2

log |HiSH
T
i + N |;

end
until the desired accuracy is reached.

Theorem 4 The iterative water-filling algorithm converges to a limit point {Ŝi} from any
initial assignment of {Si}. The limit point maximizes the rate-sum of a K-user Gaussian
vector multiple access channel.

Proof: At each step, the iterative water-filling algorithm finds the single-user water-filling
covariance matrix for each user while regarding all other user’s signal as additional noise.
Since the single-user rate objective differs from the multiuser rate-sum objective by only a
constant, the rate-sum objective is non-decreasing after each water-filling step. The rate-
sum objective is bounded above, so the rate-sum converges to a limit. At the rate-sum limit,
because each single-user water-filling gives an unique covariance, the covariance matrices also
converges to a limit {Ŝi}. The limit is a fixed point of the algorithm, and at the limit, all Si’s
are simultaneously the single-user water-filling covariance matrices of user i while regarding
all the other users as additional noise. Then, by Theorem 3, the limit must be rate-sum
optimal.

The above proof does not depend on the initial value. So the algorithm always converges,
and it converges to an optimum {Ŝi} from any starting point. ✷
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This result may appear counter-intuitive at first. A multiple access channel capacity may
be achieved with superposition coding at each transmitter and interference subtraction at the
receiver. A coding strategy where each user regards all other users as noise does not achieve
the capacity. Yet, it turns out that the iterative procedure where each water-filling regards
all other users as noise is precisely the one that converges to an optimal set of covariance
matrices.

The rate-sum optimal covariance matrices may not be unique. Depending on the initial
value, the iterative water-filling algorithm may converge to two different sets of covariance
matrices both giving the optimal sum rate. The following is an example of when this happens.

Let H1 = H2 = Z = I2×2, and P1 = P2 = 2. Then, S1 = S2 = I2×2, and S′
1 =

[
2 0
0 0

]
,

S′
2 =

[
0 0
0 2

]
both achieve the same maximum rate-sum.

Figure 3 gives a graphical interpretation of the algorithm. The capacity region of a two-
user vector multiple access channel is shown in Figure 3(a). The sum rate R1 + R2 reaches
the maximum on the line between C and D. Initially, the covariance matrices for the two
users, S(0)

1 and S
(0)
2 , are zero matrices.

1. The first iteration is shown in Figure 3(b). After a single-user water-filling for S
(1)
1 , the

rate pair (R1, R2) is at point ‘F’. Then, treating S
(1)
1 as noise, a single-user water-filling

for S
(1)
2 moves the rate pair to point ‘E’.

2. The second iteration is shown in Figure 3(c). First, note that fixing covariance matrices
S

(1)
1 and S

(1)
2 , the capacity region is the pentagon ‘abEFO’. So, by changing the decoding

order of user 1 and 2, we can move rate pair to point ‘b’ without affecting the rate sum.
Once at point ‘b’, we can then water-fill S

(1)
1 treating S

(1)
2 as noise to get S

(2)
1 . This

would increase I(x1;y), while keeping I(x2;y|x1) fixed, thus moving the rate pair to
point ‘c’.

3. The capacity pentagon with (S(2)
1 , S

(1)
2 ) is now represented by ‘acdeO’. So, we can again

interchange the decoding order to get to the point ‘d’, and perform another single-user
water-filling treating S

(1)
2 as additional noise. This gives us S

(2)
1 , and the corresponding

rate-pair point ‘f’ in Figure 3(d). The process continues until it converges to points ‘C’
and ‘D’.

Note that in every step, each user negotiates for itself the best signaling direction as
well as the optimal power allocation while regarding the interference generated by all other
users as noise. The convergence happens in the space of all possible covariance matrices.
The iterative water-filling algorithm is more efficient than solving general-purpose convex
programming routines because in each step, the algorithm takes advantage of the problem
structure by doing an eigen-mode decompositions and water-filling. In fact, the convergence
is very fast.
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Figure 3: First two iterations of iterative water-filling algorithm

17



3.6 Convergence Properties

Depending on the order of water-filling, the iterative procedure arrives at a corner point of
some pentagon after the first iteration. As the following theorem shows, this corner point is
only 1/2 nats per user per output dimension away from the sum capacity. In other words,
the iterative water-filling algorithm is close to the sum capacity after just one iteration.

