
Decoding Methods
7 Decoding Methods 1093

7.1 Trellis-based MLSD and the Viterbi Algorithm .1094
7.1.1 MLSD for a Convolutional Code .1094
7.1.2 Sequence Detection with the Viterbi Algorithm1096
7.1.3 MLSD for the Additive White Gaussian Noise Channel1097

7.1.3.1 Viterbi MLSD for H(D) = 1 +D Partial Response1098
7.1.3.2 Matlab’s convolutional-code Viterbi Detector1100
7.1.3.3 Matlab Partial-Response MLSD Programs:1102
7.1.3.4 Reduced State Sequence Estimation Example1105

7.2 MLSD Analysis .1106
7.2.1 Error Events .1106

7.2.1.1 Performance Analysis with Error Events1107
7.2.2 Example Analysis of the 4-state Convolutional code1109

7.2.2.1 Expanded Use of Transfer Functions .1111
7.2.3 Example Exact Analysis of the 1 +D partial response channel1112

7.2.3.1 Analysis by input error-event enumeration1112
7.2.3.2 Analysis by error-event enumeration (d=2)1114

7.2.4 Ginis’ Code-Analysis Program .1115
7.2.4.1 Algorithm Description .1116
7.2.4.2 Using the MATLAB Program .1116

7.2.5 Rules for Partial-Response Channels .1118
7.2.6 Decision Feedback Sequence Detection .1118

7.3 MAP detection with the APP and SOVA Algorithms .1119
7.3.1 MAP with the APP Algorithm .1119

7.3.1.1 3 APP Quantities .1120
7.3.1.2 LOGMAP .1124

7.3.2 Soft-Output Viterbi Algorithm (SOVA) .1128
7.3.2.1 Iterating the LLR Directly with Forward SOVA1132

7.3.3 Using a feedback-free generator’s decoder to decode systematic with feedback . . .1133
7.4 Soft Information Generation .1135

7.4.1 Bit-Level or Parity Constraints .1135
7.4.1.1 Parity-Constraint Implementation .1139

7.4.2 The Equality or Code-Level Constraint .1140
7.4.2.1 Equality-Constraint Implementation .1141

7.4.3 Constellation bit constraints .1142
7.4.4 Soft intersymbol-interference cancellation .1144

7.4.4.1 Initial Conditions .1145
7.5 Iterative Decoding .1148

7.5.1 Iterative Decoding with the APP (BCJR) algorithm1150
7.5.2 Iterative Decoding with SOVA .1150
7.5.3 Direct use of constraints in iterative decoding .1151
7.5.4 Turbo Equalization .1152

Exercises - Chapter 7 .1153

Bibliography 1164

Index 1165

1092

Chapter 7

Decoding Methods

Chapter 2 introduced codes and sequences, tacitly assuming a maximum likelihood receiver that com-
pares the channel-output sequences with all possible codewords and then selects the most likely sequence.
With large-N , the decoder’s implementation complexity can be enormous, approaching infinite complex-
ity exponentially fast with N . Fortunately, many optimum and suboptimum decoding methods reduce
this complexity. Even infinite-length-codeword codes can often be decoded with a complexity that is
finite in real time. This chapter studies several decoding algorithms that are implementable.

Section 7.1 has examples and a general description of the Viterbi Algorithm, a method that allows
exact implementation of Maximum Likelihood Sequence Detection (MLSD) for Chapter 2’s
convolutional codes and also for Chapter 3’s partial-response channels. The Viterbi algorithm applies
to decoding of any channel and/or code’s treills with finite 2ν states. if ν < ∞ for any sequential
encoder (including partial response). MLSD has finite complexity per subsymbol period and a reasonable
decoding delay. The Viterbi Algorithm applies to both the BSC and the AWGN, as well as any channel
that has a state-machine description, equivalent a Markov model. MLSD’s analysis appears in Section
7.2, with particular examples of the 1 + D soft-decoded partial-response channel and a hard-decoded
use of Chapter 2’s 4-state convolutional code. Section 7.2 then also introduces former EE379 student
George Ginis’ code analysis “dmin” program. This program computes the essential parameters for any
trellis so that its symbol-error and bit probabilities can be accurately estimated.

Section 7.3 proceeds to decoders that instead minimize bit, or possibly subsymbol, error probability,
instead of sequences. These algorithms can improve performance and also provide soft information
about the decoder decision’s reliability for each bit or subsymbol. The fully optimum solution is the “à
posteriori probability ” (APP) or Bahl-Cooke-Jelinek-Ravin (BCJR) algorithm that minimizes
individual bit (or also subsymbol) error probabilities. The MAP detector minimizes the probability of
a symbol error, not the probability of a sequence error like MLSD, and thus the MAP detector can
perform yet better than MLSD. This MAP detector can provide hard- or soft-decision output and is of
great interest in the concatenated coding systems of Chapter 8. An ad-hoc approximation of the MAP
detector using the Viterbi Detector is known as the Soft-Output Viterbi Algorithm (SOVA) and
also appears in Section 7.3. Section 7.4 looks at soft information from the perspective of channel or code
constraints. Section 7.5 then proceeds with sub-optimum iterative decoding methods that can be
applied to situations in which multiple codes have been concatenated as in Chapter 8, but is sufficiently
general to apply to a number of different situations with just a single, or even no, code. Section 7.5
addresses the conversion of symbol-based system into binary likelihood-ratio-based coding, which can
greatly simplify Sections 7.4 and 7.5’s iterative decoder implementation without performance loss.

1093

7.1 Trellis-based MLSD and the Viterbi Algorithm

The maximum-likelihood sequence detector (MLSD) maximizes the function

x̂(D) = arg

{
max
x̂(D)

py(D)/x(D)

}
. (7.1)

Simply stated, MLSD finds that sequence through a trellis that looks most like the received output
sequence y(D), where “looks most like” varies with the exact conditional channel probability description
py/x.

Figure 7.1 provides a simple example.

03

30

21

12

0

1

0

1

0
1

0

1

Figure 7.1: ML selects trellis path.

The thick path is the MLSD decision for the sequence that best matches the received channel outputs.
For each channel output, there will be one path1 that is best. The detector might wait until receiver
acquires the entire sequence and then compare it against all possible encoder sequences. The Viterbi
Algorithm recursively updates the 2ν best trellis paths and eliminates other paths that no longer need
consideration. These are the“surviving” paths into each state.

Thus, this optimum MLSD receiver’s complexity need not be infinite (per unit time), as long as
ν < ∞, even for a semi-infinite input data sequence. Subsection 7.1.1 introduces the recursive Viterbi
MLSD procedure using the example of a 4-state convolutional code. Subsection 7.1.2 then provides the
general Viterbi Algorithm.

7.1.1 MLSD for a Convolutional Code

Chapter 2 introduced convolutional codes, while Chapter 8 details them further. This subsection’s
example applies to a BSC and MLSD compares sequences using the Hamming distance or number of
channel-output bits that differ from a codeword. This example uses the Viterbi Algorithm.

Figure 7.2 illustrates the algorithmic calculations for Figure 7.1’s trellis, with abbreviations for the
code’s subsymbol outputs on the left as: 0= 00; 1 =01; 2=10; and 3=11. The upper path out of each
state corresponds to input bit 0, and the lower path to input bit 1. The black (or green / red for two

1In the case of ties, one selects randomly and it is likely an error is made by the detector, but ties are rare on most
practical channels, as for example in simple symbol-by-symbol detection on the AWGN channel.

1094

different) received sequence is above the trellis. Initial view should ignore all red-colored quantities.
This test case has the known green input sequence below the trellis. Since this code has r = 1/2, there
are two output bits for every input bit. The numbers above the states (black dots) are the survivor
paths’ Hamming distance from the received sequence. The VA at each state compares (up to) two paths
into it. The VA adds Hamming distance for the branch’s comparison to the received sequence to the
accumulated distance for that path’s previous state. The smallest then determines the survivor.

01 00 01

0/?

1

1

1

3

2

2

00 11 012

2/32

2

3

2/3

2/3

3/4

3/2

3/4

3/3

3/3

3/3

4/4

4/4

01

2/3

Green outputs – BSC-output 2 errors à correct sequence ; red output – 3 BSC output errors à two sequences tied (detect error)

0/? 0/0
(2/3 paths are 0)

0/? 1/1
(3/3 paths are 1)

1/?

All input bits correctly detected ; 2/6 input bits correct, 4 ambiguous (using majority vote)

Figure 7.2: Viterbi decoder example.

For instance, in the first stage, the trellis (code) starts in state 0 (at the top). Hamming distance is
initially 0, but both branches differ by 1 from the received bits. Thus, both possible next states have
cumulative distance 1. In the next stage, all 4 states have a survivor. with the distances shown. Stage
3 has two possibilities into each state that VA compares. The smallest survives and VA assigns the
cumulative distance to that state. This ecample process terminates after 6 steps. The green path has
accumulated distance 2, which is lowest and is the MLSD decision. This is also the known correct path
for this example. Because this exampole code has dfree = 5, MLSD correct two output errors as it
decides the green survivor sequence. The two output erred bits occurred in stage 1 and in stage 3, but
the VA ML detection corrects them; more importantly the corresponding input sequence is correct (see
green input bits below the trellis).

A second output sequence differs only in stage 4, adding 1 more BSC error in red color. Now
with 3 errors, MLSD does not unambiguously find the correct path (2 final states both have the same
cummulative distance 3 - MLSD could decide either. So in this second 3-output-bit-error case, VA MLSD
detects the error, but cannot correct it. This would be an “error event” (see Subsection 7.2.1, Definition
7.2.1 for a formal definition). The input-bit decisions appear below Figure 7.2’s trellis. All 6 inputs
are correct for the first (green) case. However, only 3 of the 6 are correct for the red situation; for the
correct bits, even though the detected sequence is ambiguous, the survivor’s corresponding inputs are
the same.

[-.9 .5]

0/0 0/0

0.25

2.26

3.86

2.28

10.28

8.28

7.48

0/0 1/1 1/1

6.53

7.86/7.984.53

7.73

10.53

6.66 / 7.76

6.67/7.77

7.86/8.98

7.46/5.38

7.87/8.99

11.07/8.99

11.47 /11.59

11.48/11.60

11.88/12.61

11.48 / 12.61

[-1.1 -.9] [-.5 1.0]
[-.8 -.7]

[.9 1.0]
[-.9 1.0]

3.61 0.25
0.01 2.25

4.41 3.61
0.01 0.01

2.25 0
0.25 4

3.24 2.89
0.04 0.09

0.01 0
3.61 4

3.61 0
0.01 4

0.02

8.02

4.42

3.62
0.25

4.25

2.25

0.13 / 1.25

0.13/1.253.33/4.45

2.93 /.85

0.010.01

3.61
4.01

3.61

4.01/3.62
3.61/3.62

0.01/.02

6.68 / 7.790/0

[-.8 .1] [-.9 .9]

3.24 1.21
0.04 0.81

3.61 0.01
0.01 3.61

-/3.62-/3.62

0.01/.02

Figure 7.3: Viterbi decoder example, AWGN.

1095

Figure 7.3 uses instead squared distance for the AWGN output samples shown. The procedure is
the same, but the calculations are more tedious. The matrices below the trellis just appear to help the
reader calculate the various brank metrics. The black channel outputs correspond to Figure 7.2’s output
sequence for both black and red/green. In this case, because soft decoding is 3 dB better (Chapter 2), the
VA correctly decodes even the red paths. The reader may want to trace by finger with hand calculation
the various survivor path selections and metrics. This helps understand the Viterbi Algorithm. This
example assumes the code starts in state 00 (at the top). Indeed, as some software shows later in this
section, a yet better path exists that starts in state 01 and produces the outputs 1 1 0 0 1 1 and a lower
metric of 6.78.

7.1.2 Sequence Detection with the Viterbi Algorithm

Section 7.1.1’s convolutional-code sequence-detection example specifically uses the Viterbi Algorithm.
This section generalizes this algorithm’s description. Viterbi introduced the algorthm for convolutional-
code decoding in 1967 [1] - its application to partial-response channels was first published by Forney
in 1972 [2]. The algorithm, itself, in its purest mathematical form, was developed by mathematicians,
unknown to Viterbi at the time of his publication, and is a specific example of what is more generally
called “dynamic programming.” However, its applications to detection in communication are so prevalent
that the use of the term “Viterbi Algorithm” is ubiquitous in communication, and in recognition of
Viterbi’s independent insight that the method could be used to great advantage in simplifying optimal
decoding in data communication. The Viterbi Algorithm applies to any trellis with |C|ν < ∞ states.
For convolutional codes, M = 2 even if BICM maps binary codewords to constellation points, while for
partial-response uses, |C|ν .

Several quantities help describe the Viterbi Algorithm;

state index - i, i = 0, 1, ...,Mν − 1

state metric for state i at sampling time k
∆
= Ui,k (sometimes called the “path metric”)

previous-states set to state i
∆
= Ji (that is, states that have a transition into state i)

branch value ỹk(j → i) noiseless output corresponding to a transition from state j to state i. (i.e.,
the value of the trellis branch, which is just xk when H(D) = 1 for coded systems)

branch metric in going from state j to state i at time k, e.g. for BSC, dH(yk, v̂k), or for AWGN

∆j,i,k
∆
= ‖yk − x̂k(j → i)‖2

survivor path j̄i - the path that has minimum metric coming into state i.

Definition 7.1.1 [Viterbi Detection] Set U−1 = Ui,−1 = 0 and recursively minimize for
each state i = 0, ..., 2ν − 1 (or |C|ν − 1 for partial response) at each time k ≥ 0

Ui,k = min
j∈Ji

[Uj,k−1 + ∆j,i,k] . (7.2)

There are 2ν (more generally |C|ν) new Ui,k’s updated and 2ν · 2b̃ (or |C|ν+1 pr) branch
metrics, ∆j,i,k, computed at each sampling time k. There are also 2ν (|C|ν pr) surviving
paths.

The survivor paths save j̄i, which theoretically can have infinite length. Implemention truncates
survivor paths to typically length 5 · ν, a rule-of-thumb suggested by Viterbi. Such truncation has very
little loss. Furthermore, to prevent the accumulated metrics’ overflow , the same (negative) amount
can be added, periodically, to bound them. This constant can equal the smallest metric’s negative
magnitude, thus always zeroing this smallest metric. Equivalently, circular overflow may be used as long
as the maximum metric difference is less than one-half full dynamic range.

1096

The basic Viterbi Decoder operations are to add a branch metric to a previous state metric, to
compare the result with other such results for all other paths into the same state, and to select the
path with the lowest metric. Selection replaces that state’s metric with the new metric for subsequent
iterations. The decoder then augments the survivor path by the corresponding branch’s subsymbol.
This operation set has the name Add-Compare-Select (ACS).

7.1.3 MLSD for the Additive White Gaussian Noise Channel

The AWGN’s MLSD finds the trellis’ survivor path x̂(D) that satisfies

min
x̂(D)
‖y(D)−H(D) · x̂(D)‖2 . (7.3)

When H(D) = I, this corresponds to the convolutional code with 2ν states. For partial response
channels, H(D) represents the controlled intersymbol interference effect. This chapter generalizes the
noiseless sequence’s notation to ỹ(D) where

ỹ(D) = H(D) · x(D) . (7.4)

The minimum distance dmin is then (as always) the distance between the two closest trellis sequences

dmin = min
ỹ′(D) 6=ỹ(D)

‖ỹ′(D)− ỹ(D)‖ . (7.5)

Sometimes finding the two closest sequences is easy, and sometimes it is extremely difficult and requires
Section 7.2’s “Ginis dmin” search program. However, dmin always exists. Equivalently, an error event
is

ε(D)
∆
= ỹ′(D)− ỹ(D) . (7.6)

The zero sequence is not an error event. Thus, dmin = minε(D) 6=0 ‖H · ε(D)‖.

MLSD’s nearest-neighbor generalization: MLSD analysis’ Ne counts ONLY those sequences at
distance dmin, so

Ne
∆
= the number of symbol errors at any single subsymbol time index k that could arise from any(7.7)

past “first” error with distance dmin . (7.8)

A “first error” loosely means the earlier point in time where the error event begins; Ne counts any such
first path separation that must end only at time k. This definition of Ne refines that of Chapter 1, which
there includes any neighbor (even at larger distance) with a common decision boundary. MLSD usually
complicates finding such an Ne by searching in an infinite-dimensional space for all neighbors who might
have a common decision boundary, thus the refined definition includes only those at distance dmin. With
this refined definition, the NNUB becomes an approximation of, and not necessarily an upper bound on,
MLSD’s error probability:

Pe ≈ Ne ·Q
(
dmin
2σ

)
. (7.9)

Often (7.9) is a very accurate approximation, but sometimes those neighbors not at minimum distance
can be so numerous in multiple dimensions that they may dominate the probability of error. Thus,
coded (and partial-response) systems instead investigate the set of distances

Dmin = {dmin = d0 < d1 < d2 < < di} , (7.10)

The set of distances includes dmin and also then the next smallest dmin(1), the second-next smallest
dmin(2) and so on with dmin(i) being the notation for the ith-next smallest distance for the code. Each
of these distances has a corresponding number of ocurrences on average for all error-event sequences
merging at the same point in time, Ne,1, Ne,2, ... Ne,i (ordered in terms of the index i of the corresponding
dmin(i)). The nearest neighbors can also simply be indexed to d as Nd.

1097

Thus,

Pe ≤
∞∑
i=0

Ne,i ·Q
(
di
2σ

)
=

∑
d∈Dmin

Nd ·Q
(
d

2σ

)
, (7.11)

which in most cases is dominated by the first few terms at reasonably high SNR, because of the Q-
function’s rapid decrease with increasing argument.

Implied stationarity: In many cases, MLSD’s probability of a specific error event’s ocurrence tends
to 1 if the sequence has infinite length (stating only that eventually an error is made and not necessarily
poor performance.2). A oft-encountered performance is per-subsymbol error probability in that it applies
to the common point in time that starts (or ends, but not both) all the evaluated sequences in computing
the distance spectrum {dmin(i)} and Ni. Such an error could commence (or end) at any time, so this is
a subsymbol-error probability corresponding to choosing the best sequence x̂(D). This subsymbol error
probability tacitly presumes stationarity (a constant state diagram or equivalently a trellis description
that is the same for each stage, as with all examples here). Most block codes do not exhibit such
stationarity, so the designer must evaluate error events beginning at each and every symbol time instant
within the block, and then average, to measure a meaningful subsymbol-error probability.

7.1.3.1 Viterbi MLSD for H(D) = 1 +D Partial Response

Figure 7.4 displays the 1+D partial-response channel’s trellis with |C| = 2. MLSD computes the squared
distance ‖y(D)−H(D) · x̂(D)‖2 for the paths, selecting the path with smallest such squared distance.

+ 1

-1

time 𝑘 𝑘 + 1 𝑘 + 2 𝑘 + 3

2/1 2/1 2/1

0/1 0/1 0/1

0/−10/−10/−1

−2/−1 −2/−1 −2/−1

Figure 7.4: Trellis Diagram for 1 +D partial-response/sequential-encoder with b = 1 PAM.

More explicitly, this channel’s the ML detector minimizes the “cost”

Uk
∆
=

k∑
m=0

|ym − (x̂m + x̂m−1)|2 = ‖y − h ∗ x‖2 . (7.12)

2For a capacity-achieving code or good code of course, the probability of a sequence error can be made arbitrarily small,
but most practical designs do not operate at a target sequence or symbol error rate that is zero.

1098

When the MLSD-selected sequence is correct, the cost is the sum of squared channel noise sanokes over
k + 1 successive symbols. The MLSD-selected sequence of length k + 2 minimizes

k+1∑
m=0

|ym − (x̂m + x̂m−1)|2 =

[
k∑

m=0

|ym − (x̂m + x̂m−1)|2
]

+ |yk+1 − (x̂k+1 + x̂k)|2 (7.13)

Uk+1 = Uk + |yk+1 − (x̂k+1 + x̂k)|2 . (7.14)

As with the convolutional code, and in general, the updated cost need not consider the history before
the previous state because that is the lowest cost already to that state.

select path
with smallest
𝒰 "𝑥!"#$

𝒰 "𝑥!
𝑦!"# − "𝑥!"# + "𝑥! $

𝒰 "𝑥!%
𝑦!"# − "𝑥!"#% + "𝑥!% $

𝒰 "𝑥!"#%

Figure 7.5: Iterative cost minimization for Duobinary (H(D) = 1 +D)channel.

Figure 7.5 illustrates this concept. For each state at time k, there is a unique minimum cost U (x̂k)
that is the smallest sum of squared differences between the channel output and any trellis sequence up to
and including sample time k that contains the specific value of x̂k corresponding to that state. Another
state, with corresponding second cost U (x̂′k) has a different smallest cost for all paths up to time k
that terminate in state x′k. Both the paths in Figure 7.5 merge into a common state at time k+ 1. The
smallest cost associated with that state at time k + 1 adds the branch metric to the previous state’s
cost. The survivor path is the path with the smaller new cost. The process recursively repeats for future
times.

For H(D) = 1 + D with binary inputs, MLSD decides which 2 of the 4 possible extensions are
survivors. The following example illustrates with some numbers.

EXAMPLE 7.1.1 [Viterbi Decoding example for H(D) = 1 +D] Suppose the transmitter
uses differential encoding (or a precoder as in Section 3.13) with the binary 1 + D channel.
The precoder input bits are [10101]. The encoder sets the initial channel state according to
the last message being zero. The receiver does not know this in this example. The following
table summarizes the channel signals for precoding and symbol-by-symbol detection:

1099

+ 1

-1

1.110

2.050.05 −1.05 −2 −0.05
.0025 .0050

4.2050 1.1075 1.1075

5.3075 5.1075

Figure 7.6: Sequence detection example.

time k k + 1 k + 2 k + 3 k + 4 k + 5
m - 1 0 1 0 1
m̄ 0 1 1 0 0 1
xk -1 1 1 -1 -1 1
ỹk=xk+xk−1 - 0 2 0 -2 0
yk - .05 2.05 -1.05 -2 -.05
Quantized yk (ŷk) - 0 2 -2 -2 0([

ŷk
d + (M − 1)

])
M=2

- 1 0 0 0 1

Symbol-by-symbol selects m̂ = [10001], which has one error in the middle position, mk+3 6= 0.

Figure 7.6 illustrates the MLSD result and survivor. The precoder may appear unnecessary
with the sequence detection system. However, without precoding, long trellis error-event
strings (i.e., picking a path that deviates for a while from the correct path) will result in
long strings of bit errors. However, for these same trellis paths, the precoding has only 2
input bit errors. It is possible without precoding for a noise sample, with component along
the error vector between two nearest neighbor sequences exceeding dmin/2, to produce an
infinite number of input bit errors for the two corresponding infinite-length trellis sequences
– this is called quasi-catastrophic error propagation in partial-response channels.

7.1.3.2 Matlab’s convolutional-code Viterbi Detector

Matlab provides the core vitdec.m program (no source code available3 program. The vitdec.m program
will handle Section 7.1.1’s 3 convolutional-code examples:

vitdec Convolutionally decode binary data using the Viterbi algorithm.
DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,DECTYPE) decodes the vector CODE
using the Viterbi algorithm. CODE is assumed to be the output of a
convolutional encoder specified by the MATLAB structure TRELLIS. See
POLY2TRELLIS for a valid TRELLIS structure. Each symbol in CODE consists
of log2(TRELLIS.numOutputSymbols) bits, and CODE may contain one or more
symbols. DECODED is a vector in the same orientation as CODE, and each of
its symbols consists of log2(TRELLIS.numInputSymbols) bits. TBLEN is a
positive integer scalar that specifies the traceback depth.

OPMODE denotes the operation mode of the decoder. Choices are:
’trunc’ : The encoder is assumed to have started at the all-zeros state.

