Contents

3 Equalization 161
 3.1 Intersymbol Interference and Receivers for Successive Message Transmission 163
 3.1.1 Transmission of Successive Messages .. 163
 3.1.2 Bandlimited Channels ... 165
 3.1.3 The ISI-Channel Model ... 170
 3.2 Basics of the Receiver-generated Equivalent AWGN .. 176
 3.2.1 Receiver Signal-to-Noise Ratio ... 176
 3.2.2 Receiver Biases ... 177
 3.2.3 The Matched-Filter Bound ... 179
 3.3 Nyquist’s Criterion ... 182
 3.3.1 Vestigial Symmetry ... 183
 3.3.2 Raised Cosine Pulses ... 186
 3.3.3 Square-Root Splitting of the Nyquist Pulse 189
 3.4 Linear Zero-Forcing Equalization .. 192
 3.4.1 Performance Analysis of the ZFE .. 192
 3.4.2 Noise Enhancement ... 194
 3.5 Minimum Mean-Square Error Linear Equalization .. 204
 3.5.1 Optimization of the Linear Equalizer .. 204
 3.5.2 Performance of the MMSE-LE ... 205
 3.5.3 Examples Revisited ... 208
 3.5.4 Fractionally Spaced Equalization .. 212
 3.6 Decision Feedback Equalization .. 217
 3.6.1 Minimum-Mean-Square-Error Decision Feedback Equalizer (MMSE-DFE) ... 217
 3.6.2 Performance Analysis of the MMSE-DFE ... 219
 3.6.3 Zero-Forcing DFE .. 221
 3.6.4 Examples Revisited ... 222
 3.7 Finite Length Equalizers ... 228
 3.7.1 FIR MMSE-LE ... 228
 3.7.2 FIR ZFE ... 232
 3.7.3 example ... 232
 3.7.4 FIR MMSE-DFE .. 235
 3.7.5 An Alternative Approach to the DFE ... 240
 3.7.6 The Stanford DFE Program .. 244
 3.7.7 Error Propagation in the DFE ... 246
 3.7.8 Look-Ahead ... 249
 3.8 Precoding ... 250
 3.8.1 The Tomlinson Precoder ... 250
 3.8.2 Partial Response Channel Models .. 256
 3.8.3 Classes of Partial Response ... 259
 3.8.4 Simple Precoding ... 262
 3.8.5 General Precoding ... 266
 3.8.6 Quadrature PR ... 267
3.9 Diversity Equalization
3.9.1 Multiple Received Signals and the RAKE
3.9.2 Infinite-length MMSE Equalization Structures
3.9.3 Finite-length Multidimensional Equalizers
3.9.4 DFE RAKE Program
3.9.5 Multichannel Transmission
3.10 MIMO/Matrix Equalizers
3.10.1 The MIMO Channel Model
3.10.2 Matrix SNRs
3.10.3 The MIMO MMSE DFE and Equalizers
3.10.4 MIMO Precoding
3.10.5 MIMO Zero-Forcing
3.11 Information Theoretic Approach to Decision Feedback
3.11.1 MMSE Estimation and Conditional Entropy
3.11.2 The relationship of the MMSE-DFE to mutual information
3.11.3 Canonical Channel Models
3.12 Construction of the Optimized DFE Input
3.12.1 The Discrete-Time Paley-Wiener Criterion (PWC) and Filter Synthesis
3.12.2 Theoretical multi-tone system tool for transmit optimization
3.12.3 Discrete-Time Waterfilling and the Paley-Wiener Citerion
3.12.4 The baseband lowpass channel with a single contiguous water-fill band
3.12.5 The single-band bandpass case
3.12.6 The general multiple band case and the Optimum MMSE-DFE
3.12.7 Relations between Zero-Forcing and MMSE DFE receivers
3.12.8 Optimized Transmit Filter with Linear Equalization
Exercises - Chapter 3

A Useful Results in Linear Minimum Mean-Square Estimation, Linear Algebra, and Filter Realization
A.1 The Orthogonality Principle
A.2 Spectral Factorization and Scalar Filter Realization
A.2.1 Some Transform Basics: D-Transform and Laplace Transform
A.2.2 Autocorrelation and Non-Negative Spectra Magnitudes
A.2.3 The Bilinear Transform and Spectral Factorization
A.2.4 The Paley-Wiener Criterion
A.2.5 Linear Prediction
A.2.6 Cholesky Factorization - Finite-Length Spectral Factorization
A.3 MIMO Spectral Factorization
A.3.1 Transforms
A.3.2 Autocorrelation and Power Spectra for vector sequences
A.3.3 Factorizability for MIMO Processes
A.3.4 MIMO Paley Wiener Criterion and Matrix Filter Realization
A.4 Information Measures
A.5 The Matrix Inversion Lemma

B Equalization for Partial Response
B.1 Controlled ISI with the DFE
B.1.1 ZF-DFE and the Optimum Sequence Detector
B.1.2 MMSE-DFE and sequence detection
B.2 Equalization with Fixed Partial Response B(D)
B.2.1 The Partial Response Linear Equalization Case
B.2.2 The Partial-Response Decision Feedback Equalizer
Chapter 3

Equalization

Chapter 1’s main focus was a single use of the channel, signal set, and detector to transmit one of \(M \) messages or symbols, commonly referred to as “one-shot” transmission. Chapter 2 expounded upon such a system to sequences or “codewords” of symbols that each passed the channel without overlap or interference from one another. That is the channel was memoryless. In practice, successive transmissions do often interfere with one another, especially as they are sent more closely together to increase the data transmission rate. The interference between successive transmissions is called intersymbol interference (ISI). ISI can severely complicate the implementation of an optimum detector.

Figure 3.1 illustrates a receiver for detection of a succession of transmitted messages. The matched filter outputs are processed by the receiver, which outputs samples, \(z_k \), that estimate the symbol transmitted at time \(k \), \(\hat{x}_k \). Each receiver output sample is the input to the same detector that would be used on an AWGN channel without ISI. This symbol-by-symbol (SBS) detector, while optimum for the AWGN channel, will not be a maximum-likelihood estimator for the message sequence. Nonetheless, if the receiver is well-designed, the receiver-detector combination may work nearly as well as an optimum detector with far less complexity. The objective of this chapter’s receiver will be to improve the simple SBS detector’s performance. For most of this chapter, the SBS detector will be a simple scalar, but developments will eventually encompass the MIMO channel with first the receiver allowing \(L_y > 1 \) spatial dimensions in what is called “diversity” and then further expanding to \(L_x > 1 \) for full MIMO.

Equalization methods are used by communication engineers to mitigate the effects of the intersymbol interference. An equalizer is essentially the content of Figure 3.1’s receiver box. This chapter studies both intersymbol interference and several equalization methods, which amount to different structures for the receiver box. The methods presented in this chapter are not optimal for detection, but rather are widely used sub-optimal cost-effective methods that reduce the ISI. These equalization methods try to

\[
\begin{align*}
X(k) &\xrightarrow{\text{mod}} X(t) \\
N(t) &\xrightarrow{\text{+}} Y_k \\
R &\xrightarrow{\text{matched filter}} z_k \\
&\xrightarrow{\text{SBS detector}} \hat{X}_k
\end{align*}
\]

Figure 3.1: The band-limited channel with receiver and SBS detector.
convert a bandlimited channel with ISI into one that appears memoryless, hopefully synthesizing a new
AWGN-like channel at the receiver output. The designer can then analyze the resulting memoryless,
equalized channel using the methods of Chapters 1 and 2 with an appropriate equalized-system SNR, as
if the channel were an AWGN with that SNR. For coded systems as in Chapter 2, the decoder may no
longer be SBS but it is the same decoder as would be used on the AWGN for that same SNR and does
not include channel effects, grace of the equalizer. With an appropriate choice of transmit signals, one
of this chapter’s methods - the Decision Feedback Equalizer can be generalized into a canonical receiver
(effectively achieves the highest possible transmission rate even though not an optimum receiver).

Section 3.1 models linear intersymbol interference between successive transmissions, thereby both
illustrating and measuring the ISI. In practice, as shown by a simple example, distortion from overlapping
symbols can be unacceptable, suggesting that some corrective action must be taken. Section 3.1 also
refines the concept of signal-to-noise ratio, which is the method used in this text to quantify receiver
performance. The SNR concept will be used consistently throughout the remainder of this text as a quick
and accurate means of quantifying transmission performance, as opposed to probability of error, which
can be more difficult to compute, especially for suboptimum designs. As Figure 3.1 shows, the receiver’s
objective will be to convert the channel into an equivalent AWGN at each time \(k \), independent of all other
times \(k \). An AWGN detector may then be applied to the derived channel, and performance computed
readily using the gap approximation or other known formulas of Chapters 1 and 2 with the SNR of
the derived AWGN channel. There may be loss of optimality in creating such an equivalent AWGN,
which will be measured by the equivalent AWGN’s SNR with respect to the best SNR that might
be expected otherwise for an optimum detector. Section 3.3 discusses some desired types of channel
responses that exhibit no intersymbol interference, specifically introducing the Nyquist Criterion for a
linear channel (equalized or otherwise) to be free of intersymbol interference. Section 3.4 illustrates the
basic concept of equalization through the zero-forcing equalizer (ZFE), which is simple to understand
but often of limited effectiveness. The more widely used and higher performance, minimum mean square
error linear (MMSE-LE) and decision-feedback equalizers (MMSE-DFE) are discussed in Sections 3.5
and 3.6. Section 3.7 discusses the design of finite-length equalizers, as is needed in practice. Section 3.8
discusses precoding, a method for eliminating error propagation in decision-feedback equalizers and the
related concept of partial-response channels. Section 3.9 generalizes the equalization concepts to systems
with one input, but several outputs (so \(L_y > 1 \)), such as wireless transmission systems with multiple
receive antennas called “diversity” receivers.

Section 3.10 generalizes the developments to MIMO channel equalization with both \(L_x > 1 \) and/or
\(L_y > 1 \). Section 3.11 introduces an information-theoretic infinite-length approach to interpreting and
revisiting the SISO MMSE-DFE that is then useful for optimizing the transmit filters in Section 3.12.
Appendix A provides significant results on minimum mean-square estimation, including the orthogonality
principle, scalar and MIMO forms of the Paley Weiner Criterion, results on linear prediction, Cholesky
Factorization, and both scalar and MIMO canonical factorization results. Information measures are also
here related to MMSE estimation (at least until Chapter 2 is revised and then this will be removed from
Appendix A. Appendix B generalizes equalization to partial-response channels.
3.1 Intersymbol Interference and Receivers for Successive Message Transmission

Intersymbol interference is a common practical impairment found in many transmission and storage systems, including voiceband modems, digital subscriber loop data transmission, storage disks, digital mobile radio channels, digital microwave channels, and even fiber-optic (where dispersion-limited) cables. This section introduces a model for intersymbol interference. This section then continues and revisits the equivalent AWGN of Figure 3.1 in view of various receiver corrective actions for ISI.

3.1.1 Transmission of Successive Messages

Most communication systems re-use the channel to transmit several messages in succession. From Section 1.1, the message transmissions are separated by T units in time, where T is called the symbol period, and $1/T$ is called the symbol rate. The data rate of Chapter 1 for a communication system that sends one of M possible messages every T time units is

$$R \triangleq \frac{\log_2(M)}{T} = \frac{b}{T}. \quad (3.1)$$

To increase the data rate in a design, either b can be increased (which requires more signal energy to maintain P_e) or T can be decreased. Decreasing T narrows the time between message transmissions and thus increases intersymbol interference on any band-limited channel.

The transmitted signal $x(t)$ corresponding to K successive transmissions is

$$x(t) = \sum_{k=0}^{K-1} x_k(t - kT). \quad (3.2)$$

Equation (3.2) slightly abuses previous notation in that the subscript k on $x_k(t - kT)$ refers to the index associated with the k^{th} successive transmission. The K successive transmissions could be considered an aggregate or “block” symbol, $x(t)$, conveying one of M^K possible messages. The receiver could attempt to implement MAP or ML detection for this new transmission system with M^K messages. A Gram-Schmidt decomposition on the set of M^K signals would then be performed and an optimum detector designed accordingly. Such an approach has complexity that grows exponentially (in proportion to M^K) with the block message length K. That is, the optimal detector might need M^K matched filters, one for each possible transmitted block symbol. As $K \to \infty$, the complexity can become too large for practical implementation. Chapter 9 addresses such “sequence detectors” in detail, and it may be possible to compute the à posteriori probability function with less than exponentially growing complexity.

An alternative (suboptimal) receiver can detect each of the successive K messages independently. Such detection is called symbol-by-symbol (SBS) detection. Figure 3.2 contrasts the SBS detector with the block detector of Chapter 1. The bank of matched filters, presumably found by Gram-Schmidt decomposition of the set of (noiseless) channel output waveforms (of which it can be shown K dimensions are sufficient only if $N=1$, complex or real), precedes a block detector that determines the K-dimensional vector symbol transmitted. The complexity would become large or infinite as K becomes large or infinite for the block detector. The lower system in Figure 3.2 has a single matched filter to the channel, with output sampled K times, followed by a receiver and an SBS detector.

\footnote{The symbol rate is sometimes also called the “baud rate,” although abuse of the term baud (by equating it with data rate even when $M \neq 2$) has rendered the term archaic among communication engineers, and the term “baud” usually now only appears in trade journals and advertisements.}
Figure 3.2: Comparison of Block and SBS detectors for successive transmission of K messages.

The later system has fixed (and lower) complexity per symbol/sample, but may not be optimum. Interference between successive transmissions, or intersymbol interference (ISI), can degrade the performance of symbol-by-symbol detection. This performance degradation increases as T decreases (or the symbol rate increases) in most communication channels. The designer mathematically analyzes ISI by rewriting (3.2) as

$$x(t) = \sum_{k=0}^{K-1} \sum_{n=1}^{N} x_{kn} \varphi_n(t - kT), \tag{3.3}$$

where the transmissions $x_k(t)$ are decomposed using a common orthonormal basis set $\{\varphi_n(t)\}$. In (3.3), $\varphi_n(t - kT)$ and $\varphi_m(t - lT)$ may be non-orthogonal when $k \neq l$. In some cases, translates of the basis functions are orthogonal. For instance, in QAM, the two bandlimited basis functions

$$\varphi_1(t) = \sqrt{\frac{2}{T}} \cos \left(\frac{m \pi t}{T} \right) \cdot \text{sinc} \left(\frac{t}{T} \right), \tag{3.4}$$
$$\varphi_2(t) = -\sqrt{\frac{2}{T}} \sin \left(\frac{m \pi t}{T} \right) \cdot \text{sinc} \left(\frac{t}{T} \right), \tag{3.5}$$

or from Chapter 2, the baseband equivalent

$$\varphi(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right). \tag{3.6}$$

(with m a positive integer) are orthogonal for all integer-multiple-of-T time translations. In this case, the successive transmissions, when sampled at time instants kT, are free of ISI, and transmission is equivalent to a succession of “one-shot” uses of the channel. In this case symbol-by-symbol detection is optimal, and the MAP detector for the entire block of messages is the same as a MAP detector used separately for each of the K independent transmissions. Signal sets for data transmission are usually designed to be orthogonal for any translation by an integer multiple of symbol periods. Most linear AWGN channels, however, are more accurately modeled by a filtered AWGN channel as discussed in Section 1.7 and Chapter 2. The filtering of the channel alters the basis functions so that at the channel output the filtered basis functions are no longer orthogonal. The channel thus introduces ISI.
3.1.2 Bandlimited Channels

The bandlimited linear ISI channel, shown in Figure 3.3, is the same as the filtered AWGN channel discussed in Section 1.7. This channel is used, however, for successive transmission of data symbols. The (noise-free) channel output, \(x_p(t) \), in Figure 3.3 is given by

\[
x_p(t) = \sum_{k=0}^{K-1} \sum_{n=1}^{N} x_{kn} \cdot \varphi_n(t - kT) \ast h(t)
\]

\[
= \sum_{k=0}^{K-1} \sum_{n=1}^{N} x_{kn} \cdot p_n(t - kT)
\]

where \(p_n(t) \triangleq \varphi_n(t) \ast h(t) \). When \(h(t) \neq \delta(t) \), the functions \(p_n(t - kT) \) do not necessarily form an orthonormal basis, nor are they even necessarily orthogonal. An optimum (MAP) detector would need to search a signal set of size \(M^K \), which is often too complex for implementation as \(K \) gets large. When \(N = 1 \) (or \(N = 2 \) with complex signals), there is only one pulse response \(p(t) \).

Equalization methods apply a processor, the “equalizer”, to the channel output to try to convert \(\{p_n(t - kT)\} \) to an orthogonal set of functions. Symbol-by-symbol detection can then be used on the equalized channel output. Further discussion of such equalization filters is deferred to Section 3.4. The remainder of this chapter also presumes that the channel-input symbol sequence \(x_k \) is independent and identically distributed at each point in time. This presumption will be relaxed in later Chapters.
While a very general theory of ISI could be undertaken for any \(N \), such a theory would unnecessarily complicate the present development.² This chapter handles the ISI-equalizer case for \(N = 1 \). Using the baseband-equivalent systems of Chapter 2, this chapter’s (Chapter 3’s) analysis will also apply to quadrature modulated systems modeled as complex (equivalent to two-dimensional real) channels. In this way, the developed theory of ISI and equalization will apply equally well to any one-dimensional (e.g. PAM) or two-dimensional (e.g. QAM or hexagonal) constellation. This was the main motivation for the introduction of bandpass analysis in Chapter 2.

The **pulse response** for the transmitter/channel fundamentally quantifies ISI:

Definition 3.1.1 (Pulse Response) The pulse response of a bandlimited channel is defined by

\[
p(t) = \varphi(t) \ast h(t) \quad .
\]

For the complex QAM case, \(p(t), \varphi(t), \) and \(h(t) \) can be complex time functions.

The one-dimensional noiseless channel output \(x_p(t) \) is

\[
x_p(t) = \sum_{k=0}^{K-1} x_k \cdot \varphi(t - kT) \ast h(t)
\]

\[
= \sum_{k=0}^{K-1} x_k \cdot p(t - kT) \quad .
\]

The signal in (3.11) is real for a one-dimensional system and complex for a baseband equivalent quadrature modulated system. The pulse response energy \(\| p \|^2 \) is not necessarily equal to 1, and this text introduces the **normalized pulse response**:

\[
\varphi_p(t) \triangleq \frac{p(t)}{\| p \|} \quad ,
\]

where

\[
\| p \|^2 = \int_{-\infty}^{\infty} p(t) p^*(t) dt = \langle p(t), p(t) \rangle \quad .
\]

The subscript \(p \) on \(\varphi_p(t) \) indicates that \(\varphi_p(t) \) is a normalized version of \(p(t) \). Using (3.12), Equation (3.11) becomes

\[
x_p(t) = \sum_{k=0}^{K-1} x_{p,k} \cdot \varphi_p(t - kT) \quad ,
\]

where

\[
x_{p,k} \triangleq x_k \cdot \| p \| \quad .
\]

\(x_{p,k} \) absorbs the channel gain/attenuation \(\| p \| \) into the definition of the input symbol, and thus has energy \(E_p = E[|x_{p,k}|^2] = E_{x} \cdot \| p \|^2 \). While the functions \(\varphi_p(t - kT) \) are normalized, they are not necessarily orthogonal, so symbol-by-symbol detection is not necessarily optimal for the signal in (3.14).

EXAMPLE 3.1.1 (Intersymbol interference and the pulse response) As an example of intersymbol interference, consider the pulse response \(p(t) = \frac{1}{1 + t^4} \) and two successive transmissions of opposite polarity \((-1 \text{ followed by } +1)\) through the corresponding channel.

²Chapter 4 considers multidimensional signals and intersymbol interference, while Section 3.7 considers diversity receivers that may have several observations a single or multiple channel output(s).
Figure 3.4: Illustration of intersymbol interference for $p(t) = \frac{1}{1 + t}$ with $T = 1$.

Figure 3.4 illustrates the two isolated pulses with correct polarity and also the waveform corresponding to the two transmissions separated by 1 unit in time. Clearly the peaks of the pulses have been displaced in time and also significantly reduced in amplitude. Higher transmission rates would force successive transmissions to be closer and closer together. Figure 3.5 illustrates the
resultant sum of the two waveforms for spacings of 1 unit in time, .5 units in time, and .1 units in time. Clearly, ISI has the effect of severely reducing pulse strength, thereby reducing immunity to noise.

EXAMPLE 3.1.2 (Pulse Response Orthogonality - Modified Duobinary) A PAM modulated signal using rectangular pulses is

\[\varphi(t) = \frac{1}{\sqrt{T}}(u(t) - u(t - T)) \tag{3.16} \]

The channel introduces ISI, for example, according to

\[h(t) = \delta(t) + \delta(t - T). \tag{3.17} \]

The resulting pulse response is

\[p(t) = \frac{1}{\sqrt{T}}(u(t) - u(t - 2T)) \tag{3.18} \]

and the normalized pulse response is

\[\varphi_p(t) = \frac{1}{\sqrt{2T}}(u(t) - u(t - 2T)). \tag{3.19} \]

The pulse-response translates \(\varphi_p(t) \) and \(\varphi_p(t - T) \) are not orthogonal, even though \(\varphi(t) \) and \(\varphi(t - T) \) were originally orthonormal.
Noise Equivalent Pulse Response

Figure 3.7 models a channel with additive Gaussian noise that is not white, which often occurs in practice. The power spectral density of the noise is $\frac{N_0}{2} \cdot S_n(f)$.

White noise equivalent channel (with reversible receiver “noise-whitening” filter viewed as part of pulse response)

When $S_n(f) \neq 0$ (noise is never exactly zero at any frequency in practice), the noise psd has an invertible square root as in Section 1.7. The invertible square-root can be realized as a filter in the beginning of a receiver. Since this filter is invertible, by the reversibility theorem of Chapter 1, no information is lost. The designer can then construe this filter as being pushed back into, and thus a
part of, the channel as shown in the lower part of Figure 3.7. The noise equivalent pulse response then has Fourier Transform \(P(f)/S_n^{1/2}(f) \) for an equivalent filtered-AWGN channel. The concept of noise equivalence allows an analysis for AWGN to be valid (using the equivalent pulse response instead of the original pulse response). Then also “colored noise” is equivalent in its effect to ISI, and furthermore the compensating equalizers that are developed later in this chapter can also be very useful on channels that originally have no ISI, but that do have “colored noise.” An AWGN channel with a notch in \(H(f) \) at some frequency is thus equivalent to a “flat channel” with \(H(f) = 1 \), but with narrow-band Gaussian noise at the same frequency as the notch, as illustrated in Figure 3.8.

![Figure 3.8: Two “noise-equivalent” channels.](image)

3.1.3 The ISI-Channel Model

![Figure 3.9: The ISI-Channel model.](image)

A model for linear ISI channels is shown in Figure 3.9. In this model, \(x_k \) is scaled by \(\|p\| \) to form \(x_{p,k} \) so that \(\mathcal{E}_{x_{p,k}} = \mathcal{E}_x \cdot \|p\|^2 \). The additive noise is white Gaussian, although correlated Gaussian noise can be included by transforming the correlated-Gaussian-noise channel into an equivalent white Gaussian noise channel using the methods in the previous subsection and illustrated in Figure 3.7. The channel output \(y_p(t) \) is passed through a matched filter \(\varphi_p^*(-t) \) to generate \(y(t) \). Then, \(y(t) \) is sampled at the symbol rate and subsequently processed by a discrete time receiver. The following theorem illustrates that there is no loss in performance that is incurred via the matched-filter/sampler combination.

Theorem 3.1.1 (ISI-Channel Model Sufficiency) The discrete-time signal samples \(y_k = y(kT) \) in Figure 3.9 are sufficient to represent the continuous-time ISI-model channel output \(y(t) \), if \(0 < \|p\| < \infty \). (i.e., a receiver with minimum \(P_e \) can be designed that uses only the samples \(y_k \)).

Sketch of Proof:

Define

\[
\varphi_{p,k}(t) \doteq \varphi_p(t - kT) ,
\] (3.20)
where \(\{\varphi_{p,k}(t)\}_{k \in (-\infty, \infty)} \) is a linearly independent set of functions. The set \(\{\varphi_{p,k}(t)\}_{k \in (-\infty, \infty)} \) is related to a set of orthogonal basis functions \(\{\phi_{p,k}(t)\}_{k \in (-\infty, \infty)} \) by an invertible transformation \(\Gamma \) (use Gram-Schmidt an infinite number of times). The transformation and its inverse are written

\[
\begin{align*}
\{\varphi_{p,k}(t)\}_{k \in (-\infty, \infty)} &= \Gamma(\{\varphi_{p,k}(t)\}_{k \in (-\infty, \infty)}) \quad (3.21) \\
\{\varphi_{p,k}(t)\}_{k \in (-\infty, \infty)} &= \Gamma^{-1}(\{\phi_{p,k}(t)\}_{k \in (-\infty, \infty)}) \quad (3.22)
\end{align*}
\]

where \(\Gamma \) is the invertible transformation. In Figure 3.10, the transformation outputs are the filter samples \(y(kT) \). The infinite set of filters \(\{\phi_{p,k}^*(-t)\}_{k \in (-\infty, \infty)} \) followed by \(\Gamma^{-1} \) is equivalent to an infinite set of matched filters to \(\{\varphi_{p,k}^*(-t)\}_{k \in (-\infty, \infty)} \). By (3.20) this last set is equivalent to a single matched filter \(\varphi_{p}^*(-t) \), whose output is sampled at \(t = kT \) to produce \(y(kT) \). Since the set \(\{\phi_{p,k}(t)\}_{k \in (-\infty, \infty)} \) is orthonormal, the set of sampled filter outputs in Figure 3.10 are sufficient to represent \(y_p(t) \). Since \(\Gamma^{-1} \) is invertible (inverse is \(\Gamma \)), then by the theorem of reversibility in Chapter 1, the sampled matched filter output \(y(kT) \) is a sufficient representation of the ISI-channel output \(y_p(t) \). \(\text{QED.} \)

\[y(t) = \sum_k \|p\| \cdot x_k q(t - kT) + n_p(t) * \varphi_p^*(-t) \quad , \] (3.23)
The deterministic autocorrelation function \(q(t) \) is Hermitian (\(q^*(t) = q(t) \)). Also, \(q(0) = 1 \), so the symbol \(x_k \) passes at time \(kT \) to the output with amplitude scaling \(\|p\| \). The function \(q(t) \) can also exhibit ISI, as illustrated in Figure 3.11. The plotted \(q(t) \) corresponds to \(q_k = [-.1159 .2029 .2029 -.1159] \) or, equivalently, to the channel \(p(t) = \sqrt{\frac{T}{\pi}} (\text{sinc}(t/T) + .25 \cdot \text{sinc}((t - T)/T) - .125 \cdot \text{sinc}((t - 2T)/T)) \), or \(P(D) = \frac{1}{\sqrt{T}} (1 + .5D)(1 - .25D) \) (the notation \(P(D) \) is defined in Appendix A.2). (The values for \(q_k \) can be confirmed by convolving \(p(t) \) with its time reverse, normalizing, and sampling.) For notational brevity, let \(y_k \overset{\Delta}{=} y(kT), q_k \overset{\Delta}{=} q(kT), n_k \overset{\Delta}{=} n(kT) \) where \(n(t) \overset{\Delta}{=} n_p(t) \ast \varphi_p^*(-t) \). Thus
\[
y_k = \underbrace{\|p\| \cdot x_k}_{\text{scaled input (desired) noise }} + \underbrace{\|p\| \cdot \sum_{m \neq k} x_m q_{k-m}}_{\text{ISI}} .
\]
(3.25)
The output \(y_k \) consists of the scaled input, noise and ISI. The scaled input is the desired information-bearing signal. The ISI and noise are unwanted signals that act to distort the information being transmitted. The ISI represents a new distortion component not previously considered in the analysis of Chapters 1 and 2 for a suboptimum SBS detector. This SBS detector is the same detector as in Chapters 1 and 2, except used under the (false) assumption that the ISI is just additional AWGN. Such a receiver can be decidedly suboptimum when the ISI is nonzero.

Using \(D \)-transform notation, (3.25) becomes
\[
Y(D) = X(D) \cdot \|p\| \cdot Q(D) + N(D)
\]
(3.26)
where \(Y(D) \triangleq \sum_{k=-\infty}^{\infty} y_k \cdot D^k\). If the receiver uses symbol-by-symbol detection on the sampled output \(y_k\), then the noise sample \(n_k\) of (one-dimensional) variance \(\frac{N_o}{2}\) at the matched-filter output combines with ISI from the sample times \(mT\) \((m \neq k)\) in corrupting \(\|p\| \cdot x_k\).

There are two common measures of ISI distortion. The first is **Peak Distortion**, which only has meaning for real-valued \(q(t)\).

Definition 3.1.2 (Peak Distortion Criterion) If \(|x_{\text{max}}|\) is the maximum value for \(|x_k|\), then the peak distortion is:

\[
D_p \triangleq |x_{\text{max}}| \cdot \|p\| \cdot \sum_{m \neq 0} |q_m| .
\]

(3.27)

For \(q(t)\) in Figure 3.11 with \(x_{\text{max}} = 3\), \(D_p = 3 \cdot \|p\|(.1159 + .2029 + .2029 + .1159) \approx 3 \cdot 1.078 \cdot 0.6376 \approx 1.99\).

The peak distortion represents a worst-case loss in minimum distance between signal points in the signal constellation for \(x_k\), or equivalently

\[
P_e \leq N_c Q \left[\frac{\|p\| d_{\text{min}}}{\sigma} - D_p \right],
\]

(3.28)

for symbol-by-symbol detection. Consider two matched filter outputs \(y_k\) and \(y'_k\) that the receiver attempts to distinguish by suboptimally using symbol-by-symbol detection. These outputs are generated by two different sequences \(\{x_k\}\) and \(\{x'_k\}\). Without loss of generality, assume \(y_k > y'_k\), and consider the difference

\[
y_k - y'_k = \|p\| \left[(x_k - x'_k) + \sum_{m \neq k} (x_m - x'_m) q_{k-m} \right] + \tilde{n}
\]

(3.29)

The summation term inside the brackets in (3.29) represents the change in distance between \(y_k\) and \(y'_k\) caused by ISI. Without ISI the distance is

\[
y_k - y'_k \geq \|p\| \cdot d_{\text{min}},
\]

(3.30)

while with ISI the distance can decrease to

\[
y_k - y'_k \geq \|p\| \left[d_{\text{min}} - 2|x_{\text{max}}| \sum_{m \neq 0} |q_m| \right]
\]

(3.31)

Implicitly, the distance interpretation in (3.31) assumes \(2D_p \leq \|p\| d_{\text{min}}\).

While peak distortion represents the worst-case ISI, this worst case might not occur very often in practice. For instance, with an input alphabet size \(M = 4\) and a \(q(t)\) that spans 15 symbol periods, the probability of occurrence of the worst-case value (worst level occurring in all 14 ISI contributors) is \(4^{-14} = 3.7 \times 10^{-8}\), well below typical channel \(P_e\)'s in data transmission. Nevertheless, there may be other ISI patterns of nearly just as bad interference that can also occur. Rather than separately compute each possible combination’s reduction of minimum distance, its probability of occurrence, and the resulting error probability, data transmission engineers more often use a measure of ISI called **Mean-Square Distortion** (valid for 1 or 2 dimensions):

Definition 3.1.3 (Mean-Square Distortion) The Mean-Square Distortion is defined by:

\[
\mathcal{D}_{ms} \triangleq E \left\{ \left| \sum_{m \neq k} x_{p,m} \cdot q_{k-m} \right|^2 \right\}
\]

(3.32)

\[
= \mathcal{E}_x \cdot \|p\|^2 \cdot \sum_{m \neq 0} |q_m|^2,
\]

(3.33)

\(^3\)In the real case, the magnitudes correspond to actual values. However, for complex-valued terms, the ISI is characterized by both its magnitude and phase. So, addition of the magnitudes of the symbols ignores the phase components, which may significantly change the ISI term.

\(^4\)On channels for which \(2D_p \geq \|p\| d_{\text{min}}\), the worst-case ISI occurs when \(2D_p - \|p\| d_{\text{min}}\) is maximum.
where (3.33) is valid when the successive data symbols are independent and identically distributed with zero mean.

In the example of Figure 3.11, the mean-square distortion (with $E_x = 5$) is $D_{ms} = 5\|p\|^2(.1159^2+.2029^2+.2029^2+.1159^2) \approx 5(1.078).109 \approx .588$. The fact $\sqrt{.588} = .767 < 1.99$ illustrates that $D_{ms} \leq D^2_P$. (The proof of this fact is left as an exercise to the reader.)

The mean-square distortion criterion assumes (erroneously\(^5\)) that D_{ms} is the variance of an uncorrelated Gaussian noise that is added to n_k. With this assumption, P_e is approximated by

$$P_e \approx N_e \cdot \Phi \left(\frac{\|p\|d_{\min}}{2\sqrt{\sigma^2 + D_{ms}}} \right). \quad (3.34)$$

One way to visualize ISI is through the “eye diagram”, some examples of which are shown in Figures 3.12 and 3.13. The eye diagram is similar to what would be observed on an oscilloscope, when the trigger is synchronized to the symbol rate. The eye diagram is produced by overlaying several successive symbol intervals of the modulated and filtered continuous-time waveform (except Figures 3.12 and 3.13 do not include noise). The Lorentzian pulse response $p(t) = 1/(1 + (3t/T)^2)$ is used in both plots. For binary transmission on this channel, there is a significant opening in the eye in the center of the plot in Figure 3.12. With 4-level PAM transmission, the openings are much smaller, leading to less noise immunity. The ISI causes the spread among the path traces; more ISI results in a narrower eye opening. Clearly increasing M reduces the eye opening.

\(^5\)This assumption is only true when x_k is Gaussian. In very well-designed data transmission systems, x_k is approximately i.i.d. and Gaussian, see Chapter 6, so that this approximation of Gaussian ISI becomes accurate.
Figure 3.13: 4-Level eye diagram for a Lorentzian pulse response.
3.2 Basics of the Receiver-generated Equivalent AWGN

Figure 3.14 focuses upon the receiver and specifically the device shown generally as R. When channels have ISI, such a receiving device is inserted at the sampler output. The purpose of the receiver is to attempt to convert the channel into an equivalent AWGN that is also shown below the dashed line. Such an AWGN is not always exactly achieved, but nonetheless any deviation between the receiver output z_k and the channel input symbol x_k is viewed as additive white Gaussian noise. An SNR, as in Subsection 3.2.1 can be used then to analyze the performance of the symbol-by-symbol detector that follows the receiver R. Usually, smaller deviation from the transmitted symbol means better performance, although not exactly so as Subsection 3.2.2 discusses.

![Diagram of receiver and AWGN](image)

Figure 3.14: Use of possibly suboptimal receiver to approximate/create an equivalent AWGN.

Subsection 3.2.3 finishes this section with a discussion of the highest possible SNR that a designer could expect for any filtered AWGN channel, the so-called “matched-filter-bound” SNR, SNR_{MFB}. This section shall not be specific as to the content of the box shown as R, but later sections will allow both linear and slightly nonlinear structures that may often be good choices because their performance can be close to SNR_{MFB}.

3.2.1 Receiver Signal-to-Noise Ratio

Definition 3.2.1 (Receiver SNR) The receiver SNR, SNR_R for any receiver R with (pre-decision) output z_k, and decision regions based on x_k (see Figure 3.14) is

$$\text{SNR}_R = \frac{\mathbb{E}[x]}{\mathbb{E}[z_k - x_k]^2},$$

(3.35)

where $e_k = x_k - z_k$ is the **receiver error**. The denominator of (3.35) is the **mean-square error** $\text{MSE} = \mathbb{E}[e_k]^2$. When $\mathbb{E}[z_k|x_k] = x_k$, the receiver is **unbiased** (otherwise **biased**) with respect to the decision regions for x_k.

The concept of a receiver SNR facilitates evaluation of the performance of data transmission systems with various compensation methods (i.e. equalizers) for ISI. Use of SNR as a performance measure builds upon the simplifications of considering mean-square distortion, that is both noise and ISI are jointly considered in a single measure. The two right-most terms in (3.25) have normalized mean-square value $\sigma^2 + \bar{D}_{ms}$. The SNR for the matched filter output y_k in Figure 3.14 is the ratio of channel output sample energy $E[y_k||p||^2]$ to the mean-square distortion $\sigma^2 + D_{ms}$. This SNR is often directly related to probability of error and is a function of both the receiver and the decision regions for the SBS detector. This text uses SNR consistently, replacing probability of error as a measure of comparative performance.
SNR is easier to compute than P_e, independent of M at constant \bar{E}_x, and a generally good measure of performance: higher SNR means lower probability of error. The probability of error is difficult to compute exactly because the distribution of the ISI-plus-noise is not known or is difficult to compute. The SNR is easier to compute and this text assumes that the insertion of the appropriately scaled SNR (see Chapter 1 - Sections 1.4 - 1.6)) into the argument of the Q-function approximates the probability of error for the suboptimum SBS detector. Even when this insertion into the Q-function is not sufficiently accurate, comparison of SNR's for different receivers usually relates which receiver is better.