Theorem 5 After one iteration of the iterative water-filling algorithm, {Si} achieves a total
data rate

∑K
i=1 Ri that is at most (K − 1)m/2 nats away from the sum capacity.

Lemma 2 Let X and Y be positive semidefinite matrices. The followings are true:

1. if X ≥ Y , then tr(X) ≥ tr(Y );

2. tr(XY ) ≥ 0;

3. if X ≥ Y , then max eig(X) ≥ max eig(Y ).

Proof: The trace of a matrix is the sum of eigenvalues. Eigenvalues of a positive semidefi-
nite matrix are non-negative, so its trace is non-negative. If X ≥ Y , then X − Y ≥ 0. So,
tr(X − Y ) ≥ 0, and tr(X) ≥ tr(Y ). Further, positive semidefinite matrices may be repre-
sented by their square roots: X = AAT and Y = BBT . So, tr(XY ) = tr(AATBBT ) =
tr((BTA)(ATB)) ≥ 0. Lastly, if X ≥ Y , then vTXv ≥ vTY v for all unit vectors v. So,
max eig(X) = max vTXv ≥ max vTY v = max eig(Y ), where the middle two maximizations
are over all unit vectors v. ✷

Proof of Theorem 5: The idea is to use the fact that the dual objective is always a bound
on the primal objective (c.f. equation (34)), thus the difference between the primal and dual
objectives, the so-called “duality gap” is a upper bound on how far away the true optimum
is from the present primal objective.

Starting with Si = 0. The first iteration of the algorithm consists of K water-fillings: S1

is the single-user water-filling covariance of noise Z alone, S2 is the water-filling of noise plus
interference from S1, and so on. SK is the water-filling of noise plus interference from all
other users. For this set of primal feasible {Si}, the difference between the primal problem
(39) and the dual problem (45), which we denote as γ, is:

γ = tr



(

K∑
i=1

HiSiH
T
i + Z

)−1

Z


+

K∑
i=1

λiPi −m. (50)

The bound holds for all dual feasible λi’s. (It can be used, for example, as a stopping
criterion in the iterative algorithm.) The bound is tightest when λi is chosen to be the
smallest non-negative value satisfying the dual constraints in (45):

λi = max eig


HT

i


 K∑

j=1

HjSjH
T
j + Z




−1

Hi


 , i = 1, · · · ,K. (51)
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In fact, the duality gap reduces to zero if the primal feasible Si is the optimal S∗
i , and the

dual feasible λi’s are chosen in the above fashion.
Now, since S1 is a single-user water-filling, the duality gap for this single-user water-filling

must be zero. Thus,

tr[(H1S1H
T
1 + Z)−1Z] + λ′

1P1 −m = 0, (52)

where

λ′
1 = max eig[HT

1 (H1S1H
T
1 + Z)−1H1]. (53)

More generally, Si is the single-user water-filling regarding
∑i−1

j=1 HjSjH
T
j +Z is regarded as

noise. Thus,

tr




 i∑

j=1

HjSjH
T
j + Z




−1
 i−1∑

j=1

HjSjH
T
j + Z




+ λ′

iPi −m = 0, (54)

where

λ′
i = max eig


HT

i


 i∑

j=1

HjSjH
T
j + Z




−1

Hi


 . (55)

We now use Lemma 2 to prove the following three facts. First

tr


 K∑

j=1

HjSjH
T
j + I




−1

≤ tr(H1S1H
T
1 + I)−1 (56)

This is a straightforward consequence of lemma 2.1. Secondly,

λi ≤ λ′
i. (57)

This follows from their definitions (51) and (55). Since

HT
i


 K∑

j=1

HjSjH
T
j + Z




−1

Hi ≤ HT
i


 i∑

j=1

HjSjH
T
j + Z




−1

Hi, (58)

their respective maximum eigenvalues follow the same relation by lemma 2.3. Thirdly,

λ′
iPi ≤ m. (59)

This follows from (54). The two matrices in the trace expression are both positive semidefi-
nite, so lemma 2.2 implies that λ′

iPi ≤ m.
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Now, putting everything together,