3The next subsection provides source code for a less-polished but helpful program that handles convolutional codes and
partial response.

1100

The decoder traces back from the state with the best metric.
’term’ : The encoder is assumed to have both started and ended at the

all-zeros state. The decoder traces back from the all-zeros
state.

’cont’ : The encoder is assumed to have started at the all-zeros state.
The decoder traces back from the state with the best metric. A
delay equal to TBLEN symbols is incurred.

DECTYPE denotes how the bits are represented in CODE. Choices are:
’unquant’ : The decoder expects signed real input values. +1 represents

a logical zero and -1 represents a logical one.
’hard’ : The decoder expects binary input values.
’soft’ : See the syntax below.

DECODED = vitdec(CODE,TRELLIS,TBLEN,OPMODE,’soft’,NSDEC) decodes the input
vector CODE consisting of integers between 0 and 2^NSDEC-1, where
0 represents the most confident 0 and 2^NSDEC-1 represents the most
confident 1.
Note that NSDEC is a required argument if and only if the decision type is
’soft’.
DECODED = vitdec(CODE, TRELLIS, TBLEN, OPMODE, DECTYPE, PUNCPAT)
decodes the input punctured CODE where PUNCPAT is the puncture pattern
vector of 1’s and 0’s with 0’s indicating where the punctures occurred
in the data stream.
DECODED = vitdec(CODE, TRELLIS, TBLEN, OPMODE, DECTYPE, PUNCPAT, ERASPAT)
allows an erasure pattern (ERASPAT) vector to be specified for the input
CODE where the 1’s indicate the corresponding erasures. ERASPAT and CODE
must be of the same length. If puncturing is not used, specify PUNCPAT
to be [].
DECODED = vitdec(..., ’cont’, ..., INIT_METRIC,INIT_STATES,INIT_INPUTS)
provides the decoder with initial state metrics, initial traceback states
and initial traceback inputs. Each real number in INIT_METRIC represents
the starting state metric of the corresponding state. INIT_STATES and
INIT_INPUTS jointly specify the initial traceback memory of the decoder.
They are both TRELLIS.numStates-by-TBLEN matrices. INIT_STATES consists of
integers between 0 and TRELLIS.numStates-1. INIT_INPUTS consists of
integers between 0 and TRELLIS.numInputSymbols-1. To use default values for
all of the last three arguments, specify them as [],[],[].
[DECODED FINAL_METRIC FINAL_STATES FINAL_INPUTS] = vitdec(..., ’cont’, ...)
returns the state metrics, traceback states and traceback inputs at the end
of the decoding process. FINAL_METRIC is a vector with TRELLIS.numStates
elements which correspond to the final state metrics. FINAL_STATES and
FINAL_INPUTS are TRELLIS.numStates-by-TBLEN matrices.
Example:

t = poly2trellis([3 3],[4 5 7;7 4 2]); k = log2(t.numInputSymbols);
msg = [1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1];
code = convenc(msg,t); tblen = 3;
[d1 m1 p1 in1]=vitdec(code(1:end/2),t,tblen,’cont’,’hard’)
[d2 m2 p2 in2]=vitdec(code(end/2+1:end),t,tblen,’cont’,’hard’,m1,p1,in1)
[d m p in] = vitdec(code,t,tblen,’cont’,’hard’)
% The same decoded message is returned in d and [d1 d2]. The pairs m and
% m2, p and p2, in and in2 are equal. Note that d is a delayed version of
% msg, so d(tblen*k+1:end) is the same as msg(1:end-tblen*k).

The program is both complex with many opotions and limited to convolutional codes. Several successive
examples perhaps best illustrate its use, and in particular initially beginning with those in Subsection
7.1.1.

EXAMPLE 7.1.2 [Revisit Subsection 7.1.1’s examples with matlab] Figure 7.2’s MLSD
corresponds to these matlab commands (Section 8.1 describes the poly2trellis command,
which basically creates the encoder corresponding to G(D) = [7 5] in octal (111 101 =
D2 +D + 1 D2 + 1.

>> t=poly2trellis (3, [7 5]);
>> msg=[0 0 0 0 1 1];
code=convenc(msg,t) =

0 0 0 0 0 0 0 0 1 1 0 1
% with no errors
>> vitdec(code,t,6,’trunc’,’hard’) =

0 0 0 0 1 1
% with 2 errors
>> y=[0 1 0 0 0 1 0 0 1 1 0 1];
vitdec(y,t,6,’trunc’,’hard’) =

0 0 0 0 1 1
% even with 3 errors
y3errors=[0 1 0 0 0 1 0 1 1 1 0 1];
>> vitdec(y3errors,t,6,’trunc’,’hard’) =

0 0 0 0 1 1

1101

The decoder even corrects 3 errors, for which Section 7.4 suggests what vitdec.m may be
executing internally when there are ties. The decoder also works for the systematic encoder,
but this time only with 2 errors successfully

>> t3=poly2trellis(3,[7 5],7);
>> msg = [0 0 0 0 1 1];
>> y3=convenc(msg,t3)
0 0 0 0 0 0 0 0 1 1 1 0
>> errors3=[0 1 0 0 1 0 0 0 1 0 0 0];

>> vitdec(xor(y3,errors3),t3,6,’trunc’,’hard’)
0 1 1 0 0 1

>> errors2=[0 1 0 0 0 0 0 0 1 0 0 0];
>> vitdec(xor(y3,errors2),t3,6,’trunc’,’hard’) =

0 0 0 0 1 1

Finally for the AWGN example:

>> yawgn=[-.9 .5 -1.1 -.9 -.5 1 -.8 -.7 .9 1 -.9 1];
>> vitdec(-yawgn,t,6,’trunc’,’unquant’) =

0 0 0 0 1 1
>> % With revised 3-output-bit-errors
yawgn2=yawgn;
yawgn2(8)=.1;
yawgn2(12)=.9;
vitdec(-yawgn2,t,6,’trunc’,’unquant’) =

0 0 0 0 1 1

Note the negation of the channel output to corresponding to matlab’s convention of a binary
1 corresponding to the level −1 in PAM2. Also note that the mode is “unquant,” not “soft,”
for soft decoding. The mode “soft” corresponds to the channel output being soft information
from another decoder.

Combined use of poly2trellis.m and vitdec.m unfortunately has a bug for most systematic (or
feedback-using) encoder that has k > 1. Poly2trellis often increases unnecessarily the number of trellis
states and often creates (see Chapter 8 a catastropic-encoder trellis. Section 7.3.3 provides an alternative
deocoding solution that circumvents this matlab defficiency.

7.1.3.3 Matlab Partial-Response MLSD Programs:

Two MLSD matlab programs are available. The first is for partial-response channels or convolutional
codes by former EE379 student Dr. Ghazi Al-Raw. It is self contained, but requires some effort to
generate the input trellis descriptions:

help mlsd1D
function mh = MLSD(y,v,b,Sk, Yk, Xk)
MLSD using VA for input trellis
Written by Ghazi Al-Rawi

Updated significantly by J. Cioffi, 2023

INPUTS
y channel output sequence

1 x K complex (usually real) number for partial response
K is number of input bits in Xk

n x K integer if BSC with convolutional code
v constraint length (log2 of the number of states)
b number of bits per subsymbol
Sk 2^v x 2^b previous-state description matrix

e.g., EPR4’s H=[1 1 -1 -1] has (binary) nextstate trellis
nextState = [1 2; 3 4; 5 6; 7 8; 1 2; 3 4; 5 6; 7 8];
so Sk = [1 5; 1 5; 2 6; 2 6; 3 7; 3 7; 4 8; 4 8];

Yk 2^v x 2^b noiseless 1D trellis output corresponding to Sk, so EPR4
Yk = [0 -2; 2 0; 2 0; 4 2; -2 -4; 0 -2; 0 -2; 2 0];
for 4-state convolutional code
Yk= [0 3 ; 2 1 ; 3 0 ; 1 2]

Xk b x 2^v input vector, so EPR4 could be
Xk = [0 1 0 1 0 1 0 1];

e if e=1, then euclidean distance, otherwise hamming distance (xor)
OUTPUT
mh is the detected message sequence

1102

The previous 1+D example works as

>> y=[.05 2.05 -1.05 -2 -.05];

v=1;

b=1;

>> Sk=[1 2 ; 1 2];

>> Yk1=[2 0 ; 0 -2];

>> Xk = [1 0];

>> mh = mlsd1D(y, v, b, Sk, Yk1, Xk,1)

mh = 1 1 0 0 1

The output matches Figure 7.6’s 4th row or xk with 1 mapping to 1 and 0 mapping to -1.
A more complex sxample uses the channel H(D) = 1 +D −D2 −D3 with binary inputs.

>> y = [4 0 -4 2 -2 0 4 2];

>> v = 3;

>> b = 1;

>> Sk = [

1 5

1 5

2 6

2 6

3 7

3 7

4 8

4 8];

>> Yk = [

0 -2

2 0

2 0

4 2

-2 -4

0 -2

0 -2

2 0];

>> Xk = [0 1 0 1 0 1 0 1];

>> mh = mlsd1D(y, v, b, Sk, Yk, Xk,1)

mh = 1 0 1 0 0 1 1 1

This is the input that produces the output since there is no noise.
Running again with some significant noise produces different output:

mh = mlsd1D(y+[-.9 .3 .4 -.6 -1 -1.2 -.8 .1], v, b, Sk, Yk, Xk,1)

0 1 0 1 1 1 0 1

The reader can try smaller noise offsets and see that the decoder produces the same as zero noise.
For the 4-state trellis in Figure 7.2, the use is

>> y = [1 0 1 0 3 1];

>> v = 2 ;

>> Sk = [

1 3

1 3

2 4

1103

2 4];

>> Yk = [

0 3

3 0

2 1

1 2];

>> Xk = [0 1 0 1];

>> mh = mlsd1D(y, v, b, Sk, Yk, Xk,0)

mh = 0 0 0 0 1 1

This matches Figure 7.2. For the soft MLSD decoding of the same channel as in Figure 7.3.

>> ysoft = [-0.9000 -1.1000 -0.5000 -0.8000 0.9000 -0.9000

0.5000 -0.9000 1.0000 -0.7000 1.0000 1.0000];

>> Yk

Yk(:,:,1) =

-1 1

1 -1

1 -1

-1 1

Yk(:,:,2) =

-1 1

1 -1

-1 1

1 -1

% Sk, v, b, Xk remain the same

>> mh = mlsd1D(ysoft, v, b, Sk, Yk, Xk,1)

mh = 0 0 0 0 1 1

% or for the second output

>> ysoft(:,4)=[-.8 ; .1];

>> ysoft(:,6)=[-.9 ; .9];

>> ysoft =

-0.9000 -1.1000 -0.5000 -0.8000 0.9000 -0.9000

0.5000 -0.9000 1.0000 0.1000 1.0000 0.9000

>> mh = mlsd1D(ysoft, v, b, Sk, Yk, Xk,1)

mh = 0 0 0 0 1 1

>> Sk=[];

>> for i=1:8

[temp,I]=find(nextstate==i);

Sk=[Sk I];

end

The MLSD program matches the red sequence in Figure 7.3. Figure 7.3 assumes the code starts in state
00. However the program actually allows any starting state; indeed starting in other states can lead in
some cases to a lower metric. The user may want to experiment with different outputs. A version of the
program that forces a starting (or ending or both) state(s) awaits an extra-credit project by motivated
student.

1104

+3+1-1-3
A

B
Figure 7.7: Partitioning for Reduced State Sequence Detection.

7.1.3.4 Reduced State Sequence Estimation Example

It is possible to reduce the number of states to 2 for the 1+D channel in implementing (nearly optimum)
sequence detection for |C| > 2. Figure 7.7 illustrates a constellation labeling for the |C| = 4 case,
introduced by Eyuboǧlu and Qureshi [3]. The constellation partitions into two groups (A and B) with
twice the minimum distance within each group.

+6
+2
−2

+4
0
−4

+4
0
−4

−6
−2
+2𝑘 + 1𝑘

A

B
Figure 7.8: Reduced State Sequence Estimation trellis.

Figure 7.8 shows a new two-state trellis for the |C| = 4 1 +D channel. This new trellis states reflect
only the set, A or B, that was last transmitted over the channel. The minimum distance between any
two sequences through this trellis remains dmin = 2

√
2. The distinction between any two points, by

symbol-by-symbol detection, in either set A or in set B, once selected, has an even larger minimum
distance, d = 4. Thus, the error probability of error will be approximately the same as the |C|-state
detector.

In general for PAM or QAM constellations, it is possible to partition the signal constellation into
subsets of increasing minimum distance (see the mapping-by-set-partitioning principles of Appendix B
for a specific procedure for performing this partitioning). In reduced state sequence detection (RSSD,
Eyuboglu, 1989), one partitions the constellation to a depth such that the increased intra-partition
minimum distance equals or exceeds the minimum distance that can occur in sequence detection. The
number of partitioned sets is then denoted M ′. Obviously, M ′ ≤ |C| and most often M ′ = 2 making
the number of states consistently 2ν as in the sequential encoders without partial response. Then RSSD
can be applied to the corresponding (M ′)ν-state trellis, potentially resulting in a significant complexity
reduction with negligible performance loss. If the signal set cannot be partitioned to a level at which
the intra-partition distance equals or exceeds the minimum distance, then simple RSSE cannot be used.

1105

7.2 MLSD Analysis

MLSD Analysis computes the distance spectrum4 dmin(i), i = 0, 1, ... with dmin(0)
∆
= dmin and their

corresponding multiplicities Ni with N0
∆
= Ne. Determination of dmin(i) and Ni can be complex. Several

methods exist that find Dmin, the nearest-neighbor counts Nd∈Dmin , and even the corresponding bit-error
probabilities.

Subsection 7.2.1 first discusses error events, Error-event analysis investigates directly the errors that
can occur. Subsection 7.2.2 provides example analysis for the 4-state convolutional code, while Subsection
7.2.3 does so for the 1+D partial-response AWGN channel. Both subsections’ results extend (with tedious
calculation) to more complex convolutional codes and partial-response channels respectively. Section ??
provides Ginis’s sequential encoder analysis program, which can input any sequential encoder’s trellis
and output the distance spectrum Dmin, {Nd}, and the average number of bit errors.

7.2.1 Error Events

1path

2path

𝑠!,#

𝑠$,#

𝑠$,#%& = 𝑠!,#%&

Figure 7.9: Example of trellis error event.

Error events enumerate the various ways in which a MLSD receiver can incorrectly decide upon a message
sequence. Figure 7.9 illustrates two sequences corresponding to one possible error event through a 4-
state trellis. The decoder decides the incorrect sequence, which differs only in 3 symbol periods from the
correct sequence because the channel output was such that it looked more like the incorrect sequence.
This event may continue if the system continues operation. The event ends when the two paths merge
again to perpetuity.

Definition 7.2.1 [Error Event] An error event occurs when the decoder does not detect

the correct sequential-encoder trellis sequence X̂(D) 6= X(D) and the trellis paths X̂(D)
and X(D) first diverge at some specific time point k where x̂k 6= xk. For this text’s
time-invariant trellis with ν ≥ 1, k = 0 without loss of generality.

4For finite-field codes on a DMC, these distances have simpler indexing d ∈ Dmin = {dfree < dfree + 1 < dfree + 2...},
so d simplifies to an index for integers equal to or larger than dfree.

1106

The two paths merge again at some later time k + `x = `x where 0 < `x < ∞ is the
error event length and may tend to infinity with zero probability, but any interest-
ing5 non-zero probability error event always merges at some later finite time `x. The
inputs correspondingly have x̂m = xm ∀ m < 0 , m ≥ `x.

The output error event sequence between the noiseless sequence, ỹk and the decoder
sequence, ŷk, is

εy(D)
∆
= Ỹ (D)− Ŷ (D) = H(D) ·X(D)−H(D) · X̂(D) , (7.15)

where the input error event sequence is εx(D)
∆
= X(D) − X̂(D) with length `x.

Necessarily, `x ≤ `y for all error events. When H(D) = I, then εy(D) = εx(D) and
`y = `x. For partial response (strictly causal H(D) 6= I and of degree ν) `y = `x +

ν. A corresponding encoder input or message error-event sequence is εm(D)
∆
=

m(D)	M m̂(D), where the subtraction is modulo M . For the BSC with binary encoder
output sequence of 0’s and 1’s for x(D), which is sometimes called v(D) = x(D) for
convolutional codes or block codes with b̄ < 1, the subtraction in the error event εv(D) =
v(D) 	 v̂(D), so vector modulo M = 2 in each element. For binary, ⊕ and 	 are
the same operation. This text’s analysis use lower-case epsilon notation ubiquitously for
error events, whether in fields C or GF

The error event’s application to partial-response channels, which like convolutional codes have a trellis
and sequence descriptions, slightly complicates error-event definition above. This complication forces
the distinction between channel-input and channel-output error events above and admits the possibility
that `y > `x. For instance for the binary 1 + D channel, an input error event of εx(D) = 2 and `x = 1
produces the channel output error event εy(D) = 2+2D with `y = 2. These two descriptions, εx(D) = 2
and εy(D) = 2 + 2D, correspond to the same input error sequence x̂(D) = +1 being the decoder output
when the correct sequence was x(D) = −1.

7.2.1.1 Performance Analysis with Error Events

The sequence-error probability of sequence error is

Pe = Pr{X̂(D) 6= X(D)} . (7.16)

MLSD minimizes Pe when all sequences are equally likely. Pe is the overall probability that any error
event for a specific code can occur. Analysiis can upper bound Pe by enumerating all possible error
events, then upper bounding the probability of each, and finally summing all. Different error events
may have different probabilities. Some events have smaller ‖ε‖ and thus occur with greater probability.
Figure 7.10 illustrates two error events for a binary 1+D channel that have the same distance d2

min = 8,
but have different probabilities.

The two error events in Figure 7.10 are εx = 2 and εx = 2−2D. The first has probability of occuring
.5 ·Q(

√
2/σ) because the value of εx,0 = 2 can only occur half the time when x0 = +1, and never when

x0 = −1. That is, the probability that 2 is allowed is 1/2 at any time k for the 1 +D channel. Similarly,
the input error event 2 − 2D is allowed (.5)(.5)=.25 of the time, corresponding only to the error event
sequence of length (`x) two 1−D, which is one of four equally likely messages of length two. The number
of nearest neighbors Ne for this trellis will include terms like these two in determining the Q-function
multiplier that bounds error probability.

In general, Equation (7.11) bounds MLSD error probability on the AWGN channel. For the BSC, a

5It is possible for the input error event to have infinite length, but corresponds to a situation that is known as a
catastrophic encoder and is not a code to be used in practice.

1107

similar expression from Chapter 1, Section 7, as well as Chapter 2, is

Pe ≤
∞∑
i=0

Ndfree+i · [4p(1− p)]
(dfree+i)/2 =

∞∑
d=dfree

Nd · [4p(1− p)]d/2 , (7.17)

𝑘 𝑘 + 1 𝑘 + 2 𝑘 + 3

𝑘 𝑘 + 1 𝑘 + 2 𝑘 + 3time

time

+1

-1

+1

-1

2/1 2/1 2/1

0/1

0/−1

1
2 * 𝑄

2
𝜎

1
4
* 𝑄

2
𝜎

0/−1 0/−1

0/1 0/1

2/1 2/1

Figure 7.10: Illustration of error events with same dmin and different probabilities.

The BSC’s error probability then has bound:

Pe ≤
∞∑

d=dfree

Nd

[√
4p(1− p)

]d
. (7.18)

An aproximation to Equation (7.18) uses the first term

Pe ≈ Ne ·

(
dfree⌈
dfree

2

⌉) · pd dfree2 e ≈ Ne · [4p(1− p)]dfree/2 , (7.19)

effectively the BSC’s nearest-neighbor union bound. This is the sequence-error probability. For convolu-
tional codes, the bit-eerror probability P̄b may be of more interest. P̄b calculation for either the AWGN or

1108

the BSC requires the sequential encoder’s input-message-bi- to-codeword mappings. Essentially, analysis
requires the function

N(i, d)
∆
= number of error events of distance d that correspond to i input bit errors on average.

(7.20)
The “on-average” part needs interpretation for partial-response channels. Otherwise N(i, s) enumerates
input-to-output mappings and associated input bit errors. P̄b has then bound

P̄b <
1

b

∞∑
d=dfree

∞∑
i=1

i ·N(i, d) ·
[√

4p(1− p)
]d

. (7.21)

The 1/b divider in front is the number of bits per symbol. Section 1.3.2.4’s average total number of bit
errors per (minimum-distance) error event (when all input messages are equally likely and independent
from symbol to symbol) is

Nb =

∞∑
i=1

i ·N(i, dfree) =

M−1∑
i=1

px(i) · nb(i) . (7.22)

For convolutional codes, the Nb follows a more code-directed expression that Chapter 1’s simpler per-
symbol definition intended for simpler symbols, and all same-length input sequences are assumed equally
likely. Two other similar relationships are:

Ne =

∞∑
i=1

N(i, dfree) (7.23)

Nd =

∞∑
i=1

N(i, d) (7.24)

Further then the average bit-error rate has approximation

P̄b ≈
Nb
b
·

(
dfree⌈
dfree

2

⌉) · pd dfree2 e ≈ Nb
b

[4p(1− p)]dfree/2 . (7.25)

For the AWGN, again,

P̄b ≈
Nb
b
·Q
[
dmin
2σ

]
. (7.26)

7.2.2 Example Analysis of the 4-state Convolutional code

Section 7.1’s 4-state convolutional code example has the error events

εv(D) = εu(D) ·G(D) (7.27)

where all multiplication and addition is modulo-2 and G(D) = [1 +D +D2 1 +D2]. For linear binary
codes, the set of all error events is the same as the set of nonzero codewords. This greatly simplifies
linear codes’ analysis. The distance distribution Dmin thus counts the numbers of ones in the nonzero
codewords, and the values for Nd are simply determined by counting codewords with the same number
of ones.

In addition G(D), there is a second type of scalar “transfer function” that characterizes convolutional
codes. 4-state convolutional code. Figure 7.11 redraws the underlying state-transition diagram in a
convenient manner with all inputs, outputs, and states in binary. Any codeword is formed by tracing a
path through the state transition diagram. The all zeros codeword is the self loop at state 00. Comparison
to this all-zeros codeword determines the other possible codewords, or equivalently the error events Figure
7.11 constructs this transfer function T (W) for the

1109

10/0

00/1

11/1
00/0

11/0

01/1

10/1

01/0
11

10
0100

W

1

W2

W

W

W
11

10

0100
W2

Figure 7.11: Transfer Function Construction for 4-State Example

Figure 7.11’s lower half uses a place keeper for each branch/subsymbol’s Hamming weight as exponent
on the place-keeping variable W. The analysis construes this place keeping variable (with exponent) as
T (W). The Hamming weight is the exponent of W along the corresponding path between the input and
output state. The output state is just the input state repeated. For this example, the minimum weight
codeword, or equivalently sfree, comes from the W5 path, so that dfree = 5.

However, there is much more information contained in this transfer function. Computing the transfer
function can be done in several ways, but we use Mason’s Gain formula here:

T (W) =

∑
Tk ·∆k

∆
, (7.28)

where

∆ = 1− (sum loop gains) + (sum products of two non-touching loop gains)− ... , (7.29)

1110

∆k = ∆(with the kth forward path removed) (7.30)

and
Tk = gain of kth forward path . (7.31)

For this example,

T (W) =
W5(1−W) + W6

1− (W + W + W2) + W ·W
=

W5

1− 2W
= W5

∞∑
k=0

(2W)k . (7.32)

Thus,
T (W) = W5

[
1 + 2W + 4W2 + 8W3 + ...