3.2.2 Receiver Biases

Figure 3.15 illustrates a receiver that somehow has tried to reduce the combination of ISI and noise. Any time-invariant receiver’s output samples, z_k, satisfy

$$z_k = \alpha \cdot (x_k + u_k)$$ \hspace{1cm} (3.36)

where α is some positive scale factor that may have been introduced by the receiver and u_k is an uncorrelated distortion

$$u_k = \sum_{m \neq 0} r_m \cdot x_{k-m} + \sum_m f_m \cdot n_{k-m}.$$ \hspace{1cm} (3.37)

The coefficients for residual intersymbol interference r_m and the coefficients of the filtered noise f_k will depend on the receiver and generally determine the level of mean-square distortion. The uncorrelated distortion has no remnant of the current symbol being decided by the SBS detector, so that $E[u_k/x_k] = 0$. However, the receiver may have found that by scaling (reducing) the x_k component in z_k by α that the SNR improves (small signal loss in exchange for larger uncorrelated distortion reduction). When $E[z_k/x_k] = \alpha \cdot x_k$, the decision regions in the SBS detector are “biased.” Removal of the bias is easily achieved by scaling by $1/\alpha$ as also in Figure 3.15. If the distortion is assumed to be Gaussian noise, as is the assumption with the SBS detector, then removal of bias by scaling by $1/\alpha$ improves the probability of error of such a detector as in Chapter 1. (Even when the noise is not Gaussian as is the case with the ISI component, scaling the signal correctly improves the probability of error on the average if the input constellation has zero mean.)

The following theorem relates the SNR’s of the unbiased and biased decision rules for any receiver R:

Theorem 3.2.1 (Unconstrained and Unbiased Receivers) Given an unbiased receiver R for a decision rule based on a signal constellation corresponding to x_k, the maximum
unconstrained SNR corresponding to that same receiver with any biased decision rule is

\[
SNR_R = SNR_{R,U} + 1 , \tag{3.38}
\]

where \(SNR_{R,U} \) is the SNR using the unbiased decision rule.

Proof: From Figure 3.15, the SNR after scaling is easily

\[
SNR_{R,U} = \frac{\bar{E}_X}{\sigma_u^2} . \tag{3.39}
\]

The maximum SNR for the biased signal \(z_k \) prior to the scaling occurs when \(\alpha \) is chosen to maximize the unconstrained SNR

\[
SNR_R = \frac{E_X}{|\alpha|^2 \sigma_u^2 + |1-\alpha|^2 E_X} . \tag{3.40}
\]

Allowing for complex \(\alpha \) with phase \(\theta \) and magnitude \(|\alpha| \), the SNR maximization over alpha is equivalent to minimizing

\[
1 - 2|\alpha|\cos(\theta) + |\alpha|^2(1 + \frac{1}{SNR_{R,U}}) . \tag{3.41}
\]

Clearly \(\theta = 0 \) for a minimum and differentiating with respect to \(|\alpha| \) yields

\[
-2 + 2|\alpha|(1 + \frac{1}{SNR_{R,U}}) = 0
\]

or \(\alpha_{opt} = 1/(1 + (SNR_{R,U})^{-1}) \). Substitution of this value into the expression for \(SNR_R \) finds

\[
SNR_R = SNR_{R,U} + 1 . \tag{3.42}
\]

Thus, a receiver \(R \) and a corresponding SBS detector that have zero bias will not correspond to a maximum SNR – the SNR can be improved by scaling (reducing) the receiver output by \(\alpha_{opt} \). Conversely, a receiver designed for maximum SNR can be altered slightly through simple output scaling by \(1/\alpha_{opt} \) to a related receiver that has no bias and has SNR thereby reduced to \(SNR_{R,U} = SNR_R - 1 \). QED.

To illustrate the relationship of unbiased and biased receiver SNRs, suppose an ISI-free AWGN channel has an SNR=10 with \(E_X = 1 \) and \(\sigma_u^2 = 0.1 \). Then, a receiver could scale the channel output by \(\alpha = 10/11 \). The resultant new error signal is \(e_k = x_k(1 - \frac{10}{11}) - \frac{10}{11} n_k \), which has MSE\(= E[|e_k|^2] = \frac{1}{111} + \frac{100}{111}(0.1) = \frac{1}{111} \), and SNR=11. Clearly, the biased SNR is equal to the unbiased SNR plus 1. The scaling has done nothing to improve the system, and the appearance of an improved SNR is an artifact of the SNR definition, which allows noise to be scaled down without taking into account the fact that actual signal power after scaling has also been reduced. Removing the bias corresponds to using the actual signal power, and the corresponding performance-characterizing SNR can always be found by subtracting 1 from the biased SNR. A natural question is then “Why compute the biased SNR?” The answer is that the biased receiver corresponds directly to minimizing the mean-square distortion, and the SNR for the “MMSE” case will often be easier to compute. Figure 3.30 in Section 3.5 illustrates the usual situation of removing a bias (and consequently reducing SNR, but not improving \(P_e \) since the SBS detector works best when there is no bias) from a receiver that minimizes mean-square distortion (or error) to get an unbiased decision. The bias from a receiver that maximizes SNR by equivalently minimizing mean-square error can then be removed by simple scaling and the resultant more accurate SNR is thus found for the unbiased receiver by subtracting 1 from the more easily computed biased receiver. This concept will be very useful in evaluating equalizer performance in later sections of this chapter, and is formalized in Theorem 3.2.2 below.

Theorem 3.2.2 (Unbiased MMSE Receiver Theorem) Let \(R \) be any allowed class of receivers \(R \) producing outputs \(z_k \), and let \(R_{opt} \) be the receiver that achieves the maximum signal-to-noise ratio \(SNR(R_{opt}) \) over all \(R \in R \) with an unconstrained decision rule. Then the receiver that achieves the maximum SNR with an unbiased decision rule is also \(R_{opt} \), and

\[
\max_{R \in R} SNR_{R,U} = SNR(R_{opt}) - 1 . \tag{3.43}
\]
Proof. From Theorem 3.2.1, for any \(R \in \mathcal{R} \), the relation between the signal-to-noise ratios of unbiased and unconstrained decision rules is \(\text{SNR}_{R,U} = \text{SNR}_R - 1 \), so

\[
\max_{R \in \mathcal{R}} [\text{SNR}_{R,U}] = \max_{R \in \mathcal{R}} [\text{SNR}_R] - 1 = \text{SNR}_{R_{\text{opt}}} - 1 .
\] (3.44)

QED.

This theorem implies that the optimum unbiased receiver and the optimum biased receiver settings are identical except for any scaling to remove bias; only the SNR measures are different. For any SBS detector, \(\text{SNR}_{R,U} \) is the SNR that corresponds to best \(P_e \). The quantity \(\text{SNR}_{R,U} + 1 \) is artificially high because of the bias inherent in the general SNR definition.

3.2.3 The Matched-Filter Bound

The Matched-Filter Bound (MFB), also called the “one-shot” bound, specifies an upper SNR limit on the performance of data transmission systems with ISI.

Lemma 3.2.1 (Matched-Filter Bound SNR) The SNR \(\text{SNR}_{MFB} \) is the SNR that characterizes the best achievable performance for a given pulse response \(p(t) \) and signal constellation (on an AWGN channel) if the channel is used to transmit only one message. This SNR is

\[
\text{SNR}_{MFB} = \frac{\mathcal{E}_x \| p \|^2}{N_0} \text{QED}.
\] (3.45)

MFB denotes the square of the argument to the Q-function that arises in the equivalent “one-shot” analysis of the channel.

Proof: Given a channel with pulse response \(p(t) \) and isolated input \(x_0 \), the maximum output sample of the matched filter is \(\| p \| \cdot x_0 \). The normalized average energy of this sample is \(\| p \|^2 \mathcal{E}_x \), while the corresponding noise sample energy is \(N_0 \), \(\text{SNR}_{MFB} = \frac{\mathcal{E}_x \| p \|^2}{N_0} \). QED.

The probability of error, measured after the matched filter and prior to the symbol-by-symbol detector, satisfies \(P_e \geq N_e \cdot Q(\sqrt{\text{MFB}}) \). When \(\mathcal{E}_x \) equals \((\| d \|_{\text{min}}^2 / 4) / \kappa \), then MFB equals \(\text{SNR}_{MFB} \cdot \kappa \). In effect the MFB forces no ISI by disallowing preceding or successive transmitted symbols. An optimum detector is used for this “one-shot” case. The performance is tacitly a function of the transmitter basis functions, implying performance is also a function of the symbol rate \(1/T \). No other (for the same input constellation) receiver for continuous transmission could have better performance, if \(x_k \) is an i.i.d. sequence, since the sequence must incur some level of ISI. The possibility of correlating the input sequence \(\{ x_k \} \) to take advantage of the channel correlation will be considered in Chapters 4 and 5.

The following example illustrates computation of the MFB for several cases of practical interest:

EXAMPLE 3.2.1 (Binary PAM) For binary PAM,

\[
x_p(t) = \sum_k x_k \cdot p(t - kT) ,
\] (3.46)

where \(x_k = \pm \sqrt{\mathcal{E}_x} \). The minimum distance at the matched-filter output is \(\| p \| \cdot d_{\text{min}} = \| p \| \cdot d = 2 \cdot \| p \| \cdot \sqrt{\mathcal{E}_x} \), so \(\mathcal{E}_x = \frac{d_{\text{min}}^2}{4} \) and \(\kappa = 1 \). Then,

\[
\text{MFB} = \text{SNR}_{MFB} .
\] (3.47)

Thus for a binary PAM channel, the MFB (in dB) is just the “channel-output” SNR, \(\text{SNR}_{MFB} \). If the transmitter symbols \(x_k \) are equal to \(\pm 1 \) (\(\mathcal{E}_x = 1 \)), then

\[
\text{MFB} = \frac{\| p \|^2}{\sigma^2} ,
\] (3.48)

where, again, \(\sigma^2 = \frac{N_0}{2} \). The binary-PAM \(P_e \) is then bounded by

\[
P_e \geq Q(\sqrt{\text{SNR}_{MFB}}) .
\] (3.49)
EXAMPLE 3.2.2 (M-ary PAM) For M-ary PAM, \(x_k = \pm \frac{d}{2}, \pm \frac{3d}{2}, \ldots, \pm \frac{(M-1)d}{2} \) and

\[
\frac{d}{2} = \sqrt{\frac{3E_x}{M^2 - 1}}, \tag{3.50}
\]
so \(\kappa = 3/(M^2 - 1) \). Thus,

\[
\text{MFB} = \frac{3}{M^2 - 1} \text{SNR}_{MFB}, \tag{3.51}
\]
for \(M \geq 2 \). If the transmitter symbols \(x_k \) are equal to \(\pm 1, \pm 3, \ldots, \pm (M-1) \), then

\[
\text{MFB} = \frac{||p||^2}{\sigma^2}. \tag{3.52}
\]

Equation (3.52) is the same result as (3.48), which should be expected since the minimum distance is the same at the transmitter, and thus also at the channel output, for both (3.48) and (3.52). The M’ary-PAM \(P_e \) is then bounded by

\[
P_e \geq 2(1 - 1/M) \cdot Q(\sqrt{\frac{3 \cdot \text{SNR}_{MFB}}{M^2 - 1}}). \tag{3.53}
\]

EXAMPLE 3.2.3 (QPSK) For QPSK, \(x_k = \pm \frac{d}{2} \pm \frac{j}{2}d \), and \(d = 2\sqrt{E_x} \), so \(\kappa = 1 \). Thus

\[
\text{MFB} = \text{SNR}_{MFB}. \tag{3.54}
\]

Thus, for a QPSK (or 4SQ QAM) channel, MFB (in dB) equals the channel output SNR. If the transmitter symbols \(x_k \) are \(\pm 1 \pm j \), then

\[
\text{MFB} = \frac{||p||^2}{\sigma^2}. \tag{3.55}
\]

The best QPSK \(P_e \) is then approximated by

\[
\bar{P}_e \approx Q(\sqrt{\text{SNR}_{MFB}}). \tag{3.56}
\]

EXAMPLE 3.2.4 (M-ary QAM Square) For M-ary QAM, \(\Re\{x_k\} = \pm \frac{d}{2}, \pm \frac{3d}{2}, \ldots, \pm \frac{(\sqrt{M}-1)d}{2} \), \(\Im\{x_k\} = \pm \frac{d}{2}, \pm \frac{3d}{2}, \ldots, \pm \frac{(\sqrt{M}-1)d}{2} \), (recall that \(\Re \) and \(\Im \) denote real and imaginary parts, respectively) and

\[
\frac{d}{2} = \sqrt{\frac{3E_x}{M-1}}, \tag{3.57}
\]
so \(\kappa = 3/(M-1) \). Thus

\[
\text{MFB} = \frac{3}{M-1} \text{SNR}_{MFB}, \tag{3.58}
\]
for \(M \geq 4 \). If the real and imaginary components of the transmitter symbols \(x_k \) equal \(\pm 1, \pm 3, \ldots, \pm (\sqrt{M}-1) \), then

\[
\text{MFB} = \frac{||p||^2}{\sigma^2}. \tag{3.59}
\]

The best M’ary QAM \(P_e \) is then approximated by

\[
\bar{P}_e \approx 2(1 - 1/\sqrt{M}) \cdot Q(\sqrt{\frac{3 \cdot \text{SNR}_{MFB}}{M-1}}). \tag{3.60}
\]

In general for square QAM constellations,

\[
\text{MFB} = \frac{3}{M^0 - 1} \text{SNR}_{MFB}. \tag{3.61}
\]
For the QAM Cross constellations,

$$MFB = \frac{2^\frac{2^M}{M-M/2} \|p\|^2}{\sigma^2} = \frac{96}{31 \cdot 4^b - 32} \text{SNR}_{MFB}.$$ \hspace{1cm} (3.62)

For the suboptimum receivers to come in later sections, $\text{SNR}_U \leq \text{SNR}_{MFB}$. As $\text{SNR}_U \to \text{SNR}_{MFB}$, then the receiver is approaching the bound on performance. It is not always possible to design a receiver that attains SNR_{MFB}, even with infinite complexity, unless one allows co-design of the input symbols x_k in a channel-dependent way (see Chapters 4 and 5). The loss with respect to matched filter bound will be determined for any receiver by $\text{SNR}_u/\text{SNR}_{MFB} \leq 1$, in effect determining a loss in signal power because successive transmissions interfere with one another – it may well be that the loss in signal power is an acceptable exchange for a higher rate of transmission.
3.3 Nyquist’s Criterion

Nyquist’s Criterion specifies the conditions on \(q(t) = \varphi_p(t) \star \varphi_p^*(-t) \) for an ISI-free channel on which a symbol-by-symbol detector is optimal. This section first reviews some fundamental relationships between \(q(t) \) and its samples \(q_k = q(kT) \) in the frequency domain.

\[
q(kT) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Q(\omega) e^{j\omega kT} d\omega
\]

(3.63)

\[
= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{\frac{2n+1}{2\pi}}^{\frac{2n+1}{2\pi}} Q(\omega) e^{j\omega kT} d\omega
\]

(3.64)

\[
= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} Q(\omega + \frac{2\pi n}{T}) e^{j(\omega + \frac{2\pi n}{T}) kT} d\omega
\]

(3.65)

\[
= \frac{1}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} Q_{eq}(\omega) e^{j\omega kT} d\omega
\]

(3.66)

where \(Q_{eq}(\omega) \), the equivalent frequency response, becomes

\[
Q_{eq}(\omega) \triangleq \sum_{n=-\infty}^{\infty} Q(\omega + \frac{2\pi n}{T})
\]

(3.67)

The function \(Q_{eq}(\omega) \) is periodic in \(\omega \) with period \(\frac{2\pi}{T} \). This function is also known as the folded or aliased spectrum of \(Q(\omega) \) because the sampling process causes the frequency response outside of the fundamental interval \((-\pi T, \pi T) \) to be added (i.e. “folded in”). Writing the Fourier Transform of the sequence \(q_k \) as

\[
Q(e^{-j\omega T}) = \sum_{k=-\infty}^{\infty} q_k e^{-j\omega kT}
\]

leads to

\[
\frac{1}{T} \cdot Q_{eq}(\omega) = Q(e^{-j\omega T}) \triangleq \sum_{k=-\infty}^{\infty} q_k e^{-j\omega kT}
\]

(3.68)

a well-known relation between the discrete-time and continuous-time representations of any waveform in digital signal processing.

It is now straightforward to specify Nyquist’s Criterion:

Theorem 3.3.1 (Nyquist’s Criterion) A channel specified by pulse response \(p(t) \) (and resulting in \(q(t) = \varphi_p(t) \star \varphi_p^*(-t) \)) is ISI-free if and only if

\[
Q(e^{-j\omega T}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} Q(\omega + \frac{2\pi n}{T}) = 1
\]

(3.69)

Proof:

By definition the channel is ISI-free if and only if \(q_k = 0 \) for all \(k \neq 0 \) (recall \(q_0 = 1 \) by definition). The proof follows directly by substitution of \(q_k = \delta_k \) into (3.68). QED.

Functions that satisfy (3.69) are called “Nyquist pulses.” One function that satisfies Nyquist’s Criterion is

\[
q(t) = \text{sinc} \left(\frac{t}{T} \right)
\]

(3.70)

which corresponds to normalized pulse response

\[
\varphi_p(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right)
\]

(3.71)

The function \(q(kT) = \text{sinc}(k) = \delta_k \) satisfies the ISI-free condition. One feature of \(\text{sinc}(t/T) \) is that it has minimum bandwidth for no ISI.
No other function has this same minimum bandwidth and also satisfies the Nyquist Criterion. (Proof is left as an exercise to the reader.) The sinc(t/T) function is plotted in Figure 3.16 for $-20T \leq t \leq 20T$.

The frequency $\frac{1}{2T}$ ($1/2$ the symbol rate) is often construed as the maximum frequency of a sampled signal that can be represented by samples at the sampling rate. In terms of positive-frequencies, $1/2T$ represents a minimum bandwidth necessary to satisfy the Nyquist Criterion, and thus has a special name in data transmission:

Definition 3.3.1 (Nyquist Frequency) The frequency $\omega = \frac{\pi}{T}$ or $f = \frac{1}{2T}$ is called the Nyquist frequency.6

3.3.1 Vestigial Symmetry

In addition to the sinc(t/T) Nyquist pulse, data-transmission engineers use responses with up to twice the minimum bandwidth. For all these pulses, $Q(\omega) = 0$ for $|\omega| > \frac{\pi}{T}$. These wider bandwidth responses will provide more immunity to timing errors in sampling as follows: The sinc(t/T) function decays in amplitude only linearly with time. Thus, any sampling-phase error in the sampling process of Figure 3.9 introduces residual ISI with amplitude that only decays linearly with time. In fact for $q(t) = \text{sinc}(t/T)$, the ISI term $\sum_{k \neq 0} q(\tau + kT)$ with a sampling timing error of $\tau \neq 0$ is not absolutely summable, resulting in infinite peak distortion. The envelope of the time domain response decays more rapidly if the frequency response is smooth (i.e. continuously differentiable). To meet this smoothness condition and also satisfy Nyquist’s Criterion, the response must occupy a larger than minimum bandwidth that is between $1/2T$ and $1/T$. A $q(t)$ with higher bandwidth can exhibit significantly faster decay as $|t|$ increases, thus reducing sensitivity to timing phase errors. Of course, any increase in bandwidth should be as small as possible, while still meeting other system requirements. The **percent excess bandwidth7**, or **percent roll-off**, is a measure of the extra bandwidth.

Definition 3.3.2 (Percent Excess Bandwidth) The percent excess bandwidth α is determined from a strictly bandlimited $Q(\omega)$ by finding the highest frequency in $Q(\omega)$ for

6This text distinguishes the Nyquist Frequency from the Nyquist Rate in sampling theory, where the latter is twice the highest frequency of a signal to be sampled and is not the same as the Nyquist Frequency here.

7The quantity alpha used here is not a bias factor, and similarly $Q(\cdot)$ is a measure of ISI and not the integral of a unit-variance Gaussian function – uses should be clear to reasonable readers who’ll understand that sometimes symbols are re-used in obviously different contexts.
which there is nonzero energy transfer. That is

\[Q(\omega) = \begin{cases}
\text{nonzero} & |\omega| \leq (1 + \alpha) \frac{\pi}{T} \\
0 & |\omega| > (1 + \alpha) \frac{\pi}{T}
\end{cases} \]. \quad (3.72)

Thus, if \(\alpha = .15 \) (a typical value), the pulse \(q(t) \) is said to have “15% excess bandwidth.” Usually, data transmission systems have \(0 \leq \alpha \leq 1 \). In this case in equation (3.69), only the terms \(n = -1, 0, +1 \) contribute to the folded spectrum and the Nyquist Criterion becomes

\[1 = Q(e^{-j\omega T}) \]
\[= \frac{1}{T} \left\{ Q \left(\omega + \frac{2\pi}{T} \right) + Q(\omega) + Q \left(\omega - \frac{2\pi}{T} \right) \right\} - \frac{\pi}{T} \leq \omega \leq \frac{\pi}{T}. \quad (3.73) \]

Further, recalling that \(q(t) = \varphi_p(t) * \varphi_p^*(-t) \) is Hermitian and has the properties of an autocorrelation function, then \(Q(\omega) \) is real and \(Q(\omega) \geq 0 \). For the region \(0 \leq \omega \leq \frac{\pi}{T} \) (for real signals), (3.74) reduces to

\[1 = Q(e^{-j\omega T}) \]
\[= \frac{1}{T} \left\{ Q(\omega) + Q \left(\omega - \frac{2\pi}{T} \right) \right\}. \quad (3.75) \]

For complex signals, the negative frequency region \(-\frac{\pi}{T} \leq \omega \leq 0 \) should also have

\[1 = Q(e^{-j\omega T}) \]
\[= \frac{1}{T} \left\{ Q(\omega) + Q \left(\omega + \frac{2\pi}{T} \right) \right\}. \quad (3.77) \]

Figure 3.17: The \(sinc^2(t/T) \) Function – time-domain

Any \(Q(\omega) \) satisfying (3.76) (and (3.78) in the complex case) is said to be vestigially symmetric with respect to the Nyquist Frequency. An example of a vestigially symmetric response with 100% excess bandwidth is \(q(t) = sinc^2(t/T) \), which is shown in Figures 3.17 and 3.18.
Figure 3.18: The $sinc^2(t/T)$ function – frequency-domain

Figure 3.19: Raised cosine pulse shapes – time-domain
The most widely used set of functions that satisfy the Nyquist Criterion are the raised-cosine pulse shapes:

Definition 3.3.3 (Raised-Cosine Pulse Shapes) The raised cosine family of pulse shapes (indexed by $0 \leq \alpha \leq 1$) is given by

$$q(t) = \text{sinc}\left(\frac{t}{T}\right) \cdot \left[\cos\left(\frac{\alpha \pi t}{T}\right) - \frac{1}{1 - \frac{2\alpha t}{T}}\right],$$

(3.79)

and have Fourier Transforms

$$Q(\omega) = \begin{cases} \frac{T}{\pi} \left[1 - \sin\left(\frac{\omega}{\frac{T}{2\alpha}}\right)\right] & \frac{\pi}{T}(1 - \alpha) \leq |\omega| \leq \frac{\pi}{T}(1 + \alpha) \\ \frac{\pi}{T}(1 - \alpha) \leq |\omega| \leq \frac{\pi}{T}(1 + \alpha) \\ 0 & |\omega| \leq \frac{\pi}{T}(1 - \alpha) \end{cases}.$$

(3.80)
The raised cosine pulse shapes are shown in Figure 3.20 (time-domain) and Figure 3.21 (frequency-domain) for $\alpha = 0, .5, \text{ and } 1$. When $\alpha = 0$, the raised cosine reduces to a sinc function, which decays asymptotically as $1/t$ for $t \to \infty$, while for $\alpha \neq 0$, the function decays as $1/t^3$ for $t \to \infty$.

Raised Cosine Derivation Many texts simply provide the form of the raised-cosine function, but for the intrigued student, this text does the inverse transform

$$q_{RCR}(t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} Q_{RCR}(\omega) \cdot e^{j\omega t} d\omega .$$

Before inserting the expression for $Q_{RCR}(\omega)$, the inverse transform of this even function simplifies to

$$q_{RCR}(t) = \frac{1}{\pi} \int_{0}^{\infty} Q_{RCR}(\omega) \cdot \cos(\omega t) d\omega ,$$

which is separated into 2 integrals over successive positive frequency ranges when the formula from Section 3.3.3 is inserted as

$$q_{RCR}(t) = \frac{1}{\pi} \int_{0}^{(1-\alpha)\pi/T} T \cdot \cos(\omega t) d\omega + \frac{1}{2\pi} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} T \cdot \left[1 - \sin\left(\frac{T}{2\alpha}(\omega - \pi/T)\right)\right] \cdot \cos(\omega t) d\omega .$$

Equation (3.81)

The first integral in Equation (3.81) easily is performed to obtain

$$q_{RCR,1}(t) = (1-\alpha) \cdot \text{sinc}\left[\frac{(1-\alpha)t}{T}\right] ,$$

Equation (3.3.2) also can be rewritten using $\sin(A - B) = \sin(A) \cdot \cos(B) - \cos(A) \sin(B)$ as

$$q_{RCR,1}(t) = \frac{\sin\left[\frac{(1-\alpha)t}{T}\right]}{\sin\left[\frac{\pi t}{T}\right]}$$

$$= \frac{1}{\pi t} \cdot \left[\sin\left(\frac{\pi t}{T}\right) \cdot \cos\left(\frac{\alpha \pi t}{T}\right) - \cos\left(\frac{\pi t}{T}\right) \cdot \sin\left(\frac{\alpha \pi t}{T}\right)\right]$$

$$= \text{sinc}\left(\frac{\pi t}{T}\right) \cdot \cos\left(\frac{\alpha \pi t}{T}\right) - \cos\left(\frac{\pi t}{T}\right) \cdot \frac{\cos\left(\frac{\pi t}{T}\right)}{\pi t} \cdot \sin\left(\frac{\alpha \pi t}{T}\right) ,$$

187
which will be a convenient form later in this derivation.

The second integral in Equation (3.81) follows as the sum of two more integrals for the constant term (2a) and the sinusoidal term (2b) as

\[q_{RCR,2a}(t) = -\frac{T}{2\pi t} \left[\sin \left(\frac{(1 + \alpha)\pi t}{T} \right) - \sin \left(\frac{(1 - \alpha)\pi t}{T} \right) \right] \]

Using the formula \(\cos(A) \sin(B) = \frac{1}{2} [\sin(A+B) - \sin(A-B)] \), then \(q_{RCR,2a}(t) \) becomes:

\[q_{RCR,2a}(t) = \frac{\cos \left(\frac{\pi}{T} \right)}{\pi/t} \cdot \sin \left(\frac{\alpha \pi t}{T} \right) . \]

It follows then that

\[q_{RCR,1}(t) + q_{RCR,2a}(t) = \text{sinc} \left(\frac{\pi t}{T} \right) \cdot \cos \left(\frac{\alpha \pi t}{T} \right) . \]

Using the formula \(\sin(A) \cos(B) = \frac{1}{2} [\sin(A+B) + \sin(A-B)] \), then \(q_{RCR,2b}(t) \) becomes:

\[
q_{RCR,2b}(t) = -\frac{T}{2\pi t} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} \left[\sin \left(\frac{T}{2\alpha} (\omega - \pi/T) + \omega t \right) + \sin \left(\frac{T}{2\alpha} (\omega - \pi/T) - \omega t \right) \right] \cdot d\omega
\]

\[
= -\frac{T}{2\pi} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} \left[\sin \left(\frac{T}{2\alpha} (\omega - \pi/T) \right) - \frac{1}{T/2\alpha} \cos \left(\frac{(1 - \alpha)\pi}{T} \left(\frac{T}{2\alpha} + t \right) - \pi \right) \right] \cdot d\omega
\]

\[
= \frac{1}{T/2\alpha} \cdot \frac{1}{\frac{T}{2\alpha} + t} \cdot \sin \left(\frac{(1 + \alpha)\pi t}{T} \right) - \frac{1}{\frac{T}{2\alpha} - t} \cdot \sin \left(\frac{(1 - \alpha)\pi t}{T} \right) \]

Then, the sum is the RCR so

\[
q_{RCR}(t) = q_{RCR,1}(t) + q_{RCR,2a}(t) + q_{RCR,2b}(t)
\]

\[
= \left[1 + \frac{4\alpha^2 t^2}{1 - 4\alpha^2 (t/T)^2} \right] \cdot \text{sinc} \left(\frac{t}{T} \right) \cdot \cos \left(\frac{\alpha \pi t}{T} \right)
\]
The optimum ISI-free transmission system that this section has described has transmit-and-channel filtering \(\varphi_p(t) \) and receiver matched filter \(\varphi^*_p(-t) \) such that \(q(t) = \varphi_p(t) * \varphi^*_p(-t) \) or equivalently

\[
\Phi_p(\omega) = Q^{1/2}(\omega)
\]

so that the matched filter and transmit/channel filters are “square-roots” of the Nyquist pulse. When \(h(t) = \delta(t) \) or equivalently \(\varphi_p(t) = \varphi(t) \), the transmit filter (and the receiver matched filters) are square-roots of a Nyquist pulse shape. Such square-root transmit filtering is often used even when \(\varphi_p(t) \neq \varphi(t) \) and the pulse response is the convolution of \(h(t) \) with the square-root filter.

The raised-cosine pulse shapes are then often used in square-root form, which is

\[
\sqrt{Q(\omega)} = \left\{ \begin{array}{ll}
\sqrt{T} & |\omega| \leq \frac{\pi}{T} (1 - \alpha) \\
\sqrt{T} [1 - \sin \left(\frac{\pi}{T} |\omega| - \frac{\pi}{2} \right)]^{1/2} & \frac{\pi}{T} (1 - \alpha) \leq |\omega| \leq \frac{\pi}{T} (1 + \alpha) \\
0 & \frac{\pi}{T} (1 + \alpha) \leq |\omega|
\end{array} \right.
\]

This expression can be inverted to the time-domain via use of the identity \(\sin^2(\theta) = .5(1 - \cos(2\theta)) \), as in Problem 3.26, to obtain

\[
\varphi_p(t) = \frac{4\alpha}{\pi \sqrt{T}} \cdot \cos \left(\frac{1 + \alpha}{\pi} \frac{T}{2} \right) + \frac{T \cdot \sin \left(\frac{1 - \alpha}{\pi} \frac{T}{2} \right)}{4\alpha t} \cdot \sqrt{T} \frac{1 - (\frac{4\alpha}{\pi} t)^2}{1 - (\frac{4\alpha}{\pi} t)^2} .
\]

Another simpler form for seeing the value at time 0 (which is \(1/\sqrt{T} \cdot (1 - \alpha + 4\alpha/\pi) \)) is

\[
\varphi_p(t) = \frac{(1 - \alpha)}{\sqrt{T}} \cdot \frac{\sin \left(\frac{(1-\alpha)T}{2} \right)}{\left(1 - \frac{4\alpha}{\pi} t \right)^2} + \frac{4\alpha t \cdot \cos \left(\frac{(1+\alpha)\pi}{4} \right)}{\sqrt{T} \pi t \left(\frac{4\alpha}{\pi} t \right)^2 - 1} .
\]

However, Equation (3.84) seems best to see the limiting value at \(t = \pm \frac{\pi}{4\alpha} \), where the denominator is readily seen as zero. However, the numerator is also zero if one recalls that \(\cos(x) = \sin(\pi/2 - x) \). The value at these two times (through use of L’Hopital’s rule) is

\[
\varphi_{SR}(\pm \frac{T}{4\alpha}) = \frac{\alpha}{\sqrt{2T}} \left[\left(1 + \frac{2}{\pi} \right) \cdot \sin \left(\frac{\pi}{4\alpha} \right) + \left(1 - \frac{2}{\pi} \right) \cdot \cos \left(\frac{\pi}{4\alpha} \right) \right] .
\]

The reader is reminded that the square-root of a Nyquist-satisfying pulse shape does not need to be Nyquist by itself, only in combination with its matched square-root filter. Thus, this pulse is not zero at integer sampling instants.

Square-Root Raised Cosine Derivation

The square-root of a raised-cosine function has inverse transform

\[
\varphi_{SR}(t) \triangleq \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{Q_{RCR}(\omega)} \cdot e^{j\omega t} d\omega .
\]

Before inserting the expression for \(Q_{RCR}(\omega) \), the inverse transform of this even function simplifies to

\[
\varphi_{SR}(t) \triangleq \frac{1}{\pi} \int_{0}^{\infty} \sqrt{Q_{RCR}(\omega)} \cdot \cos (\omega t) d\omega ,
\]
which is separated into 2 integrals over successive positive frequency ranges when the formula from
Section 3.3.3 is inserted as

\[\varphi_{SR}(t) = \frac{1}{\pi} \int_0^{(1-\alpha)\pi/T} \sqrt{T} \cdot \cos(\omega t) d\omega + \frac{1}{\pi} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} \sqrt{T} \cdot \left[1 - \sin \left(\frac{T}{2} \left(\omega - \pi \right) / T \right) \right] \cdot \cos(\omega t) d\omega . \] (3.87)

The first integral in Equation (3.87) easily is performed to obtain

\[\varphi_{SR,1}(t) = \frac{(1-\alpha)}{\sqrt{T}} \cdot \sin \left[\frac{(1-\alpha)t}{T} \right] . \] (3.88)

Using the half-angle formula \(1 - \sin(x) = 1 - \cos(x - \pi/2) = 2\sin^2 \left(\frac{x}{2} \right) \), the 2nd integral in Equation (3.87) expands into integrable terms as

\[
\varphi_{SR,2}(t) = \frac{\sqrt{T}}{2\pi} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} \sin \left(\frac{T}{4\alpha} \left[\omega - \frac{(1+\alpha)\pi}{T} \right] + \omega t \right) \cdot \cos(\omega t) d\omega \\
= \frac{\sqrt{T}}{2\pi} \int_{(1-\alpha)\pi/T}^{(1+\alpha)\pi/T} \left\{ \sin \left(\frac{T}{4\alpha} \left[\omega - \frac{(1+\alpha)\pi}{T} \right] + \omega t \right) + \sin \left(\frac{T}{4\alpha} \left[\omega - \frac{(1+\alpha)\pi}{T} \right] - \omega t \right) \right\} d\omega \\
= \frac{\sqrt{T}}{2\pi} \left\{ \sin \left[\frac{\omega (t + \frac{T}{4\alpha}) - \pi(1+\alpha)}{4\alpha} \right] \right\}^{(1+\alpha)\pi/T}_{(1-\alpha)\pi/T} \\
+ \frac{-4\alpha}{T - 4\alpha} \cos \left[\frac{\omega (T - t) - \pi(1+\alpha)}{4\alpha} \right]^{(1+\alpha)\pi/T}_{(1-\alpha)\pi/T} \\
= \frac{-4\alpha \sqrt{T}}{2\pi(T-4\alpha)} \left\{ \cos \left[\frac{(1+\alpha)\pi}{T} \left(t + \frac{T}{4\alpha} - \frac{\pi}{4\alpha}(1+\alpha) \right) \right] - \cos \left[\frac{(1-\alpha)\pi}{T} \left(t + \frac{T}{4\alpha} - \frac{\pi}{4\alpha}(1+\alpha) \right) \right] \right\} \\
+ \frac{-4\alpha \sqrt{T}}{2\pi(T-4\alpha)} \left\{ \cos \left[\frac{(1+\alpha)\pi}{T} \left(\frac{T}{4\alpha} - t - \frac{\pi}{4\alpha}(1+\alpha) \right) \right] - \cos \left[\frac{(1-\alpha)\pi}{T} \left(\frac{T}{4\alpha} - t - \frac{\pi}{4\alpha}(1+\alpha) \right) \right] \right\}

Continuing with algebra at this point:

\[
\varphi_{SR,2}(t) = \frac{-2\alpha \sqrt{T}}{\pi(4\alpha t + T)} \left\{ \cos \left[\frac{(1+\alpha)\pi t}{T} \right] + \sin \left[\frac{(1-\alpha)\pi t}{T} \right] \right\} \\
+ \frac{2\alpha \sqrt{T}}{\pi(T-4\alpha)} \left\{ \cos \left[\frac{(1+\alpha)\pi t}{T} \right] - \sin \left[\frac{(1-\alpha)\pi t}{T} \right] \right\} \\
= \frac{2\alpha \sqrt{T}}{\pi} \left[\frac{-1}{4\alpha t + T} + \frac{1}{T - 4\alpha} \right] \cos \left[\frac{(1+\alpha)\pi t}{T} \right] \\
+ \frac{2\alpha \sqrt{T}}{\pi} \left[\frac{1}{4\alpha t + T} + \frac{1}{T - 4\alpha} \right] \sin \left[\frac{(1-\alpha)\pi t}{T} \right] \\
= \frac{2\alpha \sqrt{T}}{\pi} \left[\frac{2T}{(4\alpha t)^2 - T^2} \right] \cos \left[\frac{(1+\alpha)\pi t}{T} \right]
\]
\[\varphi_{SR}(t) = \frac{(1 - \alpha)}{\sqrt{T}} \cdot \text{sinc} \left[\frac{(1 - \alpha)t}{T} \right] + 4\alpha t \cdot \cos \left(\frac{(1 + \alpha)\pi t}{T} \right) \sqrt{T} \pi t \cdot \text{sinc} \left[\frac{(1 - \alpha)t}{T} \right] \frac{T^{2} \pi t}{(4\alpha t)^{2} - 1} \].