γ = tr



(

K∑
i=1

HiSiH
T
i + Z

)−1

Z


+

K∑
i=1

λiPi −m (60)

≤ tr


( K∑

i=1

HiSiH
T
i + Z

)−1

Z


+

K∑
i=1

λ′
iPi −m (61)

= tr


( K∑

i=1

HiSiH
T
i + Z

)−1

Z


+ λ′

1P1 −m +
K∑

i=2

λ′
iPi (62)

≤
K∑

i=2

λ′
iPi (63)

≤ (K − 1)m, (64)

where the first inequalities follows from (57), the second inequality follows from (56) and
(52), and the last inequality follows from (59). Recall that a factor of 1

2 was omitted in our
statement of the primal and dual problems: (39) and (45). Therefore the true duality gap is
(K − 1)m/2 nats. ✷

The capacity region of a K-user multiple access channel with a fixed input covariance is
a polytope. Depending on the order of water-filling, after the first iteration, the iterative
water-filling algorithm reaches one of the K! corner points of the capacity polytope. The
above theorem asserts that none of these corner points is more than (K − 1)m/2 nats away
from the capacity sum, where K is the number of users, and m is the number of output
dimensions. This result roughly states that the capacity loss per user per output dimension
is at most 1

2 nats after just one iteration. This bound is rather general. It works for arbitrary
channel matrices, arbitrary power constraints, and for arbitrary input dimensions. Numerical
simulation on realistic channels suggests that in most cases the actual difference from the
capacity is even smaller.

A system with K = 10 users is simulated below. Each user has 100 dimensions, and the
receiver also has 100 dimensions (so n = m = 100). The channel matrix is chosen to be
block-diagonal, where each block is of size 10 × 10. The block matrix entries are randomly
generated from an i.i.d. Gaussian distribution with mean zero and unit variance. The total
power constraint for each user is chosen so that the total power to noise variance ratio is
10dB.

Figure 4 shows the percentage difference from the sum capacity for the iterative water-
filling algorithm. The percentage difference is defined as (Csum −R

(n)
sum)/Csum, where Csum

is the sum capacity, and R
(n)
sum is the sum rate achieved after n iterations. Both the actual

difference from the algorithm and the gap bound derived from the duality theory are plotted
against the number of iterations. Observe that the algorithm is able to approach to the correct
value with very few iterations, and the convergence is exponentially fast asymptotically.
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Figure 4: Percentage difference from the sum capacity in the iterative water-filling algorithm. Dashed
line is the gap bound. Solid line is the actual percentage difference.
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3.7 Bounds on Capacity Region

As pointed out before, after one iteration, the iterative water-filling algorithm reaches one of
K! corner points in the capacity polytope. In addition, when the algorithm has converged,
the optimal covariance matrices give another set of K! corner points all of which achieve
the maximum sum data rate. Although it is more difficult to compute the capacity points
between these two sets of corner points, bounds can be obtained relatively easily.

We will use the 2-user multiple access channel as an example. In figure 5, the points B

and E can be found after one iteration of water-filling. Let their respective input covariance
matrices be SB = (SB,1, SB,2) and SE = (SE,1, SE,2). Also, the sum capacity points C and D

are found when iterative water-filling has converged. Denote the sum-capacity achieving co-
variance matrix as SCD = (SCD,1, SCD,2). Note that the portion of boundary points between
C and D is linear, unless the optimal sum-capacity covariance happen to be orthogonal, in
which case points C and D collapse to the same point.

A lower bound for the region between B and C (or D and E) can be found based on
the linear combination of covariance matrices SB and SCD (or SE and SCD respectively).
Consider the data rates associated with the covariance matrices αSB + (1−α)SCD with user
1 decoded first (or βSE +(1−β)SCD with user 2 decoded first), where α (or β) ranges from 0
to 1. These rates are achievable, so they are lower bounds. Because the objective is concave
as a function of the covariance matrices, this lower bound is better than the time-sharing
of data rates associated with B and C (or D and E). Since the corner points after one
iteration (i.e. B and E) are at most (K− 1)m/2 nats away from the sum-capacity, the lower
bound is a close approximation of the capacity region. A typical example is shown in figure
5. Extensive numerical simulations show that the bound is tight. An upper bound is also
plotted there. The upper bound is obtained by extending the line segments AB, CD, and
EF . This is an upper bound because of the convexity of the capacity region.