]
. (7.33)

There is one nearest neighbor at distance 5, 2 nearest neighbors at distance 6, 4 at distance 7, and so
on. A similar approach applies to partial-response channels, with (squared) Euclidean distance replacing
Hamming distance as the exponent of W. Any permutation of the order of the codeword’s bit order will
not affect T (W). The nearest neighborl value Ne for subsymbols is the coefficient of Wdmin in T (W)
or

Np
e rime =

1

dfree!
· ∂T (W)

∂Wdfree
|W=0 . (7.34)

The transfer function T (W) can be more difficult to compute for codes with more states, perhaps more
difficult than just searching the trellis. The next subsection produces the desired Ne-like coefficient for
symbol-error probability expressions.

7.2.2.1 Expanded Use of Transfer Functions

Transfer-function’s expanded analysis can use L as a placeholder variable for the output error-event
length, I as a placeholder erred input bits, and J erred subsymbols. Each branch has gain multiplied
by L, and by the power of I that corresponds to the number of input “1” bits, and by the power of J
that corresponds to the number of symbol errors.

WLJ

LI

W2LIJ

WLIJ

WLIJ

WLJ
11

10

0100
W2LJ

Figure 7.12: Expanded Transfer Function Computation

1111

Figure 7.12 repeats Figure 7.11 with L, I, and J . Again, using Mason’s Gain formula,

T (W, L, I, J) =
W5L3IJ3(1−WLIJ) + W6L4I2J4

1− (WL2IJ + WLIJ + W2L3I2J2) + W2L3I2J2
(7.35)

=
W5L3IJ3

1−WL2IJ −WLIJ
=

W5L3IJ3

1−WLIJ(1 + L)
(7.36)

= W5L3IJ3
(
1 + WLIJ(1 + L) + (WLIJ)2(1 + L)2 + ...

)
(7.37)

which shows there is one error event of length 3, with dfree = 5, 1 corresponding input bit error, and 3
symbol errors; one error event of length 4 (and also one of length 5); d = 6 with 2 input bit errors, and
4 input symbol errors; and so on. Also, with a little thought,

Nb =
1

dfree!
· ∂T (W, 1, I, 1)

∂Wdfree∂I
|W=0
I=1

(7.38)

and

Ne symbol errors =
1

dmin!

∂T (W, 1, 1, J)

∂Wdmin∂J
|W=0
J=1

(7.39)

This Ne is for subsymbols, not codewords.

7.2.3 Example Exact Analysis of the 1 +D partial response channel

For the partial response channel with H(D) = 1 + D, it is trivial to determine by inspection (even for
M > 2) that the minimum distance is thus d2

min = d2 + d2 = 22 + 22 = 8, or dmin =
√

2 · d = 2
√

2.

Then
(
dmin
2σpr

)2

=
(√

2d
2σpr

)2

= MFB. Thus MLSD attains the MFB, with finite real-time complexity and

without equalization!. Contrast this detector with the ZFE, which suffers infinite noise enhancement on
this channel, or the ZF-DFE which even with precoding remains 3 dB inferior to MLSD.6

7.2.3.1 Analysis by input error-event enumeration

For the 1 +D channel with binary (xk = ±1) inputs, the NNUB P̄e expression is

P̄e ≤ N̄e ·Q
[
dmin
2σpr

]
= N̄e ·Q

[√
2

σpr

]
, (7.40)

since MLSD attains the matched-filter bound performance level on this channel. MLSD chooses from an
infinite number of input sequences. Figure 7.13’s trellises illustrate error-events of lengths `x = 1, 2, 3. A
length `x input error event must correspond to two paths that diverge (i.e., have a nonzero first entry) in
the first trellis stage, and merge exactly `y = `x+ν = L+ 1 stages later. (If it merges sooner or diverges
later, it is not of length `x.) 7 Symmetry permits consideration of only those error events beginning in
one of the two states (+1 is used in Figure 7.13), because the other state’s error events have identical
length, number, and distribution. Also, the Nd are the same for either terminating state. This is because
the input error-event sequence sample is 0 in the last ν stages (In Figure 7.13, ν = 1).

6A higher error coefficient will occur for the Q-function with MLSD than in the strict MFB, which becomes evident
later at higher values of M .

7This is sometimes called the analysis of the first error event, and tacitly assumes that all previous inputs have been
correctly decoded. In practice, once an error has been made in sequence detection, it may lead to other future errors being
more likely (error propagation) because the survivor metric coming into a particular state where the event merged is no
longer the same as what it would have been had no previous error events occurred.

1112

+1

−1
−2

2

0

0

+1

−1
−2

2

00

2
𝒙𝒌 𝒑𝒙 𝑵𝒊 𝒍𝒙
+1 .5 1 1

-1 .5 1 1

*𝑁$ = 1 - .5 + 1 - .5 =1
a). 𝒍𝒙=1 error events for 1 + 𝐷 with binary inputs

b). 𝑙%=1,2 error events for 1 + 𝐷 with binary inputs

c). 𝑙%=1,2,3 error events for 1 + 𝐷 with binary inputs

+1

−1

2

0

0

0
0

2

*𝑁$ = 4 - .25 + 2 - .25 = 1.5

𝒙𝒌	𝒙𝒌&𝟏 𝒑𝒙 𝑵𝒊 𝒍𝒙
+1 +1 .25 1 1

+1 -1 .25 2 1,2

-1 +1 .25 2 1,2

-1 -1 .25 1 1

+1

−1

2

0

0

0

0

0
0

2

*𝑁$ = 8 - .125 + 4 - .125 + 2 - .125 = 1.75

𝒙𝒌	𝒙𝒌&𝟏𝒙𝒌&𝟐 𝒑𝒙 𝑵𝒊 𝒍𝒙
+1 +1 +1 .125 1 1

+1 +1 -1 .125 1 1

+1 -1 +1 .125 3 1,2,3

+1 -1 -1 .125 2 1,2

-1 +1 +1 .125 2 2,1

-1 +1 -1 .125 3 1,2,3

-1 -1 +1 .125 1 1

-1 -1 -1 .125 1 1

Figure 7.13: Binary error events of length 1, 2, and 3 for the 1 +D channel.

Analysis need include only merges into the top state (+1) in Figure 7.13: more generally, analysis
need only consider the first `x stages and any final states into which a merge occurs, since all further
stages in the trellis correspond to no differences on the inputs or εx,k = 0 values. Again, MLSD analysis
sincludes only those error events corresponding to minimum distance in N̄e because it is difficult to
include those of greater distance (even if they have a common decision boundary).

For length `x = 1, the input +1 has only one neighbor at (channel-output) distance dmin = 2
√

2 and
that is the input sequence −1. The input error event sequence is thus εx(D) = 2 and the output error
sequence is εy(D) = 2 + 2D. The situation for the other input sequence (−1) is identical, so that there
is only one nearest neighbor of length `x = 1, on the average. Thus, as N̄e(1) = .5(1) + .5(1), where the
argument of N̄e(`x) is the length of the input error event sequence. For lengths `x ≤ 2, there are four
possible sequences that begin with a nonzero input error event sequence sample at time (trellis stage)
0. (This analysis can consider only error events that begin at the sample time 0 in computing error
probabilities because this is the time for which MLSD is in error.) From the table included in Figure
7.13(b), there are 2 error events of length 2 and 4. The input sequences X(D) = ±(1 − D) have two
nearest neighbors each (one of length 1, εx(D) = ±2 and one of length 2, εx(D) = ±(2 − 2D)), while
X(D) = ±(1 +D) have only one nearest neighbor, each, of length 1, εx(D) = ±2. Thus, the number of
nearest neighbors is N̄e(1, 2) = .25(2) + .25(2) + .25(1) + .25(1) = 1.5. This computation reorganizes as

N̄e(1, 2) = N̄e(1) + N̄e(2) = 4(.25) + 2(.25) = 1.5 . (7.41)

Error events of length 3 or less include only two new error-event sequences, εx(D) = ±(2 − 2D + 2D2)
of length 3, and the rest of the error event events are just those that occurred for length 2 or less. Thus,

N̄e(1, 2, 3) = N̄e(1) + N̄e(2) + N̄e(3) = 8(.125) + 4(.125) + 2(.125) = 1.75 . (7.42)

1113

In general, input error events (corresponding to output minimum distance) of length `x are then given
by

εx(D) =

{
±(2− 2 ·D + 2 ·D2 −+ 2 ·D`x−1) `x odd
±(2− 2 ·D + 2 ·D2 −− 2 ·D`x−1) `x even

(7.43)

with the corresponding channel-output error events as

εy(D) = (1 +D) · εx(D) =

{
±(2 + 2 ·D`x) `x odd
±(2− 2 ·D`x) `x even

. (7.44)

In general, the two error events of length `x will contribute N̄e(`x) = 2 · 2−`x to N̄e. Then

N̄e = 2

∞∑
`x=1

2−`x = 2(
1

1− .5
− 1) = 2 , (7.45)

so

P̄e ≈ 2 ·Q

(√
2

σpr

)
. (7.46)

7.2.3.2 Analysis by error-event enumeration (d=2)

It can be tedious to enumerate all input sequences for a partial-response channel to compute N̄e. Instead,
enumeration of the input error events, as in Equation (7.43)is simpler. Again for the 1 + D partial-
response channel, for any M ≥ 2, these error events are the only ones that can produce the minimum
distance of dmin = 2

√
2. The probability that an input error event sequence value at any sample time k

can occur is just
M− |εk|2

M = M−1
M . The error εk 6= 0 or the error event would have ended earlier. Then,

for any M ≥ 2, the number of nearest neighbors is

N̄e = 2 ·
∞∑
`x=1

(
M − 1

M

)`x
= 2 · (M − 1) . (7.47)

While the argument of the Q-function is the same as that in the MFB, the nearest neighbor count
is at least a factor of 2(M − 1)/[2(1 − 1/M)] = M larger. For large M , the increase in Pe can be
significant, so much so, that there is very little improvement with respect to symbol-by-symbol detection
with precoding.

To determine each error event’s average number of bit errors occurring, let us first assume that MLSD
uses no precoding, but that adjacent input levels differ in at most one bit position when encoded. The
average number of bit errors per error event was defined in Chapter 1 as

Nb =
∑
b

b ·N(b, dfree) . (7.48)

which is equivalent to the expression

Nb =
∑
i

nbε(i) · pε(i) (7.49)

where nbε(i) is the number of bit errors corresponding to error event i and pε(i) is the probability
that this error event can occur. The average number of bit errors per error event for the duobinary
partial-response channel can then be computed as

Nb = 2 ·
∞∑
`x=1

(`x)

(
M − 1

M

)`x
= 2 ·M · (M − 1) , (7.50)

Then, the bit error rate is accurately approximated by

P̄b(no precode) ≈ Nb
b
·Q

[√
2

σpr

]
=

2 ·M · (M − 1)

log2(M)
Q

[√
2

σpr

]
. (7.51)

1114

The Q-function’s coefficient in this expression is unacceptably high. However, precoding reduces it to a
maximum of 2 input bit errors for any `x. Then Nb = 2 · N̄e, and

P̄b(precode) ≈ 4 · (M − 1)

log2(M)
·Q

[√
2

σpr

]
. (7.52)

WhenM = 2, precoding does not reduce P̄b, but it does prevent a long string of bit errors from potentially
occurring when a long error event occurs. Precoding is almost universally used with sequence detection
on partial-response to avoid this “quasi-catastrophe.” Also, as M increases above 2, precoding reduces
P̄b significantly. Definition 7.2.2 formalizes, along with Theorem 7.2.1:

Definition 7.2.2 [Quasi-Catastrophic Error Propagation] A controlled ISI channel, and
associated input symbol encoding, is said to exhibit quasi-catastrophic error propa-
gation if it is possible for an error event that produces minimum distance at the channel
output to produce an infinite number of input symbol errors. With M -ary (power-limited)
inputs to the controlled-ISI channel, necessarily, the probability of such a “catastrophic”
occurrence is infinitesimally small.

While the probability of an infinite number of input bit errors is essentially zero, the probability
that a large finite number of bit errors will be associated with a single minimum-distance error event is
not. This usually occurs with channels that exhibit quasi-catastrophic error propagation. This effect is
undesirable and the input encoding rule eliminates its possibility.

Theorem 7.2.1 [Precoding for Sequence Detection] By using the precoder, P(D), for
a partial-response channel that permits symbol-by-symbol detection (i.e., no memory of
previous decisions is required with Section 3.7’s precoder), the controlled-ISI channel with
MLSD cannot exhibit quasi-catastrophic error propagation.

Proof: Since Section 3.7’s partial-response precoder makes the channel appear memo-
ryless, then the input symbols corresponding to εy,m = 0 in the interior of an infinite-
length error event must correspond to εx,m = 0 (because the outputs are the same and
the receiver otherwise could not have made a memoryless decision, or in other words
εy,m = εx,m = 0). Thus, no input symbol errors can occur when εy,m = 0, as must occur
over nearly every (but a finite number) of sample periods for partial-response channels
with their integer coefficients, leaving a (small) finite number of input symbol errors.
QED.

That is, good designers use precoding even with MLSD on partial-response channels – it limits long
error bursts.

7.2.4 Ginis’ Code-Analysis Program

This section describes an algorithm that computes the dmin/dfree by search lists of a trellis’ two diverg-
ing/merging paths (possible error events of interest). An early version of this algorithm was suggested
in the dissertation of Dr. Sanjay Kasturia, a former Stanford Ph.D. student, but this particular mat-
lab program with many enhancements is the product of former Stanford Ph.D. and EE379 student Dr.
George Ginis.

1115

7.2.4.1 Algorithm Description

The algorithm applies “Breadth-First-Search” to find merging paths. The search extends through the
trellis one state at a time, until the minimum distance is found by separation of merged path pairs from
candidate path pairs.

The algorithm maintains a state-pair list (so list of sets like [s1, s2]), each with a corresponding cost
(distance between paths). This cost ∆ is between two paths of equal length starting at some common
state and ending at s1 and s2 (see Fig. 7.9). Equivalently, this list contains partially constructed (or
completed) error events, for the common starting state. These two possible end states s1 and s2 may
differ, but can also be the same state, in which latter case the list contains the corresponding error event.
The algorithm consists of two stages: list initialization the and list update.

List initialization: Initially, the list (denoted as L) is the null set. For each trellis state, the list
contains state-pairs that can be reached in one additional stage. A pair of states (s1, s2) is reachable
from a state s0 in one stage, if there is one trellis branch/transition from s0 to s1, and another from
s0 to s2.) For each pair the program’s cost is “d,” the Hamming distance for BSC or distance squared
for AWGN, between the corresponding branches. The algorithm adds each and every state pair not
already in L to L together with their associated costs, d. If a state pair is already in L, but the existing
associated cost is larger than the new cost d, then the cost is updated to the new d. At initialization’s
completion, L contains all state pairs that can be reached in trellis stage from any single state, together
with their corresponding costs.

To complete list initialization, the algorithm sets an upper bound on minimum cost (e.g. some large
value, which is certain to exceed the minimum distance). Each time an error event with lower cost is
found (which initially is less than this upper bound), the new cost replaces upper-bound/lowest cost
with this new smaller possible minimum distance. Also, a new list D is initialized to the null set. The
list D will eventually contains all the searched state-pairs.

List update: The update step selects the state pair in L with the smallest associated cost, e.g. (s1, s2).
If this cost is larger than the upper bound, the program exits and returns the upper bound. This is one
of two possible algorithm exits. Otherwise, the algorithm extends the pair as follows: The set of all state
pairs reachable by extending s1 and s2 is first found, and for each new pair in this set, the associated
cost d is computed by adding this candidate cost to the old cost between s1 and s2. If any such pair
has the new states s1 = s2, then an error event has been found. Up such finding, if the upper bound is
larger than d, this upper bound is updated to d. If the pair does not have same states, s1 6= s2, then
this new pair is checked whether it is already in L or in D. If it is neither in L nor in D, then it has
not yet been extended, and it is inserted in L together with its associated d. If the pair is already in L,
but with an old associated distance that is larger than d, then the distance is updated to new smaller
cost d. In call cases, the original (s1, s2) that was extended is deleted from L (further extensions only
research the same cost possibilities) and added to the set of searched pairs in D. The above procedure is
repeated, until L becomes empty, which is the second exit referred to above, or until the upper bound on
minimum cost is now below the d associated with all the remaining partial error events to be searched
in L.

7.2.4.2 Using the MATLAB Program

Ginis’ dmin program, dmin main.m consists of 11 MATLAB m-files implementing the algorithm. The
user only needs to be aware of few of these m-files, while the complete set of 11 listings appears in
Appendix G. The program was initially written without inclusion/use of matlab’s set commands. An
enterprising student might try to update it with those commands, hopefully reducing run time for large
trellises. The list L is initialized (dmin init.m), and the iteration steps are performed (dmin iter.m).
The output of the program is the minimum distance.

The distributed version of the program defines distance in the sense of the Hamming distance (see
bdistance.m). Of course, in case a different cost metric is needed, this function can be easily modified to
include that cost instead, see problem 7.11. The function bdistance included here is binary or Hamming

1116

distance – it could be replaced by Euclidean distance for other searches with the AWGN channel.
Changing bdistance allows searching of both partial response trellises and the “trellis-code” trellises of
Chapter 8– see Problem 7.11.

The main program is really all the user needs to know.

>> help dmin_main

[dmin,L] = dmin_main(nstates,b,nextstates,branchouts,E)

Main program. Finds minimum distance in a general trellis.

INPUTS

nstates - the number of trellis states

b - number of input bits

nextstates - (2^b x nstates) matrix

each entry contains next state for current state(col) and input(row)

example is =[1 2; 3 4; 1 2; 3 4] for 4-state conv code b=1, nstates=4

branchouts - (2^b x nstates) matrix containing branch outputs

E - E=1 for Euclidean sqared distance; otherwise 0 for Hamming

OUTPUTS

dmin - minimum distance

The list L - columns are s1, s2, d , and list ID (0 or L, 1 for D)

Calls to: dmin_init and dmin_iter

George Ginis, April 2001 ; modified J. Cioffi 2023

>> help dmin_init

L=dmin_init(nstates,b,nextstates,branchout, E)

Subroutine: Called by dmin_main

calls:

trellis_fn

in_list

extract_list

add_list

bdistance

setdist_list

Initializes list L.

INPUTS

nstates - the number of trellis states

b - number of input bits

nextstates - (2^b x nstates) matrix

each entry contains next state for current state(col) and input(row)

example is =[1 2; 3 4; 1 2; 3 4] for 4-state conv code b=1, nstates=4

branchouts - (2^b x nstates) matrix containing branch outputs

E - E=1 for Euclidean sqared distance; otherwise 0 for Hamming

OUTPUTS

The list L - columns are s1, s2, d , and list ID (0 or L, 1 for D)

1117

George Ginis, April 2001 modified J. Cioffi 2023

>> help dmin_iter

[dmin,L]= dmin_iter(L,nstates,b,nextstates,branchout,ub,E)

Subroutine: Called by dmin_main

calls:

trellis_fn

in_list

extract_list

add_list

bdistance

setdist_list

delete_list

findmin_list

updates list L, creates D

INPUTS

nstates - the number of trellis states

b - number of input bits

nextstates - (2^b x nstates) matrix

each entry contains next state for current state(col) and input(row)

example is =[1 2; 3 4; 1 2; 3 4] for 4-state conv code b=1, nstates=4

branchouts - (2^b x nstates) matrix containing branch outputs

ub is an uppoer bound on minimum distance (chosen large)

E - E=1 for Euclidean sqared distance; otherwise 0 for Hamming

OUTPUTS

dmin - minimum distance

The list L - columns are s1, s2, d , and list ID (0 or L, 1 for D)

George Ginis, April 2001 ; modified J.Cioffi 2023

7.2.5 Rules for Partial-Response Channels

The following rules can be easily identified for attaining the MFB performance level with MLSD for
partial response channels:

1. If ν = 1, then MFB performance is always obtained with MLSD

2. If ν = 2, then MFB performance is obtained if sign(h0 = −sign(h2).

7.2.6 Decision Feedback Sequence Detection

In Decision Feedback Sequence Detection, the feedback section inputs are the trellis survivors. That is,
the branch metric ∆i,j,k’s calculation uses the survivor for the starting state as the input to the feedback
section. This input to the feedback section thus will vary with the state.

For example if a trellis code with a trellis were the input to the 1 + .9D−1 channel that appears
throughout this book with 8.4 dB of SNR and MFB=10dB for uncoded transmission, then the branch
metric calculations for Viterbi decoding of the code itself would use the last symbol in the survivor path
into the initial state, so .633xsurvivor,k−1 is the feedback section output. This is intermediate to MLSD
performance and a MMSE-DFE. It is sometimes also called list decoding.

1118

7.3 MAP detection with the APP and SOVA Algorithms

As in Chapter 2, decoders need not initially make a hard decision about the transmitted symbol val-
ues. Instead, the decoder may measure input messages’ relative likelihood (probability). This likelihood
measure is “soft information.” The decoder eventually makes a “hard” decision by selecting the input
message value with the largest soft information. Such soft information may help decode other symbols,
or more specifically other subsymbols or even bits. Section 7.5 examines successive soft-information
exchange between decoders in“iterative decoding.” This section describes the à posteriori probabil-
ity (APP) algorithm that exactly computes the probabilities that a MAP detector uses with coded
transmission. While simpler decoders might suffice, they may not consequently assist another decoder
for the same information.

Subsection 7.3.1 investigates a recursive VA-like algorithm that maximizes individual bit/subsymbol-
error’s à posteriori probability (APP). This MAP detector name often applies to this individual probabil-
ity while ML, or MLSD as per Sections 7.1 and 7.2’s VA, applies to the maximum-likelihood sequence’s
probability. The MAP detector can be complex, and Subsection 7.2’s soft-output VA (SOVA) largely
obtains the same results by propagating log-likelihoods (LLs) or log-likehood ratios (LLRs) directly with
some approximations that lead directly to a soft-output Viterbi Algorithm (SOVA). Both methods pro-
duce soft output information that can be useful to the detector itself as well as to other decoders as
examples will illustrate.

7.3.1 MAP with the APP Algorithm

Maximum likelihood and MAP sequence detection respectively choose the sequence that has maximum
likelihood (py(D)/x(D)) or maximum a posteriori (px(D)/y(D)) probability. Such a best detected sequence
may not correspond to the minimum error probability for each of its constituent symbols, nor does it
correspondingly produce minimum probability of bit or message error for each individual bit/message.
While Section 7.2 computed MLSD’s stationary-channel (really sub-) symbol-error corresponding to min-
imum sequence-error probability, this subsymbol-error is not necessarily a minimum. A decoder could
instead directly maximize pmk/y(D) for each sample time k. Such bit/sybsymbol decoding is more com-
plex than MLSD for exact implementation. However, such maximization improves system performance
if symbol error probability is a more important system measure than sequence-error probability.

The APP algorithm directly computes the AP probabilities when a code can be described by a trellis
diagram over any finite block of K subsymbols. Each subsymbol/bit probability density has a maximum
soft value to which a decoder can assign the hard MAP estimate of mk. The APP algorithm also has
the names “forward-backward” algorithm or the Bahl-Cocke-Jelinek-Ravin (BCJR)[4] algorithm.

The channel-output-subsymbol sample block is Y 0:K−1. The APP decoder detects mk , k =
0, ...,K − 1 through the corresponding values of pmk/Y 0:K−1

k = 0, ...,K − 1. The latter are the APP’s
soft information.