Combining the sinc terms provides one convenient form of the square-root raised cosine of

\[\varphi_{SR}(t) = \frac{(1 - \alpha)}{\sqrt{T}} \cdot \text{sinc} \left[\frac{(1 - \alpha)t}{T} \right] + \frac{4\alpha t \cdot \cos \left(\frac{(1 + \alpha)\pi t}{T} \right)}{\sqrt{T} \pi t \left[\frac{(4\alpha t)^{2} - 1}{(4\alpha t)^{2} - 1} \right]} \]

from which limiting results like \(\varphi_{SR}(0) = 1/\sqrt{T} \) follow easily. The preferred form for most engineering texts follows by combining the two fractional terms and simplifying.

\[\varphi_{SR}(t) = \varphi_{P}(t) = \frac{4\alpha}{\pi \sqrt{T}} \cdot \cos \left(\frac{1 + \alpha}{4\alpha t} \right) + \frac{T \cdot \sin \left(\frac{1 - \alpha}{4\alpha t} \right)}{4\alpha t} \frac{1}{1 - \left(\frac{4\alpha t}{T} \right)^{2}} \]
3.4 Linear Zero-Forcing Equalization

This section examines the **Zero-Forcing Equalizer** (ZFE), which is the easiest type of equalizer to analyze and understand, but has inferior performance to some other equalizers to be introduced in later sections. The ISI model in Figure 3.9 is used to describe the zero-forcing version of the discrete-time receiver. The ZFE is often a first non-trivial attempt at a receiver \(R \) in Figure 3.14 of Section 3.2.

The ZFE sets \(R \) equal to a linear time-invariant filter with discrete impulse response \(w_k \) that acts on \(y_k \) to produce \(z_k \), which is an estimate of \(x_k \). Ideally, for symbol-by-symbol detection to be optimal, \(q_k = \delta_k \) by Nyquist’s Criterion. The equalizer tries to restore this Nyquist Pulse character to the channel. In so doing, the ZFE ignores the noise and shapes the signal \(y_k \) so that it is free of ISI.

From the ISI-channel model of Section 3.1 and Figure 3.9,

\[
y_k = \|p\| \cdot x_k \ast q_k + n_k .
\]

In the ZFE case, \(n_k \) is initially viewed as being zero. The \(D \)-transform of \(y_k \) is (See Appendix A.2)

\[
Y(D) = \|p\| \cdot X(D) \cdot Q(D) .
\]

The ZFE output, \(z_k \), has Transform

\[
Z(D) = W(D) \cdot Y(D) = W(D) \cdot Q(D) \cdot \|p\| \cdot X(D) ,
\]

and will be free of ISI if \(Z(D) = X(D) \), leaving the ZFE filter characteristic:

Definition 3.4.1 (Zero-Forcing Equalizer) The ZFE transfer characteristic is

\[
W(D) = \frac{1}{Q(D) \cdot \|p\|} .
\]

This discrete-time filter processes the discrete-time sequence corresponding to the matched-filter output. The ZFE is so named because ISI is “forced to zero” at all sampling instants \(kT \) except \(k = 0 \). The receiver uses symbol-by-symbol detection, based on decision regions for the constellation defined by \(x_k \), on the output of the ZFE.

3.4.1 Performance Analysis of the ZFE

The variance of the noise, which is not zero in practice, at the output of the ZFE is important in determining performance, even if ignored in the ZFE design of Equation (3.92). As this noise is produced by a linear filter acting on the discrete Gaussian noise process \(n_k \), it is also Gaussian. The designer can compute the discrete autocorrelation function (the bar denotes normalized to one dimension, so \(N = 2 \) for the complex QAM case) for the noise \(n_k \) as

\[
\bar{r}_{nn,k} = E \left[n_n n_{n-k} \right] / N \quad (3.93)
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E \left[n_p(t)n_p^*(s) \right] \varphi_p^*(t-lT)\varphi_p(s-(l-k)T)dtds \quad (3.94)
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{N_0}{2} \delta(t-s)\varphi_p^*(t-lT)\varphi_p(s-(l-k)T)dtds \quad (3.95)
\]

\[
= \frac{N_0}{2} \int_{-\infty}^{\infty} \varphi_p^*(t-lT)\varphi_p(t-(l-k)T)dt \quad (3.96)
\]

\[
= \frac{N_0}{2} \int_{-\infty}^{\infty} \varphi_p^*(u)\varphi_p(u+kT)du \quad (\text{letting } u = t-lT) \quad (3.97)
\]

\[
= \frac{N_0}{2} \varphi^*_k = \frac{N_0}{2} q_k , \quad (3.98)
\]

or more simply

\[
\hat{R}_{nn}(D) = \frac{N_0}{2} Q(D) , \quad (3.99)
\]
where the analysis uses the substitution \(u = t - iT \) in going from (3.96) to (3.97), and assumes baseband equivalent signals for the complex case. The complex baseband-equivalent noise, has (one-dimensional) sample variance \(\frac{N_0}{2} \) at the normalized matched filter output. The noise at the output of the ZFE, \(n_{ZFE,k} \), has autocorrelation

\[
\tilde{r}_{ZFE,k} = \tilde{r}_{nn,k} * w_k * w_k^* .
\]

(3.100)

The D-Transform of \(\tilde{r}_{ZFE,k} \) is then

\[
\tilde{R}_{ZFE}(D) = \frac{N_0}{2} \frac{Q(D)}{\|p\|^2} \cdot Q(\|p\|^2 D) = \frac{N_0}{2} \cdot Q(\|p\|^2 D) .
\]

(3.101)

The power spectral density of the noise samples \(n_{ZFE,k} \) is then \(\tilde{R}_{ZFE}(e^{-\gamma T}) \). The (per-dimensional) variance of the noise samples at the output of the ZFE is the (per-dimensional) mean-square error between the desired \(x_k \) and the ZFE output \(z_k \). Since

\[
z_k = x_k + n_{ZFE,k} ,
\]

(3.102)

then \(\sigma^2_{ZFE} \) is computed as

\[
\sigma^2_{ZFE} = \frac{T}{2\pi} \int_{-\pi}^{\pi} \tilde{R}_{ZFE}(e^{-\gamma T}) d\omega = \frac{T}{2\pi} \int_{-\pi}^{\pi} \frac{N_0}{2} \cdot \frac{1}{\|p\|^2} \cdot Q(e^{-\gamma T}) d\omega = \frac{N_0}{2} \cdot \gamma_{ZFE} = \frac{N_0}{\|p\|^2} \cdot w_0 ,
\]

(3.103)

where

\[
\gamma_{ZFE} = \frac{T}{2\pi} \int_{-\pi}^{\pi} Q(e^{-\gamma T}) d\omega = w_0 \cdot \|p\| .
\]

(3.104)

The center tap of a linear equalizer is \(w_0 \), or if the ZFE is explicitly used, then \(w_{ZFE,0} \). This tap is easily shown to always have the largest magnitude for a ZFE and thus spotted readily when plotting the impulse response of any linear equalizer. From (3.102) and the fact that \(E[n_{ZFE,k}] = 0 \), \(E[z_k/x_k] = x_k \), so that the ZFE is unbiased for a detection rule based on \(x_k \). The SNR at the output of the ZFE is

\[
\text{SNR}_{ZFE} = \frac{\tilde{\xi}_x}{\sigma^2_{ZFE}} = \text{SNR}_{MFB} \cdot \frac{1}{\gamma_{ZFE}} .
\]

(3.105)

Computation of \(d_{\text{min}} \) over the signal set corresponding to \(x_k \) leads to a relation between \(\tilde{\xi}_x \), \(d_{\text{min}} \), and \(M \), and the NNUB on error probability for a symbol-by-symbol detector at the ZFE output is (please, do not confuse the Q function with the channel autocorrelation \(Q(D) \))

\[
P_{ZFE,e} \approx N_e \cdot Q \left(\frac{d_{\text{min}}}{2\sigma_{ZFE}} \right) .
\]

(3.106)

Since symbol-by-symbol detection can never have performance that exceeds the MFB,

\[
\sigma^2 \leq \frac{\sigma^2_{ZFE} \|p\|^2}{\left(\frac{1}{\gamma_{ZFE}} \right)} = \sigma^2 \cdot \frac{T}{2\pi} \int_{-\pi}^{\pi} \frac{d\omega}{Q(e^{-\gamma T})} = \sigma^2 \cdot \gamma_{ZFE}
\]

(3.107)

\[
\text{SNR}_{MFB} \geq \text{SNR}_{ZFE}
\]

(3.108)

\[
\gamma_{ZFE} \geq 1 ,
\]

(3.109)

with equality if and only if \(Q(D) = 1 \).

Finally, the ZFE equalization loss, \(1/\gamma_{ZFE} \), defines the SNR reduction from the MFB:

Definition 3.4.2 (ZFE Equalization Loss) The ZFE Equalization Loss, \(\gamma_{ZFE} \) in decibels is

\[
\gamma_{ZFE} \triangleq 10 \cdot \log_{10} \left(\frac{\text{SNR}_{MFB}}{\text{SNR}_{ZFE}} \right) = 10 \log_{10} \left(\frac{\|p\|^2 \cdot \sigma^2_{ZFE}}{\sigma^2} \cdot \gamma_{ZFE} \right) = 10 \log_{10} \left(\frac{\|p\| \cdot \sigma^2_{ZFE}}{\sigma^2} \right) = 10 \log_{10} \left(\sqrt{\frac{\|p\|^2}{\sigma^2}} \right) .
\]

(3.110)

and is a measure of the loss (in dB) with respect to the MFB for the ZFE. The sign of the loss is often ignored since it is always a negative (or 0) number and only its magnitude is of concern.

Equation (3.110) always thus provides a non-negative number.
3.4.2 Noise Enhancement

The design of $W(D)$ for the ZFE ignored the effects of noise. This oversight can lead to **noise enhancement**, a σ_{ZFE}^2 that is unacceptably large, and the consequent poor performance.

![Figure 3.22: Noise Enhancement](image)

Figure 3.22 hypothetically illustrates an example of a lowpass channel with a notch at the Nyquist Frequency, that is, $Q(e^{-j\omega T})$ is zero at $\omega = \frac{\pi}{T}$. Since $W(e^{-j\omega T}) = 1/(\|p\| \cdot Q(e^{-j\omega T}))$, then any noise energy near the Nyquist Frequency is enhanced (increased in power or energy), in this case so much that $\sigma_{ZFE}^2 \to \infty$. Even when there is no channel notch at any frequency, σ_{ZFE}^2 can be finite, but large, leading to unacceptable performance degradation.

In actual computation of examples, the author has found that the table in Table 3.1 is useful in recalling basic digital signal processing equivalences related to scale factors between continuous time convolution and discrete-time convolution.

The following example clearly illustrates the noise-enhancement effect:
<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(t) \leftrightarrow P(\omega))</td>
<td>continuous-time</td>
</tr>
<tr>
<td>(p_k = p(kT) \leftrightarrow P(e^{-j\omega T}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} P(\omega + \frac{2\pi n}{T}))</td>
<td>discrete-time</td>
</tr>
<tr>
<td>(y(t) = x(t) \ast p(t) \leftrightarrow Y(\omega) = X(\omega) \cdot P(\omega))</td>
<td>continuous-time</td>
</tr>
<tr>
<td>(y(kT) = T \cdot x_k \ast p_k \leftrightarrow Y(e^{-j\omega T}) = T \cdot X(e^{-j\omega T}) \cdot P(e^{-j\omega T}))</td>
<td>discrete-time</td>
</tr>
<tr>
<td>(Y(e^{-j\omega T}) = \frac{1}{T} \cdot X(\omega) \cdot P(\omega))</td>
<td>sampling theorem satisfied</td>
</tr>
<tr>
<td>(|p|^2 = \int_{-\infty}^{\infty} |p(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |P(\omega)|^2 d\omega)</td>
<td>continuous-time</td>
</tr>
<tr>
<td>(|p|^2 = T \sum_{k=-\infty}^{\infty}</td>
<td>p_k</td>
</tr>
</tbody>
</table>

Table 3.1: Conversion factors of \(T \).
EXAMPLE 3.4.1 ($1 + .9D^{-1} - \text{ZFE}$) Suppose the pulse response of a (strictly bandlimited) channel used with binary PAM is

$$P(\omega) = \begin{cases} \sqrt{T} (1 + .9e^{i\omega T}) & |\omega| \leq \frac{\pi}{T} \\ 0 & |\omega| > \frac{\pi}{T} \end{cases} .$$

(3.111)

Then $||p||^2$ is computed as

$$||p||^2 = \frac{1}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} |P(\omega)|^2 d\omega$$

(3.112)

$$= \frac{1}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} T [1.81 + 1.8 \cos(\omega T)] d\omega$$

(3.113)

$$= \frac{T}{2\pi} 1.81 \frac{2\pi}{T} = 1.81 = 1^2 + .9^2 .$$

(3.114)

The magnitude of the Fourier transform of the pulse response appears in Figure 3.23. Thus, with $\Phi_p(\omega)$ as the Fourier transform of $\{\varphi_p(t)\}$,

$$\Phi_p(\omega) = \begin{cases} \sqrt{1.81} (1 + .9e^{i\omega T}) & |\omega| \leq \frac{\pi}{T} \\ 0 & |\omega| > \frac{\pi}{T} \end{cases} .$$

(3.115)
Then, (using the bandlimited property of $P(\omega)$ in this example)

\[
Q(e^{-j\omega T}) = \frac{1}{T}|\Phi_p(\omega)|^2
\]
\[
= \frac{1}{1.81}|1 + .9e^{j\omega T}|^2
\]
\[
= \frac{1.81 + 1.8\cos(\omega T)}{1.81}
\]
\[
Q(D) = \frac{.9D^{-1} + 1.81 + .9D}{1.81}
\] (3.116)

Then

\[
W(D) = \frac{\sqrt{1.81D}}{.9 + 1.81D + .9D^2}
\] (3.120)

The magnitude of the Fourier transform of the ZFE response appears in Figure 3.24.

Figure 3.24: ZFE magnitude for example.

The time-domain sample response of the equalizer is shown in Figure 3.25.
Computation of σ^2_{ZFE} allows performance evaluation,\(^8\)

\[
\sigma^2_{ZFE} = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{\mathcal{N}_0}{Q(e^{-\tau T}n ||p||^2)} d\omega
\]

\[= \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{(1.81/1.81) \cdot \mathcal{N}_0}{1.81 + 1.8 \cos(\omega T)} d\omega \]

\[= \frac{\mathcal{N}_0}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1.81 + 1.8 \cos u} du \]

\[= \left(\frac{\mathcal{N}_0}{2} \right) \left(\frac{2}{2\pi} \right) \left[\frac{2}{\sqrt{1.81^2 - 1.8^2}} \tan^{-1} \frac{\sqrt{1.81^2 - 1.8^2} \tan \frac{\pi}{2} }{1.81 + 1.8} \right]_0^\pi \]

\[= \left(\frac{\mathcal{N}_0}{2} \right) \left(\frac{2}{2\pi} \right) \left(\frac{4}{\sqrt{1.81^2 - 1.8^2}} \right) \frac{\pi}{2} \]

\[= \left(\frac{\mathcal{N}_0}{2} \right) \left(\frac{1}{\sqrt{1.81^2 - 1.8^2}} \right) \]

\[= \frac{\mathcal{N}_0}{2} (5.26) \quad . \]

\[\text{From a table of integrals} \int \frac{1}{a+b \cos u} du = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1} \left(\frac{\sqrt{a^2 - b^2} \tan \left(\frac{u}{2} \right)}{a-b} \right) . \]

Figure 3.25: ZFE time-domain response.
The ZFE-output SNR is

$$\text{SNR}_{ZFE} = \frac{\bar{\mathcal{E}}_x}{5.26 \frac{N_0}{T}}.$$

(3.128)

This SNR$_{ZFE}$ is also the argument of the Q-function for a binary detector at the ZFE output. Assuming the two transmitted levels are $x_k = \pm 1$, then we get

$$\text{MFB} = \frac{\|p\|^2}{\sigma^2} = \frac{1.81}{\sigma^2},$$

(3.129)

leaving

$$\gamma_{ZFE} = 10 \log_{10}(1.81 \cdot 5.26) \approx 9.8 \text{dB}$$

(3.130)

for any value of the noise variance. This is very poor performance on this channel. No matter what b is used, the loss is almost 10 dB from best performance. Thus, noise enhancement can be a serious problem. Chapter 9 demonstrates a means by which to ensure that there is no loss with respect to the matched filter bound for this channel. With alteration of the signal constellation, Chapter 10 describes a means that ensures an error rate of 10^{-5} on this channel, with no information rate loss, which is far below the error rate achievable even when the MFB is attained. thus, there are good solutions, but the simple concept of a ZFE is not a good solution.

Another example illustrates the generalization of the above procedure when the pulse response is complex (corresponding to a QAM channel):

EXAMPLE 3.4.2 (QAM: $-0.5D^{-1} + (1 + 0.25j) - 0.5jD$ Channel) Given a baseband equivalent channel

$$p(t) = \frac{1}{\sqrt{T}} \left\{ -\frac{1}{2} \text{sinc} \left(\frac{t+T}{T} \right) + \left(1 + \frac{j}{4} \right) \text{sinc} \left(\frac{t}{T} \right) - \frac{j}{2} \text{sinc} \left(\frac{t-T}{T} \right) \right\},$$

(3.131)

the discrete-time channel samples are

$$p_k = \frac{1}{\sqrt{T}} \left[\frac{-1}{2}, \left(1 + \frac{j}{4} \right), \frac{-j}{2} \right].$$

(3.132)

This channel has the transfer function of Figure 3.26.
The pulse response norm (squared) is

$$\|p\|^2 = \frac{T}{T} (.25 + 1 + .0625 + .25) = 1.5625 . \quad (3.133)$$

Then \(q_k\) is given by

$$q_k = q(kT) = T (\varphi_{p,k} \ast \varphi^*_{p,-k}) = \frac{1}{1.5625} \left[-\frac{j}{4}, \frac{5}{8}(-1+j), 1.5625, -\frac{5}{8}(1+j), \frac{j}{4} \right]$$

or

$$Q(D) = \frac{1}{1.5625} \left[-\frac{j}{4}D^{-2} + \frac{5}{8}(-1+j)D^{-1} + 1.5625 - \frac{5}{8}(1+j)D + \frac{j}{4}D^2 \right] \quad (3.135)$$

Then, \(Q(D)\) factors into

$$Q(D) = \frac{1}{1.5625} \left\{ (1 - .5jD) (1 - .5D^{-1}) (1 + .5jD^{-1}) (1 - .5D) \right\} , \quad (3.136)$$

and

$$W_{ZFE}(D) = \frac{1}{Q(D)\|p\|} \quad (3.137)$$
or

\[W_{ZFE}(D) = \frac{\sqrt{1.5625}}{(-.25jD^{-2} + .625(-1 + j)D^{-1} + 1.5625 - .625(1 + j)D + .25jD^2)} . \] \tag{3.138}

The Fourier transform of the ZFE is in Figure 3.27.

Figure 3.27: Fourier transform magnitude of the ZFE for the complex baseband channel example.

The real and imaginary parts of the equalizer response in the time domain are shown in Figure 3.28.
Then
\[\sigma^2_{ZFE} = \frac{T}{2\pi} \int_{-\pi}^{\pi} \frac{N_0}{\|p\|^2 Q(e^{-j\omega T})} d\omega , \] (3.139)
or
\[\sigma^2_{ZFE} = \frac{N_0}{2} \|p\| , \] (3.140)
where \(w_0 \) is the zero (center) coefficient of the ZFE. This coefficient can be extracted from
\[
W_{ZFE}(D) = \sqrt{1.5625} \left[\frac{D^2(-4j)}{(D + 2j)(D - 2)(D - .5)(D + .5j)} \right] = \sqrt{1.5625} \left[\frac{A}{D - 2} + \frac{B}{D + 2j} + \text{terms not contributing to } w_0 \right] ,
\]
where \(A \) and \(B \) are coefficients in the partial-fraction expansion (the residuez and residue commands in Matlab can be very useful here):
\[
A = \frac{4(-4j)}{(2 + 2j)(2 + .5j)(1.5)} = -1.5686 - .9412 = 1.8293 \angle -2.601 \quad (3.141)
\]
\[
B = \frac{-4(-4j)}{(-2j - .5)(-2j - 2)(-1.5j)} = .9412 + j1.5685 = 1.8293 \angle 1.030 . \quad (3.142)
\]
Finally
\[
W_{ZFE}(D) = \sqrt{1.5625} \left[\frac{A(-.5)}{1 - .5jD} + \frac{B(-.5j)}{(1 - .5jD)} + \text{terms} \right] , \quad (3.143)
\]
and
\[
w_0 = \sqrt{1.5625} \left[(-.5)(-1.5686 - .9412 - .5j(.9412 + j1.5686)) \right] = \sqrt{1.5625}(1.57) = 1.96 \quad (3.144)
\]
The ZFE loss can be shown to be
\[
\gamma_{ZFE} = 10 \cdot \log_{10}(w_0 \cdot \|p\|) = 3.9 \text{ dB} , \quad (3.146)
\]
which is better than the last channel because the frequency spectrum is not as near zero in this complex example as it was earlier on the PAM example. Nevertheless, considerably better performance is also possible on this complex channel, but not with the ZFE.

Figure 3.28: Time-domain equalizer coefficients for complex channel.
To compute P_e for 4QAM, the designer calculates

$$
\bar{P}_e \approx Q\left(\sqrt{\text{SNR}_{MFB} - 3.9 \text{ dB}}\right).
$$

(3.147)

If $\text{SNR}_{MFB} = 10$dB, then $\bar{P}_e \approx 2.2 \times 10^{-2}$. If $\text{SNR}_{MFB} = 17.4$dB, then $\bar{P}_e \approx 1.0 \times 10^{-6}$. If $\text{SNR}_{MFB} = 23.4$dB for 16QAM, then $\bar{P}_e \approx 2.0 \times 10^{-5}$.
3.5 Minimum Mean-Square Error Linear Equalization

The Minimum Mean-Square Error Linear Equalizer (MMSE-LE) balances a reduction in ISI with noise enhancement. The MMSE-LE always performs as well as, or better than, the ZFE and is of the same complexity of implementation. Nevertheless, it is slightly more complicated to describe and analyze than is the ZFE. The MMSE-LE uses a linear time-invariant filter w_k for R, but the choice of filter impulse response w_k is different than the ZFE.

The MMSE-LE is a linear filter w_k that acts on y_k to form an output sequence z_k that is the best MMSE estimate of x_k. That is, the filter w_k minimizes the Mean Square Error (MSE):

Definition 3.5.1 (Mean Square Error (for the LE)) The LE error signal is given by

$$e_k = x_k - w_k \ast y_k = x_k - z_k.$$

(3.148)

The Minimum Mean Square Error (MMSE) for the linear equalizer is defined by

$$\sigma^2_{MMSE-LE} \triangleq \min_{w_k} E\left[|x_k - z_k|^2\right].$$

(3.149)

The MSE criteria for filter design does not ignore noise enhancement because the optimization of this filter compromises between eliminating ISI and increasing noise power. Instead, the filter output is as close as possible, in the Minimum MSE sense, to the data symbol x_k.

3.5.1 Optimization of the Linear Equalizer

Using D-transforms,

$$E(D) = X(D) - W(D)Y(D)$$

(3.150)

By the orthogonality principle in Appendix A, at any time k, the error sample e_k must be uncorrelated with any equalizer input signal y_m. Succinctly,

$$E\left[E(D)Y^*(D^{-*})\right] = 0.$$

(3.151)

Evaluating (3.151), using (3.150), yields

$$0 = \tilde{R}_{xy}(D) - W(D)\tilde{R}_{yy}(D),$$

(3.152)

where ($N = 1$ for PAM, $N = 2$ for Quadrature Modulation)9

$$\tilde{R}_{xy}(D) = E\left[X(D)Y^*(D^{-*})\right]/N = \|p\|Q(D)\tilde{E}_x$$

$$\tilde{R}_{yy}(D) = E\left[Y(D)Y^*(D^{-*})\right]/N = \|p\|^2Q^2(D)\tilde{E}_x + \frac{N_0}{2}Q(D) = Q(D) \left(\|p\|^2Q(D)\tilde{E}_x + \frac{N_0}{2}\right).$$

Then the MMSE-LE becomes

$$W(D) = \frac{\tilde{R}_{xy}(D)}{\tilde{R}_{yy}(D)} = \frac{1}{\|p\|(Q(D) + 1/\text{SNR}_{MFB})}.$$

(3.153)

The MMSE-LE differs from the ZFE only in the additive positive term in the denominator of (3.153). The transfer function for the equalizer $W(e^{-\omega T})$ is also real and positive for all finite signal-to-noise ratios. This small positive term prevents the denominator from ever becoming zero, and thus makes the MMSE-LE well defined even when the channel (or pulse response) is zero for some frequencies or frequency bands. Also $W(D) = W^*(D^{-*})$.

9The expression $R_{xy}(D) \triangleq E\left[X(D)X^*(D^{-*})\right]$ is used in a symbolic sense, since the terms of $X(D)X^*(D^{-*})$ are of the form $\sum_k x_kx_{k-j}$, so that we are implying the additional operation $\lim_{K \to \infty} |1/(2K + 1)| \sum_{-K \leq k \leq K}$ on the sum in such terms. This is permissible for stationary (and ergodic) discrete-time sequences.
The MMSE-LE transfer function has magnitude \bar{E}_{xx}/σ^2 at $\omega = \frac{\pi}{T}$, while the ZFE becomes infinite at this same frequency. This MMSE-LE leads to better performance, as the next subsection computes.

3.5.2 Performance of the MMSE-LE

The MMSE is the time-0 coefficient of the error autocorrelation sequence

$$\tilde{R}_{ee}(D) = E \left[E(D)E^*(D^{-*}) \right] / N \quad \text{(3.154)}$$

$$= \bar{E}_{xx} - W^*(D^{-*})\tilde{R}_{xy}(D) - W(D)\tilde{R}_{xy}^*(D^{-*}) + W(D)\tilde{R}_{yy}(D)W^*(D^{-*}) \quad \text{(3.155)}$$

$$= \bar{E}_{xx} - W(D)\tilde{R}_{yy}(D)W^*(D^{-*}) \quad \text{(3.156)}$$

$$= \bar{E}_{xx} - \frac{Q(D) (\|p\|^2 \cdot Q(D)\bar{E}_{xx} + \frac{N_0}{2})}{\|p\|^2 (Q(D) + 1/\text{SNR}_{MB})^2} \quad \text{(3.157)}$$

$$= \bar{E}_{xx} - \frac{\bar{E}_{xx}Q(D)}{(Q(D) + 1/\text{SNR}_{MB})} \quad \text{(3.158)}$$

$$= \frac{\frac{N_0}{2}}{\|p\|^2 (Q(D) + 1/\text{SNR}_{MB})} \quad \text{(3.159)}$$

The third equality follows from

$$W(D)\tilde{R}_{yy}(D)W^*(D^{-*}) = W(D)\tilde{R}_{yy}(D)\tilde{R}_{yy}^*(D)W^*(D^{-*}) = W(D)\tilde{R}_{yy}^*(D^{-*}),$$

and that $(W(D)\tilde{R}_{yy}(D)W^*(D^{-*}))^* = W(D)\tilde{R}_{yy}(D)W^*(D^{-*})$. The MMSE then becomes

$$\sigma^2_{\text{MMSE-LE}} = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \tilde{R}_{ee}(e^{-j\omega T})d\omega = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \frac{\frac{N_0}{2}}{\|p\|^2 (Q(e^{-j\omega T}) + 1/\text{SNR}_{MB})} \quad \text{(3.160)}$$

By recognizing that $W(e^{-j\omega T})$ is multiplied by the constant $\frac{N_0}{2}/\|p\|$ in (3.160), then

$$\sigma^2_{\text{MMSE-LE}} = w_0 \frac{\frac{N_0}{2}}{\|p\|} \quad \text{(3.161)}$$

From comparison of (3.160) and (3.103), that

$$\sigma^2_{\text{MMSE-LE}} \leq \sigma^2_{\text{ZFE}} \quad \text{(3.162)}$$
with equality if and only if $\text{SNR}_{MFB} \to \infty$. Furthermore, since the ZFE is unbiased, and $\text{SNR}_{\text{MMSE-LE}} = \text{SNR}_{\text{MMSE-LE,U}} + 1$ and $\text{SNR}_{\text{MMSE-LE,U}}$ are the maximum-SNR corresponding to unconstrained and unbiased linear equalizers, respectively,

$$\text{SNR}_{ZFE} \leq \text{SNR}_{\text{MMSE-LE,U}} = \frac{\hat{e}_x}{\sigma_{\text{MMSE-LE}}^2} - 1 \leq \text{SNR}_{MFB}. \quad (3.163)$$

One confirms that the MMSE-LE is a biased receiver by writing the following expression for the equalizer output

$$Z(D) = W(D)Y(D) \quad (3.164)$$

$$= \frac{1}{\|p\|(Q(D) + 1/\text{SNR}_{MFB})} (Q(D)\|p\|X(D) + N(D)) \quad (3.165)$$

$$= X(D) - \frac{1/\text{SNR}_{MFB}}{Q(D) + 1/\text{SNR}_{MFB}} X(D) + \frac{N(D)}{\|p\|(Q(D) + 1/\text{SNR}_{MFB})}, \quad (3.166)$$

for which the x_k-dependent residual ISI term contains a component

$$\text{signal-basis term} = -1/\text{SNR}_{MFB} w_0 \cdot \|p\| \cdot x_k \quad (3.167)$$

$$= -1/\text{SNR}_{MFB} \cdot \frac{\sigma_{\text{MMSE-LE}}^2 \|p\|^2}{\bar{x}_0} x_k \quad (3.168)$$

$$= -\frac{\sigma_{\text{MMSE-LE}}^2}{\bar{e}_x} \cdot x_k \quad (3.169)$$

$$= -\frac{1}{\text{SNR}_{\text{MMSE-LE}}} \cdot x_k \quad (3.170)$$

So $z_k = \left(1 - \frac{1}{\text{SNR}_{\text{MMSE-LE}}} \right) x_k - e_k'$ where e_k' is the error for unbiased detection and R. The optimum unbiased receiver with decision regions scaled by $1 - \frac{1}{\text{SNR}_{\text{MMSE-LE}}}$ (see Section 3.2.1) has the signal energy given by

$$\left(1 - \frac{1}{\text{SNR}_{\text{MMSE-LE}}} \right)^2 \hat{e}_x \quad (3.172)$$

A new error for the scaled decision regions is $e_k' = (1 - 1/\text{SNR}_{\text{MMSE-LE}}) x_k - z_k = e_k - 1/\text{SNR}_{\text{MMSE-LE}} x_k$, which is also the old error with the x_k dependent term removed. Since e_k' and x_k are then independent, then

$$\sigma_e^2 = \sigma_{\text{MMSE-LE}}^2 = \sigma_{e_k'}^2 + \left(1 - \frac{1}{\text{SNR}_{\text{MMSE-LE}}} \right)^2 \hat{e}_x \quad (3.173)$$

leaving

$$\sigma_{e_k'}^2 = \sigma_{\text{MMSE-LE}}^2 - \left(1 - \frac{1}{\text{SNR}_{\text{MMSE-LE}}} \right)^2 \hat{e}_x = \frac{\text{SNR}_{\text{MMSE-LE}}^2 \sigma_{\text{MMSE-LE}}^2 - \hat{e}_x}{\text{SNR}_{\text{MMSE-LE}}^2} = \frac{\hat{e}_x (\text{SNR}_{\text{MMSE-LE}} - 1)}{\text{SNR}_{\text{MMSE-LE}}^2}. \quad (3.174)$$

The SNR for the unbiased MMSE-LE then becomes (taking the ratio of (3.172) to $\sigma_{e_k'}^2$)

$$\text{SNR}_{\text{MMSE-LE,U}} = \frac{\text{SNR}_{\text{MMSE-LE}}^2 - 1}{\text{SNR}_{\text{MMSE-LE}}^2} \hat{e}_x = \text{SNR}_{\text{MMSE-LE}} - 1 \quad (3.175)$$

which corroborates the earlier result on the relation of the optimum biased and unbiased SNR’s for any particular receiver structure (at least for the LE structure). The unbiased SNR is

$$\text{SNR}_{\text{MMSE-LE,U}} = \frac{\hat{e}_x}{\sigma_{\text{MMSE-LE}}^2} - 1 \quad (3.176)$$
which is the performance level that this text always uses because it corresponds to the best error probability for an SBS detector, as was discussed earlier in Section 3.1. Figure 3.30 illustrates the concept with the effect of scaling on a 4QAM signal shown explicitly. Again, MMSE receivers (of which the MMSE-LE is one) reduce noise power at the expense of introducing a bias, the scaling up removes the bias, and ensures the detector achieves the best P_e it can.

![Diagram of MMSE Receiver]

Figure 3.30: Illustration of bias and its removal.

Since the ZFE is also an unbiased receiver, (3.163) must hold. The first inequality in (3.163) tends to equality if the ratio $\frac{\bar{E}_x}{\sigma^2}$ → ∞ or if the channel is free of ISI ($Q(D) = 1$). The second inequality tends to equality if $\frac{\bar{E}_x}{\sigma^2}$ → 0 or if the channel is free of ISI ($Q(D) = 1$).

The unbiased MMSE-LE loss with respect to the MFB is

$$
\gamma_{MMSE-LE} = \frac{\text{SNR}_{MFB}}{\text{SNR}_{MMSE-LE,U}} = \left(\frac{\|p\|^2 \sigma^2_{MMSE-LE}}{\sigma^2} \right) \left(\frac{\bar{E}_x}{\bar{E}_x - \sigma^2_{MMSE-LE}} \right) .
$$

(3.177)

The $\frac{\|p\|^2 \sigma^2_{MMSE-LE}}{\sigma^2}$ term represents the increase in noise variance of the MMSE-LE, while the term $\frac{\bar{E}_x}{\bar{E}_x - \sigma^2_{MMSE-LE}}$ term represents the loss in signal power at the equalizer output that accrues to lower noise enhancement.

The MMSE-LE also requires no additional complexity to implement and should always be used in place of the ZFE when the receiver uses symbol-by-symbol detection on the equalizer output.

The error is not necessarily Gaussian in distribution. Nevertheless, engineers commonly make this assumption in practice, with a good degree of accuracy, despite the potential non-Gaussian residual ISI component in $\sigma^2_{MMSE-LE}$. This text also follows this practice. Thus,

$$
P_e \approx N_e Q \left(\sqrt{\kappa \text{SNR}_{MMSE-LE,U}} \right) ,
$$

(3.178)

where κ depends on the relation of \bar{E}_x to d_{\min} for the particular constellation of interest, for instance $\kappa = 3/(M - 1)$ for Square QAM. The reader may recall that the symbol Q is used in two separate ways in these notes, for the Q-function, and for the transform of the matched-filter-pulse-response cascade. The actual meaning should always be obvious in context.)
3.5.3 Examples Revisited

This section returns to the earlier ZFE examples to compute the improvement of the MMSE-LE on these same channels.

EXAMPLE 3.5.1 (PAM - MMSE-LE) The pulse response of a channel used with binary PAM is again given by

\[
P(\omega) = \begin{cases}
\sqrt{T} \left(1 + 0.9e^{j\pi T}\right) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega| > \frac{\pi}{T}
\end{cases}
\]

(3.179)

Let us suppose SNR_{MF} = 10dB (= \bar{E}_x \|p\|^2 / N_0) and that \(E_x = 1\).

The equalizer is

\[
W(D) = \frac{1}{\|p\|} \left(\frac{2}{1.81} D^{-1} + 1.1 + \frac{3}{1.81} D \right)
\]

(3.180)

Figure 3.31 shows the frequency response of the equalizer for both the ZFE and MMSE-LE. Clearly the MMSE-LE has a lower magnitude in its response.

The \(\sigma_{MMSE-LE}^2\) is computed as

\[
\sigma_{MMSE-LE}^2 = \frac{T}{2\pi} \int_{-\pi}^{\pi} \frac{N_0}{2} \left[1.81 + 1.8 \cos(\omega T) + \frac{1.81}{10} \right] d\omega
\]

(3.181)
\[
N_0 = \frac{1}{\sqrt{1.991^2 - 1.8^2}} \quad (3.182)
\]
\[
= \frac{N_0}{2} (1.175) \quad , \quad (3.183)
\]
which is considerably smaller than \(\sigma_{ZFE}^2 \). The SNR for the MMSE-LE is
\[
\text{SNR}_{MMSE-LE,U} = 1 - 1.175(1.181) = 3.7 \text{ (5.7dB) } . \quad (3.184)
\]
The loss with respect to the MFB is 10dB - 5.7dB = 4.3dB. This is 5.5dB better than the ZFE (9.8dB - 4.3dB = 5.5dB), but still not good for this channel.

Figure 3.32 compares the frequency-domain responses of the equalized channel.

![Frequency-domain comparison of equalized channel responses](image)

Figure 3.32: Comparison of equalized frequency-domain responses for MMSE-LE and ZFE on baseband example.

Figure 3.33 compares the time-domain responses of the equalized channel. The MMSE-LE clearly does not have an ISI-free response, but mean-square error/distortion is minimized and the MMSE-LE has better performance than the ZFE.
Figure 3.33: Comparison of equalized time-domain responses for MMSE-LE and ZFE on baseband example.

The relatively small energy near the Nyquist Frequency in this example is the reason for the poor performance of both linear equalizers (ZFE and MMSE-LE) in this example. To improve performance further, decision-assisted equalization is examined in Section 3.6 and in Chapter 5 (or codes combined with equalization, as discussed in Chapters 10 and 11). Another yet better method appears in Chapter 4.

The complex example also follows in a straightforward manner.