4 Multiple Access Channels with ISI

The iterative water-filling algorithm has a natural extension to vector multiple access channels
with intersymbol interference. Assuming that the ISI spans a finite duration, the multiple
access channel inputs and output can be treated in a block-by-block basis with an appropriate
guard periods, thus reducing the ISI channel into a special case of vector channel. Moreover,
if the channel is assumed stationary, toeplitz structure of the channel can be exploited to
simplify the computation of the capacity region. Because of time-invariance, interference in
the time-domain enjoys special properties that do not have a counter-part for interference in
the space domain. The basic idea is to recognize that by adding a cyclic prefix, the Toeplitz
matrix channel becomes circulant, whose eigen-decomposition is independent of the channel.
Moreover, the eigen-decomposition is a particularly simple one: it is the Discrete Fourier
Transform (DFT). Therefore its computational complexity can be reduced by using a Fast
Fourier Transform (FFT). This idea has been exploited for scalar single-user channels [20],
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vector single user channels [21], and multiple access channels [8].
A Gaussian vector multiple access channel with finite ISI can be modeled as follows:

yk =

(
K∑

i=1

ν∑
d=0

H
(i)
d x(i)

k−d

)
+ nk, (65)

where ν is the length of channel memory, the superscript represents user index, subscript in
Hd represents the ISI at delay d, and subscripts of y, x, and n represent the time index. We
assume that nk is a memoryless Gaussian random process with covariance matrix E[nknT

k ] =
Z. Define the Fourier transform

H(i)(ω) =
ν∑

d=0

H
(i)
d e−jdω. (66)

The capacity region for the Gaussian vector multiple access channel with ISI has characterized
in [8], and capacity can be expressed as an optimization problem in the following.

Theorem 6 For a Gaussian vector multiple access channel with finite ISI, under a power
constraint P1, P2, the capacity region can be characterized by maximizing a weighted sum
of data rates µ1R1 + µ2R2, where µ1 ≥ 0, µ2 ≥ 0, and µ1 + µ2 = 1. When µ1 ≥ µ2, the
optimization problem is,

maximize µ2 · 1
2π

∫ π
0 log |H(1)(ω)S(1)(ω)H(1)(ω)∗ + H(2)(ω)S(2)(ω)H(2)(ω)∗ + Z| +

(µ1 − µ2) · 1
2π

∫ π
0 log |H(1)(ω)S(1)(ω)H(1)(ω)∗ + Z|dω − µ1 · 1

2π

∫ π
0 log |Z|dω

subject to 1
π

∫ π
0 tr(S(1)(ω))dω ≤ P1, (67)

1
π

∫ π
0 tr(S(2)(ω))dω ≤ P2,

S(1)(ω), S(2)(ω) ≥ 0.

The case when µ1 ≤ µ2 is similar.

The rate-sum maximization problem again has a simultaneous water-filling interpretation,
and an optimal input spectrum can be found via iterative water-filling.

Theorem 7 In a K-user Gaussian vector multiple access channel with finite ISI, {S(i)(ω)} is
an optimal solution to the rate-sum maximization problem if and only if S(i)(ω) is the single-
user water-filling of the channel H(i)(ω) with Z +

∑K
j=1,j �=i H

(j)(ω)S(j)(ω)H(j)(ω)∗ as noise
for all i = 1, 2, · · ·K. Moreover, an optimal set of {S(i)(ω)} may be found by the iterative
water-filling algorithm. The algorithm converges from any initial assignment, and the limit
maximizes the rate-sum. Also, the covariance matrices after one iteration of iterative water-
filling achieves a total data rate

∑K
i=1 Ri that is at most (K − 1)m/2 per transmission away

from the sum capacity, where m is the number of receive antennas.

The proof of the above theorem follows the exact same way as in the memoryless case.
However, the optimization variables are now functions of real variables. So, a rigorous argu-
ment involves the generalized Kuhn-Tucker condition [22], and the notion of differentiation
also needs to be appropriately generalized.
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The results presented in this section have an identical counter-part for multiple access
vector fading channels with i.i.d. fading statistics. The above equations remains valid if ω is
interpreted as the random variable representing the fading distribution.