A code’s trellis description at any time k ∈ [0 : K−1] has a set of states Sk = {0, ..., |Sk|−1 = 2ν−1},
with individual state denoted sk = j where j = 0, ..., |Sk|−1. Each trellis branch between state sk−1 = i
and state sk = j has a conditional probability that is a function of the code:

pk(i, j) = p(sk+1 = j/sk = i) . (7.53)

Further an individual branch has a probability distribution for the input data message

qk(i, j,mk) = p(mk/sk = i, sk+1 = j) , (7.54)

which is usually 1 for the branch’s assigned message and 0 for all other symbols. However, the branch
probability could be 1/M ′ for each of M ′ equally likely parallel transitions, or generally some non-
trivial parallel-transition distribution. A particularly useful APP measure is pk(sk = i, sk+1 = j/Y 0:K−1)
because each branch at time k usually corresponds to a unique mk value (that is, when there are no
parallel transitions). The set of ordered pairs B(mk) contains all state pairs of beginning and ending
trellis-branch state pairs (denoted by the branch endpoint states i and j in ordered pair (i, j)) on which

1119

mk can occur. The APP calculation (in terms of the beginning and ending states on which the specific
input mk occurs) is

pk(mk/Y 0:K−1) =
∑

(i,j)∈B(mk)

pk(sk = i, sk+1 = j/Y 0:K−1) . (7.55)

pk(sk = i, sk+1 = j/Y 0:K−1) nominally divides pk(sk = i, sk+1 = j, Y 0:K−1) by p(Y 0:K−1). Since the values
of Y 0:K−1 are not a function of the estimate of xk, this division does not change the MAP estimate
m̂k. Thus, the APP calculation ignores this normalization, The APP can compute the distribution
pk(sk = i, sk+1 = j, Y 0:K−1) and then proceed to the MAP estimate that maximizes (7.55). Individual
decisions subsequently occur for each mk for k = 0, ...,K − 1. Such individual decisions have minimum
probability of symbol-message (not sequence) error.

When there are parallel transitions, (7.55) generalizes to

pk(mk/Y 0:K−1) =
∑

(i,j)∈B(mk)

pk(mk/sk = i, sk+1 = j,yk) · pk(sk = i, sk+1 = j/Y 0:K−1) (7.56)

=
∑

(i,j)∈B(mk)

p(yk,mk/sk = i, sk+1 = j) · p(sk = i, sk+1 = j)

pk(yk/sk = i, sk+1 = j) · p(sk = i, sk+1 = j)
· pk(sk−1 = i, sk = j/Y 0:K−1)

=
∑

(i,j)∈B(mk)

p(yk,mk/sk = i, sk+1 = j)

pk(yk/sk = i, sk+1 = j)
· pk(sk−1 = i, sk = j/Y 0:K−1)

=
∑

(i,j)∈B(mk)

p(yk/mk, sk = i, sk+1 = j) · p(mk/sk = i, sk+1 = j)

pk(yk/sk = i, sk+1 = j)
· pk(sk−1 = i, sk = j/Y 0:K−1)

=
∑

(i,j)∈B(mk)

p(yk/mk, sk = i, sk+1 = j) · qk(i, j,mk)

pk(yk/sk = i, sk+1 = j)
· pk(sk−1 = i, sk = j/Y 0:K−1) . (7.57)

where qk(i, j,mk) = p(mk/sk = i , sk+1 = j) and

pk(yk/sk = i, sk+1 = j) =
∑
m′k

p(yk/m
′
k, sk = i, sk+1 = j) · p(m′k/sk = i, sk+1 = j) (7.58)

=
∑
x′k

p(yk/x
′
k, sk = i, sk+1 = j) · qk(i, j,x′k) . (7.59)

To test the case where there are no parallel transitions, q(i, j,xk) simplifies to equal to one for the
particular value of m′k = mk corresponding to the i → j branch, and is zero for all other values, and
(7.59) simplifies on the right to p(yk/mk). Then this term is common to numerator and denominator
in (7.57), and thus cancels, leaving (7.55).

7.3.1.1 3 APP Quantities

The APP algorithm computes pk(sk = i, sk+1 = j, Y 0:K−1) for either (7.55) or (7.57) as a function
of 2 recursively updated state-dependent quantities generated by progressing forward and backward
through the code’s trellis, and of a third non-recursive branch-dependent quantity that is a function that
corresponds only to the time index k of interest.

Forward Trellis Quantity α: The first forward-recursively-computed quantity αk(j) is the joint state
and past output probability (tacitly a function of Y 0:k)

αk(j)
∆
= p(sk+1 = j,Y 0:k) j = 0, ..., |Sk+1| − 1 . (7.60)

Backward Trellis Quantity β: The second-backward recursively-computed quantity βk(j) is the
state-conditional future output distribution (tacitly a function of Y k+1:K−1

βk(j)
∆
= p(Y k:K−1/sk+1 = j) j = 0, ..., |Sk+1| − 1 . (7.61)

1120

Branch Quantity γ: The third current-branch probability quantity γk(i, j) is (tacitly a function of
yk)

γk(i, j) = p(sk+1 = j,yk/sk = i) , i = 0, ..., |Sk| − 1 , j = 0, ..., |Sk+1| − 1 . (7.62)

Branch/Input Probability Calculation: Thus the quantity in (7.55) and (7.57) necessary for a
MAP detector is the product of the αk−1(i) on the state starting the branch, the γk(i, j) on the branch,
and the βk(j) at the end of that same branch. The APP first computes γk(i, j) for all trellis branches,
then executes an α recursion and a β recursion. If the detector has these 3 quantities available at any
time k, then

pk(sk = i, sk+1 = j,Y 0:k−1) = pk(sk = i, sk+1 = j,Y 0:k−1,yk,Y k+1:K−1) (7.63)

= pk(Y k+1:K−1/sk = i, sk+1 = j,Y 0:k−1,yk) · pk(sk = i, sk+1 = j,Y 0:k−1,yk)

The state k + 1 captures all post, making sk and Y k+1:K independent

= pk(Y k+1:K−1/sk+1 = j) · pk(sk = i, sk+1 = j,Y 0:k−1,yk)

= βk(j) · pk(sk+1 = j,yk/sk = i,Y 0:k−1) · pk(sk = i,Y 0:k−1)

= βk(j) · γk(i, j) · αk−1(i)

Definition 7.3.1 [APP Foundational Equation:] The important APP foundational
equation depends on the 3-term branch product

βk(j) · γk(i, j) · αk−1(i) (7.64)

and on the labeling Sk,, which is the set of all allowed branch transitions from state any
state sk to any other state sk+1 for the given trellis description. The foundational equal
is for caculation of the APP

Pr{xk/Y 0:K−1} =
∑

(i,j)|xk∈Sk

βk(j) · γk(i, j) · αk−1(i) (7.65)

The MAP detector then selects the xk subsymbol value at each time k that
maximizes (7.65).

The foundational equation requires calculation of the 3 terms α, β, and γ throughout the trellis. The sum
in (7.65) equivalently could be for each input corresponding to xk to then produce Pr{uk,i/Y 0:K−1}, i =
1, ..., and the sum modifies accordingly to be over those branches for which uk, i. (Note the time index
used was k so the equation avoided saying the maximum value of i is k, thus confusing an otherwise
simple issue.) The calculation can also be over output bits Pr{vk,i/Y 0:K−1}, i = 1, ..., n. While the
output bits APP may not seem of interest, such soft information may be of interest in an improved form
of BICM, Section 7.5’s BICM-ID (where ID is iterative decoding) where the Constellation’s Gray-code
“demapping” may be considered a code that exchanges soft information with a binary code.

γ computation: The APP computes γk(i, j) first for all branches according to

γk(i, j) = p(sk+1 = j,yk/sk = i) (7.66)

= p(sk+1 = j/sk = i) · p(yk/sk = i, sk+1 = j) (7.67)

See Equation (7.53)

= pk(i, j) ·
∑
m′k

p(yk/m
′
k, sk = i, sk+1 = j) · qk(i, j,m′k) (7.68)

which for AWGN channel is also

γk(i, j) = pk(i, j) ·
∑
m′k

pnk(yk − x′k(m′k)) · qk(i, j,m′k) . (7.69)

1121

Equation (7.68) simplifies in the case of no parallel transitions to

γk(i, j) = pk(i, j) · pyk/mk . (7.70)

α computation: A forward recursion for αk(j) is

αk(j) =
∑
i∈Sk

p(sk = i, sk+1 = j,Y 0:k−1,yk) (7.71)

=
∑
i∈Sk

p(sk+1 = j,yk/sk = i,Y 0:k−1) · p(sk = i,Y 0:k−1) (7.72)

=
∑
i∈Sk

p(sk+1 = j,yk/sk = i) · αk−1(i) (7.73)

=
∑
i∈Sk

γk(i, j) · αk−1(i) . (7.74)

The initial condition is usually α−1(0) = 1 and α−1(i 6= 0) = 0 for trellises starting in state 0. Other
initial distributions are possible including an “unknown” starting state with possibly uniform distribution
of α−1(i) = 1/|S−1| i = 0, ..., |S−1| − 1. The recursion in (7.74) essentially traces the trellis in a forward
direction, very similar to the Viterbi algorithm computing a quantity for each state using the γ quantities
on all the branches (which were computed first). The APP replaces Viterbi’s add-compare-select by a
sum-of-products operation.

β computation: A backward recursion for βk(i) is

βk(i) =
∑

j∈Sk+2

p(sk+2 = j,Y k+1:K−1/sk+1 = i) (7.75)

=
∑

j∈Sk+2

p(sk+2 = j,yk+1,Y k+2:K−1/sk+1 = i) (7.76)

=
∑

j∈Sk+2

p(yk+1/sk+1 = i, sk+2 = j,Y k+2:K−1) · p(Y k+2:K−1, sk+2 = j/sk+1 = i) (7.77)

=
∑

j∈Sk+2

p(sk+2 = j,yk+1/sk+1 = i,Y k+2:K−1)

p(sk+2 = j/sk+1 = i,Y k+2:K−1)
· p(Y k+2:K−1/sk+1 = i, sk+2 = j) · p(sk+2 = j/sk+1 = i)

=
∑

j∈Sk+2

p(sk+2 = j,yk+1/sk+1 = i) · βk+1(j) (7.78)

=
∑

j∈Sk+2

γk+1(i, j) · βk+1(j) . (7.79)

The boundary (“final”) condition for β calculation follows from Equations (7.63) to (7.64) and determines
a value of βK−1(j) = 1 if the trellis is known to terminate in a final state, j, or βK−1(i) = 1/(|SK−1| −
1), i = 0, ..., |SK−1| − 1 if the final state is not known and assumed to be equally likely. Other final
values could also be used if some à priori distribution of the final states is known. The backward
recursion is similar to Section 7.4’s backward Viterbi, again with sum-of-products operations replacing
a add-compare-select operations.

EXAMPLE 7.3.1 [Wu’s MAP decoder example] This example initially came from former
Ph.D. student Zining “Nick” Wu8, with several updates since. Figure 7.14 illustrates the
APP for the 4-state rate-1/2 convolutional code for a BSC with p = .25. The inputs and
outputs are the same as Subsection 7.1.1’s examples.

8Dr. Zining Wu, a Chinese American electrical engineer; after graduation rose to Chief Technical Officer Marvell
Semiconductor before present position of CEO, Innogrit.

1122

1.00/.0001489

0.00/-

0.00/-

0.00/-

.09375

.09375

.09375/.001015

.09375/.0005736

0/.002191

0/.0005736

.03125

.09375

.28125

Input
Chan out

0
01

0
00

0
01

0
00

1
11

1
01

.09375

.09375
.09375

.03125

.28125

.09375

.09375

.09375

.09375

.28125

.03125

.09375

..09375

.03125

.28125

.28125

.09375

.03125

.09375

.28125

.03125

.28125

.28125

.09375

.09375

.03125
.03175

.09375
.09375

.09375

.09375

.09375

.09375

.03125
.28125

.03125
.28125

.00002574/.25

.00007298/.25

.002930/.007482

.02637/.002777

. 008790/.002777

. 008790/.003341

. 003296/.004026

. 003296/.002560

. 002564/.009306

. 001099/.002560

. 0008241/.02345

. 001007/.01171

. 0004120/.01560

. 0004120/.01171

. 0001416/.04688

. 0002447/.078125

. 0001330 /.04688

. 0001330/.078125

.00002574/.25

.00004505/.25

𝑃𝑟 𝑢 = 0 .5843 .7048 .7470 .6747 .2771 .3735

𝑃𝑟 𝑢 = 1 .4157 .2952 .2530 .3253 .7229 .6265

Bit decision 0 0 0 0 1 1

Figure 7.14: Example of MAP detector for rate 1/2 4-state Convolutional Code with BSC and p = .25

The APP’s trellis tracing proceeds in much the same way as the Viterbi algorithm, except
that costs along paths are multiplied and then summed at each node, rather than the Viterbi
Algorithm’s previous add, compare, and select operation. The forward quantities αk appear
in blue at each corresponding state. The backward quantities βk also appear at each state.
The γk quantities appear in black along each trellis branch. For instance, moving to the right
from state k = −1 (where α−1(0) = 1), each of the upper emanating branches has the value

γ0 = .0938 =
1

2
(.25)(.75) , (7.80)

where the .25 corresponds to the first code-output bit not matching the channel-output 0,
while the .75 corresponds to second code-output bit matching the second channel-output bit
of 1, and the factor of 1/2 represents pmk in (7.70). Figure 7.14’s table (below the trellis)
provides the sum of that trellis stages probability distribution for the input bit given the
entire channel output observation (over 6 subsymbol periods). The largest then determines
the decision, which appears in green. This code has dfree of 5 and thus MLSD correctly finds
the input sequence. Additionally, the APP in minimizing individual bit-error probability also
obtains the correct inputs. In general, the detector does not know the correct sequence, but
both criteria ML and APP both find the same set of input bits in this example. This need
not always be true.

Indeed, by re-introducing the 3rd error that MLSD could only detect but not correct, Figure
7.24 illustrates the corresponding APP result:

Observations:

1. Each trellis stage should have the γk sum over all branches equal to one. The first stage
does not exhibit this. The decoder designer could indeed change that stage to have
.09375→ 0.5, but this would only sale all future other αk and βk quantities by the same
amount in each stage that includes calculations based on stage 0. This constant scaling
will not change any MAP decision in maximizes (7.65).

2. The α and β quantities are indeed distributions, but are only computed for specific
values in those distributions. Thus, they largely decrease in value as they progressing
corresponding to the larger number of possible sequences growing exponentially with
time (or backwards in time with the β quantities).

3. There is an initialization assumption on βk that is somewhat arbitrary. This example
chooses all final states as having equal β = 1/n. This is again constant scaling that
does not affect decisions based on (7.65). The matlab program bcjr conv.m at the
Matlab open exchange has errors, for which this text provides the BCJR AWGN and

1123

BCJR BSC that correct those known errors. If the final state is unknown, as in this
example, it is perhaps best to assume all n-dimensional vK values are equally likely. The
programs bcjr AWGN.m and bcjr BSC.m that arrive later in this section assume the
equally likely outputs. (The author welcomes critique from anyone who sees something
I’ve missed.) These programs helped place the values on this example’s trellis, and of
course do the full decoding as well.

1.00/.0000753

0.00/-

0.00/-

0.00/-

.09375

.09375

.09375/.0002316

.09375/.0001687

0/.0004257

0/.0001687

.03125

.09375

.28125

Input
Chan out

0
01

0
00

0
01

0
01

1
11

1
01

.09375

.09375
.09375

.03125

.28125

.09375

.09375

.09375

.09375

.28125

.03125

.28125

.03125

.09375

.09375

.09375

.28125

.03125

.03125

.28125

.03125

.28125

.28125

.09375

.09375

.09375
.03175

.09375
.09375

.09375

.09375

.09375

.09375

.03125
.28125

.03125
.28125

.00002536/.25

.00004388/.25

.002930/.001440

.02637/.0006635

. 008790/.0006635

. 008790/.001076

. 003296/.003296

. 003296/.003781

. 002564/.003296

. 001099/.004753

. 0005494/.02345

. 0005494/.01171

. 0004121/.01560

. 0009613/.01171

. 0001331/.04688

. 0001674/.078125

. 0001374 /.04688

. 0001374/.078125

.00002536/.25

.00005138/.25

𝑃𝑟 𝑢 = 0 .5870 .6304 .5217 .5217 .3478 .4783

𝑃𝑟 𝑢 = 1 .4130 .3696 .4783 .4783 .6522 .5217

Bit decision 0 0 0 0 1 1

Figure 7.15: Example of MAP detector for rate 1/2 4-state Convolutional Code with BSC and p = .25,
with additional erred bit.

The APP, equivalently per-bit MAP detection, also corrects the extra channel bit error at
k = 3. In this case, this is the known correct input sequence of 000011, as in Section
7.1.1. In general because the detector does not know the correct sequence and/or bits, only
estimates it/them, these two different detection results reflect the optimum decision for the
two different criteria: VA/MLSD finding the best sequence and APP/MAP finding best
individual bit decisions. The APP’s success, when MLSD could not, simply follows from the
MAP for each bit necessarily would include the MLSD as one option over its optimization.
Viterbi (on the BSC) by itself cannot correctly find the sequence with 3 output-bit errors.
However, if VA/MLSD additionally had such information, it can improve and identify the
correct sequence, as is evident later in this section. Soft information can help correct the extra
channel bit error. That soft information can also be helpful to other codes applied to the same
input bits. The tables in Figures 7.14 and 7.24 also provide the bit-error probability, which is
equivalent to the soft information. This is the minimum bit-error probability independently
for each bit.

The APP recursions can apply for each bit of a message with M > 2 through Chapter 2’s BICM, which
Chapter 8 further studies.

7.3.1.2 LOGMAP

The LOGMAP algorithm approximates the APP by propagating log likelihoods and consequently
replacing multiplication with logarithmic addition. The LOGMAP algorithm generally takes a log-
likelihood (log of a probability distribution α) λ = ln(α). The probability distribution itself may form
as the sum of products as for instance in the APP’s forward and backward recursions:

α =
∑
i

αi · γi . (7.81)

1124

As a log likelihood, then 7.81)’s individual products’ logarithms similarly have two equivalent forms:

λi
∆
= ln(αi) + ln(γi) (7.82)

eλi = αi · γi (7.83)

Then essentially, LOGMAP computes

λ = ln

(∑
i

eλi

)
. (7.84)

If there are only two terms, then

λ = λ1 + ln
(
1 + eλ2−λ1

)
= λ1 + f(λ2 − λ1) , (7.85)

with tabular-implemented function f(x) = ln(1 + ex). This requires no multiplication. A recursion

applies - for instance with 3 terms and λ12
∆
= λ1 + f(λ2 − λ1), then λ3 = λ1 + λ12 + f(λ3 − λ12), with

the extension requiring only more adds and f -table look ups.

Caution on log map sums: The log map sum does not apply directly for propagation of ln(1
x +

1
y), so designers should be careful in simply negating log-likelihoods for the AWGN, which leads to
simple squared-distance metrics. These are usually positive and correspond to the negative of the log
likelihood, correspondingly the reciprocal of the likelihood. Either keep the negative signs or revise
(7.85) accordingly.

BCJR or APP Software: The author has revised the matlab file exchanges BCJR conv.m program,
which is nicely written but unfortunately has some errors as well as deficiencies. First, the programs are
updated to allow codes with rates r = k/n where k ≤ 4 and n is arbitrary. The original matlab programs
only work for r = 1/n codes. Second, a version for the BSC channel is provided also; the original code
was only for the AWGN. Further, there are some incorrect normalizations within the programs that this
author has commented out. The programs seem to work more accurately without these normalizations.
Finally, the original matlab program’s recycling of forward end results to initial backward pass results
has been removed, favoring a simple backward initialization to 1/2n for each states initial βK value.

>> help BCJR_AWGN

>> help BCJR_BSC

function BCJR_conv(y,trellis,p)

BCJR_conv Decoder - HAMMING DISTANCE BSC

This program derives from a nice matlab-file-xchange listing by K. Elhalil,

of SUP’COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow

convolutional codes with k>1,r=k/n.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.

This function accepts the BSC output y, the trellis (from

poly2trellis. It uses a priori prob that is set to 1/2^k. Motivated

users may want to add the ability to input a set of a priori inputs or

extrinsic information. It returns the APP LLR for each data bit input.

The program replaces an alpha->beta turnaround at last stage with just

equal output probability 1/2^n for each initial beta value. I believe

that avoids bias and is more accurate. N=length(y) and N/n must be

integers. Also, I commented out the original matlab program’s normalization

line for alpha and beta that I believe incorrect.

INPUTS:

y - these are integers 1’s or 0’s in 1xn vector

1125

trellis - this is matlabs usual trellis description (see my text or

class notes to avoid excessive computation for feedback systematic.

p - this is 1-dimensional BSC error-probability for uncoded use.

OUTPUTS:

the decoded input bits’ LLRs

To reproduce Figures 7.14 and 7.24, the following commands use BCJR BSC to decode:

>> t=poly2trellis(3, [7 5]);

>> out=convenc([0 0 0 0 1 1],t)

>> out = 0 0 0 0 0 0 0 0 1 1 0 1

>> BCJR_BSC(out,t,.25) %=

3.5981 3.1193 2.6526 2.2290 -1.9712 -1.4020 LLRs

0 0 0 0 1 1 Bits

%checks.

outBSC2=[0 1 0 0 0 1 0 0 1 1 0 1];

>> BCJR_BSC(outBSC2,t,.25) =

0.3406 0.8704 1.0826 0.7295 -0.9589 -0.5173 % less soft info/confidence

>> outBSC3=[0 1 0 0 0 1 0 1 1 1 0 1];

>> BCJR_BSC(outBSC3,t,.25) =

0.3514 0.5341 0.0870 0.0870 -0.6286 -0.0870 % yet soft info, all bits but first

>> BCJR_BSC(outBSC2,t,.49) =

0.0008 0.0392 0.0016 0.0016 -0.0008 -0.0000 % same decisions, but

Less confident because p is large

>> BCJR_BSC(outBSC3,t,.49)= 0.0008 0.0392 0.0000 0.0000 -0.0008 -0.0000

The use shows the decrease in soft-information confidence as the channel worsens, and also as the number
of output bit errors increase.

For the AWGN

>> help BCJR_AWGN

function BCJR_AWGN(y,trellis,sigma)

BCJR_conv Decoder

This program derives from a nice matlab-file-exchange listing by K. Elhalil,

of SUP’COM Tunisia. It was modified by me (J. Cioffi) in 2023 to allow

convolutional codes with k>1,r=k/n.

It implements the Bahl, Cocke, Jelinek and Raviv (BCJR) APP algorithm.

This function accepts the channel output y, the trellis (from

poly2trellis. It uses a priori prob that is set to 1/2^k instead of

the original matalb . Motivated users may want to add the ability to

input a set of a priori inputs (presumably extrinsic information from

another code’s use on same bits). It returns the APP LLR for each

data bit input. The program replaces an alpha->beta turnaround at

last stage with just equal output probability 1/2^n for each initial

beta value. I believe that avoids bias and is more accurate.

N=length(y) and N/n must be integer. Also, I commented out a

normalization line for alpha and beta that I believe incorrect.

INPUTS:

y - these are real-valued N from some (AWGN likely) channel output

multiply this by -1 to get the EE379 Class convention on 0->-1

trellis - this is matlabs usual trellis description (see my text or

1126

379A class notes to avoid excessive computation for feedback

systematic)

sigma - this is 1-dimensional AWGN standard deviation

OUTPUTS:

the decoded input bits’ LLRs

EXAMPLE 7.3.2 [LOGMAP for the 4-state convolutional code] Figure 7.16 illustrates the
BCJR for the same 4-state convolutional code and AWGN output sequence. The BCJR AWGN.m
program (for which this text provides source code) has the values for the various states and
branches within, so with one-time modification to print those quantities, Figure 7.16 avoids
much complex hand calculation. Figure 7.16 illustrates a decoder’s detailed calculation ele-
ments below each trellis stage in a way to illustrate the squared differences between branch
values and received values. The J0,1· simply means reorder the following vector or keep
it’s order for the various branch metric possibilities. Again blue quantities are the forward
αk recursion while red quantities are the backward βk recursions. Chapter 4’s multichannel
normalizer addresses mechanisms that scale channel outputs adaptive when codes apply over
frequency-indexed tones and the Gaussian variance varies, and in this case the noise-weighting
becomes variable (not shown in this example).