EXAMPLE 3.5.2 (QAM - MMSE-LE) Recall that the equivalent baseband pulse response samples were given by

\[p_k = \frac{1}{\sqrt{T}} \left[-\frac{1}{2} \left(1 + \frac{j}{4} \right) , -\frac{j}{2} \right] . \]

Again, \(\text{SNR}_{MFB} = 10\text{dB} \) (= \(\bar{E}_x\|p\|^2/N_0/2 \)), \(\bar{E}_x = 1 \), and thus

\[\sigma^2_{\text{MMSE-LE}} = w_0 \frac{N_0}{2} \|p\|^{-1} . \]

The equalizer is, noting that \(\frac{N_0}{2} = \frac{\bar{E}_x\|p\|^2}{\text{SNR}_{MFB}} = 1.5625/10 = .15625 \),

\[W(D) = \frac{1}{(Q(D) + 1/\text{SNR}_{MFB}) \|p\|} \]

(3.187)
or
\[
= -0.25jD^{-2} + 0.625(-1 + j)D^{-1} + 1.5625(1 + 0.1) - 0.625(1 + j)D^1 + 0.25jD^2 .
\] (3.188)

Figure 3.34 compares the MMSE-LE and ZFE equalizer responses for this same channel. The MMSE-LE high response values are considerably more limited than the ZFE values.

![Figure 3.34: Comparison of MMSE-LE and ZFE for complex channel example.](image)

The roots of \(Q(D) + \frac{1}{SNR_{MFB}} \), or of the denominator in (3.188), are
\[
D = 2.217\angle^{-1.632} = -0.1356 - j2.213 \quad (3.189)
\]
\[
D = 2.217\angle^{0.612} = 2.213 + j1.356 \quad (3.190)
\]
\[
D = .451\angle^{-1.632} = -.0276 - j.4502 \quad (3.191)
\]
\[
D = .451\angle^{0.612} = .4502 + j.0276 , \quad (3.192)
\]

and (3.188) becomes
\[
W(D) = \frac{\sqrt{1.5625D^2/(25j)}}{(D - 2.22\angle^{-1.632})(D - 2.22\angle^{0.612})(D - .451\angle^{-1.632})(D - .451\angle^{0.612})} \quad (3.193)
\]
or
\[
W(D) = \frac{A}{D - 2.22\angle^{-1.632}} + \frac{B}{D - 2.22\angle^{0.612}} + \ldots , \quad (3.194)
\]

where the second expression (3.194) has ignored any terms in the partial fraction expansion that will not contribute to \(w_0 \). Then,
\[
A = \frac{\sqrt{1.5625(-4j)(2.22\angle^{-1.632})^2}}{(2.22\angle^{-1.632} - 2.22\angle^{0.612})(2.22\angle^{-1.632} - .451\angle^{-1.632})(2.22\angle^{-1.632} - .451\angle^{0.612})}
= \sqrt{1.5625(-j.805 + 1.20j)} = 1.0079 + j1.5025 \quad (3.195)
\]
\[
B = \frac{\sqrt{1.5625(-4j)(2.22\angle^{0.612})^2}}{(2.22\angle^{0.612} - 2.22\angle^{-1.632})(2.22\angle^{0.612} - .451\angle^{-1.632})(2.22\angle^{0.612} - .451\angle^{0.612})}
= \sqrt{1.5625(j1.20 - .805)} = -1.5025 - 1.0079j \quad . \quad (3.196)
\]
Then, from (3.194),
\[w_0 = A(-.451 \zeta^{1.632}) + B(-.451 \zeta^{-0.0612}) = \sqrt{1.5625}(1.125) \quad (3.197) \]
Then
\[\sigma^2_{\text{MMSE-LE}} = 1.125N_0 = 1.125(1.5625) = .1758 \quad (3.198) \]
\[\text{SNR}_{\text{MMSE-LE},U} = \frac{[1 - 1.125(1.5625)]}{1.125(1.5625)} \quad (3.199) \]
which is 3.3 dB below the matched filter bound SNR of 10dB, or equivalently,
\[\gamma_{\text{MMSE-LE}} = 10 \log_{10}(10/4.69) = 10 \log_{10}(2.13) = 3.3 \text{ dB} \quad (3.200) \]
but .6 dB better than the ZFE. It is also possible to do considerably better on this channel, but structures not yet introduced will be required. Nevertheless, the MMSE-LE is one of the most commonly used equalization structures in practice.

Figure 3.34 compares the equalized channel responses for both the MMSE-LE and ZFE. While the MMSE-LE performs better, there is a significant deviation from the ideal flat response. This deviation is good and gains .6 dB improvement. Also, because of biasing, the MMSE-LE output is everywhere slightly lower than the ZFE output (which is unbiased). This bias can be removed by scaling by 5.69/4.69.

3.5.4 Fractionally Spaced Equalization

To this point in the study of the discrete time equalizer, a matched filter \(\varphi_p^*(-t) \) precedes the sampler, as was shown in Figure 3.9. While this may be simple from an analytical viewpoint, there are several practical problems with the use of the matched filter. First, \(\varphi_p^*(-t) \) is a continuous time filter and may be much more difficult to design accurately than an equivalent digital filter. Secondly, the precise sampling frequency and especially its phase, must be known so that the signal can be sampled when it is at maximum strength. Third, the channel pulse response may not be accurately known at the receiver, and an adaptive equalizer (see Chapter 7), is instead used. It may be difficult to design an adaptive, analog, matched filter.

For these reasons, sophisticated data transmission systems often replace the matched-filter/sampler/equalizer system of Figure 3.9 with the Fractionally Spaced Equalizer (FSE) of Figure 3.35. Basically, the sampler and the matched filter have been interchanged with respect to Figure 3.9. Also the sampling rate has been increased by some rational number \(l \) (\(l > 1 \)). The new sampling rate is chosen sufficiently high so as to be greater than twice the highest frequency of \(x_p(t) \). Then, the matched filtering operation and the equalization filtering are performed at rate \(l/T \), and the cascade of the two filters is realized as a single filter in practice. An anti-alias or noise-rejection filter always precedes the sampling device (usually an analog-to-digital converter). This text assumes this filter is an ideal lowpass filter with gain \(\sqrt{T} \) transfer.
over the frequency range \(-\frac{l\pi}{2} \leq \omega \leq \frac{l\pi}{2}\). The variance of the noise samples at the filter output will then be \(\frac{N}{l^2}\) per dimension.

In practical systems, the four most commonly found values for \(l\) are \(\frac{4}{3}\), 2, 3, and 4. The major drawback of the FSE is that to span the same interval in time (when implemented as an FIR filter, as is typical in practice), it requires a factor of \(l\) more coefficients, leading to an increase in memory by a factor of \(l\). The FSE outputs may also appear to be computed \(l\) times more often in real time. However, only \((\frac{1}{l})^{th}\) of the output samples need be computed (that is, those at the symbol rate, as that is when we need them to make a decision), so computation is approximately \(l\) times that of symbol-spaced equalization, corresponding to \(l\) times as many coefficients to span the same time interval, or equivalently, to \(l\) times as many input samples per symbol.

The FSE will digitally realize the cascade of the matched filter and the equalizer, eliminating the need for an analog matched filter. (The entire filter for the FSE can also be easily implemented adaptively, see Chapter 7.) The FSE can also exhibit a significant improvement in sensitivity to sampling-phase errors. To investigate this improvement briefly, in the original symbol-spaced equalizers (ZFE or MMSE-LE) may have the sampling-phase on the sampler in error by some small offset \(t_0\). Then, the sampler will sample the matched filter output at times \(kT + t_0\), instead of times \(kT\). Then,

\[
y(kT + t_0) = \sum_m x_m \cdot \|p\| \cdot q(kT - mT + t_0) + n_k ,
\]

which corresponds to \(q(t) \rightarrow q(t + t_0)\) or \(Q(\omega) \rightarrow Q(\omega)e^{-j\omega t_0}\). For the system with sampling offset,

\[
Q(e^{-j\omega T}) \rightarrow \frac{1}{T} \sum_n Q(\omega - \frac{2\pi n}{T})e^{-j(\omega - \frac{2\pi n}{T})t_0} ,
\]

which is no longer nonnegative real across the entire frequency band. In fact, it is now possible (for certain nonzero timing offsets \(t_0\), and at frequencies just below the Nyquist Frequency) that the two aliased frequency characteristics \(Q(\omega)e^{-j\omega t_0}\) and \(Q(\omega - \frac{2\pi}{T})e^{-j(\omega - \frac{2\pi}{T})t_0}\) add to approximately zero, thus producing a notch within the critical frequency range \((-\frac{\pi}{2}, \frac{\pi}{2})\). Then, the best performance of the ensuing symbol-spaced ZFE and/or MMSE-LE can be significantly reduced, because of noise enhancement. The resulting noise enhancement can be a major problem in practice, and the loss in performance can be several dB for reasonable timing offsets. When the anti-alias filter output is sampled at greater than twice the highest frequency in \(x_p(t)\), then information about the entire signal waveform is retained. Equivalently, the FSE can synthesize, via its transfer characteristic, a phase adjustment (effectively interpolating to the correct phase) so as to correct the timing offset, \(t_0\), in the sampling device. The symbol-spaced equalizer cannot interpolate to the correct phase, because no interpolation is correctly performed at the symbol rate. Equivalently, information has been lost about the signal by sampling at a speed that is too low in the symbol-spaced equalizer without matched filter. This possible notch is an example of information loss at some frequency; this loss cannot be recovered in a symbol-spaced equalizer without a matched filter. In effect, the FSE equalizes before it aliases (aliasing does occur at the output of the equalizer where it decimates by \(l\) for symbol-by-symbol detection), whereas the symbol-spaced equalizer aliases before it equalizes; the former alternative is often the one of choice in practical system implementation, if the extra memory and computation can be accommodated. Effectively, with an FSE, the sampling device need only be locked to the symbol rate, but can otherwise provide any sampling phase. The phase is tacitly corrected to the optimum phase inside the linear filter implementing the FSE.

The sensitivity to sampling phase is channel dependent: In particular, there is usually significant channel energy near the Nyquist Frequency in applications that exhibit a significant improvement of the FSE with respect to the symbol-spaced equalizer. In channels with little energy near the Nyquist Frequency, the FSE is avoided, because it provides little performance gain, and is significantly more complex to implement (more parameters and higher sampling rate).

Infinite-Length FSE Settings To derive the settings for the FSE, this section assumes that \(l\), the oversampling factor, is an integer. The sampled output of the anti-alias filter can be decomposed into \(l\)
sampled-at-rate-1/T interleaved sequences with D-transforms $Y_0(D)$, $Y_2(D)$, ..., $Y_{i-1}(D)$, where $Y_i(D)$ corresponds to the sample sequence $y[kT - iT/l]$. Then,

$$Y_i(D) = P_i(D) \cdot X(D) + N_i(D)$$

(3.203)

where $P_i(D)$ is the transform of the symbol-rate-spaced-ith-phase-of-$p(t)$ sequence $p[kT - (i - 1)T/l]$, and similarly $N_i(D)$ is the transform of a symbol-rate sampled white noise sequence with autocorrelation function $R_{nn}(D) = l \cdot \frac{N_0}{2}$ per dimension, and these noise sequences are also independent of one another.

A column vector transform is

$$Y(D) = \begin{bmatrix} Y_0(D) \\ \vdots \\ Y_{i-1}(D) \end{bmatrix} = P(D)X(D) + N(D) .$$

(3.204)

Also

$$P(D) \triangleq \begin{bmatrix} P_0(D) \\ \vdots \\ P_{i-1}(D) \end{bmatrix} \quad \text{and} \quad N(D) = \begin{bmatrix} N_0(D) \\ \vdots \\ N_{i-1}(D) \end{bmatrix} .$$

(3.205)

By considering the FSE output at sampling rate $1/T$, the interleaved coefficients of the FSE can also be written in a row vector $W(D) = [W_1(D), ..., W_i(D)]$. Thus the FSE output is

$$Z(D) = W(D)Y(D) .$$

(3.206)

Again, the orthogonality condition says that $E(D) = X(D) - Z(D)$ should be orthogonal to $Y(D)$, which can be written in vector form as

$$E \left[E(D)Y^*(D^-) \right] = R_{xY}(D) - W(D)R_{YY}(D) = 0 ,$$

(3.207)

where

$$R_{xY}(D) \triangleq E \left[X(D)Y^*(D^-) \right] = \mathcal{E}_x P^*(D^-)$$

(3.208)

$$R_{YY}(D) \triangleq E \left[Y(D)Y^*(D^-) \right] = \mathcal{E}_x P(D)P^*(D^-) + l \cdot \frac{N_0}{2} I .$$

(3.209)

MMSE-FSE filter setting is then

$$W(D) = R_{xY}(D)R_{YY}^{-1}(D) = P^*(D^-) \left[P(D)P^*(D^-) + l/\text{SNR} \right]^{-1} .$$

(3.210)

The corresponding error sequence has autocorrelation function

$$\hat{R}_{ee}(D) = \mathcal{E}_x - R_{xY}(D)R_{YY}^{-1}(D)R_{Yx}(D) = \frac{l \cdot \frac{N_0}{2} d\omega}{P^*(D^-)P(D) + l/\text{SNR}} .$$

(3.211)

The MMSE is then computed as

$$\text{MMSE}_{\text{MMSE-FSE}} = \frac{T}{2\pi} \int_{-\pi}^{\pi} \frac{l \cdot \frac{N_0}{2} d\omega}{\|P(e^{-j\omega T})\|^2 + l/\text{SNR}} = \text{MMSE}_{\text{MMSE-LE}} ,$$

(3.212)

where $\|P(e^{-j\omega T})\|^2 = \sum_{i=1}^{l} |P_i(e^{-j\omega T})|^2$. The SNR’s, biased and unbiased, are also then exactly the same as given for the MMSE-LE, as long as the sampling rate exceeds twice the highest frequency of $P(f)$.

The reader is cautioned against letting $\frac{N_0}{2} \rightarrow 0$ to get the ZF-FSE. This is because the matrix $R_{YY}(D)$ will often be singular when this occurs. To avoid problems with singularity, an appropriate pseudoinverse, which zeros the FSE characteristic when $P(\omega) = 0$ is recommended.
Passband Equalization

This chapter so far assumed for the complex baseband equalizer that the passband signal has been demodulated according to the methods described in Chapter 2 before filtering and sampling. An alternative method, sometimes used in practice when \(\omega_c \) is not too high (or intermediate-frequency up/down conversion is used), is to commute the demodulation and filtering functions. Sometimes this type of system is also called “direct conversion,” meaning that no carrier demodulation occurs prior to sampling. This commuting can be done with either symbol-spaced or fractionally spaced equalizers. The main reason for the interchange of filtering and demodulation is the recovery of the carrier frequency in practice. Postponing the carrier demodulation to the equalizer output can lead to significant improvement in the tolerance of the system to any error in estimating the carrier frequency, as Chapter 6 investigates. In the present (perfect carrier phase lock) development, passband equalization and baseband equalization are exactly equivalent and the settings for the passband equalizer are identical to those of the corresponding baseband equalizer, other than a translation in frequency by \(\omega_c \) radians/sec.

Passband equalization is best suited to CAP implementations (See Section 4 of Chapter 2) where the complex channel is the analytic equivalent. The complex equalizer then acts on the analytic equivalent channel and signals to eliminate ISI in a MMSE sense. When used with CAP, the final rotation shown in Figure 3.36 is not necessary – such a rotation is only necessary with a QAM transmit signal.

The passband equalizer is illustrated in Figure 3.36. The phase splitting is the forming of the analytic equivalent with the use of the Hilbert Transform, as discussed in Chapter 2. The matched filtering and equalization are then performed on the passband signal with digital demodulation to baseband deferred to the filter output. The filter \(w_k \) can be a ZFE, a MMSE-LE, or any other desired setting (see Chapter 4 and Sections 3.5 and 3.6). In practice, the equalizer can again be realized as a fractionally spaced equalizer by interchanging the positions of the matched filter and sampler, increasing the sampling rate, and absorbing the matched filtering operation into the filter \(w_k \), which would then be identical to the (modulated) baseband-equivalent FSE with output sample rate decimated appropriately to produce outputs only at the symbol sampling instants.

Often in practice, the cross-coupled nature of the complex equalizer \(W(D) \) is avoided by sampling the FSE at a rate that exceeds twice the highest frequency of the passband signal \(y(t) \) prior to demodulation. (If intermediate frequency (IF) demodulation is used, then twice the highest frequency after the IF.) In this case the phase splitter (contains Hilbert transform in parallel with a unit gain) is also absorbed into the equalizer, and the same sampled sequence is applied independently to two equalizers, one of which estimates the real part, and one the imaginary part, of the analytic representation of the data sequence \(x_k e^{j \omega_c k T} \). The two filters can sometimes (depending on the sampling rate) be more cost effective to implement than the single complex filter, especially when one considers that the Hilbert transform is incorporated into the equalizer. This approach is often taken with adaptive implementations of the FSE, as the Hilbert transform is then implemented more exactly adaptively than is possible with fixed design.\(^{10}\) This is often called Nyquist Inband Equalization. A particularly common variant of this type of equalization is to sample at rate \(2/T \) both of the outputs of a continuous-time phase splitter, one stream of samples staggered by \(T/4 \) with respect to the other. The corresponding \(T/2 \) complex

\(^{10}\)However, this structure also slows convergence of many adaptive implementations.
equalizer can then be implemented adaptively with four independent adaptive equalizers (rather than the two filters, real and imaginary part, that nominally characterize complex convolution). The adaptive filters will then correct for any imperfections in the phase-splitting process, whereas the two filters with fixed conjugate symmetry could not.
3.6 Decision Feedback Equalization

Decision Feedback Equalization makes use of previous decisions in attempting to estimate the current symbol (with an SBS detector). Any “trailing” intersymbol interference caused by previous symbols is reconstructed and then subtracted. The DFE is inherently a nonlinear receiver. However, it can be analyzed using linear techniques, if one assumes all previous decisions are correct. There is both a MMSE and a zero-forcing version of decision feedback, and as was true with linear equalization in Sections 3.4 and 3.5, the zero-forcing solution will be a special case of the least-squares solution with the SNR → ∞. Thus, this section derives the MMSE solution, which subsumes the zero-forcing case when SNR → ∞.

The Decision Feedback Equalizer (DFE) is shown in Figure 3.37. The configuration contains a linear feedforward equalizer, $W(D)$, (the settings for this linear equalizer are not necessarily the same as those for the ZFE or MMSE-LE), augmented by a linear, causal, feedback filter, $1 - B(D)$, where $b_0 = 1$. The feedback filter accepts as input the decision from the previous symbol period; thus, the name “decision feedback.” The output of the feedforward filter is denoted $Z(D)$, and the input to the decision element $Z'(D)$. The feedback section will then subtract (without noise enhancement) any trailing ISI. The feedback section will then subtract (without noise enhancement) any trailing ISI. Any bias removal in Figure 3.37 is absorbed into the SBS.

This section assumes that previous decisions are correct. In practice, this may not be true, and can be a significant weakness of decision-feedback that cannot be overlooked. Nevertheless, the analysis becomes intractable if it includes errors in the decision feedback section. To date, the most efficient way to specify the effect of feedback errors has often been via measurement. Section 3.7 provides an exact error-propagation analysis for finite-length DFE’s that can (unfortunately) require enormous computation on a digital computer. Section 3.8.1 shows how to eliminate error propagation with precoders.

3.6.1 Minimum-Mean-Square-Error Decision Feedback Equalizer (MMSE-DFE)

The Minimum-Mean-Square Error Decision Feedback Equalizer (MMSE-DFE) jointly optimizes the settings of both the feedforward filter w_k and the feedback filter $\delta_k - b_k$ to minimize the MSE:

Definition 3.6.1 (Mean Square Error (for DFE)) The MMSE-DFE error signal is

$$e_k = x_k - z'_k$$ \hspace{1cm} (3.213)

The MMSE for the MMSE-DFE is

$$\sigma^2_{\text{MMSE-DFE}} \triangleq \min_{w_k, b_k} E \left[|x_k - z'_k|^2 \right]$$ \hspace{1cm} (3.214)

The error sequence can be written as

$$E(D) = X(D) - W(D) \cdot Y(D) - |1 - B(D)|X(D) = B(D) \cdot X(D) - W(D) \cdot Y(D)$$ \hspace{1cm} (3.215)
For any fixed $B(D)$, $E \{ E(D)Y^*(D^-) \} = 0$ to minimize MSE, which leads us to the relation

$$B(D) \cdot \tilde{R}_{xy}(D) - W(D) \cdot \tilde{R}_{yy}(D) = 0 \quad .$$

(3.216)

Thus,

$$W(D) = \frac{B(D)}{\|p\| \left(Q(D) + \frac{1}{\text{SNR}_{MFB}} \right)} = B(D) \cdot W_{\text{MMSE-LE}}(D) \quad ,$$

(3.217)

for any $B(D)$ with $b_0 = 1$. (Also, $W(D) = W_{\text{MMSE-LE}}(D) \cdot B(D)$, a consequence of the linearity of the MMSE estimate, so that $E(D) = B(D) \cdot E_{\text{MMSE-LE}}(D)$.)

The autocorrelation function for the error sequence with arbitrary monic $B(D)$ is

$$\tilde{R}_{ee}(D) = B(D) \tilde{E}_x B^*(D^-) - 2 \Re \left\{ B(D) \tilde{R}_{xy}(D) W^*(D^-) \right\} + W(D) \tilde{R}_{yy}(D) W^*(D^-) \quad (3.218)$$

$$= B(D) \tilde{E}_x B^*(D^-) - W(D) \tilde{R}_{yy}(D) W^*(D^-) \quad (3.219)$$

$$= B(D) \tilde{E}_x B^*(D^-) - B(D) \frac{\tilde{R}_{xy}(D)}{\|p\| \left(Q(D) + \frac{1}{\text{SNR}_{MFB}} \right)} B^*(D^-) \quad (3.220)$$

$$= B(D) R_{\text{MMSE-LE}}(D) B^*(D^-) \quad (3.221)$$

where $R_{\text{MMSE-LE}}(D) = \frac{\gamma_0}{\|p\|^2} (Q(D) + 1/\text{SNR}_{MFB})$ is the autocorrelation function for the error sequence of a MMSE linear equalizer. The solution for $B(D)$ is then the forward prediction filter associated with this error sequence as discussed in the Appendix. The linear prediction approach is developed more in what is called the “linear prediction DFE,” in an exercise where the MMSE-DFE is the concatenation of a MMSE-LE and a linear-predictor that whitens the error sequence.

In more detail on $B(D)$, the (scaled) inverse autocorrelation has spectral factorization:

$$Q(D) + \frac{1}{\text{SNR}_{MFB}} = \gamma_0 \cdot G(D) \cdot G^*(D^-) \quad ,$$

(3.222)

where γ_0 is a positive real number and $G(D)$ is a canonical filter response. A filter response $G(D)$ is called canonical if it is causal ($g_k = 0$ for $k < 0$), monic ($g_0 = 1$), and minimum-phase (all its poles are outside the unit circle, and all its zeroes are on or outside the unit circle). If $G(D)$ is canonical, then $G^*(D^-)$ is anti-canonical, i.e., anti-causal, monic, and “maximum-phase” (all poles inside the unit circle, and all zeros in or on the unit circle). Using this factorization,

$$\tilde{R}_{ee}(D) = B(D) B^*(D^-) \cdot \frac{\gamma_0^2}{\|p\|^2} \quad (3.223)$$

$$= B(D) B^*(D^-) \cdot \frac{\gamma_0^2}{G(D) \cdot G^*(D^-) \cdot \|p\|^2} \quad (3.224)$$

$$r_{ee,0} \geq \frac{\gamma_0^2}{\|p\|^2} \quad ,$$

(3.225)

with equality if and only if $B(D) = G(D)$. Thus, the MMSE will then be $\sigma_{\text{MMSE-DFE}}^2 = \frac{\gamma_0}{\|p\|^2}$. The feedforward filter then becomes

$$W(D) = \frac{G(D)}{\|p\| \cdot \gamma_0 \cdot G(D) \cdot G^*(D^-)} = \frac{1}{\|p\| \cdot \gamma_0 \cdot G^*(D^-)} \quad .$$

(3.226)

The last step in (3.225) follows from the observations that

$$r_{ee,0} = \frac{\gamma_0}{\|p\|^2} \cdot \frac{\gamma_0 \cdot G^*(D^-)}{\|p\|^2} \quad ,$$

(3.227)

the fractional polynomial inside the squared norm is necessary monic and causal, and therefore the squared norm has a minimum value of 1. $B(D)$ and $W(D)$ specify the MMSE-DFE:
Lemma 3.6.1 (MMSE-DFE) The MMSE-DFE has feedforward section

$$W(D) = \frac{1}{\|p\| \cdot \gamma_0 \cdot G(D^{-*})}$$ (3.228)

(realized with delay, as it is strictly noncausal) and feedback section

$$B(D) = G(D)$$ (3.229)

where $G(D)$ is the unique canonical factor of the following equation:

$$Q(D) + \frac{1}{\text{SNR}_{MFB}} = \gamma_0 \cdot G(D) \cdot G(D^{-*})$$ (3.230)

This text also calls the joint matched-filter/sampler/$W(D)$ combination in the forward path of the DFE the “Mean-Square Whitened Matched Filter (MS-WMF)”. These settings for the MMSE-DFE minimize the MSE as was shown above.

3.6.2 Performance Analysis of the MMSE-DFE

Again, the autocorrelation function for the error sequence is

$$\tilde{R}_{ee}(D) = \frac{N_0}{\|p\|^2}$$ (3.231)

This last result states that the error sequence for the MMSE-DFE is “white” when minimized (since $\tilde{R}_{ee}(D)$ is a constant) and has MMSE or average energy (per real dimension) $\frac{N_0}{\|p\|^2} \gamma_0^{-1}$. Also,

$$\frac{T}{2\pi} \int_{\frac{-\pi}{T}}^{\frac{\pi}{T}} \ln \left(Q(e^{-j\omega T}) + \frac{1}{\text{SNR}_{MFB}} \right) d\omega = \ln(\gamma_0) + \frac{T}{2\pi} \int_{\frac{-\pi}{T}}^{\frac{\pi}{T}} \ln \left(G(e^{-j\omega T}) G^*(e^{-j\omega T}) \right) d\omega$$ (3.232)

$$= \ln(\gamma_0)$$ (3.233)

(The last line follows from $\ln(G(e^{-j\omega T}))$ being a periodic function integrated over one period of its fundamental frequency, and similarly for $\ln(G^*(e^{-j\omega T}))$.) This last result leads to a famous expression for $\sigma^2_{\text{MMSE-DFE}}$, which was first derived by Salz in 1973,

$$\sigma^2_{\text{MMSE-DFE}} = \frac{N_0}{\|p\|^2} \cdot e^{-T \frac{\pi}{2\pi} \int_{\frac{-\pi}{T}}^{\frac{\pi}{T}} \ln \left(Q(e^{-j\omega T}) + \frac{1}{\text{SNR}_{MFB}} \right) d\omega}$$ (3.234)

The SNR for the MMSE-DFE can now be easily computed as

$$\text{SNR}_{\text{MMSE-DFE}} = \frac{\tilde{\xi}_x}{\sigma^2_{\text{MMSE-DFE}}} = \gamma_0 \cdot \text{SNR}_{MFB}$$ (3.35)

$$= \text{SNR}_{MFB} e^{T \frac{\pi}{2\pi} \int_{\frac{-\pi}{T}}^{\frac{\pi}{T}} \ln \left(Q(e^{-j\omega T}) + \frac{1}{\text{SNR}_{MFB}} \right) d\omega}$$ (3.36)

From the $k = 0$ term in the defining spectral factorization, γ_0 can also be written

$$\gamma_0 = \frac{1 + 1/\text{SNR}_{MFB}}{\|g\|^2} = \frac{1 + 1/\text{SNR}_{MFB}}{1 + \sum_{i=1}^{\infty} |g_i|^2}$$ (3.237)

From this expression, if $G(D) = 1$ (no ISI), then $\text{SNR}_{\text{MMSE-DFE}} = \text{SNR}_{MFB} + 1$, so that the SNR would be higher than the matched filter bound. The reason for this apparent anomaly is the artificial
signal power introduced by biased decision regions. This bias is noted by writing
\[
Z'(D) = X(D) - E(D) = X(D) - G(D) \cdot X(D) + \frac{1}{\|p\| \cdot \gamma_0 \cdot G^*(D^{-*})} Y(D) \tag{3.238}
\]
\[
= X(D) - G(D) \cdot X(D) + \frac{1}{\gamma_0 G^*(D^{-*})} X(D) + N(D) \frac{1}{\|p\| \cdot \gamma_0 G^*(D^{-*})} \tag{3.239}
\]
\[
= X(D) - \frac{1}{\text{SNR}_{\text{DFE}}} \frac{1}{\gamma_0 G^*(D^{-*})} X(D) + N(D) \frac{1}{\|p\| \cdot \gamma_0 G^*(D^{-*})} \tag{3.240}
\]
The current sample, \(x_k\), corresponds to the time zero sample of \(1 - \frac{1}{\text{SNR}_{\text{DFE}}} x_k\). Thus \(z'_k\) contains a signal component of \(x_k\) that is reduced in magnitude. Thus, again using the result from Section 3.2.1, the SNR corresponding to the lowest probability of error corresponds to the same MMSE-DFE receiver with output scaled to remove the bias. This leads to the more informative SNR
\[
\text{SNR}_{\text{MMSE-DFE, U}} = \text{SNR}_{\text{MMSE-DFE}} - 1 = \gamma_0 \cdot \text{SNR}_{\text{DFE}} - 1 \tag{3.242}
\]
If \(G(D) = 1\), then \(\text{SNR}_{\text{MMSE-DFE, U}} = \text{SNR}_{\text{DFE}}\). Also,
\[
\gamma_{\text{MMSE-DFE}} = \frac{\text{SNR}_{\text{DFE}}}{\text{SNR}_{\text{MMSE-DFE, U}}} = \frac{\text{SNR}_{\text{DFE}}}{\gamma_0 \cdot \text{SNR}_{\text{DFE}} - 1} = \frac{1}{\gamma_0 - 1/\text{SNR}_{\text{DFE}}} \tag{3.243}
\]
Rather than scale the decision input, the receiver can scale (up) the feedforward output by \(1/\text{SNR}_{\text{MMSE-DFE}}\).

This will remove the bias, but also increase MSE by the square of the same factor. The SNR will then be \(\text{SNR}_{\text{MMSE-DFE, U}}\). This result is verified by writing the MS-WMF output
\[
Z(D) = [X(D) \cdot \|p\| \cdot Q(D) + N(D)] \frac{1}{\|p\| \cdot \gamma_0 \cdot G^*(D^{-*})} \tag{3.244}
\]
where \(N(D)\), again, has autocorrelation \(\tilde{R}_{\text{nn}}(D) = \frac{\tilde{N}_\text{e}}{2} Q(D)\). Z(D) expands to
\[
Z(D) = [X(D) \cdot \|p\| \cdot Q(D) + N(D)] \frac{1}{\|p\| \cdot \gamma_0 \cdot G^*(D^{-*})} \tag{3.245}
\]
\[
= X(D) \frac{\gamma_0 \cdot G(D) \cdot G^*(D^{-*}) - 1/\text{SNR}_{\text{DFE}}}{\gamma_0 \cdot G^*(D^{-*})} + N(D) \frac{1}{\|p\| \cdot \gamma_0 \cdot G^*(D^{-*})} \tag{3.246}
\]
\[
= X(D) \cdot G(D) - X(D) \frac{1}{\text{SNR}_{\text{DFE}}} \cdot \gamma_0 \cdot G^*(D^{-*}) + N'(D) \tag{3.247}
\]
\[
= X(D) \left[G(D) - \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} \right] + \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} \left[1 - \frac{1}{G^*(D^{-*})} \right] X(D) + N'(D) \tag{3.248}
\]
where \(N'(D)\) is the filtered noise at the MS-WMF output, and has autocorrelation function
\[
\tilde{R}_{\text{nn'}}(D) = \frac{\tilde{N}_\text{e}}{2} Q(D) = \frac{\tilde{\varepsilon}_x}{\text{SNR}_{\text{MMSE-DFE}}} \left[1 - \frac{1}{\text{SNR}_{\text{DFE}}} \right] Q(D) + \frac{1}{\text{SNR}_{\text{DFE}}} \tag{3.249}
\]
and
\[
\varepsilon'_k = -\varepsilon_k + \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} x_k \tag{3.250}
\]
The error \(\varepsilon'_k\) is not a white sequence in general. Since \(x_k\) and \(\varepsilon'_k\) are uncorrelated, \(\sigma^2_e = \sigma^2_{\text{MMSE-DFE}} = \sigma^2_e + \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} \tag{3.251}
\]
and
\[
G_U(D) = \frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE, U}}} \left[G(D) - \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} \right] \tag{3.252}
\]
then the MMSE-DFE output is

$$Z(D) = \frac{\text{SNR}_{\text{MMSE-DFE},U}}{\text{SNR}_{\text{MMSE-DFE}}} X(D) G_U(D) + E'(D) \quad .$$

(3.253)

$Z_U(D)$ removes the scaling

$$Z_U(D) = Z(D) \frac{\text{SNR}_{\text{MMSE-DFE},U}}{\text{SNR}_{\text{MMSE-DFE}}} = X(D) G_U(D) + E_U(D) \quad ,$$

(3.254)

where $E_U(D) = \frac{\text{SNR}_{\text{MMSE-DFE},U}}{\text{SNR}_{\text{MMSE-DFE}}} E'(D)$ and has power

$$\sigma_{x,U}^2 = \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE},U}} \right)^2 \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE},U}} \right)^2 \quad .$$

(3.255)

$$\sigma_{x,U}^2 = \frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE},U}} \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE},U}} \right)^2 \quad .$$

(3.256)

$$\sigma_{x,U}^2 = \frac{\bar{\xi}_x \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\bar{\xi}_x} \right) \text{SNR}_{\text{MMSE-DFE},U}^2}{\text{SNR}_{\text{MMSE-DFE}}^2} \quad .$$

(3.257)

$$\sigma_{x,U}^2 = \frac{\bar{\xi}_x \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\bar{\xi}_x} \right) \text{SNR}_{\text{MMSE-DFE},U}^2}{\text{SNR}_{\text{MMSE-DFE}}^2} \quad .$$

(3.258)

$$\sigma_{x,U}^2 = \frac{\bar{\xi}_x \left(\frac{\text{SNR}_{\text{MMSE-DFE}}}{\bar{\xi}_x} \right) \text{SNR}_{\text{MMSE-DFE},U}^2}{\text{SNR}_{\text{MMSE-DFE}}^2} \quad .$$

(3.259)

SNR for this scaled and unbiased MMSE-DFE is thus verified to be

$$\frac{\bar{\xi}_x}{\text{SNR}_{\text{MMSE-DFE},U}} = \text{SNR}_{\text{MMSE-DFE},U} \quad .$$

The feedback section of this new unbiased MMSE-DFE becomes the polynomial $1 - G_U(D)$, if the scaling is performed before the summing junction, but is $1 - G(D)$ if scaling is performed after the summing junction. The alternative unbiased MMSE-DFE is shown in Figure 3.38.

All the results on fractional spacing for the LE still apply to the feedforward section of the DFE – thus this text does not reconsider them for the DFE, other than to state that the characteristic of the feedforward section is different than the LE characteristic in all but trivial channels. Again, the realization of any characteristic can be done with a matched filter and symbol-spaced sampling or with an anti-alias filter and fractionally spaced sampling, as in Section 3.5.4.

3.6.3 Zero-Forcing DFE

The ZF-DFE feedforward and feedback filters are found by setting $\text{SNR}_{MFB} \to \infty$ in the expressions for the MMSE-DFE. The spectral factorization (assuming $\ln(Q(e^{j\omega T}))$ is integrable over $(-\frac{\pi}{T}, \frac{\pi}{T})$, see Appendix A)

$$Q(D) = \eta_0 \cdot P_c(D) \cdot P_c'(D^{-*}) \quad .$$

(3.260)
then determines the ZF-DFE filters as

\[B(D) = P_c(D) \quad , \quad W(D) = \frac{1}{\eta_0 \cdot \|p\| \cdot P_c^*(D^{-1})} \cdot , \quad (3.261) \]

\[P_c \text{ is sometimes called a canonical pulse response for the channel. Since } q_0 = 1 = \eta_0 \cdot \|P_c\|^2, \text{ then} \]

\[\eta_0 = \frac{1}{1 + \sum_{i=1}^{\infty} |p_{c,i}|^2} \cdot . \quad (3.263) \]

Equation (3.263) shows that there is a signal power loss of the ratio of the squared first tap magnitude in the canonical pulse response to the squared norm of all the taps. This loss ratio is minimized for a minimum phase polynomial, and \(P_c(D) \) is the minimum-phase equivalent of the channel pulse response.

The noise at the output of the feedforward filter has (white) autocorrelation function \(N_0^2 / (\|p\|^2 \cdot \eta_0) \), so that

\[\sigma_{ZFDFE}^2 = \frac{1}{\frac{N_0}{\|p\|} \cdot \eta_0} = \frac{1}{\frac{N_0}{\|p\|^2} \cdot \eta_0} = \frac{1}{1 + \sum_{i=1}^{\infty} |p_{c,i}|^2} \cdot \frac{\eta_0}{\|p\|^2} \cdot \text{SNR}_{MFB} \cdot . \quad (3.265) \]

3.6.4 Examples Revisited

EXAMPLE 3.6.1 (PAM - DFE) The pulse response of a channel used with binary PAM is again given by

\[P(\omega) = \begin{cases} \sqrt{T} \left(1 + .9e^{j\omega T} \right) & |\omega| \leq \frac{T}{T} \\ 0 & |\omega| > \frac{T}{T} \end{cases} \quad . \quad (3.266) \]

Again, the SNR \(\text{SNR}_{MFB} \) is 10dB and \(\varepsilon_X = 1 \).