As mentioned before, the capacity of the ISI channel is derived using a cyclic prefix, which
allows channel independent diagonalization by a discrete Fourier transform, and whose effect
becomes negligible as the block size goes to infinity. The use of discrete Fourier transform
also reduces computational complexity as the following example illustrates.

Example 1. We consider a two-user multiple access channel with n1 = n2 = m = 2, and
ν = 1.

yk =
1∑

d=0

H
(1)
d x(1)

k−d +
1∑

i=0

H
(2)
d x(2)

k−d + nk. (68)

Consider the example with a block size N = 3. An extra sample at the output need to be
discarded to eliminate inter-block interference. Let h

(i)
d,rc be the (r, c) element of H

(i)
d , xk,n

be n’th element of xk, and yk,n be n’th element of yk. The channel model is as follows:




y3,1

y3,2

y2,1

y2,2

y1,1

y1,2




=
2∑

i=1




h
(i)
1,11 h

(i)
1,12 h

(i)
2,11 h

(i)
2,12 0 0 0 0

h
(i)
1,21 h

(i)
1,22 h

(i)
2,21 h

(i)
2,22 0 0 0 0

0 0 h
(i)
1,11 h

(i)
1,12 h

(i)
2,11 h

(i)
2,12 0 0

0 0 h
(i)
1,21 h

(i)
1,22 h

(i)
2,21 h

(i)
2,22 0 0

0 0 0 0 h
(i)
1,11 h

(i)
1,12 h

(i)
2,11 h

(i)
2,12

0 0 0 0 h
(i)
1,21 h

(i)
1,22 h

(i)
2,21 h

(i)
2,22







x
(i)
3,1

x
(i)
3,2

x
(i)
2,1

x
(i)
2,2

x
(i)
1,1

x
(i)
1,2

x
(i)
0,1

x
(i)
0,2




+




n3,1

n3,2

n2,1

n2,2

n1,1

n1,2




(69)

It is now possible to apply the iterative water-filling algorithm on this model to obtain
the maximum rate-sum and the optimal power allocation. However, each iteration in the
algorithm involves a singular-value decomposition (SVD), which is computationally intensive
on large matrices. So instead, we insert a cyclic prefix by letting x0,1 = x3,1, x0,2 = x3,2. The
channel model then becomes block circulant:




y3,1

y3,2

y2,1

y2,2

y1,1

y1,2




=
2∑

i=1




h
(i)
1,11 h

(i)
1,12 h

(i)
2,11 h

(i)
2,12 0 0

h
(i)
1,21 h

(i)
1,22 h

(i)
2,21 h

(i)
2,22 0 0

0 0 h
(i)
1,11 h

(i)
1,12 h

(i)
2,11 h

(i)
2,12

0 0 h
(i)
1,21 h

(i)
1,22 h

(i)
2,21 h

(i)
2,22

h
(i)
2,11 h

(i)
2,12 0 0 h

(i)
1,11 h

(i)
1,12

h
(i)
2,21 h

(i)
2,22 0 0 h

(i)
1,21 h

(i)
1,22







x
(i)
3,1

x
(i)
3,2

x
(i)
2,1

x
(i)
2,2

x
(i)
1,1

x
(i)
1,2




+




n3,1

n3,2

n2,1

n2,2

n1,1

n1,2



. (70)
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After re-arranging the matrix indices, the above channel model may be re-written as:




y3,1

y2,1

y1,1

y3,2

y2,2

y1,2




=
2∑

i=1




h
(i)
1,11 h

(i)
2,11 0 h

(i)
1,12 h

(i)
2,12 0

0 h
(i)
1,11 h

(i)
2,11 0 h

(i)
1,12 h

(i)
2,12

h
(i)
2,11 0 h

(i)
1,11 h

(i)
2,12 0 h

(i)
1,12

h
(i)
1,21 h

(i)
2,21 0 h

(i)
1,22 h

(i)
2,22 0

0 h
(i)
1,21 h

(i)
2,21 0 h

(i)
1,22 h

(i)
2,22

h
(i)
2,21 0 h

(i)
1,21 h

(i)
2,22 0 h

(i)
1,22







x
(i)
3,1

x
(i)
2,1

x
(i)
1,1

x
(i)
3,2

x
(i)
2,2

x
(i)
1,2




+




n3,1

n2,1

n1,1

n3,2

n2,2

n1,2



, (71)