0/19.7579

0.00/-

0.00/-

0.00/-

3.9752

5.4344

3.9752/15.8350

5.4124/17.3226

0/-

0/-

9.1490

5.9154

1.9632

Input
Chan out

0 0 0 0 1 1

5.1968

5.7627

3.9662

3.9662

5.7627

2.1698

7.5591

2.7087

5.9424

3.0680

5.5831

5.5831

2.7087

7.5591

5.9424

2.1698

8.7807

1.9542

1.9542

5.1878

5.5471

3.0680 8.7807

5.5471
5.1878

5.1968

5.1968

5.1968

5.1968

8.4304
1.9632

8.4304
1.9632

22.2270/1.3863

18.6321/1.3863

13.1242/12.6691

5.9384/13.8743

11.3278/12.3249

10.6092/12.6356

11.6739/8.3667

9.9038/11.3991

12.7786/10.4704

15.2391/10.5241

14.7155/5.3020

15.6282/8.4822

15.7308/7.8304

12.6124/8.7882

17.6820/5.8899

16.6693/3.3479

17.7665/5.8899

18.0916/3.3479

22.2270/1.3863

20.0484/1.3863

𝐿𝐿 𝑢 = 0 19.8102 19.7914 20.0009 19.9890 22.9202 21.3274

𝐿𝐿 𝑢 = 1 22.7349 23.1900 21.2915 21.3361 19.8011 19.9913

Bit decision 0 0 0 0 1 1

[-.9 .5] [-1.1 -.9] [-.5 1.0] [.9 1.0][-.8 .1] [-.9 .9]

1
2 # $𝜎! #

3.61
0.01 + 𝐽",$ # 0.252.25

3.2426
0.0090 + 𝐽",$ # 0.22462.0210

2 ' (𝜎! = 1.1133

1
2 # $𝜎! #

4.41
0.01 + 𝐽",$ # 3.610.01

3.9612
0.0090 + 𝐽",$ # 3.24260.0090

1
2 # $𝜎! #

2.25
0.25 + 𝐽",$ # 04

2.0210
0.2246 + 𝐽",$ # 0

3.5929

1
2 # $𝜎!

3.24
0.04 + 𝐽",$ # 1.210.81

2.9103
0.0359 + 𝐽",$ # 1.08690.7276

1
2 # $𝜎! #

0.01
3.61 + 𝐽",$ # 04

.0090
3.2426	 + 𝐽

",$ # 0
3.5929

1
2 # $𝜎! #

3.61
0.01 + 𝐽",$ # 0.013.61

3.2426
0.0090 + 𝐽",$ # 0.00903.2426

All branch metrics 𝛾,must add 𝑙𝑛 2 + 𝑙𝑛 2𝜋 ' (𝜎- =.6931+1.2521=1.9452

Figure 7.16: Example of rate 1/2 convolutional code with 3 output errors and AWGN APP decoding.

The AWGN’s LOGMAP APP also requires knowledge of the distribution parameter, specif-
ically σ2, as did the BSC LOGMAP require p. Previously, the VA did not require such
knowledge. The LOGMAP implementation often estimates the noise variance. For this ex-
ample, since the correct sequence is available but not σ2 – a situation similar to when a
training sequence might be known in advance and thus permit σ2’s estimation. The example
estimates the noise variance from the 12 real-dimension noises according to

σ̂2 =
1

12
· [.01 + .025 + .01 + .01 + .25 + 4 + .09 + .04 + .01 + 0 + .01 + 0] = .5567 , (7.86)

leaving the subsymbol noise variance to divide each |y − x|2 calculation as 2σ̂2 = 1.1133 as
in Figure 7.16. Figure 7.16’s table shows the deviating bit in red. Again, the σ value does
not change the decision, but does change the indicated confidence of the decision.

1127

Instead, the BCJR AWGN program finds the correct sequence (suggesting that this author
has a mistake in Figure 7.16 although no one has found it yet):

> yawgn2

Columns 1 through 8

-0.9000 0.5000 -1.1000 -0.9000 -0.5000 1.0000 -0.8000 0.1000

Columns 9 through 12

0.9000 1.0000 -0.9000 0.9000

>> BCJR_AWGN(-yawgn2,t,1.1133/2) =

5.7066 6.2779 2.5626 2.5684 -6.4242 -2.5681

Indeed the program finds the same input as other decoders have on this particular output.

7.3.2 Soft-Output Viterbi Algorithm (SOVA)

Hagenauer9 first recognized the trellis contains additional “soft information” about the likelihood of
a decision’s correctness, coining the term “Soft-Output Viterbi Algorithm (SOVA)” [5] as an
augmentation to the usual Viterbi Detector. SOVA additionally provides the Y 0:K−1-conditioned prob-
ability of a specific subsymbol value xk at time k in the final surviving detected sequence. This soft
information measures each subsymbol xk’s reliability and finds use in outer (or second) codes in con-
catenated systems. This soft-information reliability indicator, usually in form of the LLR or ∆LLR also
can resolve ties when two BSC path metrics are the same. This tie resolution improves upon simple
random selection of one of the tired paths as the selected sequence.

LOGMAX: First, MLSD approximates MAP through the LOGMAX approximation, which replaces
7.81)’s log of the sum of products with λmax = maxi λi, presuming

eλmax ≈
∑
i

eλi . (7.87)

The maximum’s selection leads to a VA-like survivor selection (and associated computation) for the
particular LOGMAP in question. Equation (7.87)’s justification assumes λi << λmax because exponen-
tiation amplifies the size difference. If instead all terms are included in all sums throughout APP, then
LOGMAP is equivalent to the APP. Often inclusion of a few terms is sufficient. The LOGMAX retains
the maximum and is indeed the VA when applied to the αk recursion, as follows:

Relating MLSD to MAP through LOGMAX: Section 7.1’s Viterbi Algorithm minimizes squared
distances or Hamming distances for the AWGN and BSC respectively. Since the ln function is montonic,
this does this maximization’s optimum argument. Direct use of squared distance or Hamming distance
therefore maximizes the probability distribution’s natural logarithm, i.e., Chapter 1’s likelihood function,

LLx/y
∆
= ln

(
pxk/y

)
. (7.88)

The conditional likelihoods are correspondingly

LLxk/Y 0:K−1

∆
= ln

(
pxk/Y 0:K−1

)
(7.89)

LLx(D)/y(D)
∆
= ln

(
px(D)/y(D)

)
(7.90)

LLy(D)/x(D)
∆
= ln

(
py(D)/x(D)

)
(7.91)

LLyk/xk
∆
= ln

(
pyk/xk

)
. (7.92)

The sequence that maximizes the LLX(D)/Y (D) function also minimizes the squared or Hamming distance
from a received sequence on the AWGN or BSC respectively, and the latter distances are often easier

9Joachim Hagenauer (1941 –), a German Electrical Engineering Professor at Technical University of Munich and
specialized in information theory and satellite communication.

1128

to handle directly in computation than the exact likelihood function. The Viterbi detector inherently
finds the best sequence, unlike Subsection 7.3.1’s APP detector that finds a sequence’s best individual
subsymbol (or bit) values.

SOVA processes the simpler, Euclidean or Hamming distance-based, likelihood functions directly.
Often with binary codes, SOVA may propagate the LLRs directly. Section 7.3’s APP process sums, for
each sequence subsymbol value xk, probabilities associated with a product αk · γk · βk. Indeed Figures
7.14 and 7.24 illustrate the calculation. The LOGMAP with maximum implementation implements the
forward α’s recursive calculation and also the backward β’s recursive calculation. The branch metrics γ
are LL’s (or LLRs directly sometimes), so the forward MAP recursion (α recursion) becomes the normal
VA when the maximum term replaces MAP’s sum of products αk+1 =

∑
branches αk · γk or

ln(αk+1, sk+1) ≈ max
branches
into sk+1

{ln(αk, sk,branch into) + ln(γk,branch into)} . (7.93)

This is the VA in the forward direction. Similarly in the backward direction

ln(βk, sk) ≈ max
branches
into sk

{ln(βk+1, sk,branch into) + ln(γk,branch into)} . (7.94)

The backward part is also the VA, just in the opposite direction. Thus, there are two VAs. The final
step uses the sum of ln(α) + ln(γ) + ln(β) for each stage to compute separately for each subsymbol (or
bit) value (0 or 1) the individual LLRs. There are various recursions to develop for this last step, but
they also are simple addition plus table-lookup based operations.

Again with the LOGMAX approximation taking the maximum of these 4 terms then the final ∆LL
becomes (recalling that LLR = ∆LL for binary codes (only).

∆LLxk = ±
[

max
0 branches

{ln(αk,branch) + ln(γk,branch) + ln(βk,branch)}

− max
1 branches

ln(αk,branch) + ln(γk,branch) + ln(βk,branch)
]
, (7.95)

where the ± simply is + when the maximum zero term is larger than the maximum one term, and −
otherwise. When the two are equal, ∆LL = 0. This is almost the same as selecting the survivor branch
of the best surviving path. The difference is the bi-directional use of α for the past with respect to the
decision and β for the future with respect to the decision. This is known as the forward-backward SOVA
detector. It is the same if there is one surviving path with the same metric for the entire sequence/packet;
otherwise, if there are “ties” with the same metric, the forward-backward SOVA provides additional soft
information that exceeds that of the forward Viterbi alone.

SOVA’s Soft Information: SOVA’s soft information for subsymbol xk comes from the full set of

2ν · 2b̃ branches (for binary rate 1/n code, this is 2ν+1). These branches subdivide into 2b̃ equal sets for
each possible subsymbol value. For binary rate 1/n codes, this is just two sets. The LOGMAP selects
the maximum from each set to obtain the log likelihood estimate LL(xk). A final decision selects the
largest. MAP bit estimates use (7.95), and repeat it if b̃ > 1 (that is likely BICM in use) for each bit
by averaging (integrating) over the other bits values in γk to determine the LLRk value for each of the
b̃ bits at time k. Before formalizing, the following example illustrates both the forward and backward
SOVA calculations for the r = 1/2 4-state convolutional code.

EXAMPLE 7.3.3 [SOVA for Subsection 7.1.1’s example and also Example 7.3.1] Figure
7.17’s upper blue-survivor trellis first lllustrates the forward SOVA with again the same
3 output-bit-error pattern for the BSC. This example immediately illustrates the SOVA
assistance in the upper table because there is a tie: two survivor paths have dH = LL = 3.
MLSD nominally “flips a coin” and selects one. However, it is clear that the survivors have
sets of values for decision of 0 or 1 at each stage, which Figure 7.17 illustrates in green color.
For sample times k = 2, 3, 4, 5, the survivors either indicate a decision or a majority-vote
decision, even though the ultimate path metric is the same. The forward-only SOVA cannot

1129

resolve times k = 0, 1 without further noting that at time k = 2, one of the paths locally has
a lower metric of 1 versus 2 for the other. The author believes this is how the earlier matlab
VA produced the same result - thus it has undocumented tie resolution that is equivalent to
soft-information use.

0
(2/3 are 0)

01 00 01

0

2

3

2

2

2

2

10 11 011

11

1

1

0

0

1

1

1

1

0

0

0

0

0

0 0? 0 1?

3

Forward-Backward SOVA

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3
!"#"$

3
#"!"$

4
#"#"$

3
#"#"#

6
%"$"#

4
$"#"#

3
$"!"#

3
$"#"!

5
$"$"#

3
$"#"!

4
%"!"#

6
%"$"#

5
%"#"#

4
%"!"#

4
$"#"#

4
%"#"!

5
%"$"!

4
%"!"#

3
%"!"!

𝐿𝐿(1) 4
!"#"%

6
#"$"%

4
#"#"$

3
#"#"#

4
% "!"#

4
$"#"#

5
$"$"#

4
$"#"#

3
$"!"!

4
$"#"#

6
%"$"#

5
%"$"!

4
%"#"!

3
%"!"!

3
$"#"!

4
%"#"!

3
%"!"!

4
%"#"!

5
%"$"!

Δ𝐿𝐿 (dec) 1 (0) 1 (0) ⁄! " (0) ⁄! " (0) -1 (1) 0 (?)

Green color indicates the minimum-metric path is a survivor in both forward and backward directions; all LL’s in units of 𝑙𝑛 𝑝

?

Forward SOVA Example with ties (3-error example revisited)

𝑘 0 1 2 3 4 5

𝐿𝐿(0) 3 3 3,3 3,3 ∅ 3

𝐿𝐿(1) 3 3 3 3 3,3 3

Δ𝐿𝐿 (dec) 0(?) 0(?) ⁄$ % (0) ⁄$ % (0) -1 (1) 0 (?)

Green color indicates the minimum-metric path is a survivor in forward direction; all LL’s in units of 𝑙𝑛 𝑝 .

01 00 01

?

1

1

1

3

2

2

01 11 012

32

2

3

3

3

3

2

3

3

3

3

4

4

3

? 0
(2/3 are 0)

0
(2/3 are 0) 1 ?

0

0

0

0

Figure 7.17: Example of rate 1/2 convolutional code with 3 output errors and SOVA decoding.

The backward VA also appear sin Figure 7.17. Neither the basic forward nor the backward
basic VA can correctly detect the input sequence because of the tie. The question marks
indicate bits for which the multiple equal-metric survivors do not favor either bit choice (0 or
1). However, Figure 7.17’s lower forward-backward table lists the LL sets for each bit value.
The last row indicates the decision that corresponds to taking the difference (and applying
correct the sign). The table entries have underneath them 3-term sums that correspond
to summing a branch’s forward-VA metric (on the left), current metric, and backward-VA
metric (on the right). These sums are in green color if both forward and backward paths are
survivors. All other sums (which the detector need not compute in practice) are in black color
When the sets have ties, only one branch decision in this example is in both blue forward and
red backward survivors, thus the soft information resolves all the ties and decides the known
correct sequence in this example. The lower forward-backward table also approximates the
LLR by the ratio of occurrence of the lowest metric for each value (whether in a survivor or
not).

As evident, forward-backward SOVA definitively resolves the correct input sequence, just as did the
MAP. The LLR values may not be as accurate as MAP, but the SOVA process is far less complex. Fur-
ther, the SOVA LLR has magnitude less than 1 when there are ties, but is clearly a rough approximation.

1130

is still useful to another decoder that may have also used the corresponding bit. The use of a backward
VA requires an endpoint. Good designers can find ways to update the backward path if the final time
from which it originates advances. However, the soft-information generation most commonly finds use
in concatenated systems with interleavers (see Chapter 8. Such systems necessarily block information
into groups or packets, and ultimately the entire corresponding set of outputs is commonly available.
Thus, the forward-backward SOVA directly applies.

SOVA Metric Formalization: In those cases, where only forward continuous update occurs, an
alternative SOVA metric follows:

Definition 7.3.2 [SOVA Forward-Only Soft-Information Metric] Let j∗k denote
the maximum-likelihood survivor’s state at time k; so if SOVA looks ahead survivor-
length λ time samples to trace-back a good survivor at time k, the state of interest is
jk+λ. J∗k+λ is the set of other states that do not include the best survivor path at time
k+ λ for which SOVA computes the soft metric. SOVA retains the set of differences, or
soft-information metric, from the next-closest paths

∆LLm∗k,m′k
∆
= ∆LLk = min

j∈J∗k+λ

{
LLX∗0:k+λ(j

∗
k+λ)− LLX ′0:k+λ(j) m

∗
k 6= m′k , λ > 0

}
(7.96)

over the survivor length for each state at each time. The gain factor 1/g appears below
for each of BSC and AWGN.

When there are ties, forward SOVA tie resolution first checks the corresponding input
to see its frequency of occurrence at time k among the survivors. Forward SOVA then
selects the one with largest frequency of occurrence and sets the LLR magnitude equal to
that fraction (which will be no larger than 1) and sign equal to ± corresponding to 1 and 0
respectively as the higher frequency of occurrence. When the frequencies of occurrence are
equal, LLRk = 0. A SOVA local decision may be made based on surround trellis stage’s
metrics (which may improve on random selection slight), the no SOVA soft information
emanates in this case. Mathematically

BSC : ∆LLk = 1
gbsc

∣∣∣{LLX∗0:K−1
(j∗k)=·Lmin

}∣∣∣∣∣∣{LLX∗0:K−1
(j∗k)=Lmin

}∣∣∣+∣∣∣{LLX ′0:K−1
(j∗k)=Lmin

}∣∣∣ (7.97)

AWGN : ∆LLk = 1
gawgn

· ln
∣∣∣{LLX∗0:K−1

(j∗k)=Lmin
}∣∣∣∣∣∣{LLX∗0:K−1

(j∗k)=Lmin
}∣∣∣+∣∣∣{LLX ′0:K−1

(j∗k)=Lmin
}∣∣∣ (7.98)

with gbsc
∆
= ln(p) and gawgn

∆
= 4 · dfree · SNR.

For Example 7.3.3 with ties, this soft-information LLR will be zero for 1/2 the bits, illustrating that
the forward-only indeed has less useful soft information. Thus, this text introduces a Forward-Backward
SOVA metric that follows the example

Definition 7.3.3 [Forward-Backward SOVA Metric] The forward backward SOVA
metric for each stage computes first, with J∗k corresponding to the best forward survivor
path into stage k and J ′k corresponding to the best backward survivor path into stage k
with the branch at time k contained in neither set,

LLk
∆
= min

j∈J∗k
j′∈J′k

{
LLX∗0:k(j

∗
k) + LLx∗k(j

∗
k) + LLX∗k+1:K−1

(j∗k) (7.99)

−
[
LLX ′0:k(j

′
k) + LLx′k(j

′
k) + LLX ′k+1:K−1

(j′k)
]
m∗k 6= m′k ,

}
(7.100)

1131

Ties are handled in the same way as the forward SOVA except that a survivors must
occur jointly in both forward and backward paths.

7.3.2.1 Iterating the LLR Directly with Forward SOVA

SOVA and VA provide the same ML sequence estimate. There are 2ν states and corresponding survivors,
looking ahead to time k+λ, or simply at the end of a packet/codeword that the decoder processes. These
have log likelihoods as LS. The sequence-error probability for the best survivor path for input bit value
0 at time k is LL∗k(0) is

PrMLSD{xk = −1} = PrMLSD{uk = 0} ∝ e−LS
∗
k(0) (7.101)

and similarly
PrMLSD{xk = +1} = PrMLSD{uk = 1} ∝ e−LS

∗
k(1) , (7.102)

which uses the abbreviation LS∗k to indicate ln(px(D)/y(D)(uk = 0), the largest survivor metric for
which the MLSD decides 0, and similarly for 1. For binary codeswith MLSD. the quantities LLRk and
∆LSk = |LS∗k(0)− LS∗k(1)| relate through

LLRk = LSk(0)− LSk(1) = xk ·∆LSk . (7.103)

The difference is that LLRk measures the natural logarithm of the two probabilities that SOVA would
decide 0 or 1 respectively for a specific bit at time k; however ∆LSk measures the probability that the
best sequence and the next best sequence differ at that same time k, in other words ∆LSk measures
sequence error (presuming all zeros is correct without generality loss for linear code)

Pe =
e−LS

∗
k(0)

e−LS
∗
k(0) + e−LS

∗
k(1)

=
1

1 + e∆LSk
. (7.104)

They have the same magnitude, but differ in sign, effectively treating the all zeros sequence in a linear
code as the correct sequence.

Another decoder’s LLR estimate, L̂LRk estimates ˆ̄Pb ≈ 1

1+eL̂LRk |
. As an à prior input to SOVA, the

sequence log likelihood ratio is

L̂LRk = ln
1− ˆ̄Pb,k

ˆ̄Pb,k
, (7.105)

(7.105 relates the sequence-error probability to the likelihood of a specific input bit being erred. Intu-
itively a sequence error for a reasonably powerful code occurs when there are more than dfree/2 positions,
or more noise than dmin/2 for the AWGN. The positions of input bit errors are likely to be anywhere
along the sequence10, then Hagenauer’s SOVA provides the following update relation

P̄b,k ← ˆ̄Pb,k︸︷︷︸
bit differs

· e∆LSk

1 + e∆LSk︸ ︷︷ ︸
survivor correct

+ (1− ˆ̄Pb,k)︸ ︷︷ ︸
bit same anyway

· 1

1 + e∆LSk︸ ︷︷ ︸
survivor incorrect

. (7.106)

10The one exception is going to be the first position in the sequence error event that necessarily must correspond to a
bit error. Thus, the time k of interest should not be the first subsymbol instant of the sequence-error event.

1132

Then, with algebra shown:

LLRk ← ln
1 + e∆LSk − ˆ̄Pb,k · e∆LSk − (1− ˆ̄Pb,k)

ˆ̄Pb,k · e∆LSk + (1− ˆ̄Pb,k)
(7.107)

← ln
e∆LSk/ ˆ̄Pb,k − e∆LSk + 1

e∆LSk + (1− ˆ̄Pb,k)/ ˆ̄Pb,k
(7.108)

← ln
1 + e∆LSk · 1− ˆ̄Pb,k

ˆ̄Pb,k

e∆LSk + (1−∆LSk)
(7.109)

← ln
1 + e∆LSk+L̂LRk

e∆LSk + eL̂LRk
. (7.110)

If either L̂LRk = 0 or ∆LSk = 0, then the Hagenauer update provides zero soft information, which
makes sense. However when both are non-zero, there is nonzero soft information that updates. The
multiplication of This can be used to return information the other (or other) decoder(s). The addition

∆LSk + L̂LRk ignores that the ∆LSk had a common scale factor in front of the Gaussian distribution

that depends on the number of terms, and so when added to a single-bit term, L̂LRk, there is a scaling
difference in Equation (7.110) that should be adjusted accordingly. Thus, for the AWGN, typically the
relationship

∆LSk =
∆k

4 · dfree · SNR
(7.111)

is used to bound this term’s size, where ∆k is directly the time k squared erros between channel output
and postulated channel input. For the BSC, the author suggests similarly

∆LSk =
∆Hamming,k

dfree
. (7.112)

7.3.3 Using a feedback-free generator’s decoder to decode systematic with
feedback

Appendix shows that two different generators for the same code have a feedback-free transformation
between them. This is useful with systematic encoders with feedback, when the receiver may use the
decoder for a different encoder. This arises for instance in matlab poly2trellis’ unnecessary increase in
number of states for systematic codes. An example helps illustrate the issue and solution. Figure 7.18
illustrates a systematic encoder for the best known 8-state r = 2/3 convolutional code.

𝐷 + 𝐷 ++

𝑢!,#

𝑣$,#

𝑣%,#𝐷 +

𝑢$,#

𝑣!,#

𝐻 𝐷 = 17 15 13 = 𝐷! + 𝐷" + 𝐷 + 1 𝐷! + 𝐷" + 1 𝐷! + 𝐷 + 1

𝐻#$# 𝐷 = 𝐷! + 𝐷" + 𝐷% + 1
𝐷! + 𝐷 + 1

𝐷! + 𝐷" + 1
𝐷! + 𝐷 + 1

	

1

𝐺#$# 𝐷 =
1 0

𝐷! + 𝐷" + 𝐷% + 1
𝐷! + 𝐷 + 1

0 1
𝐷! + 𝐷" + 1
𝐷! + 𝐷 + 1

	

Figure 7.18: Example of rate 1/2 convolutional code with 3 output errors and SOVA decoding.