Then \(\tilde{Q}(D) \triangleq Q(D) + 1/\text{SNR}_{MFB} \) is computed as

\[\tilde{Q}(e^{-j\omega T}) = \frac{1.81 + 1.8 \cos(\omega T) + 1.81/10}{1.81} \quad . \quad (3.267) \]

\[\tilde{Q}(D) = \frac{1}{1.81} \left(1 + .9D \right) \left(1 + .9D^{-1} \right) + .1 \quad . \quad (3.268) \]

\[= \frac{1}{1.81} \left(.9D + 1.991 + .9D^{-1} \right) \quad . \quad (3.269) \]

The roots of \(\tilde{Q}(D) \) are \(-.633\) and \(-1.58\). The function \(\tilde{Q}(D) \) has canonical factorization

\[\tilde{Q}(D) = .785(1 + .633D)(1 + .633D^{-1}) \quad . \quad (3.270) \]

Then, \(\gamma_0 = .785 \). The feedforward section is

\[W(D) = \frac{1}{\sqrt{1.81}(.785)(1 + .633D^{-1})} = \frac{.9469}{1 + .633D^{-1}} \quad . \quad (3.271) \]

and the feedforward filter transfer function appears in Figure 3.39. The feedback section is

\[B(D) = G(D) = 1 + .633D \quad , \quad (3.272) \]

with magnitude in Figure 3.40. The MS-WMF filter transfer function appears in Figure 3.41, illustrating the near all-pass character of this filter.
Figure 3.39: Feedforward filter transfer function for real-channel example.
Figure 3.40: Feedback filter transfer function for real-channel example.
Figure 3.41: MS-WMF transfer function for real-channel example.
The MMSE is
\[\sigma^2_{\text{MMSE-DFE}} = \frac{1}{2} \left\| p \right\|^2 \gamma_0 = \frac{.181}{.81 \cdot .785} = .1274 \] (3.273)
and
\[\text{SNR}_{\text{MMSE-DFE},U} = \frac{1 - .1274}{.1274} = 6.85 \text{ (8.4dB)} . \] (3.274)
Thus, the MMSE-DFE is only 1.6dB below the MFB on this channel. However, the ZF-DFE for this same channel would produce \(\eta_0 = 1/\left\| p_c \right\|^2 = .5525 \). In this case \(\sigma^2_{\text{ZFDFE}} = .181/(.5525)1.81 = .181 \) and the loss with respect to the MFB would be \(\eta_0 = 2.6 \text{ dB}, 1 \text{ dB lower than the MMSE-DFE for this channel.} \)

It will in fact be possible to do yet better on this channel, using sequence detection, as discussed in Chapter 9, and/or by codes (Chapters 10 and 11). However, what originally appeared as a a stunning loss of 9.8 dB with the ZFE has now been reduced to a much smaller 1.6 dB.

The QAM example is also revisited here:

EXAMPLE 3.6.2 (QAM - DFE) Recall that the equivalent baseband pulse response samples were given by
\[p_k = \frac{1}{\sqrt{T}} \left[-\frac{1}{2} \left(1 + \frac{j}{4} \right) - \frac{j}{2} \right] . \] (3.275)
The SNR_{MFB} is again 10 dB. Then,
\[\hat{Q} = -\frac{.25 j D^{-2} + .625(-1 + j)D^{-1} + 1.5625(1 + .1) - .625(1 + j)D + .25 j D^2}{1.5625} . \] (3.276)
or
\[\hat{Q} = \left(1 - .451 \zeta^{-1.632} D \right) \left(1 - .451 \zeta^{-0.0612} D \right) \left(1 - .451 \zeta^{-1.632} D^{-1} \right) \left(1 - .451 \zeta^{-0.0612} D^{-1} \right) \cdot \frac{1.5625 \cdot 4 \cdot (.451 \zeta^{-1.632}) (.451 \zeta^{0.0612})}{1.5625} . \] (3.277)
from which one extracts \(\gamma_0 = .7866 \) and \(G(D) = 1 - .4226(1 + j)D + .2034 j D^2 \). The feedforward and feedback sections can be computed in a straightforward manner, as
\[B(D) = G(D) = 1 - .4226(1 + j)D + .2034 j D^2 \] (3.278)
and
\[W(D) = \frac{1.017}{1 - .4226(1 - j)D^{-1} - .2034 j D^{-2}} . \] (3.279)
The MSE is
\[\sigma^2_{\text{MMSE-DFE}} = (.15625) \frac{1}{.7866 (1.5625)} = .1271 . \] (3.280)
and the corresponding SNR is
\[\text{SNR}_{\text{MMSE-DFE},U} = \frac{1}{.1271} - 1 = 8.4 \text{dB} . \] (3.281)
The loss is (also coincidentally) 1.6 dB with respect to the MFB and is 1.7 dB better than the MMSE-LE on this channel.

For the ZF-DFE,
\[Q(D) = \left(1 - .5 \zeta^{-\pi/2} D \right) \left(1 - .5 D \right) \left(1 - .5 \zeta^{-\pi/2} D^{-1} \right) \left(1 - .5 D^{-1} \right) \cdot \frac{1.5625 \cdot 4 \cdot (.5 \zeta^{-\pi/2}) (.5)}{1.5625} . \] (3.282)
and thus $\eta_0 = .6400$ and $P_c(D) = 1 - .5(1 + j)D + .25jD^2$. The feedforward and feedback sections can be computed in a straightforward manner, as

$$B(D) = P_c(D) = 1 - .5(1 + j)D + .25jD^2$$

(3.284)

and

$$W(D) = \frac{.125}{1 - .5(1 - j)D^{-1} - .25jD^{-2}} .$$

(3.285)

The output noise variance is

$$\sigma^2_{ZFDFE} = (.15625) \frac{1}{.6400(1.5625)} = .1563 .$$

(3.286)

and the corresponding SNR is

$$\text{SNR}_{ZFDFE} = \frac{1}{.1563} = 6.4 = 8.0\text{dB} .$$

(3.287)

The loss is 2.0 dB with respect to the MFB and is .4 dB worse than the MMSE-DFE.
3.7 Finite Length Equalizers

The previous developments of discrete-time equalization structures presumed that the equalizer could exist over an infinite interval in time. Equalization filters, w_k, are almost exclusively realized as finite-impulse-response (FIR) filters in practice. Usually these structures have better numerical properties than IIR structures. Even more importantly, adaptive equalizers (see Section 3.8 and Chapter 13) are often implemented with FIR structures for w_k (and also for b_k, in the case of the adaptive DFE). This section studies the design of and the performance analysis of FIR equalizers.

Both the LE and the DFE cases are examined for both zero-forcing and least-squares criteria. This section describes design for the MMSE situation and then lets $\text{SNR} \rightarrow \infty$ to get the zero-forcing special case. Because of the finite length, the FIR zero-forcing equalizer cannot completely eliminate ISI in general.

3.7.1 FIR MMSE-LE

Returning to the FSE in Figure 3.35, the matched filtering operation will be performed digitally (at sampling rate l/T) and the FIR MMSE-LE will then incorporate both matched filtering and equalization. Perfect anti-alias filtering with gain \sqrt{T} precedes the sampler and the combined pulse-response/anti-alias filter is $\hat{p}(t)$. The assumption that l is an integer simplifies the specification of matrices.

One way to view the oversampled channel output is as a set of l parallel T-spaced subchannels whose pulse responses are offset by T/l from each other as in Figure 3.42.

![Figure 3.42: Polyphase subchannel representation of the channel pulse response.](image)

Each subchannel produces one of the l phases per symbol period of the output set of samples at sampling rate l/T. Mathematically, it is convenient to represent such a system with vectors as shown below.

The channel output $y(t)$ is

$$y(t) = \sum_m x_m \cdot \hat{p}(t - mT) + n(t),$$ \hspace{1cm} (3.288)

which, if sampled at time instants $t = kT - \frac{iT}{l}$, $i = 0, ..., l - 1$, becomes

$$y(kT - \frac{iT}{l}) = \sum_{m=\infty}^{\infty} x_m \cdot \hat{p}(kT - \frac{it}{l} - mT) + n(kT - \frac{iT}{l}).$$ \hspace{1cm} (3.289)

The (per-dimensional) variance of the noise samples is $\frac{\sigma^2}{l}$ because the gain of the anti-alias filter, \sqrt{T},
is absorbed into \(p(t) \). The \(t \) phases per symbol period of the oversampled \(y(t) \) are contained in

\[
y_k = \begin{bmatrix} y(kT) \\ y(kT - \frac{T}{T}) \\ \vdots \\ y(kT - \frac{N_f - 1}{T}) \end{bmatrix}.
\]

(3.290)

The vector \(y_k \) can be written as

\[
y_k = \sum_{m=-\infty}^{\infty} x_m \cdot p_{k-m} + n_k = \sum_{m=-\infty}^{\infty} x_{k-m} \cdot p_m + n_k,
\]

(3.291)

where

\[
p_k = \begin{bmatrix} \hat{p}(kT) \\ \hat{p}(kT - \frac{T}{T}) \\ \vdots \\ \hat{p}(kT - \frac{N_f - 1}{T}) \end{bmatrix} \quad \text{and} \quad n_k = \begin{bmatrix} n(kT) \\ n(kT - \frac{T}{T}) \\ \vdots \\ n(kT - \frac{N_f - 1}{T}) \end{bmatrix}.
\]

(3.292)

The response \(\hat{p}(t) \) is assumed to extend only over a finite time interval. In practice, this assumption requires any nonzero component of \(p(t) \) outside of this time interval to be negligible. This time interval is \(0 \leq t \leq \nu T \). Thus, \(p_k = 0 \) for \(k < 0 \), and for \(k > \nu \). The sum in (3.289) becomes

\[
y_k = \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu \\ 0 & p_0 & p_1 & \cdots & p_\nu & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & p_0 & p_1 & \cdots & p_\nu \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-N_f+\nu+1} \end{bmatrix} + n_k.
\]

(3.293)

Each row in (3.293) corresponds to a sample at the output of one of the filters in Figure 3.42. More generally, for \(N_f \) successive \(t \)-tuples of samples of \(y(t) \),

\[
Y_k \triangleq \begin{bmatrix} y_k \\ y_{k-1} \\ \vdots \\ y_{k-N_f+1} \end{bmatrix} \quad \text{and} \quad X_k = \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-N_f-\nu+1} \end{bmatrix}
\]

(3.294)

\[
= \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\ 0 & p_0 & p_1 & \cdots & p_\nu & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & p_0 & p_1 & \cdots & p_\nu \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-N_f-\nu+1} \end{bmatrix} + \begin{bmatrix} n_k \\ n_{k-1} \\ \vdots \\ n_{k-N_f-\nu+1} \end{bmatrix}.
\]

(3.295)

This text uses \(P \) to denote the large \((N_f \cdot l) \times (N_f + \nu) \) matrix in (3.295), while \(X_k \) denotes the data vector, and \(N \) denotes the noise vector. Then, the oversampled vector representation of the channel is

\[
Y_k = PX_k + N_k.
\]

(3.296)
When \(l = n/m \) (a rational fraction), then (3.296) still holds with \(P \) an \([N_f \cdot \frac{n}{m}] \times (N_f + \nu)\) matrix that does not follow the form in (3.295), with each row possibly having a set of coefficients unrelated to the other rows.\(^{11}\)

An equalizer is applied to the sampled channel output vector \(Y_k \) by taking the inner product of an \(N_f \cdot l \)-dimensional row vector of equalizer coefficients, \(w \), and \(Y_k \), so \(Z(D) = W(D)Y(D) \) can be written

\[
z_k = wY_k \quad .
\]

(3.297)

For causality, the designer picks a channel-equalizer system delay \(\Delta \cdot T \) symbol periods,

\[
\Delta \approx \frac{\nu + N_f}{2} \quad ,
\]

(3.298)

with the exact value being of little consequence unless the equalizer length \(N_f \) is very short. The delay is important in finite-length design because a non-causal filter cannot be implemented, and the delay allows time for the transmit data symbol to reach the receiver. With infinite-length filters, the need for such a delay does not enter the mathematics because the infinite-length filters are not realizable in any case, so that infinite-length analysis simply provides best bounds on performance. \(\Delta \) is approximately the sum of the channel and equalizer delays in symbol periods. The equalizer output error is then

\[
e_k = x_{k-\Delta} - z_k \quad ,
\]

(3.299)

and the corresponding MSE is

\[
\sigma^2_{\text{MMSE-LE}} = E \{ |e_k|^2 \} = E \{ e_k e_k^* \} = E \{ (x_{k-\Delta} - z_k) (x_{k-\Delta} - z_k)^* \} \quad .
\]

(3.300)

Using the Orthogonality Principle of Appendix A, the MSE in (3.300) is minimized when

\[
E \{ e_k Y_k^* \} = 0 \quad .
\]

(3.301)

In other words, the equalizer error signal will be minimized (in the mean square sense) when this error is uncorrelated with any channel output sample in the delay line of the FIR MMSE-LE. Thus

\[
E \{ x_{k-\Delta} Y_k^* \} - w E \{ Y_k Y_k^* \} = 0 \quad .
\]

(3.302)

The two statistical correlation quantities in (3.302) have a very special significance (both \(y(t) \) and \(x_k \) are stationary):

Definition 3.7.1 (Autocorrelation and Cross-Correlation Matrices) The FIR MMSE autocorrelation matrix is defined as

\[
R_{YY}^\Delta \triangleq E \{ Y_k Y_k^* \} / N \quad ,
\]

(3.303)

while the FIR MMSE-LE cross-correlation vector is defined by

\[
R_{Y_x}^\Delta \triangleq E \{ Y_k x_k^* \} / N \quad ,
\]

(3.304)

where \(N = 1 \) for real and \(N = 2 \) for complex. Note \(R_{xY}^\Delta = R_{Y_x}^\Delta \), and \(R_{YY} \) is not a function of \(\Delta \).

With the above definitions in (3.302), the designer obtains the MMSE-LE:

Definition 3.7.2 (FIR MMSE-LE) The FIR MMSE-LE for sampling rate \(l/T \), delay \(\Delta \), and of length \(N_f \) symbol periods has coefficients

\[
w = R_{Y_x}^\Delta R_{YY}^{-1} = R_{XY} R_{Y_x Y}^{-1} \quad ,
\]

(3.305)

or equivalently,

\[
w^* = R_{YY}^{-1} R_{Y_x} \quad .
\]

(3.306)

\(^{11}\)In this case, (3.288) is used to compute each row at the appropriate sampling instants. \(N_f \cdot \frac{n}{m} \) should also be an integer so that \(P \) is constant. Otherwise, \(P \) becomes a “time-varying” matrix \(P_k \).
In general, it may be of interest to derive more specific expressions for R_{YY} and $R_{X,Y}$.

$$R_{X,Y} = E\{x_k - \Delta x_k^*\} = E\{x_k - \Delta X_k^*\}P^* + E\{x_k - \Delta N_k\}$$ (3.307)

$$= \begin{bmatrix} 0 & \ldots & 0 & \Delta x \end{bmatrix} P^* + 0$$ (3.308)

$$= \begin{bmatrix} \Delta x \end{bmatrix} P^* + \Delta x$$ (3.309)

$$R_{YY} = E\{Y_k Y_k^*\} = PE\{X_k X_k^*\}P^* + E\{N_k N_k^*\}$$ (3.310)

$$= \begin{bmatrix} 0 & \ldots & 0 & \Delta x \end{bmatrix} P^* + 0$$ (3.308)

$$= \begin{bmatrix} \Delta x \end{bmatrix} P^* + \Delta x$$ (3.309)

where the $\left(\Delta \cdot \frac{N_0}{2}\right)$-normalized noise autocorrelation matrix R_{nn} is equal to I when the noise is white.

A convenient expression is

$$\begin{bmatrix} 0 & \ldots & 0 & \Delta x \end{bmatrix} P^* + \Delta x = \begin{bmatrix} \Delta x \end{bmatrix} P^* + \Delta x$$ (3.312)

so that 1_{Δ} is an $N_f + \nu$-vector of 0’s and a 1 in the $(\Delta + 1)^{th}$ position. Then the FIR MMSE-LE becomes (in terms of P, SNR and Δ)

$$w = 1_{\Delta}^* P^* \left[PP^* + \frac{1}{\text{SNR}} R_{nn} \right]^{-1} = 1_{\Delta}^* \left[P^* R_{nn}^{-1} P + \frac{1}{\text{SNR}} R_{nn}^{-1} \right]^{-1} \frac{1}{\text{SNR}} R_{nn}^{-1}$$ (3.313)

The matrix inversion lemma of Appendix B is used in deriving the above equation.

The position of the nonzero elements in (3.309) depend on the choice of Δ. A convenient expression is

$$\begin{bmatrix} 0 & \ldots & 0 & \Delta x \end{bmatrix} P^* + \Delta x = \begin{bmatrix} \Delta x \end{bmatrix} P^* + \Delta x$$ (3.312)

so that 1_{Δ} is an $N_f + \nu$-vector of 0’s and a 1 in the $(\Delta + 1)^{th}$ position. Then the FIR MMSE-LE becomes (in terms of P, SNR and Δ)

$$w = 1_{\Delta}^* P^* \left[PP^* + \frac{1}{\text{SNR}} R_{nn} \right]^{-1} = 1_{\Delta}^* \left[P^* R_{nn}^{-1} P + \frac{1}{\text{SNR}} R_{nn}^{-1} \right]^{-1} \frac{1}{\text{SNR}} R_{nn}^{-1}$$ (3.313)

The matrix inversion lemma of Appendix B is used in deriving the above equation.

The position of the nonzero elements in (3.309) depend on the choice of Δ. The MMSE, $\sigma_{\text{MMSE-LE}}^2$, can be found by evaluating (3.300) with (3.305):

$$\sigma_{\text{MMSE-LE}}^2 = E\left\{ x_k - \Delta x_k^* - x_k - \Delta Y_k w^* - w Y_k x_k^* + w Y_k Y_k^* w^* \right\}$$ (3.314)

$$= \hat{\epsilon}_x - R_{x,Y} w^* - w R_{Y,Y} w^*$$ (3.315)

$$= \hat{\epsilon}_x - w R_{Y,Y} w^*$$ (3.316)

$$= \hat{\epsilon}_x - R_{x,Y} R_{Y,Y}^{-1} R_{Y,Y}$$ (3.317)

$$= \hat{\epsilon}_x - w R_{Y,Y}$$ (3.318)

With algebra, (3.318) is the same as

$$\sigma_{\text{MMSE-LE}}^2 = \frac{l \cdot \frac{N_0}{2}}{\|p\|^2} \frac{1_{\Delta}^* \left(PP^* + \frac{l}{\text{SNR}_{MFB}} P^{-1} \right)^{-1}}{1_{\Delta}^* \left(PP^* + \frac{l}{\text{SNR}_{MFB}} P^{-1} \right)^{-1}}$$ (3.319)

so that the best value of Δ (the position of the 1 in the vectors above) corresponds to the smallest diagonal element of the inverted (“Q-tilde”) matrix in (3.319) – this means that only one matrix need be inverted to obtain the correct Δ value as well as compute the equalizer settings. A homework problem develops some interesting relationships for w in terms of P and SNR. Thus, the SNR for the FIR MMSE-LE is

$$\text{SNR}_{\text{MMSE-LE}} = \frac{\hat{\epsilon}_x}{\sigma_{\text{MMSE-LE}}^2}$$ (3.320)

and the corresponding unbiased SNR is

$$\text{SNR}_{\text{MMSE-LE},U} = \text{SNR}_{\text{MMSE-LE}} - 1$$ (3.321)

The loss with respect to the MFB is, again,

$$\gamma_{\text{MMSE-LE}} = \frac{\text{SNR}_{MFB}}{\text{SNR}_{\text{MMSE-LE},U}}$$ (3.322)
3.7.2 FIR ZFE

One obtains the FIR ZFE by letting the SNR → ∞ in the FIR MMSE, which alters R_{YY} to

$$R_{YY} = PP^*\hat{\xi}_x$$

and then w remains as

$$w = R_xYR^{-1}_{YY}.$$ (3.323)

Because the FIR equalizer may not be sufficiently long to cancel all ISI, the FIR ZFE may still have nonzero residual ISI. This ISI power is given by

$$\sigma_{MMSE-ZFE}^2 = \bar{E}x - wRY_x.$$ (3.324)

However, (3.325) still ignores the enhanced noise at the FIR ZFE output. The power of this noise is easily found to be

$$\text{FIR ZFE noise power} = \frac{N_0}{2} \cdot l \cdot \|w\|^2_{Rnn},$$ (3.325)

making the SNR at the ZFE output

$$\text{SNR}_{ZFE} = \frac{\bar{E}x - wRY_x + \frac{N_0}{2}l\|w\|^2_{Rnn}}{\bar{E}x - wRY_x}.$$ (3.326)

The ZFE is still unbiased in the finite-length case: \[E[|wY_k/x_{k-\Delta}|] = R_xYR^{-1}_{YY} \{PE[X_k/x_{k-\Delta}] + E[N_k]\} = [0 0 ... 1 0]P^*(PP^*)^{-1}PX_k/x_{k-\Delta}\]

$$= x_{k-\Delta}.$$ (3.331)

Equation (3.331) is true if Δ is a practical value and the finite-length ZFE has enough taps. The loss is the ratio of the SNR to SNR_{ZFE},

$$\gamma_{ZFE} = \frac{\text{SNR}_{MFB}}{\text{SNR}_{ZFE}}.$$ (3.332)

3.7.3 example

For the earlier PAM example, one notes that sampling with $l = 1$ is sufficient to represent all signals. First, choose $N_f = 3$ and note that $\nu=1$. Then

$$P = \begin{bmatrix} .9 & 1 & 0 & 0 \\ 0 & .9 & 1 & 0 \\ 0 & 0 & .9 & 1 \end{bmatrix}.$$ (3.333)

With a choice of $\Delta = 2$, then

$$R_{Yx} = \hat{\xi}_x P = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$ (3.334)

$$= \begin{bmatrix} 0 \\ 1 \\ .9 \end{bmatrix},$$ (3.335)

\[12\text{The notation } \|w\|^2_{Rnn} \text{ means } wR_{nn}w^*.\]

\[13\text{The matrix } P^*(PP^*)^{-1}P \text{ is a “projection matrix” and } PP^* \text{ is full rank; therefore the entry of } x_{k-\Delta} \text{ passes directly (or is zeroed, in which case } \Delta \text{ needs to be changed).}\]
and

\[R_{YY} = \tilde{\xi}_x \left(PP^* + \frac{I}{\text{SNR}} \right) \]

\[= \begin{bmatrix} 1.991 & .9 & 0 \\ .9 & 1.991 & .9 \\ 0 & .9 & 1.991 \end{bmatrix}, \quad (3.336) \]

The FIR MMSE is

\[w^* = R_{Y\hat{y}}^{-1} R_{Yx} = \begin{bmatrix} .676 & - .384 & .174 \\ - .384 & .849 & - .384 \\ .174 & - .384 & .676 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ .9 \end{bmatrix} = \begin{bmatrix} - .23 \\ .51 \\ .22 \end{bmatrix}, \quad (3.338) \]

Then

\[\sigma_{\text{MMSE-LE}}^2 = \left(1 - \begin{bmatrix} - .23 & .51 & .22 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ .9 \end{bmatrix} \right) = .294 \]

The SNR is computed to be

\[\text{SNR}_{\text{MMSE-LE,U}} = \frac{1}{.294} - 1 = 2.4 \text{ (3.8 dB)} \]

which is 6.2 dB below MFB performance and 1.9 dB worse than the infinite length MMSE-LE for this channel.

With sufficiently large number of taps for this channel, the infinite length performance level can be attained. This performance is plotted as versus the number of equalizer taps in Figure 233.
Figure 3.43: FIR equalizer performance for $1 + .9D^{-1}$ versus number of equalizer taps.

3.43. Clearly, 15 taps are sufficient for infinite-length performance.

EXAMPLE 3.7.1 For the earlier complex QAM example, sampling with $l = 1$ is sufficient to represent all signals. First, choose $N_f = 4$ and note that $\nu = 2$. Then

$$P = \begin{bmatrix} -0.5 & 1 + j/4 & -j/2 & 0 & 0 & 0 \\ 0 & -0.5 & 1 + j/4 & -j/2 & 0 & 0 \\ 0 & 0 & -0.5 & 1 + j/4 & -j/2 & 0 \\ 0 & 0 & 0 & -0.5 & 1 + j/4 & -j/2 \end{bmatrix}.$$

(3.341)

The matrix $(P^* P + 0.15625 \cdot J)^{-1}$ has the same smallest element 1.3578 for both $\Delta = 2, 3$, so choosing $\Delta = 2$ will not unnecessarily increase system delay. With a choice of $\Delta = 2$, then

$$RY_x = \hat{E}_x P \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

(3.342)

$$= \begin{bmatrix} -0.5j \\ 1 + j/4 \\ -0.5 \\ 0 \end{bmatrix}.$$

(3.343)
\[
R_{YY} = \xi_x \left(PP^* + \frac{1}{\text{SNR}} I \right) \tag{3.344}
\]

\[
= \begin{bmatrix}
1.7188 & -0.6250 - 0.6250j & \frac{j}{4} & 0 \\
-0.6250 + 0.6250j & 1.7188 & -0.6250 - 0.6250j & \frac{j}{4} \\
-\frac{j}{4} & -0.6250 + 0.6250j & 1.7188 & -0.6250 - 0.6250j \\
0 & -\frac{j}{4} & -0.6250 + 0.6250j & 1.7188
\end{bmatrix}.
\]

The FIR MMSE is

\[
w^* = R_{YY}^{-1} R_{Yx} = \begin{bmatrix}
0.2570 - 0.0422j \\
0.7313 - 0.0948j \\
-0.1182 - 0.2982j \\
-0.1376 + 0.0409j
\end{bmatrix} \tag{3.345}
\]

Then

\[
\sigma^2_{\text{MMSE-LE}} = (1 - wR_{Yx}) \tag{3.346}
\]

\[
= 0.2121. \tag{3.347}
\]

The SNR is computed to be

\[
\text{SNR}_{\text{MMSE-LE, U}} = \frac{1}{0.2121} - 1 = 3.714 \, (5.7 \, \text{dB}), \tag{3.348}
\]

which is 4.3 dB below MFB performance and 2.1 dB worse than the infinite-length MMSE-LE for this channel. With sufficiently large number of taps for this channel, the infinite-length performance level can be attained.

3.7.4 FIR MMSE-DFE

The FIR DFE case is similar to the feed-forward equalizers just discussed, except that we now augment the fractionally spaced feed-forward section with a symbol-spaced feedback section. The MSE for the DFE case, as long as \(w \) and \(b \) are sufficiently long, is

\[
MSE = E \left\{ |x_{k-\Delta} - wY_k + bx_{k-\Delta - 1}|^2 \right\}, \tag{3.349}
\]

where \(b \) is the vector of coefficients for the feedback FIR filter

\[
b \triangleq [b_1 \ b_2 \ldots b_{N_b}] \tag{3.350}
\]

and \(x_{k-\Delta - 1} \) is the vector of data symbols in the feedback path. It is mathematically convenient to define an augmented response vector for the DFE as

\[
\tilde{w} \triangleq \left[w^* \ - b \right] \tag{3.351}
\]

and a corresponding augmented DFE input vector as

\[
\tilde{Y}_k \triangleq \begin{bmatrix} Y_k \\ x_{k-\Delta - 1} \end{bmatrix}. \tag{3.352}
\]

Then, (3.349) becomes

\[
MSE = E \left\{ |x_{k-\Delta} - \tilde{w}\tilde{Y}_k|^2 \right\}. \tag{3.353}
\]

The solution, paralleling (3.304) - (3.306), is determined using the following two definitions:
Definition 3.7.3 (FIR MMSE-DFE Autocorrelation and Cross-Correlation Matrices)

The **FIR MMSE-DFE autocorrelation matrix** is defined as

\[R_{\tilde{Y}_{\tilde{Y}}} \overset{\Delta}{=} \frac{1}{N} E \left\{ \tilde{Y}_k \tilde{Y}_k^* \right\} \]

\[= \begin{bmatrix} R_{YY} & E[\tilde{Y}_k x_{k-\Delta-1}^*] \\ E[x_{k-\Delta-1} Y_k^*] & \tilde{E}_x I_{N_b} \end{bmatrix} \]

\[= \begin{bmatrix} \tilde{E}_x \left(PP^* + \frac{l R_{nn}}{\text{SNR}} \right) & \tilde{E}_x P J_{\Delta}^* \\ \tilde{E}_x J_{\Delta}^* P^* & \tilde{E}_x I_{N_b} \end{bmatrix}, \]

where \(J_{\Delta} \) is an \((N_f + \nu) \times N_b\) matrix of 0’s and 1’s, which has the upper \(\Delta + 1 \) rows zeroed and an identity matrix of dimension \(\min(N_b, N_f + \nu - \Delta - 1) \) with zeros to the right (when \(N_f + \nu - \Delta - 1 < N_b \)), zeros below (when \(N_f + \nu - \Delta - 1 > N_b \)), or no zeros to the right or below exactly fitting in the bottom of \(J_{\Delta} \) (when \(N_f + \nu - \Delta - 1 = N_b \)).

The corresponding **FIR MMSE-DFE cross-correlation vector** is

\[R_{\tilde{Y}_x} \overset{\Delta}{=} \frac{1}{N} E \left\{ \tilde{Y}_k x_{k-\Delta} \right\} \]

\[= \begin{bmatrix} R_{Yx} \\ 0 \end{bmatrix} \]

\[= \begin{bmatrix} \tilde{E}_x P 1_{\Delta}^* \\ 0 \end{bmatrix}, \]

where, again, \(N = 1 \) for real signals and \(N = 2 \) for complex signals.

The FIR MMSE-DFE for sampling rate \(l/T \), delay \(\Delta \), and of length \(N_f \) and \(N_b \) has coefficients

\[\hat{w} = R_{x \tilde{Y}} R_{\tilde{Y}_{\tilde{Y}}}^{-1}. \]

Equation (3.360) can be rewritten in detail as

\[\begin{bmatrix} w & -b \end{bmatrix} \cdot \tilde{E}_x \cdot \begin{bmatrix} PP^* + \frac{l R_{nn}}{\text{SNR}} & PJ_{\Delta} \\ J_{\Delta}^* P^* & I_{N_b} \end{bmatrix} = \begin{bmatrix} \tilde{E}_x \cdot 1_{\Delta}^* P^*:0 \end{bmatrix}, \]

which reduces to the pair of equations

\[w \left(PP^* + \frac{l}{\text{SNR}} R_{nn} \right) - b J_{\Delta}^* P^* = 1_{\Delta}^* P^* \]

\[w P J_{\Delta} - b = 0. \]

Then

\[b = w P J_{\Delta}, \]

and thus

\[w \left(PP^* - P J_{\Delta} J_{\Delta}^* P^* + \frac{l}{\text{SNR}} R_{nn} \right) = 1_{\Delta}^* P^* \]

or

\[w = 1_{\Delta}^* P^* \left(PP^* - P J_{\Delta} J_{\Delta}^* P^* + \frac{l}{\text{SNR}} R_{nn} \right)^{-1}. \]

Then

\[b = 1_{\Delta}^* P^* \left(PP^* - P J_{\Delta} J_{\Delta}^* P^* + \frac{l}{\text{SNR}} R_{nn} \right)^{-1} P J_{\Delta}. \]
The MMSE is then
\[
\sigma^2_{\text{MMSE-DFE}} = \bar{\varepsilon}_x - \ddot{w} R_{\dot{Y}_x}
\]
\[
= \bar{\varepsilon}_x - w R_{\dot{Y}_x}
\]
\[
= \bar{\varepsilon}_x \left(1 - 1_\Delta^T P^* \left(P P^* - P J_\Delta^* P^* + \frac{l}{\text{SNR}} R_{nn} \right)^{-1} P 1_\Delta \right) ,
\]
which is a function to be minimized over \(\Delta \). Thus, the SNR for the unbiased FIR MMSE-DFE is
\[
\text{SNR}_{\text{MMSE-DFE,U}} = \frac{\bar{\varepsilon}_x}{\sigma^2_{\text{MMSE-DFE}}} - 1 = \frac{\ddot{w} R_{Y_x}}{\bar{\varepsilon}_x - \ddot{w} R_{\dot{Y}_x}} ,
\]
and the loss is again
\[
\gamma_{\text{MMSE-DFE}} = \frac{\text{SNR}_{\text{MFB}}}{\text{SNR}_{\text{MMSE-DFE,U}}}.
\]

EXAMPLE 3.7.2 (MMSE-DFEs, PAM and QAM) For the earlier example with \(l = 1, N_f = 2, \) and \(N_b = 1 \) and \(\nu = 1 \), we will also choose \(\Delta = 1 \). Then
\[
P = \begin{bmatrix} .9 & 1 & 0 \\ 0 & .9 & 1 \end{bmatrix} ,
\]
\[
J_\Delta = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} ,
\]
\[
1_\Delta = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} ,
\]
and
\[
R_{YY} = \begin{bmatrix} 1.991 & .9 \\ .9 & 1.991 \end{bmatrix} .
\]
Then
\[
w = [0 1 0] \begin{bmatrix} .9 & 0 \\ 1 & .9 \\ 0 & 1 \end{bmatrix} \left\{ \left[\begin{bmatrix} 1.991 & .9 \\ .9 & 1.991 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} [0 1] \right]^{-1} \right\} = 1.9 \begin{bmatrix} 1.991 & .9 \\ .9 & 0.991 \end{bmatrix}^{-1} = [.1556 .7668] \]
\[
b = w P J_\Delta = [.1556 .7668] \begin{bmatrix} .9 & 1 & 0 \\ 0 & .9 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = .7668 .
\]
Then
\[
\sigma^2_{\text{MMSE-DFE}} = \left(1 - .16 .76 \right) \begin{bmatrix} 1 \\ .9 \end{bmatrix} = .157 .
\]
The SNR is computed to be
\[
\text{SNR}_{\text{MMSE-DFE,U}} = \frac{1 - .157}{.157} = 5.4 (7.3 \text{dB}) .
\]
which is 2.7 dB below MFB performance, but 2.8 dB better than the \textbf{infinite-length} MMSE-LE for this channel! The loss with respect to the infinite-length MMSE-DFE is 1.1 dB. A picture of the FIR MMSE-DFE is shown in Figure 3.44.

![FIR MMSE-DFE Example.](image)

With sufficiently large number of taps for this channel, the infinite-length performance level can be attained. This performance is plotted versus the number of feed-forward taps (only one feedback tap is necessary for infinite-length performance) in Figure 3.45. In this case, 7 feed-forward and 1 feedback taps are necessary for infinite-length performance. Thus, the finite-length DFE not only outperforms the finite or infinite-length LE, it uses less taps (less complexity) also. For the QAM example \(l = 1, N_f = 2, N_b = 2, \) and \(\nu = 2, \) we also choose \(\Delta = 1. \) Actually this channel will need more taps to do well with the DFE structure, but we can still choose these values and proceed. Then

\[
P = \begin{bmatrix} -0.5 & 1 + j/4 & -j/2 & 0 \\ 0 & 0.5 & 1 + 0.5 & -j/2 \\ \end{bmatrix}, \quad (3.385)
\]

\[
J_\Delta = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ \end{bmatrix}, \quad (3.386)
\]

\[
I_\Delta = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix}, \quad (3.387)
\]

and

\[
R_{YY} = \begin{bmatrix} 1.7188 & -0.6250 - 0.6250j \\ -0.6250 - 0.6250j & 1.7188 \end{bmatrix}. \quad (3.388)
\]

Then

\[
w = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.5 & 0 & \end{bmatrix}
\]

\[
\begin{aligned}
&\begin{bmatrix}
-0.5 & 0 \\
1 - j/4 & -0.5 \\
0 & 1 - j/4 \\
\end{bmatrix} \\
&\begin{bmatrix}
1.7188 & -0.6250 - 0.6250j \\
-0.6250 - 0.6250j & 1.7188 \\
\end{bmatrix}
\end{aligned}
\]

\[
= \begin{bmatrix}
1/4 & -1/8 - j/2 \\
-1/8 + j/2 & 1.3125 \\
\end{bmatrix}^{-1}
\]

238
\[
\begin{align*}
 b &= w P J \Delta \\
 &= \begin{bmatrix}
 0.4720 - 0.1180 & 0.6136 \\
 -0.51 + 0.167 & 1.1277 + 0.3776 \\
 1.5103 - 0.3776 & 4.4366
 \end{bmatrix}
 \begin{bmatrix}
 0 & 0 \\
 0 & 0 \\
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 0.4720 - 0.1180 \\
 -0.51 + 0.167 \\
 1.5103 - 0.3776 \\
 4.4366
 \end{bmatrix}
 \quad \text{(3.393)}
\end{align*}
\]

Then
\[
\sigma^2_{MMSE-DFE} = 0.1917.
\] (3.395)

The SNR is computed to be
\[
\text{SNR}_{MMSE-DFE,U} = 1 - \frac{0.1917}{0.1917} = 6.23 \text{dB},
\] (3.396)

which is 3.77 dB below MFB performance, and not very good on this channel! The reader may evaluate various filter lengths and delays to find a best use of 3, 4, 5, and 6 parameters on this channel.