or more compactly, ŷ =
∑2

i=1 Ĥ
(i)x̂(i) + n̂. Note that each of the four 3 × 3 submatrices

now has a circulant structure. So they can be simultaneously diagonalized by a DFT matrix.
Denote the (r, c)-submatrix of Ĥ(i) by Ĥ

(i)
rc . It can be diagonalized as Ĥ

(i)
rc = F ∗Σ(i)

rc F where

Σ(i)
rc is diagonal and F is the 3×3 DFT matrix. Define Q =

[
F 0
0 F

]
. Let ỹ = Qŷ, x̃ = Qx̂,

and ñ = Qn̂. Then,




ỹ3,1

ỹ2,1

ỹ1,1

ỹ3,2

ỹ2,2

ỹ1,2




=
2∑

i=1




σ
(i)
1,11 0 0 σ

(i)
1,12 0 0 0

0 σ
(i)
2,11 0 0 σ

(i)
2,12 0 0

0 0 σ
(i)
3,11 0 0 0 σ

(i)
3,12

σ
(i)
1,21 0 0 σ

(i)
1,22 0 0 0

0 σ
(i)
2,21 0 0 σ

(i)
2,22 0 0

0 0 σ
(i)
3,21 0 0 0 σ

(i)
3,22







x̃
(i)
3,1

x̃
(i)
2,1

x̃
(i)
1,1

x̃
(i)
3,2

x̃
(i)
2,2

x̃
(i)
1,2




+




ñ3,1

ñ2,1

ñ1,1

ñ3,2

ñ2,2

ñ1,2



. (72)

Now, re-arrange the matrix index back to the original order:




ỹ3,1

ỹ3,2

ỹ2,1

ỹ2,2

ỹ1,1

ỹ1,2




=
2∑

i=1




σ
(i)
1,11 σ

(i)
1,12 0 0 0 0

σ
(i)
1,21 σ

(i)
1,22 0 0 0 0

0 0 σ
(i)
2,11 σ

(i)
2,12 0 0

0 0 σ
(i)
2,21 σ

(i)
2,22 0 0

0 0 0 0 σ
(i)
3,11 σ

(i)
3,12

0 0 0 0 σ
(i)
3,21 σ

(i)
3,22







x̃
(i)
3,1

x̃
(i)
3,2

x̃
(i)
2,1

x̃
(i)
2,2

x̃
(i)
1,1

x̃
(i)
1,2




+




ñ3,1

ñ3,2

ñ2,1

ñ2,2

ñ1,1

ñ1,2



. (73)

At a cost of four DFT’s, each of which can be implemented in N log N times for an N ×N

matrix, the iterative water-filling algorithm on the above matrix representation of the channel
can now be run much more efficiently. Singular-value decomposition is now performed on
four submatrices of smaller size, instead of on one large matrix. Since the computational
complexity of singular-value decomposition is in the order of N3 for an N ×N matrix, this
represents significant computational saving. Although there is a capacity loss due to the use
of cyclic prefix, the effect becomes negligible when the block size is large.
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5 Conclusions

This paper addresses the problem of finding the optimal transmitter covariance for Gaussian
multiple access channels with vector inputs and outputs. The capacity region under an
input power constraint is explicitly characterized. The computation of the capacity region is
formulated in the convex optimization framework, and a simultaneous water-filling condition
is found for achieving the sum capacity in multiple access channels. We then proposed an
iterative water-filling algorithm to numerically compute the optimal covariance matrix for
maximizing the sum rate. Such an iterative algorithm finds the correct compromise among
the users by finding the best signaling direction and the optimal power allocation for each
user. The iterative water-filling algorithm is shown to converge to the sum capacity from
any starting point, and a general error bound after one iteration is found. Finally, we turned
to multiple access channels with ISI, where analogous results are derived. These results are
also applicable to fading channels with i.i.d. fading statistics.
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