1133

The next commands illustrate the poly2trellis issue

tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13]);
tfeed.numInputSymbols: 4

tfeed.numOutputSymbols: 8
tfeed.numStates = 64

tfeed.nextStates: [64x4 double]
tfeed.outputs: [64x4 double]

64 states is too many. Indeed matlab’s own “istrellis” command says its own trellis is invalid.
The solution uses Appendix B’s invariant factors decomposition to find

Gsys(D) =

[
1 +D +D2 +D3 1 +D +D2

1 +D2 +D3 D +D2

]
·
[

1
1+D+D3 01 +D +D2

0 1

]
·
[

D 1 +D2 1 +D2

1 +D D 1

]
. (7.113)

Because the first two matrices are invertible, an equivalent 8-state encoder is given by the last matrix
above. The following matlab commands then illustrate use of vitdec to decode a sequence encoded with
the systematic encoder, but decoded in terms of the equivalent 8-state feedback-free decoder to find an
input. That input is then processed through the 8-state decoder to get the estimated channel output
that corresponds to the systematic encoder. This final sequence’s first two bits (because it is systematic)
of each subsymbol are the MLSD estimates for the original systematic encoder.

tmin=poly2trellis([3 2], [2 5 5; 3 2 1])
numInputSymbols: 4

numOutputSymbols: 8
numStates: 8

>> tfeed=poly2trellis([4 4],[13 0 17 ; 0 13 15], [13 13])
numInputSymbols: 4

numOutputSymbols: 8
numStates: 64

outfeed=convenc([0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1],tfeed)
>> error2 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]; % 2 errors introduced
>> informin2=vitdec(+xor(outfeed,error2),tmin,6,’trunc’,’hard’)
0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 % not same as systematic enc’s input
>> vmin2 = convenc(informin2,tmin)

000 000 000 101 111 011 001 011

The first two bits of vmin2 match the input to the systematic encoder. As Appendix B shows, the
invariant factors decomposition can be tedious to execute, but is straightforward. Unfortunately, this
method, also sometimes better known as Smith Normal form when not in a finite field, does not appear
to have canned software anywhere that executes it for a finite field. (This is probably a great project
for motivated student.)

1134

7.4 Soft Information Generation

Section 7.3’s soft-information generation derives from a trellis model for a code (and/or ISI). Soft-
information also arises in block codes as well as from multi-level signal constellations. Chapter 2’s binary
block codes have parity-check matrices11. Each parity-check equation can provide soft-information, as
in Subsections 7.4.1 and 7.4.2. The assignment of code bits to a multilevel constellation also provides
soft information as in Subsection 7.4.3. The use of a full SOVA to provide ISI-based soft-information
from a trellis may simplify as in Subsection 7.4.4’s soft-canceller approximation.

Overall, a constraint can supply extrinsic soft information on each bit or subsymbol in terms of
known relationships to other bits or symbols – that is, the extrinsic information reflects the constraints.
Additionally, the à priori and channel probabilities provide“intrinsic” soft information. Notationally, the
à posteriori probability (papp = psubsymbol/channel−output) factors as

papp = pxk/constraints ∝ pxk,constraints = pintrinsic · pextrinsic
∆
= pint · pext . (7.114)

The intrinsic probability measures the channel-related input bit or subsymbol at time k, essentially the
BCJR’s quantity γk. The extrinsic probability represents information contributed from all other channel
subsymbols or bits at other times k′ 6= k.

The letter E represents a constraint event, which provides extrinsic information to a decoding
process. Pr{E} is probability that the event occurs. This event satisfaction probability is not a function
of any specific input, and instead represents an average over all the possible inputs.

7.4.1 Bit-Level or Parity Constraints

A parity-check equation sums BSC output bits that correspond to the 1 entries in the code’s parity
matrix H. With encoder outputs as vk, a 3-bit parity constraint example is

v1 ⊕ v2 ⊕ v9 = 0 , (7.115)

and corresponding BSC outputs as y1, y2, and y9, P (E) = 1 at the encoder output, but is less at the
BSC output. The BSC has parameter p, while the encoder output bit has some probability Pr{0} = p0

(which may represent for instance soft information from another code or constraint, and thus may not
be simply 1/2). That prior distribution for the encoder-output bit is independent of the (to-be-applied)
constraint before it is applied. The independence allows BSC joint channel-input-output-bit probabilities
then to follow easily as (i = 1, 2, 9 in (7.115))

p(vi, yi) = p(yi/vi) · p(vi) =

(1− p) · pi yi = 1 vi = 1

p · (1− pi) yi = 1 vi = 0
p · pi yi = 0 vi = 1

(1− p)︸ ︷︷ ︸
pint

· (1− pi)︸ ︷︷ ︸
pext

yi = 0 vi = 0
. (7.116)

(7.116)’s p-dependent factors are the channel’s intrinsic information while the pi factors are the extrinsic
information, which may arise as soft information from other constraints’ decoders. With a memoryless-

channel assumption, an AWGN with binary PAM inputs ±
√
Ēx has

p(vi, y) =

1√
2πσ2

· e−
1

2σ2
(y−
√
Ēx)2︸ ︷︷ ︸

pint

· pi︸︷︷︸
pext

vi = 1

1√
2πσ2

· e−
1

2σ2
(y+
√
Ēx)2︸ ︷︷ ︸

pint

· (1− pi)︸ ︷︷ ︸
pext

vi = 0
. (7.117)

As in the following, the distribution p(y, vi) enables computation of P (E).

11See also Chapter 8 for a more complete development of binary block codes.

1135

The event and probability calculation: (7.115)’s 3-bit constraint views the “other 2” bits as
extrinsic information, equivalently each having a pi value in (7.116) or (7.117). For any constraint event
E, the maximum à posteriori decoder that observes or uses the constraint would then maximize (7.114)

max
vi=0,1

pvi/E . (7.118)

This MAP decision is constraint-specific and produces soft information along with any hard decision
based thereupon. Any encoder output, whether in bits {vi} or as the subsymbol value xi, maps uniquely
at subsymbol sampling12 time i into the corresponding encoder-output/channel-input bit vi (as long as
encoder state at that time is known), so there is no loss of optimality in directly estimating the encoder
output symbols. The event-satisfaction APP is

pvi/E =
p(vi, E)

P (E)
=

1

P (E)
· p(vi)︸ ︷︷ ︸
pint

· pE/vi︸ ︷︷ ︸
pext

. (7.119)

Dependency upon the channel output y is tacitly implied through event E/ The scaling term 1/P (E) is
a constant that is not a function of any specific encoder-output bit vk; therefore this scaling term does
not influence the MAP decision for vk. Generally, a constraint is13

E([vn, v2, ..., v1]) = E (v) = 0 . (7.120)

The set of v values that satisfy the constraint is

SE
∆
= {v | E(v) = 0} . (7.121)

The notation SE\i(yi) denotes all set members may take any value except that each member’s element
i must satisfy vi = yi. Any specific fixed channel (BSC or AWGN) output yi therefore has extrinsic
probability factor

pE/vi = pext(E, yi) = ci ·
∑

v∈SE\i(yi)

n∏
j=1

j 6=i

pj(E, yi) . (7.122)

Equation (7.122)’s product values pj(E, yi) are from the contraints other bits’ probabilities. Again,
(7.122)’s sum, as a function of yi, executes over that subset of SE that has a specific fixed value for
yi = vi. There will be 2 values for the BSC and a continuous distribution for the AWGN. The constant
ci’s inverse sums (integrates for AWGN) over these values, but is not necessary for the constraint’s MAP
decoder.

The constant ci’s calculation: ci is

ci =

 ∑
v∈SE

n∏
j=1

pj(E, yi)

−1

. (7.123)

The constant is again inconsequential in subsequent maximization over vi. The intrinsic or à priori
distribution is

pint = p(vi = yi) , (7.124)

essentially incorporating the current subsymbol index i’s value into the overall APP and being soft
information that may find use in another constraint’s decoder. The decoder thus maximizes the joint
probability

pext(vi, E) =
1

P (E)
·

∑
v∈SE\i(yi)

 n∏
j=1

p(vj)

 , (7.125)

12The index i = 1, ..., n for encoder output bits and i = 1, ..., k for encoder input bits.
13The symbol E should not be confused with the notation E for expectation.

1136

and the à posteriori is

pvi/E =
ci

P (E)︸ ︷︷ ︸
c′i

·
∑

v∈SE\i(yi)

 n∏
j=1

p(vj)

 . (7.126)

The expressions in (7.125) and (7.126) are distributions. A decoder computes them for each vk value;
the calculation holds this value fixed in the sum over all sequences that satisfy the constraint E. The
probability P (E) is

P (E) =
∑
v∈SE

[
n∏
i=1

p(vi)

]
, (7.127)

where this sum over SE does not fix the value vk and so is over all vectors v that satisfy the constraint.
Each channel output sample initiates calculation of an intrinsic p(vk) in (7.119). The constraint manifests
itself through the set SE that excludes all-non-event-satisfying bit combinations.

EXAMPLE 7.4.1 [3-bit Parity constraint] A 3-bit parity-check constraint event specifies
a modulo-2 sum that must be zero

v1 ⊕ v2 ⊕ v3 = 0 . (7.128)

Basically, these bits correspond to an H-matrix row’s 1 entries. To simplify here, the 3
indices will be successive, but this of course not necessary in general. Further notational
simplification just denotes the 3 à priori (which may be extrinsic from other constraints)
probabilities as pi for i = 1, 2, 3.

+

𝑣!

𝑣"

𝑝!

𝑝" 𝑝#

Pr 𝑣! = 0 =𝑝" ' 𝑝# + 1 − 𝑝" ' 1 − 𝑝#
Pr 𝑣! = 1 =𝑝" ' 1 − 𝑝# + 1 − 𝑝" ' 𝑝#

𝑣#

Figure 7.19: Graph of parity constraint.

The set of values that satisfy this constraint is SE = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
Figure 7.19 illustrates this constraint. There will be two values for this probability, one for
vk = 1 and the other for vk = 0. If the 3 input bits had intrinsic probabilities of being a 1 of
p1, p2, and p3, the extrinsic probability for bit k =3, arising from bits 1 and 2, would be:

pext(v3) = pE/v3 =

{
p1 · p2 + (1− p1) · (1− p2) v3 = 0
p1 · (1− p2) + p2 · (1− p1) v3 = 1

. (7.129)

This is a specific instance of Equation (7.122). Similarly for the other 2 bits in the parity
check:

pext(v2) = pE/v2 =

{
p1 · p3 + (1− p1) · (1− p3) v2 = 0
p1 · (1− p3) + p3 · (1− p1) v2 = 1

, (7.130)

and

pext(v1) = pE/v1 =

{
p2 · p3 + (1− p2) · (1− p3) v1 = 0
p2 · (1− p3) + p3 · (1− p2) v1 = 1

. (7.131)

1137

The decoder decision for v3 maximizes (letting p3 = pBSC = p)

(c′3)−1 ·
{
p1 · p2 · (1− p3) + (1− p1) · (1− p2) · (1− p3) v3 = 0
p1 · (1− p2) · p3 + p2 · (1− p1) · p3 v3 = 1

, (7.132)

where the sum is c−1
3 = 1 − (p1 + p2 + p3) + (2 · p1 · p3 + p1 · p2 + 2 · p2 · p3) − 4p1 · p2 · p3,

although not necessary for MAP decoding. Similar MAP decisions follow for bits 1 and 2.

For a decoding situation with soft information on bits 1 and 2 stating that p1 = p2 = .99
(that is high confidence they are 1’s), then even if p3 = .75 (pretty high confidence bit 3 is
also a 1), the imposition of the constraint yields, using (7.126), P (v3 = 0) = c′3 · .49 while
P (v3 = 1) = c′3 ·0.0099 so the soft information here would change the unconstrained decision
of a 1 for v3 to favoring heavily a decision of a 0 for v3.

If the channel were an AWGN, then Example 7.4.1 and received value y, p1, p2, and p3 would all be
functions of that particular y value as in (7.117).

More generally for memoryless channels, the ith row of H, hi, determines the ith parity constraint’s
event set as

SE = {v | v · h∗i = 0} . (7.133)

The parity constraint’s extrinsic probability for both specific bit values is (tr is the number of bits in
the parity equation)

pext(E, (vi) = eLLRext,i =
∑

v∈SE\k(yk)

tr∏
j=1

j 6=k

pj(vk) . (7.134)

Soft Bits: Defining the soft bit χi = 2 · pext(vi = 0) − 1 = 1 − 2 · pext(vi = 1), induction shows (see
problem 7.19) for a parity constraint14 with χj = 2 · pj(vj = 0)− 1 for j 6= i

χi =

tr∏
j=1

j 6=i

χj , (7.136)

which is sometimes useful for simpler extrinsic-information calculation. The soft bit relates directly to
the LLR as

LLRext,i = ln

(
χi + 1

χi − 1

)
(7.137)

or

χi = − tanh

(
LLRext,i

2

)
. (7.138)

and further introducing a involutory function that allows adding of soft-bit related information

φ(LLRext,i)
∆
= + ln

(
eLLRext,i + 1

eLLRext,i − 1

)
= − ln

(
tanh

[
LLRext,i

2

])
, (7.139)

or more generally

φ(x) = φ−1(x) = − ln
[
tanh

(x
2

)]
= ln

(
ex + 1

ex − 1

)
. (7.140)

When x = LLRext,i, then χi ·χj corresponds to φ(LLRi)+φ(LLRj), avoiding multiplication and allowing
only addition and table-look-up operations.

14Which follows from:

e
1
2
ln p

1−p − e
− 1

2
ln p

1−p

e
1
2
ln p

1−p + e
− 1

2
ln p

1−p
=

√
p

1−p
−

√
1−p
p√

p
1−p

+
√

1−p
p

=
p− 1 + p

p + 1− p
(7.135)

1138

7.4.1.1 Parity-Constraint Implementation

The parity constraint soft-information relationship is then from (7.136) with tr terms, using also (7.138),

χi =

tr∏
j=1

j 6=i

χj = (−1)tr−1 ·
tr∏
j=1

j 6=i

tanh

(
LLR(pj)

2

)
(7.141)

or with a natural logarithm for avoiding the product in implementation and using the look-up-table

function φ(p)
∆
= − ln

(
| tanh(p)|

2

)
. Then

LLR(pi) = ln
1− χ
1 + χ

(7.142)

= ln

1−
∏tr

j=1

j 6=i
(1− 2pj)

1 +
∏tr

j=1

j 6=i
(1− 2pj)

(7.143)

= ln

1− (−1)tr−1
∏tr

j=1

j 6=i
tanh

(
1
2LLR(pj)

)
1 + (−1)tr−1

∏tr
j=1

j 6=i
tanh

(
1
2LLR(pj)

) (7.144)

= (−1)tr · 2 · tanh−1

 tr∏
j=1

j 6=i

tanh

(
1

2
LLR(pj)

) (7.145)

= (−1)tr ·
tr∏
j=1

j 6=i

[sgn (LLR(pj))] · φ−1

 tr∑
j=1

j 6=i

φ(|LLR(pj)|

 . (7.146)

[Example 7.4.1 continued] See Figure 7.20 for the implementation diagram of the parity
soft-information flows.

1139

+

𝜙

𝜙

𝜙

has - if the sign of two
input LLRs match sign

𝐿𝐿𝑅!"# 1

𝐿𝐿𝑅$%# 1

𝜙$%# 1 = 𝜙!"# 2 + 𝜙!"# 3

𝐿𝐿𝑅!"# 2

𝐿𝐿𝑅$%# 2

±𝜙 !" 𝜙
!"# 1

𝜙 𝑥 = 𝜙&' 𝑥 = −𝑙𝑛 tanh
𝑥
2 = 𝑙𝑛

𝑒% + 1
𝑒% − 1

𝜙$%# 3 = 𝜙!"# 1 + 𝜙!"# 2

𝜙!"# 3

±𝜙!"

𝐿𝐿𝑅!"# 3

𝐿𝐿𝑅$%# 3

𝜙$%# 2 = 𝜙!"# 1 + 𝜙!"# 3

𝜙!"# 2

±𝜙
!"

±𝜙!"

Figure 7.20: Parity constraint soft-information flow.

7.4.2 The Equality or Code-Level Constraint

Equality constraints basically observe that multiple parity checks may contain the same bit (or sym-
bol). Then, the constraints provide information to one another through an equality constraint. A 3-bit
equality-constraint example initiates this section, where the same bit named vk appears in 3 different
parity-check constraints.

EXAMPLE 7.4.2 [3-bit equality constraint]

=

𝑎!

𝑎"

𝑎#

𝑣$ 1

𝑣$ 2

𝑣$ 3

𝑝!!,#(𝑣$ = 1) =
𝑎% (𝑎& (𝑎'

𝑎% (𝑎& (𝑎' + 1 − 𝑎% (1 − 𝑎& (1 − 𝑎'

𝑝!!,#(𝑣$ = 0 =
1 − 𝑎% (1 − 𝑎& (1 − 𝑎'

𝑎% (𝑎& (𝑎' + 1 − 𝑎% (1 − 𝑎& (1 − 𝑎'

Figure 7.21: Graph of equality constraint.

1140

Figure 7.21 illustrates these 3 instances of the same bit. Constraint satisfaction means all
3 are the same. The probability that all 3 instances are the same has two possibilities,
SE = {(000), (111)}:

pvi,E =

{
c′i · a1 · a2 · a3 vi = 1
c′i · (1− a1)(1− a2)(1− a3) vi = 0

, (7.147)

where

c′i =
1

a1 · a2 · a3 + (1− a1)(1− a2)(1− a3)
. (7.148)

The equality constraint accepts extrinsic probabilities from the “other” 2 bits (coming from
different parity check calculations) and then returns an intrinsic probability to its own parity-
check constraint. For bit instance 2, the extrinsic probability calculated from the other two
parity check constraints’ results is

pext(v2/y2) =

{
ci · a1a3 vi(2) = 1
ci · (1− a1)(1− a3) vi(2) = 0

, (7.149)

where

ci =
1

a1 · a3 + (1− a1)(1− a3)
. (7.150)

This then determines the intrinsic information returned to parity-check 2. Similar expressions
hold for the extrinsic probabilities returned to parity checks 1 and 3.

Figure 7.22’s flow diagram illustrates the calculations and flows for the simpler equality
constraint in that LLR values simply are added for the “other” bits.

=

𝐿𝐿𝑅!"# 1

𝐿𝐿𝑅!"# 3𝐿𝐿𝑅!"# 2

𝐿𝐿𝑅!"# 1 = 𝐿𝐿𝑅$%# 2 + 𝐿𝐿𝑅$%# 3

𝐿𝐿𝑅!"# 2 = 𝐿𝐿𝑅$%# 1 + 𝐿𝐿𝑅$%# 3

𝐿𝐿𝑅!"# 3 = 𝐿𝐿𝑅$%# 1 + 𝐿𝐿𝑅$%# 2

Figure 7.22: Equality constraint soft-information flow.

7.4.2.1 Equality-Constraint Implementation

Equation (7.154) essentially states that the extrinsic propagation of information from an equality node
for the jth instance of the same bit’s use in tr parity checks is given in terms of the LLRs as

LLR(j) =

tc∑
i=1

i6=j

LLR(i) (7.151)

and the extrinsic calculation simply sums all terms except the jth. Thus, as in Example 7.4.2’s Figure
7.22, each extrinsic output log likelihood ratio is simply the sum of all the other input intrinsic log
likelihood ratios. Specifically, the log likelihood ratio associated with each input is NOT included in the
computation of its extrinsic output at the equality node.

1141

repetition code: A simple repetition code of rate 1/tc is another equality constraint directly that
applies to each of the repeated bits. SE = {000000....0, 111111....1}. The joint probability of the event
and the bit is thus

pvi,E = ck
∑
vi∈SE

tc∏
j=1

pj(vi) , (7.152)

where

ci =

tc∏
j=1

pj(vi)

+

tc∏
j=1

(1− pj(vi))

−1

. (7.153)

The extrinsic probability for any given instance of this bit (returned to the constraint) is

pext(vi(j)) = c′i ·
∑
vi∈SE

tc∏
j=1

j 6=i

pj(vi) , (7.154)

where

c′i =

tc∏
j=1

j 6=i

pj(vi)

+

tc∏
j=1

j 6=i

(1− pj(vi))

−1

. (7.155)

7.4.3 Constellation bit constraints

A decoder can compute a likelihood function for each bit of a constellation’s labels.

EXAMPLE 7.4.3 [single-dimension bit-level likelihoods] An example for one dimension
of a 64 QAM constellation and rate 2/3 code helps understanding. Figure 7.23 shows one
Gray-code labelled constellation dimension and a received value of y = −5.5.

-7
(000)

-5
(001)

-3
(010)

-1
(011)

+1
(111)

+3
(110)

+5
(100)

+7
(101)

𝑦1 = −5.5
(𝑣" 𝑣# 𝑣$)

Figure 7.23: Example for 1-dimensional likelihood computation.

The received value of -5.5 in the first dimension corresponds to the 3 bits (v3, v2, v1). There
are 4 constellation points that correspond to each of the bits independently being 1 or 0.
Thus, the likelihood for v3 is

p(y1 = −5.5, v3 = 0) = c1 ·
1√

2πσ2

(
e−

1
2σ2

(.5)2 + e−
1

2σ2
(1.5)2 + e−

1
2σ2

(2.5)2 + e−
1

2σ2
(4.5)2

)
· (1− p3)

p(y1 = −5.5, v3 = 1) = c1 ·
1√

2πσ2

(
e−

1
2σ2

(6.5)2 + e−
1

2σ2
(8.5)2 + e−

1
2σ2

(10.5)2 + e−
1

2σ2
(12.5)2

)
· p3 ,

while the likelihood for v2 is

p(y1 = −5.5, v2 = 0) = c2 ·
1√

2πσ2

(
e−

1
2σ2

(.5)2 + e−
1

2σ2
(1.5)2 + e−

1
2σ2

(10.5)2 + e−
1

2σ2
(12.5)2

)
· (1− p2)

p(y1 = −5.5, v2 = 1) = c2 ·
1√

2πσ2

(
e−

1
2σ2

(2.5)2 + e−
1

2σ2
(4.5)2 + e−

1
2σ2

(6.5)2 + e−
1

2σ2
(8.5)2

)
· p2 ,

1142

and finally

p(y1 = −5.5, v1 = 0) = c3 ·
1√

2πσ2

(
e−

1
2σ2

(1.5)2 + e−
1

2σ2
(2.5)2 + e−

1
2σ2

(8.5)2 + e−
1

2σ2
(10.5)2

)
· (1− p1)

p(y1 = −5.5, v1 = 1) = c3 ·
1√

2πσ2

(
e−

1
2σ2

(.5)2 + e−
1

2σ2
(4.5)2 + e−

1
2σ2

(6.5)2 + e−
1

2σ2
(12.5)2

)
· p1 .

Any of these could serve as à prior distributions for other codes’ subseqent LL computations.

AWGN likelihood values for all but the largest values of σ2, or equivalently at SNR’s above a few dB,
will be very often dominated by one term. Furthermore, this dominant term only computes the squared
difference from the closest constellation point for each input bit value, with normalization by 2σ2.

EXAMPLE 7.4.4 (2D example) Likelihoods’ calculation for each bit in non-square con-
stellations can also be computed as in 8SQ constellation in Figure 7.24, although such con-
stellation mappings do not compliment well codes in BICM.

(000)

1 2 3-1-2-3

1

2

3

-1

-2

-3

(001)(100)

(101)

(010)

(011)

(111)

(110)

x

[.5 , 1.3]

𝑢! 𝑢" 𝑢#

Figure 7.24: Example for 2-dimensional likelihood computation.