Figure 3.45: FIR MMSE-DFE performance for 1 + 0.9D^-1 versus number of feed-forward equalizer taps.
FIR ZF-DFE One obtains the FIR ZF-DFE by letting the SNR $\to \infty$ in the FIR MMSE-DFE, which alters $R_{\tilde{Y}\tilde{Y}}$ to

$$R_{\tilde{Y}\tilde{Y}} = \begin{bmatrix} \bar{\mathbf{E}}x\bar{P} & \bar{\mathbf{E}}xP_{\Delta} & \bar{\mathbf{E}}x \cdot I_{N_b} \\ \bar{\mathbf{E}}xJ_{\Delta}^{*}P^{*} & \bar{\mathbf{E}}xJ_{\Delta}P_{\Delta} & \bar{\mathbf{E}}xJ_{\Delta} \cdot I_{N_b} \\ \end{bmatrix}$$

(3.397)

and then \tilde{w} remains as

$$\tilde{w} = R_{\tilde{X}\tilde{Y}} R_{\tilde{Y}\tilde{Y}}^{-1} \quad .$$

(3.398)

Because the FIR equalizer may not be sufficiently long to cancel all ISI, the FIR ZF-DFE may still have nonzero residual ISI. This ISI power is given by

$$\sigma_{MMSE-DFE}^2 = \bar{\mathbf{E}}x - \tilde{w}R_{\tilde{Y}\tilde{Y}} \quad .$$

(3.399)

However, (3.399) still ignores the enhanced noise at the \tilde{w}_k filter output. The power of this noise is easily found to be

$$\text{FIR ZFDFE noise variance} = \frac{N_0}{2} \cdot l \cdot \|w\|^2 \quad ,$$

(3.400)

making the SNR at the FIR ZF-DFE output

$$\text{SNR}_{ZF-DFE} = \frac{\bar{\mathbf{E}}x - \tilde{w}R_{\tilde{Y}\tilde{Y}} + \bar{\mathbf{E}}x}{\text{SNR}_{l} \cdot \|w\|^2} \quad .$$

(3.401)

The filter is w in (3.400) and (3.401), not \tilde{w} because only the feed-forward section filters noise. The loss is:

$$\gamma_{ZF-DFE} = \frac{\text{SNR}_{MFB}}{\text{SNR}_{ZF-DFE}} \quad .$$

(3.402)

3.7.5 An Alternative Approach to the DFE

While the above approach directly computes the settings for the FIR DFE, it yields less insight into the internal structure of the DFE than did the infinite-length structures investigated in Section 3.6, particularly the spectral (canonical) factorization into causal and anti-causal ISI components is not explicit. This subsection provides such an alternative caused by the finite-length filters. This is because finite-length filters inherently correspond to non-stationary processing.\(^\text{14}\)

The vector of inputs at time k to the feed-forward filter is again Y_k, and the corresponding vector of filter coefficients is w, so the feed-forward filter output is $z_k = wY_k$. Continuing in the same fashion, the DFE error signal is then described by

$$e_k = bX_k(\Delta) - wY_k \quad ,$$

(3.403)

where $x_{k-N_b} = [x_k^* \ldots x_{k-N_b}^*]$, and b is now slightly altered to be monic and causal

$$b = [1 \ b_1 \ b_2 \ldots b_{N_b}] \quad .$$

(3.404)

The mean-square of this error is to be minimized over b and w. Signals will again be presumed to be complex, but all developments here simplify to the one-dimensional real case directly, although it is important to remember to divide any complex signal’s variance by 2 to get the energy per real dimension. The SNR equals $\tilde{\mathbf{E}}x/\frac{N_0}{2} = \bar{\mathbf{E}}x/N_0$ in either case.

\(^\text{14}\)A more perfect analogy between finite-length and infinite-length DFE’s occurs in Chapter 5, where the best finite-length DFE’s are actually periodic over a packet period corresponding to the length of the feed-forward filter.
Optimizing the feed-forward and feedback filters

For any fixed b in (3.403), the cross-correlation between the error and the vector of channel outputs Y_k should be zero to minimize MSE,

$$E[e_k Y_k^*] = 0.$$ (3.405)

So,

$$w R_{YY} = b R_{XY} (\Delta),$$ (3.406)

and

$$R_{XY} (\Delta) = E \left\{ X_k (\Delta) \left[x_k^* x_{k-1}^* \ldots x_{k-N_f-\nu+1}^* \right] P^* \right\}$$ (3.407)

$$= \bar{\xi} x J_\Delta P^*,$$ (3.408)

where the matrix J_Δ has the first Δ columns all zeros, then an (up to) $N_b \times N_b$ identity matrix at the top of the up to N_b columns, and zeros in any row entries below that identity, and possibly zeroed columns following the identity if $N_f + \nu - 1 > N_b$. The following matlab commands produce J_Δ:

For instance $N_f = 8$, $N_b = 5$, $\Delta = 3$, and $\nu = 5$,

```matlab
>> size=min(Delta,Nb);
>> Jdelta=[ zeros(size,size) eye(size) zeros(size, max(Nf+nu-2*size,0)), zeros(max(Nb-Delta,0),Nf+nu)]
```

$$Jdelta =
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

or for $N_f = 8$, $N_b = 2$, $\Delta = 3$, and $\nu = 5$,

```matlab
>> size=min(Delta,Nb)
size = 2
>> Jdelta=[ zeros(size,size) eye(size) zeros(size, max(Nf+nu-2*size,0)), zeros(max(Nb-Delta,0),Nf+nu)]
```

$$Jdelta =
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

The MSE for this fixed value of b then becomes

$$\sigma^2 (\Delta) = b^* \left(\bar{\xi} x I - R_{XY} (\Delta) R_{YY}^{-1} R_{YX} (\Delta) \right) b$$ (3.409)

$$= b^* R_{XY} (\Delta) b$$ (3.410)

$$= b^* \left(\bar{\xi} x I_{N_b} - \tilde{J}_\Delta P^* \left(PP^* + \frac{l}{SNR} R_{nn} \right) - 1 P \tilde{J}_\Delta (\Delta) \right) b$$ (3.411)

$$= l \cdot \frac{N_0}{2} \left\{ b^* \tilde{J}_\Delta \left(P^* R_{nn}^{-1} P + \frac{l}{SNR} I \right) - 1 P \tilde{J}_\Delta (\Delta) \tilde{J}_\Delta b \right\},$$ (3.412)

and $R_{XY} (\Delta) = \bar{\xi} x I - R_{XY} (\Delta) R_{YY}^{-1} R_{YX} (\Delta)$, the autocorrelation matrix corresponding to the MMSE vector in estimating $X(\Delta)$ from Y_k. This expression is the equivalent of (3.221). That is $R_{XY} (\Delta)$ is the autocorrelation matrix for the error sequence of length $N - b$ that is associated with a
“matrix” MMSE-LE. The solution then requires factorization of the inner matrix into canonical factors, which is
executed with Cholesky factorization for finite matrices.

By defining

\[\tilde{Q}(\Delta) = \left\{ \tilde{J}_\Delta \left(P^*P + \frac{l}{\text{SNR}} I \right)^{-1} \tilde{J}_\Delta \right\}^{-1}, \tag{3.413} \]

this matrix is equivalent to (3.222), except for the “annoying” \(\tilde{J}_\Delta \) matrices that become identities as \(N_f \)
and \(N_b \) become infinite, then leaving \(\tilde{Q} \) as essentially the autocorrelation of the channel output. The
\(\tilde{J}_\Delta \) factors, however, cannot be ignored in the finite-length case. Canonical factorization of \(\tilde{Q} \) proceeds
according to

\[\sigma^2_\epsilon(\Delta) = b G_\Delta^{-1} S_\Delta G_\Delta^{-*} b^*, \tag{3.414} \]

which is minimized when

\[b = g(\Delta), \tag{3.415} \]

the top row of the upper-triangular matrix \(G_\Delta \). The MMSE is thus obtained by computing Cholesky
factorizations of \(\tilde{Q} \) for all reasonable values of \(\Delta \) and then setting \(b = g(\Delta) \). Then

\[\sigma^2_\epsilon(\Delta) = S_0(\Delta). \tag{3.416} \]

From previous developments, as the lengths of filters go to infinity, any value of \(\Delta \) works and also \(S_0 \to \gamma_0 \frac{N_0}{\bar{E}_x} \epsilon_0 \) to ensure the infinite-length MMSE-DFE solution of Section 3.6.

The feed-forward filter then becomes

\[w = b R_{XY}(\Delta) R_{YY}^{-1} \tag{3.417} \]

\[= g(\Delta) \tilde{J}_\Delta P^* \left(P P^* + \frac{l}{\text{SNR}} I \right)^{-1} \tag{3.418} \]

\[= g(\Delta) \tilde{J}_\Delta \left(P^*P + \frac{l}{\text{SNR}} I \right)^{-1} \tag{3.419} \]

\[\underbrace{\text{feedforward filter}}_{\text{matched filter}} \]

which can be interpreted as a matched filter followed by a feed-forward filter that becomes \(1/G^*(D^{-*}) \)
as its length goes to infinity. However, the result that the feed-forward filter is an anti-causal factor of the
canonical factorization does not follow for finite length. Chapter 5 will find a situation that is an
exact match and for which the feed-forward filter is an inverse of a canonical factor, but this requires the
DFE filters to become periodic in a period equal to the number of taps of the feed-forward filter (plus
an excess bandwidth factor).

The SNR is as always

\[\text{SNR}_{\text{MMSE-DFE,U}} = \frac{\bar{E}_x}{S_0(\Delta)} - 1. \tag{3.420} \]

Bias can be removed by scaling the decision-element input by the ratio of \(\text{SNR}_{\text{MMSE-DFE}}/\text{SNR}_{\text{MMSE-DFE,U}} \),
thus increasing its variance by \(\left(\text{SNR}_{\text{MMSE-DFE}}/\text{SNR}_{\text{MMSE-DFE,U}} \right)^2 \).

Finite-length Noise-Predictive DFE

Problem 3.8 introduces the “noise-predictive” form of the DFE, which is repeated here in Figure 3.46.
Figure 3.46: Noise-Predictive DFE

In this figure, the error sequence is feedback instead of decisions. The filter essentially tries to predict the noise in the feedforward filter output and then cancel this noise, whence the name “noise-predictive” DFE. Correct solution to the infinite-length MMSE filter problem 3.8 will produce that the filter $B(D)$ remains equal to the same $G(D)$ found for the infinite-length MMSE-DFE. The filter $U(D)$ becomes the MMSE-LE so that $Z(D)$ has no ISI, but a strongly correlated (and enhanced) noise. The preditor then reduces the noise to a white error sequence. If $W(D) = \frac{1}{\gamma_0 \|p\|} G(D)$ of the normal MMSE-DFE, then it can be shown also (see Problem 3.8) that

$$U(D) = \frac{W(D)}{G(D)}.$$ (3.421)

The MMSE, all SNR’s, and biasing/unbiasing remain the same.

An analogous situation occurs for the finite-length case, and it will be convenient notationally to say that the number of taps in the feedforward filter u is $(N_f - \nu)$. Clearly if ν is fixed as always, then any number of taps (greater than ν can be investigated without loss of generality with this early notational abuse. Clearly by abusing N_f (which is not the number of taps), ANY positive number of taps in u can be constructed without loss of generality for any value of $\nu \geq 0$. In this case, the error signal can be written as

$$e_k = b_k X_k(\Delta) - bZ_k$$ (3.422)

where

$$Z_k = \begin{bmatrix} z_k \\ \vdots \\ z_{k-\nu} \end{bmatrix}.$$ (3.423)

Then,

$$Z_k = U Y_k.$$ (3.424)

where

$$U = \begin{bmatrix} u & 0 & \ldots & 0 \\ 0 & u & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & u \end{bmatrix}.$$ (3.425)

and

$$Y_k = \begin{bmatrix} y_k \\ \vdots \\ y_{k-N_f+1} \end{bmatrix}.$$ (3.426)

By defining the $(N_f)l$-tap filter

$$w \overset{\Delta}{=} bU,$$ (3.427)

243
then the error becomes
\[e_k = b_k X_k(\Delta) - w Y, \]
(3.428)
which is the same error as in the alternate viewpoint of the finite-length DFE earlier in this section. Thus, solving for the \(b \) and \(w \) of the conventional finite-length MMSE-DFE can be followed by the step of solving Equation (3.427) for \(U \) when \(b \) and \(w \) are known. However, it follows directly then from Equation (3.406) that
\[u = R_{XY}(\Delta) R_{YY}^{-1}, \]
(3.429)
so following the infinite-case form, \(u \) is the finite-length MMSE-LE with \((N_f - \nu)l \) taps. The only difference from the infinite-length case is the change in length.

3.7.6 The Stanford DFE Program

A matlab program has been created, used, and refined by the students of EE379A over a period of many years. The program has the following call command:

```matlab
function (SNR, wt) = dfe (l,p,nff, nbb, delay, Ex, noise);
```

where the inputs and outputs are listed as

- \(l = \) oversampling factor
- \(p = \) pulse response, oversampled at \(l \) (size)
- \(nff = \) number of feed-forward taps
- \(nbb = \) number of feedback taps
- \(\text{delay} \approx \text{delay of system } Nff + \text{length of } p - nbb; \text{ if } \text{delay} = -1, \text{ then choose the best delay} \)
- \(\text{Ex} = \) average energy of signals
- \(\text{noise} = \) autocorrelation vector (size \(l*nff \)) (NOTE: noise is assumed to be stationary). For white noise, this vector is simply \([\sigma^2 0...0] \).
- \(\text{SNR} = \) equalizer SNR, unbiased and in dB
- \(\text{wt} = \) equalizer coefficients

The student may use this program to a substantial advantage in avoiding tedious matrix calculations. The program has come to be used throughout the industry to compute/project equalizer performance (setting \(nbb=0 \) also provides a linear equalizer). The reader is cautioned against the use of a number of rules of thumb (like “DFE SNR is the SNR(f) at the middle of the band”) used by various who call themselves experts and often over-estimate the DFE performance using such formulas. Difficult transmission channels may require large numbers of taps and considerable experimentation to find the best settings.

```matlab
function [dfseSNR,w_t,opt_delay]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
```

% [dfseSNR,w_t,opt_delay]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
% % l = oversampling factor
% % p = pulse response, oversampled at l (size)
% % nff = number of feed-forward taps
% % nbb = number of feedback taps
% % delay = delay of system <= nff+length of p - 2 - nbb
% % if delay = -1, then choose best delay
% % Ex = average energy of signals
% % noise = noise autocorrelation vector (size l*nff)
% % NOTE: noise is assumed to be stationary
% %
% % outputs:
\% dfseSNR = equalizer SNR, unbiased in dB
\% w_t = equalizer coefficients [w -b]
\% opt_delay = optimal delay found if delay =-1 option used.
\% otherwise, returns delay value passed to function
\% created 4/96;
\% ---

size = length(p);
nu = ceil(size/l)-1;
p = [p zeros(1,(nu+1)*l-size)];

\% error check
if nff<=0
 error('number of feed-forward taps > 0');
end
if delay > (nff+nu-1-nbb)
 error('delay must be <= (nff+(length of p)-2-nbb)');
elseif delay < -1
 error('delay must be >= -1');
elseif delay == -1
 delay = 0:1:nff+nu-1-nbb;
end

\%form ptmp = [p_0 p_1 \ldots p_nu] where p_i=[p(i*l) p(i*l-1)\ldots p((i-1)*l+1)
ptmp(1:1,1) = [p(1); zeros(l-1,1)];
for i=1:nu
 ptmp(1:1,i+1) = conj((p(i*l+1:-1:(i-1)*l+2))');
end

\%form matrix P, vector channel matrix
P = zeros(nff*l+nbb,nff+nu);
for i=1:nff,
P(((i-1)*l+1):(i*l),i:(i+nu)) = ptmp;
end

\%precompute Rn matrix - constant for all delays
Rn = zeros(nff*l+nbb);
Rn(1:nff*1:nff*1) = toeplitz(noise);
dfseSNR = -100;
P_init = P;
\%loop over all possible delays
for d = delay,
P = P_init;
P(nff*l+1:nff*l+nbb,d+2:d+1+nbb) = eye(nbb);
\%P
temp= zeros(1,nff+nu);
temp(d+1)=1;
\%construct matrices
Ry = Ex*P*P' + Rn;
Rxy = Ex*temp*P';
new_w_t = Rxy*inv(Ry);
sigma_dfse = Ex - real(new_w_t*Rxy');
new_dfseSNR = 10*log10(Ex/sigma_dfse - 1);
% Save setting of this delay if best performance so far
if new_dfseSNR >= dfseSNR
 w_t = new_w_t;
 dfseSNR = new_dfseSNR;
 opt_delay = d;
end
end

3.7.7 Error Propagation in the DFE

To this point, this chapter has ignored the effect of decision errors in the feedback section of the DFE. At low error rates, say 10^{-5} or below, this is reasonable. There is, however, an accurate way to compute the effect of decision feedback errors, although enormous amounts of computational power may be necessary (much more than that required to simulate the DFE and measure error rate increase). At high error rates of 10^{-3} and above, error propagation can lead to several dB of loss. In coded systems (see Chapters 7 and 8), the inner channel (DFE) may have an error rate that is unacceptably high that is later reduced in a decoder for the applied code. Thus, it is common for low decision-error rates to occur in a coded DFE system. The Precoders of Section 3.8 can be used to eliminate the error propagation problem, but this requires that the channel be known in the transmitter – which is not always possible, especially in transmission systems with significant channel variation, i.e., digital mobile telephony. An analysis for the infinite-length equalizer has not yet been invented, thus the analysis here applies only to FIR DFE’s with finite N_b.

By again denoting the equalized pulse response as v_k (after removal of any bias), and assuming that any error signal, e_k, in the DFE output can be uncorrelated with the symbol of interest, x_k, this error signal can be decomposed into 4 constituent signals

1. precursor ISI: $e_{pr,k} = \sum_{i=\infty}^{-1} v_i x_{k-i}$
2. postcursor ISI: $e_{po,k} = \sum_{i=-N_b+1}^{\infty} v_i x_{k-i}$
3. filtered noise: $e_{n,k} = \sum_{i=-\infty}^{\infty} w_i n_{k-i}$
4. feedback errors: $e_{f,k} = \sum_{i=1}^{N_b} v_i (x_{k-i} - \hat{x}_{k-i})$

The sum of the first 3 signals constitute the MMSE with power $\sigma^2_{\text{MMSE-DFE}}$, which can be computed according to previous results. The last signal is often written

$$e_{f,k} = \sum_{i=1}^{N_b} v_i \cdot \epsilon_{k-i}$$

where $\epsilon_k \triangleq x_k - \hat{x}_k$. This last distortion component has a discrete distribution with $(2^M - 1)^{N_b}$ possible points.

The error event vector, ϵ_k, is

$$ \epsilon_k \triangleq [\epsilon_{k-N_b+1} \, \epsilon_{k-N_b+2} \, ... \, \epsilon_k]$$

Given ϵ_{k-1}, there are only $2^M - 1$ possible values for ϵ_k. Equivalently, the evolution of an error event, can be described by a finite-state machine with $(2^M - 1)^{N_b}$ states, each corresponding to one of the $(2^M - 1)^{N_b}$ possible length-N_b error events. Such a finite state machine is shown in
Figure 3.47. Finite State Machine for $N_b = 2$ and $M = 2$ in evaluating DFE Error Propagation

Figure 3.47. The probability that ϵ_k takes on a specific value, or that the state transition diagram goes to the corresponding state at time k, is (denoting the corresponding new entry in ϵ_k as ϵ_{k-1})

$$P_{\epsilon_k/\epsilon_{k-1}} = Q\left[\frac{d_{\min} - |e_f,k(\epsilon_{k-1})|}{2\sigma_{\text{MMSE-DFE}}}\right]. \quad (3.432)$$

There are $2M - 1$ such values for each of the $(2M - 1)^{N_b}$ states. Υ denotes a square $(2M - 1)^{N_b} \times (2M - 1)^{N_b}$ matrix of transition probabilities where the i,jth element is the probability of entering state i, given the DFE is in state j. The column sums are thus all unity. For a matrix of non-negative entries, there is a famous “Peron-Frobenious” lemma from linear algebra that states that there is a unique eigenvector ρ of all nonnegative entries that satisfies the equation

$$\rho = \Upsilon \rho. \quad (3.433)$$

The solution ρ is called the stationary state distribution or Markov distribution for the state transition diagram. The ith entry, ρ_i, is the steady-state probability of being in state i. Of course, $\sum_{i=1}^{(2M-1)^{N_b}} \rho_i = 1$. By denoting the set of states for which $\epsilon_k \neq 0$ as E, one determines the probability of error as

$$P_e = \sum_{i \in E} \rho_i. \quad (3.434)$$

Thus, the DFE will have an accurate estimate of the error probability in the presence of error propagation. A larger state-transition diagram, corresponding to the explicit consideration of residual ISI as a discrete probability mass function, would yield a yet more accurate estimate of the error probability for the equalized channel - however, the relatively large magnitude of the error propagation samples usually makes their explicit consideration more important than the (usually) much smaller residual ISI.

The number of states can be very large for reasonable values of M and N_b, so that the calculation of the stationary distribution ρ could exceed the computation required for a direct measurement of SNR with a DFE simulation. There are a number of methods that can be used to reduce the number of states in the finite-state machine, most of which will reduce the accuracy of the probability of error estimate.

In the usual case, the constellation for x_k is symmetric with respect to the origin, and there is essentially no difference between ϵ_k and $-\epsilon_k$, so that the analysis may merge the two corresponding
states and only consider one of the error vectors. This can be done for almost half\(^{15}\) the states in the state transition diagram, leading to a new state transition diagram with \(M^{N_b}\) states. Further analysis then proceeds as above, finding the stationary distribution and adding over states in \(\mathcal{E}\). There is essentially no difference in this \(P_e\) estimate with respect to the one estimated using all \((2M-1)^{N_b}\) states; however, the number of states can remain unacceptably large.

At a loss in \(P_e\) accuracy, we may ignore error magnitudes and signs, and compute error statistics for binary error event vectors, which we now denote \(\epsilon = [\epsilon_1, ..., \epsilon_{N_b}]\), of the type (for \(N_b = 3\))

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{bmatrix} .
\]

(3.435)

This reduces the number of states to \(2^{N_b}\), but unfortunately the state transition probabilities no longer depend only on the previous state. Thus, we must try to find an upper bound on these probabilities that depends only on the previous states. In so doing, the sum of the stationary probabilities corresponding to states in \(\mathcal{E}\) will also upper bound the probability of error. \(\mathcal{E}\) corresponds to those states with a nonzero entry in the first position (the “odd” states, \(\epsilon_1 = 1\)). To get an upperbound on each of the transition probabilities we write

\[
P_{\epsilon_{1,k} = 1/\epsilon_{k-1}} = \sum_{\{i \mid \epsilon_{1,k}(i)\text{is allowed transition from } \epsilon_{k-1}\}} P_{\epsilon_{1,k} = 1/\epsilon_{k-1}, \epsilon_{1,k}(i)} P_{\epsilon_{1,k}(i)}
\]

(3.436)

\[
\leq \sum_{i \mid \epsilon_{1,k}(i)\text{is allowed transition from } \epsilon_{k-1}} \max_{\epsilon_{1,k}(i)} P_{\epsilon_{1,k} = 1/\epsilon_{k-1}, \epsilon_{1,k}(i)} P_{\epsilon_{1,k}(i)}
\]

(3.437)

\[
= \max_{\epsilon_{1,k}(i)} P_{\epsilon_{1,k} = 1/\epsilon_{k-1}, \epsilon_{1,k}(i)}
\]

(3.438)

Explicit computation of the maximum probability in (3.438) occurs by noting that this error probability corresponds to a worst-case signal offset of

\[
\delta_{\text{max}}(\epsilon) = (M - 1)d \sum_{i=1}^{N_b} |v_i| \epsilon_{1,k-i}
\]

(3.439)

which the reader will note is analogous to peak distortion (the distortion is understood to be the worst of the two QAM dimensions, which are assumed to be rotated so that \(d_{\text{min}}\) lies along either or both of the dimensions). As long as this quantity is less than the minimum distance between constellation points, the corresponding error probability is then upper bounded as

\[
P_{\epsilon_{1,k}/\epsilon_{k-1}} \leq Q \left[\frac{d_{\text{min}} - \delta_{\text{max}}(\epsilon)}{\sqrt{\sigma^2_{\text{MMSE-DFE}}}} \right].
\]

(3.440)

Now, with the desired state-dependent (only) transition probabilities, the upper bound for \(P_e\) with error propagation is

\[
P_e \leq \sum_{\epsilon} Q \left[\frac{d_{\text{min}} - \delta_{\text{max}}(\epsilon)}{\sqrt{\sigma^2_{\text{MMSE-DFE}}}} \right] P_\epsilon.
\]

(3.441)

Even in this case, the number of states \(2^{N_b}\) can be too large.

A further reduction to \(N_b + 1\) states is possible, by grouping the \(2^{N_b}\) states into groups that are classified only by the number of leading in \(\epsilon_{k-1}\); thus, state \(i = 1\) corresponds to any state of the form \([0 \; \epsilon]\), while state \(i = 2\) corresponds to \([0 \; 0 \; \epsilon \; \ldots]\), etc. The upperbound on probability of error for transitions into any state, \(i\), then uses a \(\delta_{\text{max}}(i)\) given by

\[
\delta_{\text{max}}(i) = (M - 1)d \sum_{i=i+1}^{N_b} |v_i|
\]

(3.442)

\(^{15}\)There is no reduction for zero entries.
and $\delta_{\text{max}}(N_b) = 0$.

Finally, a trivial bound that corresponds to noting that after an error is made, we have $M^{N_b} - 1$ possible following error event vectors that can correspond to error propagation (only the all zeros error event vector corresponds to no additional errors within the time-span of the feedback path). The probability of occurrence of these error event vectors is each no greater than the initial error probability, so they can all be considered as nearest neighbors. Thus adding these to the original probability of the first error,

$$P_e(\text{errorprop}) \leq M^{N_b}P_e(\text{first}).$$

(3.443)

It should be obvious that this bound gives useful results only if N_b is small (that is a probability of error bound of $.5$ for i.i.d. input data may be lower than this bound even for reasonable values of M and N_b). That is suppose, the first probability of error is 10^{-5}, and $M = 8$ and $N_b = 8$, then this last (easily computed) bound gives $P_e \leq 100$.

3.7.8 Look-Ahead

![Figure 3.48: Look-Ahead mitigation of error propagation in DFEs.](image)

Figure 3.48 illustrates a “look-ahead” mechanism for reducing error propagation. Instead of using the decision, M^ν possible decision vectors are retained. The vector is of dimension ν and can be viewed as an address $A_{k-\Delta-1}$ to the memory. The possible output for each of the M^ν is computed and subtracted from $z_{U,k-\Delta}$. M^ν decisions of the symbol-by-symbol detector can then be computed and compared in terms of the distance from a potential symbol value, namely smallest $|E_{U,k}|$. The smallest such distance is used to select the decision for $\hat{x}_{k-\Delta}$. This method is called “look-ahead” decoding basically because all possible previous decisions’ ISI are precomputed and stored, in some sense looking ahead in the calculation. If M^ν calculations (or memory locations) is too complex, then the largest $\nu' < \nu$ taps can be used (or typically the most recent ν' and the rest subtracted in typical DFE fashion for whatever the decisions previous to the ν' tap interval in a linear filter. Look-ahead leads to the Maximum Likelihood Sequence detection (MLSD) methods of Chapter 9 that are no longer symbol-by-symbol based. Look-ahead methods can never exceed SNR$_{\text{MMSE-DFE,U}}$ in terms of performance, but can come very close since error propagation can be very small. (MLSD methods can exceed SNR$_{\text{MMSE-DFE,U}}$.)
3.8 Precoding

This section discusses solutions to the error-propagation problem of DFE’s. The first is precoding, which essentially moves the feedback section of the DFE to the transmitter with a minimal (but nonzero) transmit-power-increase penalty, but with no reduction in DFE SNR. The second approach or partial response channels (which have trivial precoders) has no transmit power penalty, but may have an SNR loss in the DFE because the feedback section is fixed to a desirable preset value for $B(D)$ rather than optimized value. This preset value (usually with all integer coefficients) leads to simplification of the ZF-DFE structure.

3.8.1 The Tomlinson Precoder

Error propagation in the DFE can be a major concern in practical application of this receiver structure, especially if constellation-expanding codes, or convolutional codes (see Chapter 10), are used in concatenation with the DFE (because the error rate on the inner DFE is lower (worse) prior to the decoder). Error propagation is the result of an incorrect decision in the feedback section of the DFE that produces additional errors that would not have occurred if that first decision had been correct.

The **Tomlinson Precoder (TPC)**, more recently known as a Tomlinson-Harashima Precoder, is a device used to...
one-dimensional signals, while Figure 3.49(b) illustrates a generalization for complex signals. In the second complex case, the two real sums and two one-dimensional modulo operators can be generalized to a two-dimensional modulo where arithmetic is modulo a two-dimensional region that tessellates two-dimensional space (for example, a hexagon, or a square).

The Tomlinson precoder appears in the transmitter as a preprocessor to the modulator. The Tomlinson Precoder maps the data symbol x_k into another data symbol x'_k, which is in turn applied to the modulator (not shown in Figure 3.49). The basic idea is to move the DFE feedback section to the transmitter where decision errors are impossible. However, straightforward moving of the filter $1/B(D)$ to the transmitter could result in significant transmit-power increase. To prevent most of this power increase, modulo arithmetic is employed to bound the value of x'_k:

Definition 3.8.1 (Modulo Operator) The modulo operator $\Gamma_M(x)$ is a nonlinear function, defined on an M-ary (PAM or QAM square) input constellation with uniform spacing d, such that

$$\Gamma_M(x) = x - Md\lfloor\frac{x + Md}{Md}\rfloor$$

where $\lfloor y \rfloor$ means the largest integer that is less than or equal to y. $\Gamma_M(x)$ need not be an integer. This text denotes modulo M addition and subtraction by \oplus_M and \ominus_M respectively. That is

$$x \oplus_M y \triangleq \Gamma_M[x + y]$$

and

$$x \ominus_M y \triangleq \Gamma_M[x - y].$$

For complex QAM, each dimension is treated modulo \sqrt{M} independently.

Figure 3.50 illustrates modulo arithmetic for $M = 4$ PAM signals with $d = 2$.

![Figure 3.50: Illustration of modulo arithmetic operator.](image)

The following lemma notes that the modulo operation distributes over addition:

Lemma 3.8.1 (Distribution of $\Gamma_M(x)$ over addition) The modulo operator can be distributed over a sum in the following manner:

$$\Gamma_M[x + y] = \Gamma_M(x) \oplus_M \Gamma_M(y)$$

$$\Gamma_M[x - y] = \Gamma_M(x) \ominus_M \Gamma_M(y).$$
The proof is trivial.

The Tomlinson Precoder generates an internal signal

\[
\tilde{x}_k = x_k - \sum_{i=1}^{\infty} b_i x'_{k-i}
\]

(3.449)

where

\[
x'_k = \Gamma_M[\tilde{x}_k] = \Gamma_M\left[x_k - \sum_{i=1}^{\infty} b_i x'_{k-i} \right].
\]

(3.450)

The scaled-by-SNR_{MMSE-DFE}/SNR_{MMSE-DFE,U} output of the MS-WMF in the receiver is an optimal unbiased MMSE approximation to \(X(D) \cdot G_U(D) \). That is

\[
E\left[\frac{SNR_{MMSE-DFE}}{SNR_{MMSE-DFE,U}} \frac{z_k}{[x_k, x_{k-1}, \ldots]} \right] = \sum_{i=0}^{\infty} g_{U,i} x_{k-i}.
\]

(3.451)

Thus, \(B(D) = G_U(D) \). From Equation (3.254) with \(x'(D) \) as the new input, the scaled feedforward filter output with the Tomlinson precoder is

\[
z_{U,k} = \left(x'_k + \sum_{i=1}^{\infty} g_{U,i} x'_{k-i} \right) + e_{U,k}.
\]

(3.452)

\(\Gamma_M[z_{U,k}] \) is determined as

\[
\Gamma_M[z_{U,k}] = \Gamma_M[\Gamma_M(x_k - \sum_{i=1}^{\infty} g_{U,i} x'_{k-i}) + \sum_{i=1}^{\infty} g_{U,i} x'_{k-i} + e_{U,k}]
\]

(3.453)

\[
= \Gamma_M(x_k - \sum_{i=1}^{\infty} g_{U,i} x'_{k-i} + \sum_{i=1}^{\infty} g_{U,i} x'_{k-i} + e_{U,k})
\]

(3.454)

\[
= \Gamma_M[x_k + e_{U,k}]
\]

(3.455)

\[
= x_k + e'_{U,k}
\]

(3.456)

Since the probability that the error \(e_{U,k} \) being larger than \(Md/2 \) in magnitude is small in a well-designed system, one can assume that the error sequence is of the same distribution and correlation properties after the modulo operation. Thus, the Tomlinson Precoder has allowed reproduction of the input sequence at the (scaled) MS-WMF output, without ISI. The original Tomlinson work was done for the ZF-DFE, which is a special case of the theory here, with \(G_U(D) = P_c(D) \). The receiver corresponding to Tomlinson precoding

\[
\text{Figure 3.51: Receiver for Tomlinson precoded MMSE-DFE implementation.}
\]
is shown in Figure 3.51.

The noise power at the feed-forward output is thus almost exactly the same as that of the corresponding MMSE-DFE and with no error propagation because there is no longer any need for the feedback section of the DFE. As stated here without proof, there is only a small price to pay in increased transmitter power when the TPC is used.

Theorem 3.8.1 (Tomlinson Precoder Output) The Tomlinson Precoder output, when the input is an i.i.d. sequence, is also approximately i.i.d., and furthermore the output sequence is approximately uniform in distribution over the interval \([-Md/2, Md/2]\).

There is no explicit proof of this theorem for finite \(M\), although it can be proved exactly as \(M \to \infty\). This proof notes that the unbiased and biased receivers are identical as \(M \to \infty\), because the SNR must also be infinite. Then, the modulo element is not really necessary, and the sequence \(x'_k\) can be shown to be equivalent to a prediction-error or “innovations” sequence, which is known in the estimation literature to be i.i.d. The i.i.d. part of the theorem appears to be valid for almost any \(M\). The distribution and autocorrelation properties of the TPC, in closed form, remain an unsolved problem at present.

Using the uniform distribution assumption, the increase in transmit power for the TPC is from the nominal value of \(\frac{(M^2-1)d^2}{12}\) to the value for a continuous uniform random variable over the output interval \([-Md/2, Md/2]\), which is \(\frac{M^2d^2}{12}\), leading to an input power increase of

\[
\frac{M^2}{M^2 - 1}
\]

for PAM and correspondingly

\[
\frac{M}{M - 1}
\]

for QAM. When the input is not a square constellation, the Tomlinson Precoder Power loss is usually larger, but never more than a few dB. The number of nearest neighbors also increases to \(N_e = 2\) for all constellations. These losses can be eliminated (and actually a gain is possible) using techniques called Trellis Precoding and/or shell mapping (See Section 10.6).

Laroia or Flexible Precoder

Figure 3.52 shows the Laroia precoder, which is a variation on Tomlinson precoding introduced by Rajiv Laroia, mainly to reduce the transmit-power loss of the Tomlinson precoder. The Laroia precoder largely preserves the shape of the transmitted constellation. The equivalent circuit is also shown in Figure 3.52 where the input is considered to be the difference between the actual input symbol value \(x_k\) and the “decision” output \(\lambda_k\). The decision device finds the closest point in the infinite extension of the constellation\(^{16}\). The extension of the constellation is the set of points that continue to be spaced by \(d_{\text{min}}\) from the points on the edges of the original constellation and along the same dimensions as the original constellation. \(m_k\) is therefore a small error signal that is uniform in distribution over \((-d/2, d/2)\), thus having variance \(d^2/12\) \(<\langle\xi_x\rangle\).

The energy increase is therefore

\[
\frac{\langle\xi_x + d^2/12\rangle}{\langle\xi_x\rangle}.
\]

For PAM, this increase would be

\[
\frac{M^2-1}{M^2-1} \frac{d^2}{4} \frac{(M^2-1) \frac{d^2}{4}}{1 + \frac{3}{M^2-1}} = \frac{M^2 - 1}{M^2 - 2},
\]

while similarly it would be for SQ QAM:

\[
\frac{M - 1}{M - 2},
\]

\(^{16}\)The maximum range of such an infinite extension is actually the sum \(\sum_{i=1}^{\nu} |\Re |g_{U,i}|| \cdot |\Re \xi(D)| \) or \(\Re x_{\max}\).
Cross constellations take a little more effort but follow the same basic idea above.

Because of the combination of channel and feedforward equalizer filters, the feedforward filter output is

\[Z_U(D) = [X(D) + M(D)] \cdot G_U(D) + E_U(D) = X(D) - \lambda(D) + E_U(D) \]

(3.463)

Processing \(Z_U(D) \) by a decision operation leaves \(X(D) - \lambda(D) \), which essentially is the decision. However, to recover the input sequence \(X(D) \), the receiver forms

\[Z'(D) = \frac{X(D) - \lambda(D)}{G_U(D)} = X(D) + M(D) \]

(3.464)

Since \(M(D) \) is uniform and has magnitude always less than \(d/2 \), then \(M(D) \) is removed by a second truncation (which is not really a decision, but operates using essentially the same logic as the first decision).