The two values of the likelihood for a y = [.5, 1.3] are:

p(u1 = 0) = c1 ·
1

2πσ2

(
e−

(1.5)2+(.3)2

2σ2 + e−
(3.5)2+(1.7)2

2σ2 + e−
(.5)2+(2.3)2

2σ2 + e−
(2.5)2+(4.3)2

2σ2

)
· (1− p1)

p(u1 = 1) = c1 ·
1

2πσ2

(
e−

(.5)2+(1.7)2

2σ2 + e−
(2.5)2+(.3)2

2σ2 + e−
(3.5)2+(2.3)2

2σ2 + e−
(1.5)2+(4.3)2

2σ2

)
· p1 .

1143

For this example the computation of the LLRs yields:

LLR(u3) = −3.4 (7.156)

LLR(u2) = −.545 (7.157)

LLR(u1) = −.146 . (7.158)

The MAP decision is (u3, u2, u1) = (0,0,0) not the point (0,1,0) that would result from
simpler maximum likelihood symbol detection, which instead selects the closest point or
(0 1 0). The received vector, however, is very close to the decision-region boundary for a
maximum likelihood symbol detector. The reason for the different decisions is that the points
surrounding the received vector favor 0 in the middle position (m2). That is, 3 of the 4
surrounding points have 0 while only 1 point has a 1 value for m2.

At reasonably high SNRs so that points near the boundary rarely occur, the log likelihood
would reduce to essentially a squared distance from the received value to the closest con-
stellation point and the ML and P̄b-minimizing APP decisions will very often be the same.
Usually SQ QAM constellations with even power of 2 number of points are used with BICM
and Gray coding, so to preserve the binary code’s gain.

7.4.4 Soft intersymbol-interference cancellation

ISI constraints can directly produce soft information through SOVA’s processing of ISI (like with partial
response) on the trellis or APP as in Section 7.3. This subsection provides a considerably simpler
alternative known as the soft canceler.

Soft cancellers handle ISI and approximate ML or MAP detection for each input subsymbol or bit.
The soft-canceller specifically approximates the à posteriori probabilities

pxi/yu =
pyu/xi · pxi

pyu
, (7.159)

iteratively, where u is a time index or possible a user index when there is crosstalk.
(7.159)’s independence of x allows direct use of the likelihood function py/xi instead of the à posteriori

function when the initial input distribution for xu is uniform; when soft extrinsic information from a code
is provided, then the intrinsic non-uniform distribution incorporates also the pxi distribution. Often the
log-likelihood function Lyu/xi = log(pyu/xi) is directly propagated.

The probability distribution is a function of the discrete variable au that may take on any of the
possible message values for the subsymbol xu. au is a vector when xu is a vector.

The objective maximizes the probability over au, or

max
ai∈C

pyu/xi · pxi ∀ i = 1, ..., U

or with likelihoods

max
ai∈C

(
Lyu/xi + Lxi

)
= Lext(ai) + Lold(ai) ∀ i = 1, ..., U ,

where the quantity Lext(ai) is the extrinsic likelihood that measures what all the other symbols relate
regarding the possible values of symbol u. Lold(ai) is an older likelihood based on previous information
(or an initial condition).

An AWGN’s extrinsic probability distribution depends on an estimate of its mean and variance:
Previous estimates of the mean vector ξu = E[xi/yu] and the autocorrelation Rx̂x̂(u) = E[(xi−ξi)(xi−
ξi)
∗/yu] are known from training or previous soft-canceller iterations.
To compute the extrinsic probability distribution for subsymbol index i, a noise estimate is

wu,i(ai) =

yu −∑
j 6=i

Huj · ξj

−Hui · ai (7.160)

1144

where ai takes on all the possible discrete values in xi. Thus wu,i(ai) is a function that estimates the
uth-output dimension noise for each possible transmitted input. The estimated noise autocorrelation
matrix is

Rww(u, i) = Rnn(u) +
∑
j 6=i

Huj ·Rx̂x̂(j) ·H∗uj . (7.161)

The converged soft canceller’s goal is that Rww(u, i) approaches the noise autocorrelation and that
Rx̂x̂(u)→ 0, leaving x̂i = xi.

A new extrinsic probability distribution is

pyu/xi(ai) =
1

π|Rww(u, i)|
· e−(wu,i(ai))∗R−1

ww(u,i)(wu,i(ai)) . (7.162)

The overall probability distribution is then the product of this new extrinsic probability distribution
and the à priori distribution, from which new values of ξi and Rx̂x̂(i) can be computed and used for
extrinsic estimates of other symbols:

ξi =

∑
ai ai · pyu/xi(ai)∑
ai pyu/xi(ai)

(7.163)

Rx̂x̂(i) =

∑
ai (ai − ξi) (ai − ξi)∗ · pyu/xi(ai)∑

ai pyu/xi(ai)
(7.164)

Figure 7.25 illustrates the flow chart for the algorithm.
If the soft value ξi exceeds the maximum value for the constellation significantly, it should be discarded

and not used as clearly there is a “bad” soft quantity that would cause such a large value. Thus, for
the pass of all the other symbols that follow, this “bad” value is not used in the soft cancelation, and
a value of zero contribution to the variance is instead used. Such bad-value-ignoring has been found to
speed convergence of the algorithm significantly.

The designer needs to remember that while the soft-canceler will approximate ML or MAP perfor-
mance, such performance may still not be acceptable with severe intersymbol interference.

7.4.4.1 Initial Conditions

The initial soft values ξi, i = 1, ..., U can be found by any pertinent detection method. Typically a
pseudo-inverse (or inverse) for the channel P can process the output yu to obtain initial estimates of
the ξi

xi = H+ · yu . (7.165)

Zeroed initial values may be easier to compute, but can increase the convergence time of the algorithm
in Figure 7.25. Large values outside the constellation boundaries produced by any such pseudo-inverse
should be set to the closest constellation boundary point. An initial estimate of the variance can be set
equal to the computed variance using the initial ξi values

Rx̂x̂(u) = H+ ·Rnn(u) ·
[
H+
]∗

. (7.166)

For channel information, one easily determines for the BSC input that15

LLRk =

{
ln 1−p

p if vk = 1

ln p
1−p if vk = 0

(7.167)

and for the AWGN output with binary PAM input that

LLRk =
2

σ2
· yk , (7.168)

15If the input is 0, the probability of an output 0 is (1 − p)p0 and of a 1 pp0 so Λ = ln p
1−p

, or if the input is 1, the

probability of an output 1 is (1− p)p1 and of an output 0 is (p · p1, so Λ = ln 1−p
p

.

1145

While i=1,…,U

While iter < max

() () iuijujiiu

i

PuPw

x

aa ⋅−⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅= ∑

≠ij
, ξ

 allfor estimate noise
cancelled-soft compute

() () ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅⋅+= ∑

≠

*

ij
nnww ujuj

i

PRPuRiuR

x

xx ˆˆ,

 allfor estimate noise
of variancescnew compute

wwRw varianceand meanfor)(LR ndist'
yprobabilit (Gaussian)new compute

ext

() ()
0

, and),(
ssoft value nitialize

ˆ

=iter
iuLR

I

old iuRui xx⌢ξ

() () ()iuLiuLRiuLR oldextnew ,,,
slikelihood update

+=

()
()

() ()
()() ()() ()

()∑
∑

∑
∑ ⋅−⋅−

=
⋅

=

i i
u

i i
u

i i
u

i i
u

i

iii

i

i

i

uu
iuRu

a x
y

a x
yii

xx

a x
y

a x
yi

a

aaa

a

aa

p

p
,

p

p *

ˆˆ

ssoft value update

ξξ
ξ

Iter=iter+1

Figure 7.25: Soft Cancelation Flow Chart.

1146

which provides for any given y the natural log of the ratio of the probability that the AWGN input is a

1 (x =
√
Ēx) to the probability that the input is a 0 (x = −

√
Ēx) if 1 and 0 are equally likely. If 1 and

0 are not equally likely, add ln(p1p0).

EXAMPLE 7.4.5 [Continuation of Example 7.4.3] For the previous Example 7.4.3, the
lLOGMAX has dominant terms:

LLR(u3) = ln
[
e−

1
2σ2

[(6.5)2−(.5)2]
]

= − 1

2σ2
[42] favors 0 (7.169)

LLR(u2) = ln
[
e−

1
2σ2

[(2.5)2−(.5)2]
]

= − 1

2σ2
[6] favors 0 (7.170)

LLR(u1) = ln
[
e−

1
2σ2

[(.5)2−(1.5)2]
]

=
1

σ2
favors 1. (7.171)

The LOGMAX LLR esimate simplifes to

LLR =
y

σ2
(b− a) +

a2 − b2

2σ2
(7.172)

where b is the closest 1-bit point in the constellation and a is the closest 0-bit point in the
constellation.

The LLR generalizes to the form

LLR = <{y
∗(b− a)}
σ2

+
‖a‖2 − ‖b‖2

2σ2
(7.173)

for complex vectors.

1147

7.5 Iterative Decoding

Sections 7.3 and 7.4 describe soft-information generation from a specific decoder or constraint. This
soft information by itself allows MAP symbol- or bit-error minimization, but has greater significance
for other decoders. Iterative decoding passes soft information from one decoder to another, hopefully
improveing LLR accuracy.

Iterative decoding approximates ML or MAP detectors for a set of inputs and corresponding
constraints/code with much lower complexity. Iterative decoding uses the extrinsic soft information
generated as in Sections 7.3 - 7.5 along with intrinsic given or channel soft information in successive
attempts to refine the estimate of the transmitted bit-or-symbol probability distribution (or LLR).
Concatenated coding systems use more than one code or constraint and exploit soft information from
each constraint or code to improve the others’ decoding. As in Sections 7.3 and 7.4, soft information
from a first decoder/constraint that will be sent to another decoder/constaint is extrinsic information.
Extrinsic information may help resolve “ties” or situations that are so close that the other decoders
without assistance would not correctly decode with sufficiently high probability. An iterative-decoding
process between two or more constraints passes extrinsic information to the other decoders, Each decoder
retains and uses its own intrinsic information, which typically arises from a specific subsymbol channel-
output sampling time-k. The decoders cyclically exchange extrinsic information, combining the incoming
extrinsic information with the retained intrinsic information.. The resultant cycle approximates an
optimum decoder, but with much less complexity. Chapter 8’s concatenated and long-block-length
codes anticipate iterative decoding’s use. The approximation usually allows reliable transmission at
data rates very close to capacity, essentially canonical performance.

The APP decomposition that enables the iterative-decoding cycle is:

pxk/Y 0:K−1
∝ pxk,Y 0:K−1

= pxk︸︷︷︸
à priori

· pyk/xk︸ ︷︷ ︸
channel︸ ︷︷ ︸

intrinsic

· pY 0:k−1,Y k+1:K−1/xk,yk︸ ︷︷ ︸
extrinsic

. (7.174)

The proportionality on the left in (7.174) simply notes that the normalization by the probability distri-
bution pY 0:K−1

has no influence upon a final decision for xk. A first decoder retains the first 2 terms

locally for the intrinsic information. Iterative decoding’s initial à prior distribution is usually uniform.
The 3rd term is the extrinsic information that finds both local use and also exported use at (an)other
(decoder)s. Those other decoders may return extrinsic information that then replaces the à priori infor-
mation at the first decoder. That first decoder then may consequently update its extrinsic information
for another export to other decoders. When there are more than 2 codes/decoders, the design follows
an extrinsic information-passing schedule. The “channel” information itself arises from a memoryless
processing of the time-k channel output data. This “symbol-by-symbol” detection, while sometimes in-
sufficient by itself, nonetheless often provides strong indication of the most likely transmitted subsymbol,
as in Subsection 7.4.3). This channel information remains the same on each iterative decoding cycle.
Extrinsic information does not include the channel information to avoid an consequent bias that would
accumulate with it on each cycle.

Often the two decoders order differently the bits/symbols through Chapter 8’s interleaving. This
interleaving redistributes the location of large channel noise/errors or “bursts,” thus allowing better soft
information from constraints less affected by bursts to be shared with those heavily affected by bursts.
This process also helps make independent BICM’s mapping of bits to/from constellations that have
nonzero redundancy ρ > 0 in |C| = 2b+ρ..

Log Likelihood Implementation: It is again convenient to use the log-likelihood function instead
of the probability function, so then (7.174) becomes

LLxk,Y 0:K−1
= LLxk + LLyk/xk + LLY 0:k−1,Y k+1:K−1/xk,yk

(7.175)

= LLà priori + LLchannel︸ ︷︷ ︸
bias accumulation risk

+LLextrinsic . (7.176)

1148

If a decoder computes LLk
∆
= LLxk,Y 0:K−1

further calculations subtract LLchannel,k and Là priori,k to

produce the extrinsic information for another decoder. Decoder implementation often replaces the LLk
by LLRk for bit decoding. Section 7.4’s constraint events directly compute this extrinsic information
from their associated constraint. Equation (7.176) illustrates potential bias accumulation. This poten-
tially unstable feedback bias mechanism may not be so clear in constraint-based code designs, which
nevertheless need to account for it to profit best from iterative decoding. Chapter 8’s LDPC codes,
whose preferred decoders pass soft-information between constraints, avoid such short soft-information-
message-passing cycles that would allow soft-information’s bias accumulation.

Soft-out
decoder 1

Soft-out
decoder 2

Interleaver
(See Section 8.3)

De-Interleaver
(See Section 8.3)

Demux

𝐿𝐿!"

𝐿𝐿#$%

𝐿𝐿!"

𝐿𝐿#$%
𝑦&

De-Interleaver

Figure 7.26: Iterative Decoding two codes.

Iterative decoding flow: Figure 7.26 illustrates iterative decoding for two interleaved codes. Chapter
8, Section 3 further details interleaving. The extrinsic likelihood from one decoder, LLext becomes the
à priori input distribution for the other decoder. The channel information remains local to each decoder
for the current subsymbol time instant. This time-instant almost always differs with interleaving. The
decoders usually correspond to two independent codes, in which case the system uses “turbo coding”
(really should be “turbo decoding,” see Chapter 8, Section 3.2) in an amusing analogy with automobile’s
“turbo” engine16. Figure 7.26 could also add a 3rd decoder to the cycle, or even more; this then tends
towards codes based on event constraints. Thus, an alternate view has an equality constraint on all the
commonly encoded bits for Figure 7.26’s two codes. One decoder could also be an MLSD decoder for
intersymbol interference or a soft canceller. A decoder can be as simple as the demapping of BICM’s
Gray Coded constellation points (which indeed is a code that can use/approximate MAP decoders, albeit
those decoders perhaps conceptually simple). The two codes could be actually those of two different
users sharing the same channel, and it happens that their signals “crosstalk” into one another, as in
Chapters 2 and 5.

Either decoder also produces an estimate of each and every symbol value xi, which is found as that
symbol value at time k, k = 0, ...K − 1 that maximizes the likelihood function values Lxk/Y 0:K−1

,

or equivalently maximizes Lxk,Y 0:K−1
. A simple method of knowing when to stop is if and when the

decisions made by the two decoders agree. Typically 5-20 iterations are necessary with reasonable code
choices to converge to a common final decision. The following Theorem helps understand convergence:

Theorem 7.5.1 [Iterative-Decoding Convergence] Iterative decoding converges to the
exact probability densities desired if the constraints/decoders are such that no information
from one constraint/decoder can return to that constraint – that is the number of iterations
is smaller than the length of a message-passing “cycle” among the constraints/decoders.

16It seems these codes’ inventors pursue more exciting extracurricular activities than the gardening performed by their
more tranquil predecessors in Chapter 3’s RAKE receivers.

1149

Proof: The proof follows directly from Equation 7.174, which is exact. If each term is
exact, then the entire equation is also exact. The first two right-hand terms on the right
are trivially exact. The extrinsic term will be exact if no approximations are used in its
calculation. The only approximation that could be made in its calculation elsewhere is the
use of other approximated extrinsic terms. The only way for these to be approximate is that
somehow one decoder’s processing used à priori information that came from another decoder’s
extrinsic information, which only happens if there are enough iterations for information to
cycle through the constraints. QED.

Theorem 7.5.1 is both profound and theoretically trivial. The very condition of “no cycles” prevents
the nature of iterative decoding, because averting cycles altogether is difficult in practice. Such aversion
creates some very difficult computations that are essentially equivalent to executing a full ML decoder.
Thus, the convergence condition usually won’t occur exactly in most (or almost all) uses. Nonetheless,
its approximate satisfaction often enables convergence. Such decisions ultimately are almost always
the same as the more complicated direct ML decoder. Figure 7.26 immediately violates the short-cycles
condition as clearly extrinsic information is cycling – yet, depending on the codes chosen and particularly
the interleaver, the “long cycles” at a detailed bit level may be largely satisfied and the iterative decoding
process can still then converge quickly and nearly exactly.

7.5.1 Iterative Decoding with the APP (BCJR) algorithm

Section 7.3.1’s APP algorithm computes the quantity

γk(i, j) = p(sk+1 = j,yk/sk = i) = pk(i, j) ·
∑
x′k

pyk/x′k · qk(i, j,x′k) , (7.177)

where pk(i, j) = p(sk+1 = j/sk = i), allows decoders to transfer information. Recall this quantity is
the one used to update the others (namely, α and β in BCJR) and to incorporate channel and à priori
information. Ultimately, BCJR/APP decisions are upon the product of α, β, and γ, see Section 7.3.
Since parallel transitions can only be resolved by symbol-by-symbol decoding, one presumes that step is
accomplished outside of iterative decoding and so (7.177) simplifies to

γk(i, j) = pk(i, j) · pxk · pyk/xk (7.178)

where iterative decoding incorporates another decoders extrinsic information through the pk(i, j) · pxk
component terms. Thus,

ln (γk(i, j)) = LLext(old) + LLyk/xk . (7.179)

or
γk(i, j) = eLLext(old) · eLLy/x . (7.180)

The local decoder updates its α and β quantities rom the latest set of γk(i, j) for each successive APP-
decoding cycle with initial condition usually a uniform distribution on pxk . Similarly, the new extrinsic
information for another decoder subtracts LLyk/xk and the earlier provided extrinsic information before
new export as:

LLext(new) = Lxk/Y 0:K−1
− Lap − Lyk/xk (7.181)

where Lap is the likelihood of the á priori (often the last value of the extrinsic likelihood), Lyk/xk comes
directly from the channel, and Lext(new) becoming Lext(old) for the next decoder.

7.5.2 Iterative Decoding with SOVA

SOVA’s soft information (Section 7.4) is somewhat ad-hoc and does not exactly correspond to pxk .
Nonetheless, larger values of LLx∗k,x′k imply more x∗k is more likely than x′k. In fact the likelihood of

any pair of xk values, say x
(1)
k and x

(2)
k can be computed by subtracting corresponding values of ∆LLk

as
∆LLx(1)

k ,x(2)
k

= ∆LLx∗k,x
(1)
k

−∆LLx∗k,x
(2)
k

. (7.182)

1150

SOVA uses values of ∆LLk for all time k paths, particularly in the forward-backward recursion. The
new log likelihoods allow an update of the VA and consequent new LL values, from which the current
branch LL subtracts before export as extrinsic to another decoder. Then (??)’s internal information

update for each branch comparison becomes a function with respect to other values x
(m)
k :

LLx(m)
k ,yk

(x
(m)
k)← LLyk/x

(m)
k

+ ∆LLxk,x(m)
k

m = 0, ...,Mk − 1 , x
(m)
k 6= xk (7.183)

where the reference is this path’s xk value selected in the previous decoder’s SOVA use. These new
extrinsic-information-including branch likelihoods are added to previous state likelihoods and the SOVA
proceeds as in Section 7.4.

7.5.3 Direct use of constraints in iterative decoding

+

=

=

=

=

.

.

.

+

+

𝐿𝐿𝑅!"# 𝑝$%

𝐿𝐿𝑅!"# 𝑎$%

𝐿𝐿𝑅'̀)*$+*$ 𝑣$

𝐿𝐿𝑅 𝑣$

𝑣&

𝑣'

𝑣(

𝑣)

 Variable

 nodes

 Check
 nodes

Figure 7.27: Tanner Graph: Direct use of constraints in Iterative Decoding.

Figure 7.27 illustrates the direct use of constraints, parity and equality, in an iterative-decoding flow
diagram. This is often called a Tanner Graph [6].17 Messages are passed from the initial channel outputs
as LLRext’s from right to left into the equality nodes. Subsequently, the equality nodes pass updated
extrinsic information to each of the parity nodes (right to left), which then return soft information to

17After Dr. Michael Tanner (1956 -), an American information theorist, with PhD from Stanford University in 1971,
and a Professor at UC Santa Cruz.

1151

the equality nodes in a subsequent cycle. The equality and parity then iteratively pass soft information
and the output LLR’s from the equality nodes are then monitored to see when they heavily favor 0 or 1
for each of the bits (and then the algorithm has converged). This diagram may be very useful in circuit
implementation of iterative decoding of any (FIR) parity matrix H, which essentially specifies parity
and equality constraints (for more, See LDPC codes of Chapter 8). Each of the nodes use Figures 7.19
and 7.21.

7.5.4 Turbo Equalization

Turbo equalization uses the soft-information from decoders in the MLSD or APP priors for an ISI
decoder. Similarly, this information may export extrinsic information in the same way as if it were a
code. When soft cancellers are used, the current branch metric LL must be subtracted as well as any
previous extrinsic information.

1152

Exercises - Chapter 7

7.1 Error Events.
For the trellis in Figure 7.4, let the input bits correspond to no precoding.

a. (3 pt) Find the error-event descriptions εm(D), εx(D) and εy(D) if the two inputs of concern are
the sequences m(D) = 0 and m(D)1⊕D ⊕D2.

b. (1 pt) What is the distance between these two events for the AWGN and consequent ML decoder?

c. (2 pts) What is the probability that one of the two input bit sequences is confused for the other?

7.2 Partial Response Precoding and MLSD.
A partial response channel with AWGN has H(D) = (1 +D)4(1−D) and M = 2.

a. (1 pt) Find the channel response hk, k = 0, 1, ..., 5.

b. (1 pt) Make a guess as to why this channel is called ‘EPR6’.

c. (2 pts) Design a precoder for this channel and show the receiver decision regions.

d. (1 pt) In part (c), find the loss in performance with respect to the MFB.

e. (2 pts) Find the improvement of MLSD over precoding (ignoring Ne differences), given that
εx(D) = 2(1−D +D2) is in Emin, the set of all error events that exhibit minimum distance.

f. (1 pt) In part (e), it was guessed that εx(D) = 2(1 −D + D2) is in Emin. Some other sequences
that are likely to be in Emin are 2(1 −D), 2(1 −D + D2 −D3), and 2(1 −D + D2 −D3 + D4).
Can you think of an intuitive reason why this should be so?

7.3 Viterbi decoding of convolutional codes.
A b̄ = 2/3 convolutional code is described by the 3 dimensional vector sequence v(D) = [v3(D), v2(D), v1(D)]

where v(D) is any sequence generated by the all the binary possibilities for an input bit sequence
u(D) = [u2(D), u1(D)] according to

v(D) = u(D) ·
[

1 D 1 +D
0 1 1 +D

]
(7.184)

a. (2 pts) Write the equations for the output bits at any time k in terms of the input bits at that
same time k and time k − 1.

b. (2 pts) Using the state label [u2,k−1 u1,k−1], draw the trellis for this code.

c. (4 pts) Use Viterbi decoding with a Hamming distance metric to estimate the encoder input if
y(D =

010 110 111 000 000 000 ...

is received at the output of a BSC with p = .01. Assume that you’ve started in state 00. Note
that the order of the triplets in the received output is: v3v2v1.

d. (2 pts) Approximate Ne and Pe for this code with ML detection.

e. (2 pts) Approximate Nb and Pb for this code with ML detection.