Laroia precoder

\[\begin{array}{c}
\gamma_a \\
\mathbf{U}(\gamma_a) \\
\mathbf{W}(\gamma_a) \\
\mathbf{V}(\gamma_a)
\end{array} \]

equivalent circuit

Receiver for flexible precoding

Figure 3.52: Flexible Precoding.
Example and error propagation in flexible precoding

EXAMPLE 3.8.1 (1 + .9D⁻¹ system with flexible precoding) The flexible precoder and corresponding receiver for the 1 + .9D⁻¹ example appear in Figure 3.53. The bias removal factor has been absorbed into all filters (7.85/6.85 multiples .633 to get .725 in feedback section, and multiplies .9469 to get 1.085 in feedforward section). The decision device is binary in this case since binary antipodal transmission is used. Note the IIR filter in the receiver. If an error is made in the first SBS in the receiver, then the magnitude of the error is \(2 = |1 - (-1)| = |-1 - (+1)| \). Such an error is like an impulse of magnitude 2 added to the input of the IIR filter, which has impulse response \((-.725)^k \cdot u_k\), producing a contribution to the correct sequence of \(2 \cdot (-.725)^k \cdot u_k\). This produces an additional 1 error half the time and an additional 2 errors 1/4 the time. Longer strings of errors will not occur. Thus, the bit and symbol error rate in this case increase by a factor of 1.5. (less than .1 dB loss).

A minor point is that the first decision in the receiver has an increased nearest neighbor coefficient of \(N_e = 1.5\).

Generally speaking, when an error is made in the receiver for the flexible precoder,

\[
(x_k - \lambda_k) - \text{decision}(x_k - \lambda_k) = \epsilon \cdot \delta_k
\]

where \(\epsilon\) could be complex for QAM. Then the designer needs to compute for each type of such error, its probability of occurrence and then investigate the string (with \((1/b)_k\) being the impulse response of the post-first-decision filter in the receiver)

\[
|\epsilon \cdot (1/b)_k| < < d_{\min}/2
\]

For some \(k\), this relation will hold and that is the maximum burst length possible for the particular type of error. Given the filter \(b\) is monic and minimum phase, this string should not be too long as long as the
roots are not too close to the unit circle. The single error may cause additional errors, but none of these
additional errors in turn cause yet more errors (unlike a DFE where second and subsequent errors can
lead to some small probability of infinite-length bursts), thus the probability of an infinitely long burst
is zero for the flexible precoder situation (or indeed any burst longer than the \(k \) that solves the above
equation.

3.8.2 Partial Response Channel Models

Partial-response methods are a special case of precoding design where the ISI is forced to some known
well-defined pattern. Receiver detectors are then designed for such partial-response channels directly,
exploring the known nature of the ISI rather than attempting to eliminate this ISI.

Classic uses of partial response abound in data transmission, some of which found very early use.
For instance, the earliest use of telephone wires for data transmission inevitably found large intersymbol
interference because of a transformer that was used to isolate DC currents at one end of a phone line
from those at the other (see Prob 3.35). The transformer did not pass low frequencies (i.e., DC), thus
inevitably leading to non-Nyquist\(^{17}\) pulse shapes even if the phone line otherwise introduced no significant
intersymbol interference. Equalization may be too complex or otherwise undesirable as a solution, so
a receiver can use a detector design that instead presumes the presence of a known fixed ISI. Another
example is magnetic recording (see Problem 3.36) where only flux changes on a recording surface can be
sensed by a read-head, and thus D.C. will not pass through the “read channel,” again inevitably leading
to ISI. Straightforward equalization is often too expensive at the very high speeds of magnetic-disk
recording systems.

Partial-Response (PR) channels have non-Nyquist pulse responses – that is, PR channels allow in-
tersymbol interference – over a few (and finite number of) sampling periods. A unit-valued sample of
the response occurs at time zero and the remaining non-zero response samples at subsequent sampling
times, thus the name “partial response.” The study of PR channels is facilitated by mathematically
presuming the tacit existence of a whitened matched filter, as will be described shortly. Then, a number
of common PR channels can be easily addressed.

\(^{17}\)That is, they do not satisfy Nyquist’s condition for nonzero ISI - See Chapter 3, Section 3.
Figure 3.54: Minimum Phase Equivalent Channel.

Figure 3.54(a) illustrates the whitened-matched-filter. The minimum-phase equivalent of Figure 3.54(b) exists if $Q(D) = \eta_0 \cdot H(D) \cdot H^*(D^{-\infty})$ is factorizable. This chapter focuses on the discrete-time channel and presumes the WMF’s presence without explicitly showing or considering it. The signal output of the discrete-time channel is

$$y_k = \sum_{m = -\infty}^{\infty} h_m \cdot x_{k-m} + n_k,$$ \hspace{1cm} (3.467)

or

$$Y(D) = H(D) \cdot X(D) + N(D),$$ \hspace{1cm} (3.468)

where n_k is sampled Gaussian noise with autocorrelation $\bar{r}_{nn,k} = \|p\|^{-2} \cdot \eta_0^{-1} \cdot \frac{N_0}{2} \cdot \delta_k$ or $\bar{R}_{nn}(D) = \|p\|^{-2} \cdot \eta_0^{-1} \cdot \frac{N_0}{2}$ when the whitened-matched filter is used, and just denoted σ_{pr}^2 otherwise. In both cases, this noise is exactly AWGN with mean-square sample value σ_{pr}^2, which is conveniently abbreviated σ^2 for the duration of this chapter.

Definition 3.8.2 (Partial-Response Channel) A partial-response (PR) channel is any discrete-time channel with input/output relation described in (3.467) or (3.468) that also satisfies the following properties:

1. h_k is finite-length and causal; $h_k = 0 \ \forall \ k < 0 \ or \ k > \nu$, where $\nu < \infty$ and is often called the constraint length of the partial-response channel,
2. h_k is monic; $h_0 = 1$,
3. h_k is minimum phase; $H(D)$ has all ν roots on or outside the unit circle,
4. h_k has all integer coefficients; $h_k \in \mathbb{Z} \ \forall \ k \neq 0$ (where \mathbb{Z} denotes the set of integers).

18 $H(D) = P_c(D)$ in Section 3.6.3 on ZF-DFE.
More generally, a discrete finite-length channel satisfying all properties above except the last restriction to all integer coefficients is known as a controlled intersymbol-interference channel.

Controlled ISI and PR channels are a special subcase of all ISI channels, for which \(h_k = 0 \ \forall \ k > \nu \). \(\nu \) is the constraint length of the controlled ISI channel. Thus, effectively, the channel can be modeled as an FIR filter, and \(h_k \) is the minimum-phase equivalent of the sampled pulse response of that FIR filter. The constraint length defines the span in time \(\nu T \) of the non-zero samples of this FIR channel model.

The controlled ISI polynomial (\(D \)-transform)\(^{19} \) for the channel simplifies to

\[
H(D) \triangleq \sum_{m=0}^{\nu} h_m D^m ,
\]

where \(H(D) \) is always monic, causal, minimum-phase, and an all-zero (FIR) polynomial. If the receiver processes the channel output of an ISI-channel with the same whitened-matched filter that occurs in the ZF-DFE of Section 3.6, and if \(P_c(D) \) (the resulting discrete-time minimum-phase equivalent channel polynomial when it exists) is of finite degree \(\nu \), then the channel is a controlled intersymbol interference channel with \(H(D) = P_c(D) \) and \(\sigma^2 = \frac{\lambda_2}{2} \cdot \| p \|^{-2} \cdot \eta_0^{-1} \). Any controlled intersymbol-interference channel is in the form that the Tomlinson Precoder of Section 3.8.1 could be used to implement symbol-by-symbol detection on the channel output. As noted in Section 3.8.1, a (usually small) transmit symbol energy increase occurs when the Tomlinson Precoder is used. Section 3.8.4 shows that this loss can be avoided for the special class of polynomials \(H(D) \) that are partial-response channels.

Equalizers for the Partial-response channel.

This small subsection serves to simplify and review equalization structure on the partial-response channel.

The combination of integer coefficients and minimum-phase constraints of partial-response channels allows a very simple implementation of the ZF-DFE as in Figure 3.55. Since the PR channel is already discrete time, no sampling is necessary and the minimum-phase characteristic of \(H(D) \) causes the WMF of the ZF-DFE to simplify to a combined transfer function of 1 (that is, there is no feedforward section because the channel is already minimum phase). The ZF-DFE is then just the feedback section shown, which easily consists of the feedback coefficients \(-h_m \) for the delayed decisions corresponding to \(\hat{x}_{k-m}, m = 1, \ldots, \nu \). The loss with respect to the matched filter bound is trivially \(1/\| H \|^2 \), which is easily computed as 3 dB for \(H(D) = 1 \pm D^\nu \) (any finite \(\nu \)) with simple ZF-DFE operation \(z_k = y_k - \hat{x}_{k-\nu} \) and 6 dB for \(H(D) = 1 + D - D^2 - D^3 \) with simple ZF-DFE operation \(z_k = y_k - \hat{x}_{k-1} + \hat{x}_{k-2} + \hat{x}_{k-3} \).

\(^{19}\) The \(D \)-Transform of FIR channels (\(\nu < \infty \)) is often called the “channel polynomial,” rather than its “\(D \)-Transform” in partial-response theory. This text uses these two terms interchangeably.
The ZF-LE does not exist if the channel has a zero on the unit circle, which all partial-response channels do. A MMSE-LE could be expected to have significant noise enhancement while existing. The MMSE-DFE will perform slightly better than the ZF-DFE, but is not so easy to compute as the simple DFE. Tomlinson or Flexible precoding could be applied to eliminate error propagation for a small increase in transmit power \(\frac{M^2-1}{M^2} \).

3.8.3 Classes of Partial Response

A particularly important and widely used class of partial response channels are those with \(H(D) \) given by

\[
H(D) = (1 + D)^l (1 - D)^n ,
\]

(3.470)

where \(l \) and \(n \) are nonnegative integers.

For illustration, Let \(l = 1 \) and \(n = 0 \) in (3.470), then

\[
H(D) = 1 + D ,
\]

(3.471)

which is sometimes called a “duobinary” channel (introduced by Lender in 1960). The Fourier transform of the duobinary channel is

\[
H(e^{-\omega T}) = H(D)|_{D=e^{-\omega T}} = 1 + e^{-\omega T} = 2e^{-\omega T/2} \cos \left(\frac{\omega T}{2} \right) .
\]

(3.472)

The transfer function in (3.472) has a notch at the Nyquist Frequency and is generally “lowpass” in shape, as is shown in Figure 3.56.
A discrete-time ZFE operating on this channel would produce infinite noise enhancement. If SNR_{MFB} = 16 dB for this channel, then

\[Q(e^{-j\omega T}) + \frac{1}{\text{SNR}_{MFB}} = (1 + 1/40) + \cos \omega T \]

The MMSE-LE will have performance (observe that \(N_0^2 = .05 \))

\[\sigma_{\text{MMSE-LE}}^2 = \frac{N_0^2}{2} \int_{-\pi/2}^{\pi/2} \frac{1}{\|p\|^2(1.025 + \cos \omega T)} d\omega = \frac{N_0^2}{2} \cdot \frac{1/2}{\sqrt{1.025^2 - 1^2}} = 2.22 \frac{N_0^2}{2} \]

The SNR_{MMSE-LE,U} is easily computed to be 8 (9dB), so the equalizer loss is 7 dB in this case. For the MMSE-DFE, \(Q(D) + \frac{1}{\text{SNR}_{MFB}} = \frac{1.025}{1.64} (1 + 0.8D)(1 + 0.8D^{-1}) \), so that \(\gamma_0 = 1.025/1.64 = .625 \), and thus \(\gamma_{\text{MMSE-DFE}} = 2.2 \text{dB} \). For the ZF-DFE, \(\eta_0 = \frac{1}{2} \), and thus \(\gamma_{\text{ZF-DFE}} = 3 \text{dB} \).

It is possible to achieve MFB performance on this channel with complexity far less than any equalizer studied earlier in this chapter, as will be shown in Chapter 9. It is also possible to use a precoder with no transmit power increase to eliminate the error-propagation-prone feedback section of the ZF-DFE.

There are several specific channels that are used in practice for partial-response detection:

EXAMPLE 3.8.2 (Duobinary 1 + D) The duobinary channel (as we have already seen) has

\[H(D) = 1 + D \]

The frequency response was already plotted in Figure 3.56. This response goes to zero at the Nyquist Frequency, thus modeling a lowpass-like channel. For a binary input of \(x_k = \pm 1 \), the channel output (with zero noise) takes on values \(\pm 2 \) with probability 1/4 each and 0 with probability 1/2. In general, for \(M \)-level inputs \((\pm 1 \pm 3 \pm 5 ... \pm (M-1))\), there are \(2M - 1 \) possible output levels, \(-2M + 2, ..., 0, ..., 2M - 2\). These output values are all possible sums of pairs of input symbols.
EXAMPLE 3.8.3 (DC Notch $1 - D$) The DC Notch channel has

$$H(D) = 1 - D \quad ,$$

(3.476)

so that $l = 0$ and $n = 1$ in (3.470). The frequency response is

$$H(e^{-j\omega T}) = 1 - e^{-j\omega T} = 2j e^{-j\omega T} \cdot \sin \frac{\omega T}{2} \quad .$$

(3.477)

The response goes to zero at the DC ($\omega = 0$), thus modeling a highpass-like channel. For a binary input of $x_k = \pm 1$, the channel output (with zero noise) takes on values ± 2 with probability 1/4 each and 0 with probability 1/2. In general for M-level inputs ($\pm 1 \pm 3 \pm 5 ... \pm (M - 1)$), there are $2M - 1$ possible output levels, $-2M + 2, ..., 0, ..., 2M - 2$.

When the $1 - D$ shaping is imposed in the modulator itself, rather than by a channel, the corresponding modulation is known as AMI (Alternate Mark Inversion) if a differential encoder is also used as shown later in this section. AMI modulation prevents “charge” (DC) from accumulating and is sometimes also called “bipolar coding,” although the use of the latter term is often confusing because bipolar transmission may have other meanings for some communications engineers. AMI coding, and closely related methods are used in multiplexed T1 (1.544 Mbps DS1 or “ANSI T1.403”) and E1 (2.048 Mbps or “ITU-T G.703”) speed digital data transmission on twisted pairs or coaxial links. These signals were once prevalent in telephone-company non-fiber central-office transmission of data between switch elements.

EXAMPLE 3.8.4 (Modified Duobinary $1 - D^2$) The modified duobinary channel has

$$H(D) = 1 - D^2 = (1 + D)(1 - D) \quad ,$$

(3.478)

so $l = n = 1$ in (3.470). Modified Duobinary is sometimes also called “Partial Response Class IV” or PR4 or PRIV in the literature. The frequency response is

$$H(e^{-j\omega T}) = 1 - e^{-j\omega^2 T} = 2e^{-j\omega T} \cdot \sin(\omega T) \quad .$$

(3.479)

The response goes to zero at the DC ($\omega = 0$) and at the Nyquist frequency ($\omega = \pi/T$), thus modeling a bandpass-like channel. For a binary input of $x_k = \pm 1$, the channel output (with zero noise) takes on values ± 2 with probability 1/4 each and 0 with probability 1/2. In general, for M-level inputs ($\pm 1 \pm 3 \pm 5 ... \pm (M - 1)$), there are $2M - 1$ possible output levels. Modified duobinary is equivalent to two interleaved $1 - D$ channels, each independently acting on the inputs corresponding to even (odd) time samples, respectively. Many commercial disk drives use PR4.
EXAMPLE 3.8.5 (Extended Partial Response 4 and 6 \((1 + D)^l(1 - D)^n\)) The EPR4 channel has \(l = 2\) and \(n = 1\) or

\[
H(D) = (1 + D)^2(1 - D) = 1 + D - D^2 - D^3 .
\] (3.480)

This channel is called EPR4 because it has 4 non-zero samples (Thapar). The frequency response is

\[
H(e^{-j\omega T}) = (1 + e^{-j\omega T})^2(1 - e^{-j\omega T}) .
\] (3.481)

The EPR6 channel has \(l = 4\) and \(n = 1\) (6 nonzero samples)

\[
H(D) = (1 + D)^4(1 - D) = 1 + 3D + 2D^2 - 2D^3 - 3D^4 - D^5 .
\] (3.482)

The frequency response is

\[
H(e^{-j\omega T}) = (1 + e^{-j\omega T})^4(1 - e^{-j\omega T}) .
\] (3.483)

These 2 channels, along with PR4, are often used to model disk storage channels in magnetic disk or tape recording. The response goes to zero at DC \((\omega = 0)\) and at the Nyquist frequency in both EPR4 and EPR6, thus modeling bandpass-like channels. The magnitude of these two frequency characteristics are shown in Figure 3.57. These are increasingly used in commercial disk storage read detectors.

The higher the \(l\), the more “lowpass” in nature that the EPR channel becomes, and the more appropriate as bit density increases on any given disk.

For partial-response channels, the use of Tomlinson Precoding permits symbol-by-symbol detection, but also incurs an \(M^2/(M^2 - 1)\) signal energy loss for PAM (and \(M/(M - 1)\) for QAM). A simpler method for PR channels, that also has no transmit energy penalty, is known simply as a “precoder.”

3.8.4 Simple Precoding

The simplest form of precoding for the duobinary, DC-notch, and modified duobinary partial-response channels is the so-called “differential encoder.” The message at time \(k\), \(m_k\), is assumed to take on values \(m = 0, 1, ..., M - 1\). The differential encoder for the case of \(M = 2\) is most simply described as
the device that observes the input bit stream, and changes its output if the input is 1 and repeats the last output if the input is 0. Thus, the differential encoder input, \(m_k \), represents the difference (or sum) between adjacent differential encoder output (\(\bar{m}_k \) and \(\bar{m}_{k-1} \)) messages:\(^{20} \)

Definition 3.8.3 (Differential Encoder) Differential encoders for PAM or QAM modulation obey one of the two following relationships:

\[
\bar{m}_k = m_k \oplus \bar{m}_{k-1} \quad (3.484)
\]

\[
\bar{m}_k = m_k \ominus \bar{m}_{k-1} \quad , \quad (3.485)
\]

where \(\ominus \) represents subtraction modulo \(M \) (and \(\oplus \) represents addition modulo \(M \)). For SQ QAM, the modulo addition and subtraction are performed independently on each of the two dimensions, with \(\sqrt{M} \) replacing \(M \). (A differential phase encoder is also often used for QAM and is discussed later in this section.)

A differential encoder is shown on the left side of Figure 3.58. As an example if \(M = 4 \) the corresponding inputs and outputs are given in the following table:

\(m_k \)	-1	1	2	3
\(\bar{m}_k \)	0	2	3	1
\(\bar{m}_{k-1} \)	1	0	3	0

With either PAM or QAM constellations, the dimensions of the encoder output \(\bar{m}_k \) are converted into channel input symbols \((\pm \frac{d}{2}, \pm \frac{3d}{2}...) \) according to

\[
x_k = [2\bar{m}_k - (M - 1)]\frac{d}{2} . \quad (3.486)
\]

Figure 3.58 illustrates the duobinary channel \(H(D) = 1 + D \), augmented by the precoding operation of differential encoding as defined in (3.484). The noiseless minimum-phase-equivalent channel output \(\bar{y}_k \) is

\[
\bar{y}_k = x_k + x_{k-1} = 2(\bar{m}_k + \bar{m}_{k-1})\frac{d}{2} - 2(M - 1)\frac{d}{2} \quad (3.487)
\]

\(^{20}\text{This operation is also very useful even on channels without ISI, as an unknown inversion in the channel (for instance, an odd number of amplifiers) will cause all bits to be in error if (differential) precoding is not used.}\)
where the last relation (3.490) follows from the definition in (3.484). All operations are integer mod-M.

Equation (3.490) shows that a decision on \hat{y}_k about m_k can be made without concern for preceding or succeeding \hat{y}_k, because of the action of the precoder. The decision boundaries are simply the obvious regions symmetrically placed around each point for a memoryless ML detector of inputs and the decoding outputs is d.

Successing \hat{y}_k shows that a decision on \hat{y}_k about m_k can be made without concern for preceding or succeeding \hat{y}_k, because of the action of the precoder. The decision boundaries are simply the obvious regions symmetrically placed around each point for a memoryless ML detector of inputs and the decoding rules for $M = 2$ and $M = 4$ are shown in Figure 3.58. In practice, the decoder observes \hat{y}_k, not \hat{y}_k, so that y_k must first be quantized to the closest noise-free level of \hat{y}_k. That is, the decoder first quantizes \hat{y}_k to one of the values of $(-2M + 2)(d/2)$, ..., $(2M - 2)(d/2)$. Then, the minimum distance between outputs is $d_{\text{min}} = d$, so that $\frac{d_{\text{min}}}{2\sigma_{pr}} = \frac{d}{2\sigma_{pr}}$, which is 3 dB below the $\sqrt{MFB} = \frac{\sqrt{2}}{\sigma_{pr}}(d/2)$ for the $1 + D$ channel because $||p||^2 = 2$. (Again, $\sigma_{pr}^2 = ||p||^2 \cdot \eta_0^{-1}$, η_0, with a WMF and otherwise is just σ_{pr}^2.) This loss is identical to the loss in the ZF-DFE for this channel. One may consider the feedback section of the ZF-DFE as having been pushed through the linear channel back to the transmitter, where it becomes the precoder. With some algebra, one can show that the TPC, while also effective, would produce a 4-level output with 1.3 dB higher average transmit symbol energy for binary inputs. The output levels are assumed equally likely in determining the decision boundaries (half way between the levels) even though these levels are not equally likely.

The precoded partial-response system eliminates error propagation, and thus has lower P_e than the ZF-DFE. This elimination of error propagation can be understood by investigating the nearest neighbor coefficient for the precoded situation in general. For the $1 + D$ channel, the (noiseless) channel output levels are $-(2M - 2) - (2M - 4)... 0 ... (2M - 4)(2M - 2)$ with probabilities of occurrence $\frac{1}{M^2}, \frac{2}{M^2} ... \frac{M}{M^2} ... \frac{2}{M^2}, \frac{1}{M^2}$, assuming a uniform channel-input distribution. Only the two outer-most levels have one nearest neighbor, all the rest have 2 nearest neighbors. Thus,

$$N_e = \frac{2}{M^2}(1) + \frac{M^2 - 2}{M^2} (2) = 2 \left(1 - \frac{1}{M^2} \right) .$$

(3.491)

For the ZF-DFE, the input to the decision device \tilde{z}_k as

$$\tilde{z}_k = x_k + x_{k-1} + n_k - \hat{x}_{k-1} ,$$

(3.492)

which can be rewritten

$$\tilde{z}_k = x_k + (x_{k-1} - \hat{x}_{k-1}) + n_k .$$

(3.493)

Equation 3.493 becomes $\tilde{z}_k = x_k + n_k$ if the previous decision was correct on the previous symbol. However, if the previous decision was incorrect, say $+1$ was decided (binary case) instead of the correct -1, then

$$\tilde{z}_k = x_k - 2 + n_k ,$$

(3.494)

which will lead to a next-symbol error immediately following the first almost surely if $x_k = 1$ (and no error almost surely if $x_k = -1$). The possibility of $\tilde{z}_k = x_k + 2 + n_k$ is just as likely to occur and follows an identical analysis with signs reversed. For either case, the probability of a second error propagating is $1/2$. The other half of the time, only 1 error occurs. Half the times that 2 errors occur, a third error also occurs, and so on, effectively increasing the error coefficient from $N_e = 1$ to

$$N_e = 2 = 1 \left(\frac{1}{2} \right) + 2 \left(\frac{1}{4} \right) + 3 \left(\frac{1}{8} \right) + 4 \left(\frac{1}{16} \right) + ... = \sum_{k=1}^{\infty} k \cdot (.5)^k = \frac{5}{(1 - .5)^2} .$$

(3.495)

21 means the quantity is computed in M-level arithmetic, for instance, $(5)_4 = 1$. Also note that $\Gamma_M(x) \neq (x)_M$, and therefore \oplus is different from the \oplus_M of Section 3.5. The functions $(x)_M$ and \oplus have integer inputs and have possible outputs $0, ..., M - 1$ only.
(In general, the formula \(\sum_{k=1}^{\infty} k \cdot r^k = \frac{r}{(1-r)^2}, r < 1 \) may be useful in error propagation analysis.) The error propagation can be worse in multilevel PAM transmission, when the probability of a second error is \((M-1)/M\), leading to

\[
\frac{N_e(\text{error prop})}{N_e(\text{no error prop})} = 1 \cdot \frac{1}{M} + 2 \cdot \frac{M-1}{M} \cdot \frac{1}{M} + 3 \cdot \left(\frac{M-1}{M} \right)^2 \cdot \frac{1}{M} + \ldots \tag{3.496}
\]

\[
= \sum_{k=1}^{\infty} k \cdot \left(\frac{M-1}{M} \right)^{k-1} \cdot \frac{1}{M} \tag{3.497}
\]

\[
= M \tag{3.498}
\]

Precoding eliminates this type of error propagation, although \(\tilde{N}_e\) increases by a factor\(^{22}\) of \((1 + 1/M)\) with respect to the case where no error propagation occurred.

For the ZF-DFE system, \(P_e = 2(M-1)Q\left(\frac{d}{2\sigma_{pr}}\right)\), while for the precoded partial-response system, \(\tilde{P}_e = 2(1 - 1/M^2)Q\left(\frac{d}{2\sigma_{pr}}\right)\). For \(M \geq 2\), the precoded system always has the same or fewer nearest neighbors, and the advantage becomes particularly pronounced for large \(M\). Using a rule-of-thumb that a factor of 2 increase in nearest neighbors is equivalent to an SNR loss of .2 dB (which holds at reasonable error rates in the \(10^{-5}\) to \(10^{-6}\) range), the advantage of precoding is almost .2 dB for \(M = 4\). For \(M = 8\), the advantage is about .6 dB, and for \(M = 64\), almost 1.2 dB. Precoding can be simpler to implement than a ZF-DFE because the integer partial-response channel coefficients translate readily into easily realized finite-field operations in the precoder, while they represent full-precision add (and shift) operations in feedback section of the ZF-DFE.

Precoding the DC Notch or Modified Duobinary Channels

The \(\tilde{m}_k = m_k \oplus \tilde{m}_{k-1}\) differential encoder works for the \(1 + D\) channel. For the \(1 - D\) channel, the equivalent precoder is

\[
\tilde{m}_k = m_k \oplus \tilde{m}_{k-1} \tag{3.499}
\]

which is sometimes also called NRZI (non-return-to-zero inverted) precoding, especially by storage-channel engineers. In the \(1 - D\) case, the channel output is

\[
\tilde{y}_k = x_k - x_{k-1} = 2(\tilde{m}_k - \tilde{m}_{k-1}) \frac{d}{2} \tag{3.500}
\]

\[
\frac{\tilde{y}_k}{d} = \tilde{m}_k - \tilde{m}_{k-1} \tag{3.501}
\]

\[
\left(\frac{\tilde{y}_k}{d} \right)_M = \tilde{m}_k \oplus \tilde{m}_{k-1} \tag{3.502}
\]

\[
\left(\frac{\tilde{y}_k}{d} \right)_M = m_k \tag{3.503}
\]

The minimum distance and number of nearest neighbors are otherwise identical to the \(1 + D\) case just studied, as is the improvement over the ZF-DFE. The \(1 - D^2\) case is identical to the \(1 - D\) case, on two interleaved \(1 - D\) channels at half the rate. The overall precoder for this situation is

\[
\tilde{m}_k = m_k \oplus \tilde{m}_{k-2} \tag{3.504}
\]

and the decision rule is

\[
\left(\frac{\tilde{y}_k}{d} \right)_M = m_k \tag{3.505}
\]

The combination of precoding with the \(1 - D\) channel is often called “alternate mark inversion (AMI)” because each successive transmitted “1” bit value causes a nonzero channel output amplitude of polarity opposite to the last nonzero channel output amplitude, while a “0” bit always produces a 0 level at the channel output.

\(^{22}\)The ratio of \(2(1 - 1/M^2)\) with precoding to \(2(1 - 1/M)\) for \(M\)-ary PAM with no error propagation effects included
Precoding EPR4

An example of precoding for the extended Partial Response class is EPR4, which has \(l = 2 \) and \(n = 1 \) in (3.480), or EPR4. Then,

\[
\hat{y}_k = x_k + x_{k-1} - x_{k-2} - x_{k-3} \quad (3.506)
\]

\[
\bar{y}_k = d(\bar{m}_k + \bar{m}_{k-1} - \bar{m}_{k-2} - \bar{m}_{k-3}) \quad (3.507)
\]

\[
\frac{\bar{y}_k}{d} = \bar{m}_k + \bar{m}_{k-1} - \bar{m}_{k-2} - \bar{m}_{k-3} \quad (3.508)
\]

\[
\left(\frac{\bar{y}_k}{d} \right)_M = \bar{m}_k \oplus \bar{m}_{k-1} \oplus \bar{m}_{k-2} \oplus \bar{m}_{k-3} \quad (3.509)
\]

\[
\left(\frac{\hat{y}_k}{d} \right)_M = m_k \quad (3.510)
\]

where the precoder, from (3.510) and (3.509), is

\[
\bar{m}_k = m_k \oplus \bar{m}_{k-1} \oplus \bar{m}_{k-2} \oplus \bar{m}_{k-3} \quad . \quad (3.511)
\]

The minimum distance at the channel output is still \(d \) in this case, so \(P_e \leq N_e \cdot Q(d/2\sigma_{pr}) \), but the MFB = \((\frac{d}{\sigma_{pr}})^2 \), which is 6dB higher. The same 6dB loss that would occur with an error-propagation-free ZF-DFE on this channel.

For the \(1 + D - D^2 - D^3 \) channel, the (noiseless) channel output levels are \(- (4M - 4) - (4M - 6) \ldots 0 \ldots (4M - 6) (4M - 4)\). Only the two outer-most levels have one nearest neighbor, all the rest have 2 nearest neighbors. Thus,

\[
\bar{N}_e = \frac{2}{M^2}(1) + \frac{M^4 - 2}{M^4}(2) = 2 \left(1 - \frac{1}{M^4} \right) \quad . \quad (3.512)
\]

Thus the probability of error for the precoded system is \(\hat{P}_e = 2 \left(1 - \frac{1}{M^4} \right) Q(\frac{1}{\sigma_{pr}}) \). The number of nearest neighbors for the ZF-DFE, due to error propagation, is difficult to compute, but clearly will be worse.

3.8.5 General Precoding

The general partial response precoder can be extrapolated from previous results:

Definition 3.8.4 (The Partial-Response Precoder) The partial-response precoder for a channel with partial-response polynomial \(H(D) \) is defined by

\[
\bar{m}_k = m_k \bigoplus_{i=1}^{\nu} (-h_i) \cdot \bar{m}_{k-i} \quad . \quad (3.513)
\]

The notation \(\bigoplus \) means a mod-\(M \) summation, and the multiplication can be performed without ambiguity because the \(h_i \) and \(\bar{m}_{k-i} \) are always integers.

The corresponding memoryless decision at the channel output is

\[
\hat{m}_k = \left(\frac{\hat{y}_k}{d} + \sum_{i=0}^{\nu} h_i \left(\frac{M-1}{2} \right) \right)_M \quad . \quad (3.514)
\]

The reader should be aware that while the relationship in (3.513) is general for partial-response channels, the relationship can often simplify in specific instances, for instance the precoder for “EPR5,” \(H(D) = (1 + D)^3(1 - D) \) simplifies to \(\bar{m}_k = m_k \oplus \bar{m}_{k-4} \) when \(M = 2 \).

In a slight abuse of notation, engineers often simplify the representation of the precoder by simply writing it as

\[
P(D) = \frac{1}{H(D)} \quad (3.515)
\]
where \(P(D) \) is a polynomial in \(D \) that is used to describe the “modulo-\(M \)” filtering in (3.513). Of course, this notation is symbolic. Furthermore, one should recognize that the \(D \) means unit delay in a finite field, and is therefore a delay operator only – one cannot compute the Fourier transform by inserting \(D = e^{-j\omega T} \) into \(P(D) \); Nevertheless, engineers commonly refer to the NRZI precoder as a \(1/(1 \oplus D) \) precoder.

Lemma 3.8.2 (Memoryless Decisions for the Partial-Response Precoder) The partial-response precoder, often abbreviated by \(P(D) = 1/H(D) \), enables symbol-by-symbol decoding on the partial-response channel \(H(D) \). An upper bound on the performance of such symbol-by-symbol decoding is

\[
\bar{P}_{e} \leq 2 \left(1 - \frac{1}{M^{\nu+1}} \right) Q \left[\frac{d}{2\sigma_{pr}} \right],
\]

(3.516)

where \(d \) is the minimum distance of the constellation that is output to the channel.

Proof: The proof follows by simply inserting (3.513) into the expression for \(\hat{y}_k \) and simplifying to cancel all terms with \(h_i, i > 0 \). The nearest-neighbor coefficient and \(d/2\sigma_{pr} \) follow trivially from inspection of the output. Adjacent levels can be no closer than \(d \) on a partial-response channel, and if all such adjacent levels are assumed to occur for an upper bound on probability of error, then the \(\bar{P}_{e} \) bound in (3.516) holds. \(QED. \)

3.8.6 Quadrature PR

Differential encoding of the type specified earlier is not often used with QAM systems, because QAM constellations usually exhibit 90° symmetry. Thus a 90° offset in carrier recovery would make the constellation appear exactly as the original constellation. To eliminate the ambiguity, the bit assignment for QAM constellations usually uses a precoder that uses the four possibilities of the most-significant bits that represent each symbol to specify a phase rotation of 0°, 90°, 180°, or 270° with respect to the last symbol transmitted. For instance, the sequence 01, 11, 10, 00 would produce (assuming an initial phase of 0°, the sequence of subsequent phases 90°, 0°, 180°, and 180°. By comparing adjacent decisions and their phase difference, these two bits can be resolved without ambiguity even in the presence of unknown phase shifts of multiples of 90°. This type of encoding is known as **differential phase encoding** and the remaining bits are assigned to points in large \(M \) QAM constellations so that they are the same for points that are just 90° rotations of one another. (Similar methods could easily be derived using 3 or more bits for constellations with even greater symmetry, like 8PSK.)

Thus the simple precoder for the \(1 + D \) and \(1 - D \) (or \(1 - D^2 \)) given earlier really only is practical for PAM systems. The following type of precoder is more practical for these channels:
A Quadrature Partial Response (QPR) situation is specifically illustrated in Figure 3.59 for $M = 4$ or $\bar{b} = 1$ bit per dimension. The previous differential encoder could be applied individually to both dimensions of this channel, and it could be decoded without error. All previous analysis is correct, individually, for each dimension. There is, however, one practical problem with this approach: If the channel were to somehow rotate the phase by $\pm 90^\circ$ (that is, the carrier recovery system locked on the wrong phase because of the symmetry in the output), then there would be an ambiguity as to which part was real and which was imaginary. Figure 3.59 illustrates the ambiguity: the two messages $(0, 1) = 1$ and $(1, 0) = 2$ commute if the channel has an unknown phase shift of $\pm 90^\circ$. No ambiguity exists for either the message $(0, 0) = 0$ or the message $(1, 1) = 3$. To eliminate the ambiguity, the precoder encodes the 1 and 2 signals into a difference between the last 1 (or 2) that was transmitted. This precoder thus specifies that an input of 1 (or 2) maps to no change with respect to the last input of 1 (or 2), while an input of 2 maps to a change with respect to the last input of 1 or 2.

A precoding rule that will eliminate the ambiguity is then

Rule 3.8.1 (Complex Precoding for the $1+D$ Channel) if $m_k = (m_{i,k}, m_{q,k}) = (0, 0)$ or $(1, 1)$ then

$$
\begin{align*}
\bar{m}_{i,k} &= m_{i,k} \oplus \bar{m}_{i,k-1} \\
\bar{m}_{q,k} &= m_{q,k} \oplus \bar{m}_{q,k-1}
\end{align*}
$$

else if $m_k = (m_{i,k}, m_{q,k}) = (0, 1)$ or $(1, 0)$, check the last $\bar{m} = (0, 1)$ or $(1, 0)$ transmitted, call it \bar{m}_{90}, (that is, was $\bar{m}_{90} = 1$ or 2 ?). If $\bar{m}_{90} = 1$, the precoder leaves m_k unchanged prior to differential encoding according to (3.517) and (3.518). The operations \oplus and \ominus are the same in binary arithmetic.

If $\bar{m}_{90} = 2$, then the precoder changes m_k from 1 to 2 (or from 2 to 1) prior to encoding according to (3.517) and (3.518).
The corresponding decoding rule is (keeping a similar state $\hat{y}_{90} = 1, 2$ at the decoder)

\[
\hat{n}_k = \begin{cases}
(0,0) & \hat{y}_k = [\pm 2 \pm 2] \\
(1,1) & \hat{y}_k = [0 0] \\
(0,1) & (\hat{y}_k = [0 \pm 2] \text{ or } \hat{y}_k = [\pm 2 0]) \text{ and } \angle \hat{y}_k - \angle \hat{y}_{90} = 0 \\
(1,0) & (\hat{y}_k = [0 \pm 2] \text{ or } \hat{y}_k = [\pm 2 0]) \text{ and } \angle \hat{y}_k - \angle \hat{y}_{90} \neq 0
\end{cases}
\]

(3.519)

The probability of error and minimum distance are the same as was demonstrated earlier for this type of precoder, which only resolves the 90° ambiguity, but is otherwise equivalent to a differential encoder. There will however be limited error propagation in that one detection error on the 1 or 2 message points leads to two decoded symbol errors on the decoder output.
3.9 Diversity Equalization

Diversity in transmission occurs when there are multiple channels from a single message source to several receivers, as illustrated in Figure 3.60, and as detailed in Subsection 3.9.1. Optimally, the principles of Chapter 1 apply directly where the channel’s conditional probability distribution $p_{y|x}$ typically has a larger channel-output dimensionality for y than for the input, x, $N_y > N_x$. This diversity often leads to a lower probability of error for the same message, mainly because a greater channel-output minimum distance between possible (noiseless) output data symbols can be achieved with a larger number of channel output dimensions. However, intersymbol interference between successive transmissions, along with interference between the diversity dimensions, again can lead to a potentially complex optimum receiver and detector. Thus, equalization again allows productive use of suboptimal SBS detectors with diversity. The diversity equalizers become matrix equivalents of those studied in Sections 3.5 - 3.7.