7.4 Performance evaluation of MLSD, easy cases.
Find d2

min, the number of states for the Viterbi decoder, and the loss with respect to MFB for MLSD
on the following channels with M = 2 and d = 2.

a. (2 pts) H(D) = 1 + πD

b. (2 pts) H(D) = 1 + .9D

1153

c. (2 pts) H(D) = 1−D2

d. (3 pts) H(D) = 1 + 2D − D2. Would converting this channel to minimum phase yield any
improvement for MLSD? Discuss briefly.

7.5 MLSD for the 1-D channel.
Consider the discrete time channel H(D) = 1−D.

a. (1 pt) Draw the trellis for H(D) given binary inputs xk ∈ {−1,+1}.

b. (2 pts) Show that the Viterbi algorithm branch metrics for H(D) can be written as below.

k − 1 k branch metric
+1 +1 0
+1 -1 zk + 1
-1 +1 −zk + 1
-1 -1 0

c. (2 pts) Explain in words how you would use these branch metrics to update the trellis. Specifically,
on each update two paths merge at each of the two states. Only one path can survive at each
state. Give the rule for choosing the two surviving paths.

d. (2 pts) What can be said about the sign of the path metrics? If we are interested in using only
positive numbers for the path metrics, how could we change the branch metrics? Hint: min{xi}
is the same as max{−xi}.

e. (2 pts) Use the MLSD you described in the previous part to decode the following sequence of
outputs zk:

0.5 1.1 -3 -1.9

It is acceptable to do this by hand. However, you should feel free to write a little program to do
this as well. Such a program would be very helpful in the next problem without any changes if
you apply it cleverly. Turn in any code that you write.

f. (1 pt) True MLSD does not decide on any bit until the whole sequence is decoded. In practice, to
reduce decoding delay, at every instant k, we produce an output corresponding to symbol k −∆.
For what value of ∆ would we have achieved MLSD performance in this case?

7.6 Implementing MLSD for the 1−D2 channel.
(4 pts) Use MLSD to decode the following output of a 1 − D2 channel whose inputs were 2-PAM

with d = 2. Hint: You can make one not-so-easy problem into two easy problems.
0.5, 0, 1.1, 0.5, -3, 1.1, -1.9, -3, 0, -1.9

7.7 Searching paths to find d2
min.

Consider the channel H(D) = 0.8 + 1.64D + 0.8D2 with σ2 = 0.1, M = 2, d = 2.

a. (3 pts) Find the minimum squared distance associated with an Lx = 1 (i.e., three branch) error
event.

b. (4 pts) Find the minimum squared distance associated with an Lx = 2 (i.e., four branch) error
event.

c. (4 pts) Find the minimum squared distance associated with an Lx = 3 (i.e., five branch) error
event.

d. (3 pts) Assume that no longer error patterns will have smaller squared distances than those we
have found above. What is d2

min for this MLSD trellis, and what is the loss with respect to the
MFB? What is the loss with respect to the MFB if the last term of the channel changes to −0.8D2?

1154

7.8 AMI Coding.
Alternate Mark Inversion (AMI) Coding can be viewed as a discrete-time partial response channel,

where the H(D) = 1 −D shaping is entirely in the transmit filter, on a flat (ISI-free) AWGN channel.
The transmit filter is preceeded by a binary differential encoder (ie. M = 2) and a modulator. The
modulator output, which is binary PAM with levels {1,−1}, is the input to the transmit filter. The
system diagram for AMI is shown in the figure.

km
km

precoder	
Modulator	
2(m)-‐1	

kx
H(D)=1-‐D	

kx
+	

kn

ky
receiver	

km̂

transmi;er	

channel	

Figure 7.28: AMI transmission system.

a. (2 pts) Draw the transmitter in detail, showing the precoder with input bits mk and output bits
mk, a modulator with ouput xk, and the transmit filter with output xk.

b. (1 pt) Find the channel input energy per dimension.

c. (2 pts) For a noise spectral density of σ2 = 0.5, find the Pe for a symbol-by-symbol decoder.

d. (3 pts) Find the Pe for the MLSD detector for the system (with the same σ2 as above). Hint: Its
easy to find Ne in this case. Look at the analysis for the 1 +D channel in the text.

e. (2 pts) AMI coding is typically used on channels that are close to flat, but which have a notch
at DC (such as a twisted-pair with transformer coupling). Argue as to why the channel input xk,
produced by AMI, may be better than the channel input xk, produced by 2-PAM.

7.9 Partial Response - Midterm 1997 11 pts The partial-response channel shown in Figure 7.29 has the

x	
H(D)	

+	
X(D)	

Y(D)	

E	

N(D)	 s2=.01

Figure 7.29: Partial-response channel.

frequency magnitude characteristic, |H(e−jωT)| , shown in Figure 7.30. The power spectral density (or
variance per sample) of the AWGN is σ2 = .01.

1155

a. What partial-response polynomial might be a good match to this channel? Can you name this
choice of PR channel? (3 pts)

b. For binary PAM transmit symbols, find a simple precoder for this PR channel and determine the
transmit energy per symbol that ensures the probability of bit error is less than 10−6 . (4 pts)

c. Using MLSD on this channel, and ignoring nearest neighbor effects, recompute the required trans-
mit energy per symbol for a probability of symbol error less than 10−6. (2 pts)

d. Would you use a precoder when the receiver uses MLSD? Why or why not? (2 pt)

7.10 Trellis and Partial Response - Midterm 2003 16 pts
A partial-response channel has response P (D) = (1 + D)q · (1 − D) and additive white Gaussian

noise, where q ≥ 1 is an integer.

a. For q = 1 and M = 4, draw two independent and identical trellises that describe this channel and
associated times at which they function. (3 pts)

b. What is the d2
min for part a and the corresponding gain over a ZF-DFE? (2 pts)

c. What error-event polynomials (input and output) produce the dmin in part b? (2 pts)

d. Design a precoder that avoids quasi-catastrophic error propagation for the use of MLSD on this
channel. (2 pts).

e. If q = 2 and M = 4, how many states are used in trellis? What is the general formula for q ≥ 2
and any M for the number of states? (2 pts)

f. What is d2
min for q = 2 and M = 4? (2 pts)

g. Which MLSD works at lower Pe, the MLSD for part f or for part b? How do they compare with
an AWGN with P (D) = 1? Why? (3 pts)

7.11 Ginis dmin for other metrics 11 pts Modify the bdistance.m file of Ginis program to compute
squared distance instead of binary distance, and then

a. Use the program to verify the squared distance computations of the 4-state Trellis code used in
class. (4 pts)

b. Use the program to verify the squared distance computations for the 1 + D channel with M =
4, 8, 16. (4 pts)

c. Use this program to determine the minimum distance for the channels H(D) = (1 + D)n(1 −D)
for n = 2, 3 and M = 2. (4 pts)

d. Use this program to determine the performance of MLSD on the discrete channel with P (D) =
1 + .5D + .5D2 − .25D3 for M = 2 binary transmission in Figure 7.29. (4 pts)

7.12 Al-Rawi’s SBS detection and MLSD on EPR4 Channel: In this problem you are asked to use
matlab to compare SBS detection and MLSD using VA at the output of an EPR4 channel with AWGN.
The matlab files that you need for solving this problem are available on the class web page.

Assume the input is binary. The input information sequence m(D) that you need to use for this
excercise is given in m.mat file.

a. Use matlab to implement a binary precoder, and generate the precoded sequence m̄(D) and the
2-level PAM x(D) sequence Assume d = 2. (4 pts)

b. Pass x(D) through the channel to get y(D) Use the supplied matlab function channel.m, which
takes x(D) as an input and generates y(D) as an output, for simulating the channel response The
function channel.m takes the two-side noise power spectral density σ2 as an argument. (2 pts)

1156

c. Use SBS detection to detect the information bits m̂. Find the number of bit errors in the detected
sequence for the case of SNR =

Ēx
N0
2

=4dB. (4 pts)

d. Use MLSD to detect the information bits m̂. You may use the supplied matlab function MLSD.m,
which implements Viterbi decoding for EPR4 channel. Find the number of bit errors in the detected

sequence for the case of SNR =
Ēx
N0
2

=2dB. (4 pts)

e. Plot the bit error rate P̄b=number of bits in error/length(m) versus SNR =
Ēx
σ2 for the SBSD and

MLSD over the SNR range 0 to 6dB. (4 pts)

f. From your plots, what is the coding gain of MLSD over SBSD at P̄b = 10−3? What is the expected
theoretical coding gain? If the two are different, give a brief explanation. (4 pts)

7.13 APP Algorithm

Use of the 4-state rate-1/2 convolutional code with a systematic encoder given by G(D) = [1 1+D2

1+D+D2]
on the BSC results in the output bits shown in Figure 7.3.3. The transmitters input bits are equally
likely.

a. (2 pt) Find the à posteriori probability distribution for each input bit in the systematic case.

b. (2 pts) Find the MAP estimate for each transmitted bit.

c. (2 pts) Why is it possible for the MAP estimate of the systematic encoder case to be different
than the MAP estimate for the original nonsystematic realization in Figure 7.3.3. What about
the MLSD – can the probability of bit error be different for the two encoders for this same code?
What probability of error remains unchanged for systematic and nonsystematic realizations?

d. (3 pts) What is the probability of bit error for the case of MLSD with the systematic encoder? Is
this better than the same probability of bit error with the nonsystematic encoder?

e. (2 pts) Comment on why the computation of probability of bit error may be difficult in the case
of the MAP detector.

7.14 Noise Estimation
Consider the use of any code or partial response system with soft MLSD on the AWGN channel.

a. (1 pt) Does the execution Viterbi MLSD algorithm depend on the variance of the noise?

b. (1 pt) Does the execution APP algorithm depend on the variance of the noise?

c. (1 pt) How might your answer to part b present a practical difficulty?

d. (2 pts) Suppose you were given one training packet where all bits transmitted were known to both
the transmitter and the receiver. How might the receiver estimate the noise variance?

e. (3 pts) For your answer in part d, what is the standard deviation for the noise variance estimate
as a function of the training-packet length?

f. (2 pts) What is the equivalent practical difficulty to part c on the BSC?

g. (2 pts) How might you use the training packet in part e to solve the implementation problem in
part f?

h. (1 pt) Suppose the parametrization of the AWGN or BSC was not exactly correct - what would
you expect to see happen to the probability of bit error?

i. (2 pts) Does the SOVA algorithm have the same implementation concern? Comment on its use.

1157

7.15 SBS detection and MAP detection on EPR4 channel (Al-Rawi): (18 pts)
In this problem you are asked to use matlab to compare SBS detection and MAP detection using

the APP algorithm at the output of an EPR4 channel with AWGN. The matlab files that you need for
this problem are available on the class web page.

Assume the input is binary and is equally likely. A single frame of the input sequence of length 1000
bits that you need to use for this exercise is given in the file m.mat. We would like to pass this frame
through the channel EPR4channel.m 16 times and find the average BER. The function EPR4channel.m
takes N0

2 and the frame number i (i = 1, 2, .16) as arguments, in addition to input frame xFramei(D),
and returns the output frame yFramei(D). Let Ēx = 1, and assume SNR=4 dB, unless mentioned
otherwise.

a. (1 pt) Use matlab to implement a binary precoder, and generate the precoded sequence m̄(D) and
the 2-level PAM sequence x(D).

b. (1 pt) After going through the channel, use SBS detection to detect the information bits. Find the
number of bit errors in the detected sequence over the 16 transmitted frames.

c. (3 pts) For each received symbol yk, k = 1, ..., N , where N is the frame length, calculate the
channel probabilities pyk/ỹk for each possible value of ỹk, where ỹk is the noiseless channel output.
Normalize these conditional probabilities so that they add to 1. (3 pts)

d. (3 pts) Use the APP algorithm to detect the information bits. The matlab function app.m imple-
ments the APP algorithm for the EPR4 channel. Find the number of bit errors in the detected
sequence over the 16 frames.

e. (3 pts) Repeat part d, but now instead of doing hard decisions after one detection iteration, do
several soft detection iterations by feeding the extrinsic soft output of the APP algorithm as a
priori soft input for the next iteration. Find the number of bit errors in the detected sequence over
the 16 frames for 3 and 10 iterations.

f. (3 pts) Plot the BER versus SNR for SBS detection and MAP detection with 1, 3, and 10 iterations
over the SNR range 0 to 12 dB. Use a step of 0.4 dB in your final plots. (3 pts)

g. (3pts) Does increasing the number of iterations have a significant effect on performance? Why, or
why not?

h. (1 pt) What is the coding gain of MAP detection, with one iteration, over SBS detection at
P̄b = 10−3.

7.16 APP (5 pts)
Repeat the APP example in Section 7.3 for the output sequence 01, 11, 10, 10, 00, 10. and BSC with

p = 0.2.

7.17 SOVA (5 pts)
Repeat the SOVA example in Section 7.3 for the output sequence 01, 11, 10, 10, 00, 10. and BSC

with p = 0.2.

7.18 Viterbi Detection - Midterm 2001 (12 pts)
WGN is added to the output of a discrete-time channel with D-transform 1 + .9D, so that yk =

xk + .9 · xk−1 + nk. The input, xk, is binary with values ±1 starting at time k = 0 and a known value
of +1 was transmitted at time k = −1 to initialize transmission.

a. Draw and label a trellis diagram for this channel.(2 pts)

b. Find the minimum distance between possible sequences. (2 pts)

c. What ISI-free channel would have essentially the same performance? (2 pts)

1158

d. The receiver sees the sequence y(D) = 1.91− .9 ·D2 + .1 ·D5 over the time period from k = 0, ..., 5
(and then nothing more). Determine the maximum likelihood estimate of the input sequence that
occurred for this output. You may find it easiest to draw 6 stages of the trellis in pencil and then
erase paths. Leave itermediate costs on each state. (6 pts).

7.19 Soft-bit Induction Proof (6 pts)
Prove Equation (7.136) via induction for a parity constraint with any number of terms.

7.20 Equality Constraint Processing (7 pts)
An equality constraint from 3 different constraints on a bit provides the probabilities p(1) = .6,

p(2) = .5, and p(3) = .8.

a. Find the à posterior probability for the bit given the constraint and what value maximizes it. (1
pt)

b. Find the extrinsic probability for each bit for the constraint. (3 pts)

c. Show that the same value maximizing part a also maximizes the product of the intrinsic (à priori)
and extrinsic information. (2 pts)

d. Compute the log likelihood ratio (LLR) for this bit. (1 pt)

7.21 Parity Constraint Processing (12 pts)
An parity constraint has v1 + v2 + v3 = 0 with à priori probabilities p1 = .6, p2 = .5, and p3 = .8.

a. Find the extrinsic probability for each bit for the constraint. (3 pts)

b. Find the value that maximizes the product of the intrinsic (à priori) and extrinsic information. (2
pts)

c. Find the à posterior probability for each bit given the constraint and what value maximizes it. (3
pts)

d. Repeat part b using Log Likelihood Ratios and the function φ of Section ??. Show (4 pts)

7.22 Constellation Constraint Processing (12 pts)
For the constellations of Examples 7.4.3 and 7.4.4 using an SNR of 4 dB

a. Find the log likelihood ratios for each bit in each of the two constellations and the corresponding
favored value of each bit (6 pts)

b. Find the LLR’s if the received value is 2.9 for Example 7.4.3 for each of the 3 bits. (3 pts)

c. Find the LLR’s if the received value is [-2.9,-1.1] for Example 7.4.4. for each of the 3 bits. (3 pts)

d. Suppose the 3 bits in part b and the 3 bits in part c actually correspond to the same transmitted
bits in two independent transmission systems (i.e., diversity) - what is the APP decision for each
bit. (3 pts)

7.23 Simple Iterative Decoding Concept (9 pts)
We begin using the constellation output for Problem 7.22 Part d’s LLR’s for each of the bits as à

priori or intrinsic information to the parity constraint of Problem 7.21.

a. Find the result favored value for each bit and the corresponding LLR from the parity constraint.
(3 pts)

b. Suppose a second equality constraint states that v1 = v2, then find the subsequent favored values
for the 3 bits and the corresponding LLR’s after also considering this equality constraint. (3 pts)

1159

c. Proceed to execute the parity constraint one more time and indicate the resultant decisions and
LLR’s after this step. (3 pts)

7.24 APP Decoding Program (6 pts)
This problem investigates the use of APP Decoding software recently developed by former student

K. B. Song. Please see the web page for the programs map awgn.m , trellis.m , and siva init.m .

a. For the sequence of channel outputs provided at the web page by the TA for the 4-state rate 1/2
convolutional code on the AWGN, run the program map awgn.m to determine the APP estimates
of the input bits. (3 pts)

b. Plot the LLR’s that would constitute extrinsic information to any other decoder from your results
in part a. You may need to modify the program somewhat to produce these results. (3 pts)

7.25 APP and SOVA Comparison (11 pts)
The objective here is to determine just how close APP and SOVA really are.

a. Compute ND for any convolutional code of rate k/n bits per symbol with 2ν states with the APP
algorithm with log likelihood ratios. A table-look-up on a 1-input function (like ex or ln(x)) can
be counted as one operation. Multiplication is presumed to not be allowed as an operation, so that
for instance ln(ex · ey) = ln(ex+y) = x+ y. (3 pts)

b. Note that the sum of a number of exponentiated quantities like ex + ey is often dominated by
the larger of the two exponents. Use this observation to simplify the APP algorithm with log
likelihoods where appropriate. (3 pts)

c. Compute ND for the SOVA algorithm. (3 pts)

d. Compare your answer in part b to part c. Does this lead to any conclusions about the relation of
APP and SOVA? (2 pts)

7.26 Constrained Constellation Decoding (12 pts)
The figure below shows a 16QAM constellation that is used twice to create a 4D constellation with

the first use corresponding to encoder output bits [v4 v3 v2 v1] and the second use corresponding to
subsequent encoder output bits [v8 v7 v6 v5]. The encoder output bits are also known to satisfy the
constraints

v1 + v2 + v5 = 0 (7.185)

v3 + v4 + v6 = 0 (7.186)

v1 + v3 + v7 = 0 (7.187)

v2 + v4 + v8 = 0 (7.188)

The distance between points in the QAM constellation is 2. The points are transmitted over an AWGN
with SNR=13 dB, and the point [1.4, 2.6, 3.1, -.9] is received. Any point satisfying the constraints is
equally likely to have been transmitted.

a. What is b̄ for this transmission system? (.5 pt)

b. Draw a trellis for this code (use hexadecimal notation for the 4 bits on the 1st QAM symbol
followed by hexadecimal notation for the 4 bits on the 2nd QAM symbol). (2 pts)

c. What 4D point is most likely to have been transmitted, and what is the probability of symbol
error? (1 pt)

d. Find the parity matrix and a systematic generator matrix for this code (“I” matrix can appear for
bits [v4 v3 v2 v1] in the systematic generator) . (2 pts)

1160

e. Draw a constraint-based iterative decoding diagram for this code if probability of bit error is to
be minimized for each of [v4 v3 v2 v1]. What can you say about [v8 v7 v6 v5]? How many cycles of
the parity nodes are necessary to finish? (2.5 pts)

f. Find the values for each of the bits [v4 v3 v2 v1] by iterating your diagram in part e so that the
probability of bit error for each of these 4 bits is individually minimized. (3 pts)

g. What is the probability of error for each of these bits? (1 pt)

1161

radian frequency
0 0.5 1 1.5 2 2.5 3 3.5

m
ag

ni
tu

de

0

0.5

1

1.5

2

2.5

3

3.5
channel magnitude

Figure 7.30: Plot of magnitude of H(D) versus normalized frequency.

1162

0000 0001

0010 0011

0100

0110

0101

0111

1000

1010 1011

1100

1110

1101

1111

1001

Figure 7.31: Constellation for Problem 7.26

1163

Bibliography

[1] Andrew J. Viterbi Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm IEEE Transactions on Information Theory. Vol. 13, No. 2, April 1967, pp. 260-269.

[2] G. David Forney, Jr. Maximum-Likelihood SeauencecEstimation of Digital Sequences in the Presence
of Intersymbol Interference IEEE Transactions on Information Theory. Vol. 18, No. 5, May 1972,
pp. 363-378.

[3] Vedat Eyuboǧlu and Shahid U.H. Qureshi Reduced-State Sequence Estimation with Set Partitioning
and Decision Feedback IEEE Transactions on Communications. Vol. 36, No. 1, January 1988, pp.
13-20.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv Optimal Decoding of Linear Codes for Minimizing
Symbol-Error Rate IEEE Transactions on Information Theory. Vol. 20, No. 2, March 1974, pp.
284-287.

[5] Joachim Hagenauer and Peter Hocher A Viterbi Algorithm with Soft-Decision Outputs and its Ap-
plications Proceedings Globecom 1989 Dallas, TX. November 27-30, pp. 1680-1686.

[6] R. Michael Tanner A Recursive Approach to Low Complexity Codes IEEE Transactions on Informa-
tion Theory. Vol 27, No. 5, September 1981, 533-547.

1164

Index

add-compare-select (ACS), 1097
APP, 1119
APP Foundation, 1121

BCJR, 1119
branch metric, 1096

decoder
list, 1118

decoding
iterative, 1148

demapping, 1121
DFE

sequence detection, 1118

error event, 1106
error propagation

quasi-catastrophic, 1100
extrinsic information, 1148

forward/backward, 1119

intrinsic information, 1148

MLSD, 1093

parity
constrant, 1135

path metric, 1096

RSSE, 1105

soft bit, 1138
soft canceller, 1144
state

index, 1096
metric, 1096

survivor, 1096

Viterbi Algorithm, 1093

1165

1

2

3

4

5

6

7

8

9

10

11

1166

	cardinalDecoding Methods
	cardinalTrellis-based MLSD and the Viterbi Algorithm
	cardinalMLSD for a Convolutional Code
	cardinalSequence Detection with the Viterbi Algorithm
	cardinalMLSD for the Additive White Gaussian Noise Channel
	cardinalViterbi MLSD for H(D)=1+D Partial Response
	cardinalMatlab's convolutional-code Viterbi Detector
	cardinalMatlab Partial-Response MLSD Programs:
	cardinalReduced State Sequence Estimation Example

	cardinalMLSD Analysis
	cardinalError Events
	cardinalPerformance Analysis with Error Events

	cardinalExample Analysis of the 4-state Convolutional code
	cardinalExpanded Use of Transfer Functions

	cardinalExample Exact Analysis of the 1+D partial response channel
	cardinalAnalysis by input error-event enumeration
	cardinalAnalysis by error-event enumeration (d=2)

	cardinalGinis' Code-Analysis Program
	cardinalAlgorithm Description
	cardinalUsing the MATLAB Program

	cardinalRules for Partial-Response Channels
	cardinalDecision Feedback Sequence Detection

	cardinalMAP detection with the APP and SOVA Algorithms
	cardinalMAP with the APP Algorithm
	cardinal3 APP Quantities
	cardinalLOGMAP

	cardinalSoft-Output Viterbi Algorithm (SOVA)
	cardinalIterating the LLR Directly with Forward SOVA

	cardinalUsing a feedback-free generator's decoder to decode systematic with feedback

	cardinalSoft Information Generation
	cardinalBit-Level or Parity Constraints
	cardinalParity-Constraint Implementation

	cardinalThe Equality or Code-Level Constraint
	cardinalEquality-Constraint Implementation

	cardinalConstellation bit constraints
	cardinal Soft intersymbol-interference cancellation
	cardinalInitial Conditions

	cardinalIterative Decoding
	cardinalIterative Decoding with the APP (BCJR) algorithm
	cardinalIterative Decoding with SOVA
	cardinalDirect use of constraints in iterative decoding
	cardinalTurbo Equalization

	Exercises - Chapter 7

	Bibliography
	Index