3.9.1 Multiple Received Signals and the RAKE

Figure 3.60: Basic diversity channel model.

Figure 3.60 illustrates the basic diversity channel. Channel outputs caused by the same channel input have labels $y_l(t)$, $l = 0, ..., L - 1$. These channel outputs can be created intentionally by retransmission of the same data symbols at different times and/or (center) frequencies. Spatial diversity often occurs in wireless transmission where L spatially separated antennas may all receive the same transmitted signal, but possibly with different filtering and with noises that are at least partially independent.

With each channel output following the model
\[
y_{p,l}(t) = \sum_k x_k \cdot p_l(t - kT) + n_l(t),
\]
(3.520)
a corresponding $L \times 1$ vector channel description is
\[y_p(t) = \sum_k x_k \cdot p(t - kT) + n_p(t) \] \hspace{1cm} (3.521)
where
\[y_p(t) = \begin{bmatrix} y_0(t) \\ y_1(t) \\ \vdots \\ y_{L-1}(t) \end{bmatrix}, \quad p(t) = \begin{bmatrix} p_0(t) \\ p_1(t) \\ \vdots \\ p_{L-1}(t) \end{bmatrix}, \quad \text{and} \quad n_p(t) = \begin{bmatrix} n_0(t) \\ n_1(t) \\ \vdots \\ n_{L-1}(t) \end{bmatrix} \] \hspace{1cm} (3.522)

From Section 1.1.5, generalization of an inner product
\[< x(t), y(t) > = \sum_i \int_{-\infty}^{\infty} x_i^*(t)y_i(t)dt \] \hspace{1cm} (3.523)
Without loss of generality, the noise can be considered to be white on each of the L diversity channels, independent of the other diversity channels, and with equal power spectral densities $\frac{N_0}{2}.23$

A single transmission of x_0 corresponds to a vector signal
\[y_p(t) = x_0 \cdot p(t) + n(t) = x_0 \cdot \|p\| \cdot \varphi_p(t) + n(t) \] \hspace{1cm} (3.524)
This situation generalizes slightly that considered in Chapter 1, where matched-filter demodulators there combined all time instants through integration, a generalization of the inner product’s usual sum of products. A matched filter in general simply combines the signal components from all dimensions that have independent (pre-whitened if necessary) noise. Here, the inner product includes also the components corresponding to each of the diversity channels so that all signal contributions are summed to create maximum signal-to-noise ratio. The relative weighting of the different diversity channels is thus maintained through L unnormalized parallel matched filters each corresponding to one of the diversity channels. When several copies are combined across several diversity channels or new dimensions (whether created in frequency, long delays in time, or space), the combination is known as the RAKE matched filter of Figure 3.61:

Definition 3.9.1 (RAKE matched filter) A RAKE matched filter is a set of parallel matched filters each operating on one of the diversity channels in a diversity transmission system that is followed by a summing device as shown in Figure 3.61. Mathematically, the operation is denoted by
\[y_p(t) = \sum_{l=0}^{L-1} p_l^*(-t) * y_l(t) \] \hspace{1cm} (3.525)

The RAKE was originally so named by Green and Price in 1958 because of the analogy of the various matched filters being the “fingers” of a garden rake and the sum corresponding to the collection of the fingers at the rake’s pole handle. The RAKE is sometimes also called a diversity combiner, although the latter term also applies to other lower-performance suboptimal combining methods that do not maximize overall signal-to-noise strength through matched filter. One structure, often called maximal combining, applies a matched filter only to the strongest of the L diversity paths to save complexity. The equivalent channel for this situation is then the channel corresponding to this maximum-strength individual path. The original RAKE concept was conceived in connection with a spread-spectrum transmission method that achieves diversity essentially in frequency (but more precisely in a code-division dimension to be discussed in the appendix of Chapter 5), but the matched filtering implied is

\[N_0 \] \hspace{1cm} (3.526)

In practice, the noises may be correlated with each other on different subchannels and not white with covariance matrix $R_n(t)$ and power spectral density matrix $R_n(f) = \frac{N_0}{2} \cdot R_n^{1/2}(f) R_n^{1/2}(f)$. By prefiltering the vector channel output by the matrix filter $R_n^{-1/2}(f)$, the noise will be whitened and the noise equivalent matrix channel becomes $P(f) \rightarrow R_n^{-1/2}(f)P(f)$. Analysis with the equivalent channel can then proceed as if the noise were white, independent on the diversity channels, and of the same variance $\frac{N_0}{2}$ on all.

271
easily generalized. Some of those who later studied diversity combining were not aware of the connection to the RAKE and thus the multiple names for the same structure, although diversity combining is a more accurate name for the method.

This text also defines \(r_l(t) = p_l(t) \ast \overline{p_l}(-t) \) and

\[
r(t) = \sum_{l=0}^{L-1} r_l(t) \tag{3.526}
\]

for an equivalent RAKE-output equivalent channel and the norm

\[
\|p\|^2 = \sum_{l=0}^{L-1} \|p_l\|^2 \ .
\tag{3.527}
\]

Then, the normalized equivalent channel \(q(t) \) is defined through

\[
r(t) = \|p\|^2 \cdot q(t) \ .
\tag{3.528}
\]

The sampled RAKE output has \(D \)-transform

\[
Y(D) = X(D) \cdot \|p\|^2 \cdot Q(D) + N(D) \ ,
\tag{3.529}
\]

which is essentially the same as the early channel models used without diversity except for the additional scale factor of \(\|p\|^2 \), which also occurs in the noise autocorrelation, which is

\[
\bar{R}_{nn}(D) = \frac{N_0}{2} \cdot \|p\|^2 \cdot Q(D) \ .
\tag{3.530}
\]

An \(\text{SNR}_{MFB} = \frac{\mathbb{E}[\|p\|^2]}{N_0} \) and all other detector and receiver principles previously developed in this text now apply directly.

\[
\begin{align*}
\begin{array}{c}
\rightarrow \quad p_0^*(-t) \\
\rightarrow \quad p_1^*(-t) \\
\vdots \\
\rightarrow \quad p_{L-1}^*(-t)
\end{array}
\end{align*}
\]

\[
\begin{align*}
y_0(t) & \quad \rightarrow \quad p_0^*(-t) \\
y_1(t) & \quad \rightarrow \quad p_1^*(-t) \\
\vdots & \\
y_{L-1}(t) & \quad \rightarrow \quad p_{L-1}^*(-t)
\end{align*}
\]

\[
\begin{align*}
+ \quad & \quad y_p(t) \\
\quad & \quad \vdots
\end{align*}
\]

Figure 3.61: The basic RAKE matched filter combiner.

If there were no ISI, or only one-shot transmission, the RAKE plus symbol-by-symbol detection would be an optimum ML/MAP detector. However, from Subsection 3.1.3, the set of samples created by this set of matched filters is sufficient. Thus, a single equalizer can be applied to the sum of the matched filter outputs without loss of generality as in Subsection 3.9.2. However, if the matched filters are absorbed into a fractionally-spaced and/or FIR equalizer, then the equalizers become distinct set of coefficients for each rail before being summed and input to a symbol-by-symbol detector as in Subsection 3.9.3.
3.9.2 Infinite-length MMSE Equalization Structures

The sampled RAKE output can be scaled by the factor $\|p\|^{-1}$ to obtain a model identical to that found earlier in Section 3.1 in Equation (3.26) with $Q(D)$ and $\|p\|$ as defined in Subsection 3.9.1. Thus, the MMSE-DFE, MMSE-LE, and ZF-LE/DFE all follow exactly as in Sections 3.5 - 3.7. The matched-filter bound SNR and each of the equalization structures tend to work better with diversity because $\|p\|^2$ is typically larger on the equivalent channel created by the RAKE. Indeed the RAKE will work better than any of the individual channels, or any subset of the diversity channels, with each of the equalizer structures.

Often while one diversity channel has severe characteristics, like an inband notch or poor transmission characteristic, a second channel is better. Thus, diversity systems tend to be more robust.

EXAMPLE 3.9.1 (Two ISI channels in parallel) Figure 3.62 illustrates two diversity channels with the same input and different intersymbol interference. The first upper channel has a sampled time equivalent of $1 + .9D^{-1}$ with noise variance per sample of .181 (and thus could be the channel consistently examined throughout this Chapter so $\tilde{E}_x = 1$). This channel is in effect anti-causal (or in reality, the .9 comes first). A second channel has causal response $1 + .8D$ with noise variance .164 per sample and is independent of the noise in the first channel. The ISI effectively spans 3 symbol periods among the two channels at a common receiver that will decide whether $x_k = \pm 1$ has been transmitted.

The SNR$_{MFB}$ for this channel remains $\text{SNR}_{MFB} = \frac{\tilde{E}_x \|p\|^2}{N_0}$, but it remains to compute this quantity correctly. First the noise needs to be whitened. While the two noises are independent, they do not have the same variance per sample, so a pre-whitening matrix is

$$
\begin{bmatrix}
1 & 0 \\
0 & \sqrt{\frac{.181}{.164}}
\end{bmatrix}
$$

and so then the energy quantified by $\|p\|^2$ is

$$
\|p\|^2 = \|p_1\|^2 + \|\tilde{p}_2\|^2 = 1.81 + \left(\frac{.181}{.164}\right) 1.64 = 2(1.81) .
$$

Then

$$
\text{SNR}_{MFB} = \frac{1 \cdot 2(1.81)}{.181} = 13 \text{ dB} .
$$

Because of diversity, this channel has a higher potential performance than the single channel alone. Clearly having a second look at the input through another channel can’t hurt (even if there is more ISI now). The ISI is characterized as always by $Q(D)$, which in this case is

$$
Q(D) = \frac{1}{2(1.81)} \left[(1 + .9D^{-1})(1 + .9D) + \frac{.181}{.164} (1 + .8D)(1 + .8D^{-1}) \right]
$$

$$
= .492D + 1 + .492D^{-1}
$$

$$
= .589 \cdot (1 + .835D) \cdot (1 + .835D^{-1})
$$

$$
\tilde{Q}(D) = .492D + (1 + 1/20) + .492D^{-1}
$$

$$
= .7082 \cdot (1 + .695D) \cdot (1 + .695D^{-1})
$$

Thus, the SNR of a MMSE-DFE would be

$$
\text{SNR}_{\text{MMSE-DFE,U}} = .7082(20) - 1 = 13.16 \text{ (11.15 dB) .}
$$

The improvement of diversity with respect to a single channel is about 2.8 dB in this case. The receiver is a MMSE-DFE essentially designed for the $1+.839D$ ISI channel after adding the matched-filter outputs. The loss with respect to the MFB is about 1.8 dB.
3.9.3 Finite-length Multidimensional Equalizers

The case of finite-length diversity equalization becomes more complex because the matched filters are implemented within the (possibly fractionally spaced) equalizers associated with each of the diversity subchannels. There may be thus many coefficients in such a diversity equalizer.24

In the case of finite-length equalizers shown in figure 3.63, each of the matched filters of the RAKE is replaced by a lowpass filter of wider bandwidth (usually \(l \) times wider as in Section 3.7), a sampling device at rate \(l/T \), and a fractionally spaced equalizer prior to the summing device. With vectors \(\mathbf{p}_k \) in Equation (3.293) now becoming \(l \cdot L \)-tuples,

\[
\mathbf{p}_k = \mathbf{p}(kT),
\]

as do the channel output vectors \(\mathbf{y}_k \) and the noise vector \(\mathbf{n}_k \), the channel input/output relationship (in Eq (3.295)) again becomes

\[
\mathbf{Y}_k = \begin{bmatrix}
\mathbf{y}_k \\
\mathbf{y}_{k-1} \\
\vdots \\
\mathbf{y}_{k-N_f+1}
\end{bmatrix} = \begin{bmatrix}
\mathbf{p}_0 & \mathbf{p}_1 & \ldots & \mathbf{p}_\nu & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{p}_0 & \mathbf{p}_1 & \ldots & \mathbf{p}_\nu & \mathbf{0} & \ldots & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\mathbf{0} & \ldots & \mathbf{0} & \mathbf{p}_0 & \mathbf{p}_1 & \ldots & \mathbf{p}_\nu
\end{bmatrix}\begin{bmatrix}
x_k \\
x_{k-1} \\
\vdots \\
x_{k-N_f-\nu+1}
\end{bmatrix} + \begin{bmatrix}
\mathbf{n}_k \\
\mathbf{n}_{k-1} \\
\vdots \\
\mathbf{n}_{k-N_f+1}
\end{bmatrix}
\]

The rest of Section 3.7 then directly applies with the matrix \(\mathbf{P} \) changing to include the larger \(l \cdot L \)-tuples corresponding to \(L \) diversity channels, and the corresponding equalizer \(\mathbf{W} \) having its \(1 \times L \) coefficients corresponding to \(w_0 \ldots w_{N_f} \). Each coefficient thus contains \(l \) values for each of the \(L \) equalizers.

The astute reader will note that the diversity equalizer is the same in principle as a fractionally spaced equalizer except that the oversampling that creates diversity in the FSE generalizes to simply any type of additional dimensions per symbol in the diversity equalizer. The decolor program can be used where the oversampling factor is simply \(l \cdot L \) and the vector of the impulse response is appropriately organized to have \(l \cdot L \) phases per entry. Often, \(l = 1 \), so there are just \(L \) antennas or lines of samples per symbol period entry in that input vector.

24Maximal combiners that select only one (the best) of the diversity channels for equalization are popular because they reduce the equalization complexity by at least a factor of \(L \) – and perhaps more when the best subchannel needs less equalization.
3.9.4 DFE RAKE Program

A DFE RAKE program similar to the DFERAKE matlab program has again been written by the students (and instructor debugging!) over the past several years. It is listed here and is somewhat self-explanatory if the reader is already using the DFECOLOR program.

```matlab
% DFE design program for RAKE receiver
% Prepared by: Debarag Banerjee, edited by Olutsin OLATUNBOSUN
% and Yun-Hsuan Sung to add colored and spatially correlated noise
% Significant Corrections by J. Cioffi and above to get correct results --
% March 2005

function [dfseSNR,W,b]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
% ------------------------------
% **** only computes SNR ****
% l = oversampling factor
% L = No. of fingers in RAKE
% p = pulse response matrix, oversampled at l (size), each row corresponding to a diversity path
% nff = number of feedforward taps for each RAKE finger
% nbb = number of feedback taps
% delay = delay of system <= nff+length of p - 2 - nbb
% if delay = -1, then choose best delay
% Ex = average energy of signals
% noise = noise autocorrelation vector (size L x l*nff)
% NOTE: noise is assumed to be stationary, but may be spatially correlated
% outputs:
% dfseSNR = equalizer SNR, unbiased in dB
% ------------------------------

siz = size(p,2);
L=size(p,1);
mu = ceil(siz/l)-1;
p = [p zeros(L,(mu+1)*l-siz)];

% error check
if nff<=0
    error('number of feedforward taps must be > 0');
```

Figure 3.63: Fractionally spaced RAKE MMSE-DFE.
end
if delay > (nff+nu-1-nbb)
 error('delay must be <= (nff+(length of p)-2-nbb)');
end
if delay < -1
 error('delay must be >= 0');
end

%%%
% if length(noise) ~= L*l*nff
% error('Length of noise autocorrelation vector must be L*l*nff');
% end
if size(noise,2) ~= l*nff | size(noise,1) ~= L
 error('Size of noise autocorrelation matrix must be L x l*nff');
end
%%%

%form ptmp = [p_0 p_1 ... p_nu] where p_i=[p(i*l) p(i*l-1)... p((i-1)*l+1)
for m=1:L
 ptmp((m-1)*l+1:m*l,1) = [p(m,1); zeros((l-1),1)];
end
for k=1:nu
 for m=1:L
 ptmp((m-1)*l+1:m*l,k+1) = conj((p(m,k*l+1:-1:(k-1)*l+2))');
 end
end
ptmp;

% form matrix P, vector channel matrix
P = zeros(nff*l*L*nbb,nff+nu);

%First construct the P matrix as in MMSE-LE
for k=1:nff,
P(((k-1)*l*L+1):(k*l*L),k:(k+nu)) = ptmp;
end

%Add in part needed for the feedback
P(nff*l*L+1:nff+1:L+nbb,delay+2:delay+1+nbb) = eye(nbb);
temp= zeros(1,nff+nu);
temp(delay+1)=1;

%%%
Rn = zeros(nff*l*L+nbb);
for i = 1:L
 n_t = toeplitz(noise(i,:));
 for j = 1:l:l*nff
 for k = 1:1:l*nff
 Rn((i-1)*l+1:(j-1)*L+1:i:1+(j-1)*L, (i-1)*l+1:(k-1)*L+1:i:1+(k-1)*L) = n_t(j:j+1-1,k:k+1-1);
 end
 end
end
Ex*P*P’;
Ry = Ex*P*P’ + Rn;
Rxy = Ex*temp*P’;
IRy=inv(Ry);
w_t = Rxy*IRy;

%Reshape the w_t matrix into the RAKE filter bank and feedback matrices
ww=reshape(w_t(1:nff*l*L),l*L,nff);
for m=1:L
 W(m,:)=reshape(ww((m-1)*l+1:m*l,1:nff),1,l*nff);
end
b=-w_t(nff*l*L+1:nff*l*L+nbb);
sigma_dfse = Ex - w_t*Rxy’;
dfseSNR = 10*log10(Ex/sigma_dfse - 1);

For the previous example, some command strings that work are (with whitened-noise equivalent channel first):

>> p
p = 0.9000 1.0000 0
 0 1.0500 0.8400
>> [snr,W,b] = dfeRAKE(1,p,6,1,5,1,[.181 zeros(1,5) ; .181 zeros(1,5)])

snr = 11.1465
W = 0.0213 -0.0439 0.0668 -0.0984 0.1430 0.3546
 -0.0027 0.0124 -0.0237 0.0382 0.4137 -0.0000
b = 0.7022

or with unequal-variance noise directly inserted

>> p1
p1 = 0.9000 1.0000 0
 0 1.0000 0.8000
>> [snr,W,b] = dfeRAKE(1,p1,6,1,5,1,[.181 zeros(1,5) ; .164 zeros(1,5)])

snr = 11.1486
W = 0.0213 -0.0439 0.0667 -0.0984 0.1430 0.3545
 -0.0028 0.0130 -0.0249 0.0401 0.4347 0.0000
b = 0.7022

Two outputs are not quite the same because of the finite number of taps.

3.9.5 Multichannel Transmission

Multichannel transmission in Chapters 4 and 5 is the logical extension of diversity when many inputs may share a transmission channel. In the multichannel case, each of many inputs may affect each of many outputs, logically extending the concept of intersymbol interference to other types of overlap than simple ISI. Interference from other transmissions is more generally called crosstalk. Different inputs may for instance occupy different frequency bands that may or may not overlap, or they may be transmitted from different antennas in a wireless system and so thus have different channels to some common receiver or set of receivers. Code division systems (See Chapter 5 Appendix) use different codes for the different sources. A diversity equalizer can be designed for some set of channel outputs for each and every of
the input sequences, leading to **multichannel transmission**. In effect the set of equalizers attempts to “diagonalize” the channels so that no input symbol from any source interferes with any other source at the output of each of the equalizers. From an equalizer perspective, the situation is simply multiple instances of the diversity equalizer already discussed in this section. However, when the transmit signals can be optimized also, there can be considerable improvement in the performance of the set of equalizers. Chapters 4 and 5 (EE379C) develop these concepts.

However, the reader may note that a system that divides the transmission band into several different frequency bands may indeed benefit from a reduced need for equalization within each band. Ideally, if each band is sufficiently narrow to be viewed as a “flat” channel, no equalizer is necessary. The SNR of each of these “sub-channels” relates (via the “gap” approximation) how many bits can be transferred with QAM on each. By allocating energy intelligently, such a system can be simpler (avoiding equalization complexity) and actually perform better than equalized wider-band QAM systems. While this chapter has developed in depth the concept of equalization because there are many wide-band QAM and PAM systems that are in use and thus benefit from equalization, an intuition that for the longest time transmission engineers might have been better off never needing the equalizer and simply transmitting in separate disjoint bands is well-founded. Chapters 4 and 5 support this intuition. Progress of understanding in the field of transmission should ultimately make equalization methods obsolete. As in many technical fields, this has become a line of confrontation between those resisting change and those with vision who see a better way.
3.10 MIMO/Matrix Equalizers

The extension of finite-length equalizers to MIMO was pioneered in this text and in the author’s entrepreneurial endeavors. Chapters 4 and 5 detail these concepts, while later Chapters (13 and 14) use these concepts to solve many common multiple-user problems of interest. This section instead extends Chapter 3’s basic infinite-length equalization designs to MIMO systems that are for a single user.

3.10.1 The MIMO Channel Model

A MIMO channel is \((L_y N) \times (L_x N)\) in general from Chapter 1, but this text has viewed transmissions as sequences of 1-dimensional real or 2-dimensional-complex symbols. Coded systems (see Chapters 9-11) simply use concatenated sets of these 1-dimensional-real and/or 2-dimensional-complex symbols to form “codewords.” Thus the theory developed here in Chapter 3 remains applicable also to coded systems. Further, the complex case contains within it the real case, so one theory applied throughout this chapter. Thus, the theory need no long carry the notational burden of Chapter 1’s \(NL\) doubly-indexed basis functions. The MIMO theory here can then focus on up to \(L_x\) different basis functions without further concern for the value of \(N\) (which will be 1 for real baseband and 2 for complex baseband).

The two theories of equalization can separate into space-time (this Section) as well as time-frequency (previous sections and some parts of Chapter 4) as the remainder of this text will consistently show.

The space-time MIMO channel (without loss of generality) can be viewed as being \((L_y \times L_x)\) on each symbol, if the input is viewed as a vector sequence of \(L_x \times 1\) complex-sample inputs that that then modulate the basis-function column vectors of \(L_x \times L_x\) matrix \(\Phi(t)\):

\[
\Phi(t) = \begin{bmatrix}
\varphi_{L_x,L_x}(t) & \varphi_{L_x,L_x-1}(t) & \ldots & \varphi_{L_x,1} \\
\varphi_{L_x-1,L_x}(t) & \varphi_{L_x-1,L_x-1}(t) & \ldots & \varphi_{L_x-1,1} \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{1,L_x} & \varphi_{1,L_x-1} & \ldots & \varphi_{1,1}(t)
\end{bmatrix}
= [\varphi_{L_x}(t) \varphi_{L_x-1}(t) \ldots \varphi_1(t)] \quad (3.543)
\]

\(\Phi(t)\)’s columns \(\varphi_l(t)\) for \(l = 1, \ldots, L_x\) are basis-vector functions (one for each of the \(L_x\) components of the input vector \(x_k\), and indeed each such basis vector could have \(L_x\) different components for each dimension, creating the \(L_x \times L_x\) matrix in (3.543). “Orthonormality” of the column basis vectors may be simply ensured because they correspond to different (non-mutually interfering, or non “crosstalking”) channel paths. Equivalently stated, the column vectors need not be “orthogonal” to one another in time-frequency if they are non overlapping in “space.” However, some channels may introduce crosstalk (which is really “intrasymbol” interference among the spatial dimensions that at least entered the channel free of such crosstalk), which is the spatial equivalent of intersymbol interference - just between the MIMO spatial dimensions instead of between successive symbols. There can still also be ISI between the successive overlapping vector symbols transmitted. Each transmit column vector though will have unit norm. A simple way of modeling such spatially orthogonal basis-function vectors is for \(\Phi(t)\) to be diagonal, probably with the same unit-norm basis function \(\varphi(t)\) along the constant diagonal. However, there is nothing that forces such diagonal structure in a more general modulator, and as later chapters show, it can be helpful to be non-diagonal if the ensuing channel is not a vector AWGN\(^{25}\).

With \(\Phi(t)\) having \(L_x\) normalized column basis-vector functions, the vector continuous-time transmit signal is

\[
x(t) = \sum_k \Phi(t-kT) \cdot x_k \quad ,
\]

consistent with the scalar successive-transmission development earlier in Section 3.1 of this chapter\(^{26}\).

The \(L_y\)-dimensional channel input simply has a component for each channel input dimension instead of

\(^{25}\)AWGN means white Gaussian noise on each dimension, but also of equal power and independent of all other \(L_y - 1\) dimensions for every dimension.

\(^{26}\)The use of a “·” in (3.544) simply denotes multiplication. This dot notation is used for appearance of results to separate quantities that might otherwise notationally confused - it can mean matrix multiply or scalar multiply in this text, depending on context.
being a complex scalar \((L_x = 1)\). The \(L_y\)-dimensional channel output is

\[
y_p(t) = H(t) \ast x(t) + n_p(t) ,
\]

where \(y_p(t)\) is \(L_y \times 1\), \(x(t)\) is \(L_x \times 1\), \(H(t)\) is \(L_y \times L_x\), and \(n_p(t)\) is an \(L_y \times 1\) random-process vector of noise. Diversity in Section 3.9 is a special case with \(L_x = 1\) but \(L_y > 1\). Indeed, MIMO is essentially \(L_x\) independent diversity channels each of size \(L_y \times 1\). In effect, the diversity analysis of Section ?? could just be applied to each input independently. However, the treatment here is more compact and allows some insights into the sum of the data rates of all these diversity channels as a direct calculation and as a direct interpretation of the MIMO-channel performance for a single user. This MIMO system then has matrix pulse response

\[
P(t) = H(t) \ast \Phi(t) ,
\]

and so the vector channel output (see Figure 3.65) is

\[
y_p(t) = \sum_k P(t - kT) \cdot x_k + n(t) .
\]

A MIMO “one-shot” would occur when only the single vector symbol \(x_0\) is sent. However, an \(L_y\)-dimensional channel output consequentially occurs with possible crosstalk between the output dimensions. An ML “MIMO symbol-by-symbol” detector is not a simple slicer on each dimension unless the channel is crosstalk free (or the inputs have been carefully designed, see Chapters 4 and 5). Nonetheless, a constant (operating within the symbol only on crosstalk) MMSE equalizer of \(L_x \times L_y\) coefficients could be designed for this one-shot system. The matched-filter-bound (MFB) measures if an equalizer’s performance is close to an upper bound (that may not always be attainable). This MFB concept makes more sense for MIMO if each dimension of a simple slicer were used in each output dimension (following a MIMO matched filter of size \(L_x \times L_y\)). Thus, the MFB is really a concept to be individually applied to each of these \(L_x\) dimensions. Thus, an \(L_x \times L_x\) diagonal matrix with the norms of individual matched-filter-output scalings on the diagonal will also be useful and is defined as

\[
\|P\| \overset{\Delta}{=} \begin{bmatrix} \|\tilde{P}_{L_x}\| & 0 & \ldots & 0 \\ 0 & \|\tilde{P}_{L_x-1}\| & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \|\tilde{P}_1\| \end{bmatrix} .
\]

Each norm on the diagonal is the sum of the integrals of each of the \(L_x\) columns of the pulse-response matrix \(P(t)\), so

\[
\|\tilde{P}_l\|^2 = \sum_{i=1}^{L_y} \int_{-\infty}^{\infty} |p_{l,i}(t)|^2 \cdot dt ,
\]

where

\[
\tilde{P}_l(t) \overset{\Delta}{=} \begin{bmatrix} p_{L_x,l}(t) \\ \vdots \\ p_{1,l}(t) \end{bmatrix} \quad l = 1, ..., L_x .
\]

Notational convenience considers an unscaled \(L_x \times L_y\) MIMO matched-filter matrix \(P^\ast(-t)\), so instead here this unnormalized matched filter output will instead be defined as:

\[
y_p(t) \rightarrow \sum_k P(t - kT) \cdot x_k + n_p(t) .
\]

The MIMO stationary noise vector has \(L_y \times L_y\) dimensional autocorrelation matrix function \(R_n(t)\). Ideally, \(R_{nn}(t) = \frac{N_0}{2} \cdot I \cdot \delta(t)\) so that the noise is white in all time dimensions and also uncorrelated between the different spatial dimensions, with the same variance \(\frac{N_0}{2}\) on all dimensions. Such a noise autocorrelation matrix function will have a matrix Fourier transform \(S_n(f) = \frac{N_0}{2} \cdot I_{L_y}\) (see Appendix
When $Sn(f)$ satisfies the MIMO Paley-Wiener criterion of Appendix A.3 (and all practical noises will),

$$\int_{-\infty}^{\infty} \frac{|\ln |Sn(f)||}{1+f^2} \cdot df < \infty ,$$ \hspace{1cm} (3.552)

then a factorization of $Sn(f)$ into a causal and causally invertible matrix filter exists (through matrix spectral factorization exists of Appendix A.3):

$$Sn(f) = \frac{N_0}{2} \cdot S_n^{1/2}(f) \cdot S_n^{1/2}(-f) .$$ \hspace{1cm} (3.553)

$S_n^{-1/2}(f)$ is the causal and causally invertible filter, and here to specify uniquely one such filter, this text will take as upper triangular such matrix. This $S_n^{-1/2}(f)$ is the causal, MIMO, noise-whitening matrix filter, and the MIMO white-noise equivalent channel becomes

$$\tilde{P}(f) = S_n^{-1/2}(f) \cdot P(f) ,$$ \hspace{1cm} (3.554)

which has inverse transform $\tilde{P}(t)$. Then the noise-whitened channel output becomes

$$y_p(t) = \sum_k \tilde{P}(t-kT) \cdot x_k + n_p(t) ,$$ \hspace{1cm} (3.555)

where $n_p(t)$ is now the desired white noise with variance $\frac{N_0}{2}$ in each and every (real) dimension.

The result of the matched-filter matrix operation then is

$$y(t) = \tilde{P}^\ast(-t) \ast y(t) .$$ \hspace{1cm} (3.556)

The unnormalized $L_x \times L_x$ ISI-crosstalk characterizing matrix function will then be defined as

$$R_p(t) = \tilde{P}^\ast(-t) \ast \tilde{P}(t) .$$ \hspace{1cm} (3.557)

Then, finally the sampled channel output vector is (with $R_{p,k} \triangleq R_p(kT)$ and noting therefore that $R_{p,k} = R_{p,-k}^\ast$ or $R_p(D) = R_p(D^\ast)$)

$$y_k = \sum_m R_{p,k-m} \cdot x_m + n_k .$$ \hspace{1cm} (3.558)

The vector D-Transform (see Appendix A.3) is correspondingly

$$Y(D) = R_p(D) \cdot X(D) + N(D) .$$ \hspace{1cm} (3.559)

There is no intersymbol interference (nor crosstalk) when $R_{p,k} = \| \hat{P} \|^2 \cdot \delta_k$ or $R_p(D) = \| \hat{P} \|^2$, basically a MIMO Nyquist criterion. In this Nyquist-satisfying case, the pulse response is such that symbol-by-symbol detection is optimum, and each dimension has an

$$\text{SNR}_{MFB}(l) = \| \hat{P} \|^2 \cdot \frac{\xi_l}{N_0} \quad l = 1, ..., L_x .$$ \hspace{1cm} (3.560)

The corresponding diagonal matrix is

$$\text{SNR}_{M4B} = \| \hat{P} \|^2 \cdot \frac{\xi_x}{N_0} .$$ \hspace{1cm} (3.561)

These matrix SNRs are explored further in the next subsection.

\footnote{Since the dimensions are spatial, the upper triangularity is not necessary, but it specifies a unique choice on the “square-root” matrix choices. Appendix A.3 considers such factorizations and separates a diagonal Cholesky-factor matrix that has its square root absorbed into the noise-whitening filter matrices of this section.}
3.10.2 Matrix SNRs

The SNR concept (for single user) MIMO/vector transmission systems remains a scalar for which the data rate (and/or bits/symbol) can be computed by the gap approximation, but is the ratio of the determinant of the transmitted symbol’s (in this chapter constant diagonal) autocorrelation matrix to the determinant of the MSE matrix of Appendix A.3. Figure 3.64 expands Figure 3.14 of Section 3.2 to the MIMO case.

\[
\text{SNR}(R) = \frac{|R_{xx}(D)|}{|R_{ee}(D)|} = \prod_{l=1}^{L_x} \frac{\hat{\xi}_x}{S_{e,0}(l)} = \prod_{l=1}^{L_x} \text{SNR}_l.
\]

(3.562)

If \(R_{ee}(D)\) is not diagonal, the symbol-by-symbol detector of Figure 3.64 will still independently detect each of the \(L_x\) dimensions, so (3.562) has consistent practical meaning, but then the dimensional SNR’s simply use the diagonal elements of \(R_{ee}(D = 0)\) as the entries of \(S_{e,0}(l)\), so Diag \(\{R_{ee}(0)\}\) = \(S_{e,0}(l)\). The notation “Diag \((R)\)” with a capital letter “D” for an \(N \times N\) square matrix means a square diagonal matrix that has a diagonal matching \(R\) and all zeros off-diagonal. The notation, “diag \((R)\)” means an \(N \times 1\) vector formed from the diagonal elements of \(R\), similar to the Matlab command. As in Appendix A.3, the individual optimization problems are separable if the receiver uses a MMSE criterion, and each dimension is an equalizer with a bias that can be removed, so

\[
\text{SNR}_{U,l} = \text{SNR}_l - 1
\]

(3.563)

define the unbiased SNR’s that can be obtained in the usual way with bias removal in MMSE equalization. Each SNR corresponds to one of the \(L_x\) MIMO dimensions so the data rate is the sum of the individual data rates for the entire \(L_x\)-dimensional symbol\(^{28}\). The over all number of bits per symbol is then (\(l = 2\) for real baseband and \(l = 1\) for complex baseband with gap \(\Gamma = 0\) dB)

\[
b = \sum_{l=1}^{L_x} b_l = \sum_{l=1}^{L_x} \frac{1}{l} \log_2 (1 + \text{SNR}_{U,l})
\]

(3.564)

\(^{28}\)Or \(2L_x\) real dimensions if the system is complex baseband, but consists of \(L_x\) complex dimensional channels.
\[
\begin{align*}
&= \frac{1}{l} \log_2 \prod_{l=1}^{L_x} (1 + \text{SNR}_{U,l}) \\
&= \frac{1}{l} \log_2 \left[\frac{|R_{xx}(D)|}{|R_{ee}(D)|} \right],
\end{align*}
\]
which also validates the utility of the ratio of determinants.

3.10.3 The MIMO MMSE DFE and Equalizers

Figure 3.65 redraws Figure 3.37 for the case of MIMO filters. All vector processes are shown in boldface, while the matrix filters are also in boldface. Dimensions have been included to facilitate understanding. This section will follow the earlier infinite-length scalar DFE development, starting immediately with MMSE.

The upper triangular feedback section eliminates intersymbol interference from previous \(L_x\)-dimensional symbols, but also eliminates some crosstalk from “earlier” decided dimensions. Specifically, a first decision is made on dimension 1 after all previous ISI corresponding to \(\hat{x}_{k-n}\) for all \(n \geq 1\) can be made by subtracting ISI from that sole dimension (since the feedback section is also upper triangular and then has only one non-zero coefficient in the bottom row). That first dimension’s current decision, plus all its previous decisions, can be used respectively to subtract crosstalk and ISI from the bottom dimension into the next dimension up. This process continues up the triangular feedback section where the top row uses the current decisions from all lower dimensions to eliminate current crosstalk along with all previous-decision dimensions’ crosstalk and ISI from its dimension. Thus, \(B(D)\) must be upper triangular, causal, and monic (1’s on the diagonal of \(B_0\)).

The **MIMO MMSE Decision Feedback Equalizer (M4-DFE)** jointly optimizes the settings of both the infinite-length \(L_x \times L_y\) matrix-sequence feedforward filter \(W_w\) and the causal infinite-length \(L_x \times L_x\) upper triangular monic matrix-sequence feedback filter \(\delta_k \cdot I_{L_x} - B_k\) to minimize the MSE. Appendix A.1 develops the orthogonality principal for vector processes and MIMO.

Definition 3.10.1 (Minimum Mean Square Error Vector for M4-DFE) The m4-DFE error signal is

\[
e_k = \hat{x}_k - \hat{z}_k.
\]

The MMSE for the M4-DFE is

\[
\sigma^2_{\text{MMSE-DFE}} \triangleq \min_{W(D), B(D)} E \{|R_{ee}(D)|\}.
\]

The \(L_x \times 1\) vector error sequence can be written as:

\[
E(D) = X(D) - W(D) \cdot Y(D) - [I - B(D)] \cdot X(D) = B(D) \cdot X(D) - W(D) \cdot Y(D).
\]
For any fixed \(B(D) \), \(E[E(D) Y^*(D^{-1})] = 0 \) to minimize MSE, which leads to the relation
\[
B(D) \cdot R_{xy}(D) - W(D) \cdot R_{yy}(D) = 0 \quad .
\]
(3.570)

Two correlation matrices of interest are (assuming the input has equal energy in all dimensions, \(\tilde{e}_x \))
\[
R_{xy}(D) = \tilde{e}_x \cdot R_p(D) \quad ,
\]
(3.571)
\[
R_{yy}(D) = \tilde{e}_x \cdot R_p(D) + \frac{N_0}{2} \cdot R_p(D) \quad ,
\]
(3.572)

The MMSE-MIMO LE (M4-LE) matrix filter then readily becomes
\[
W_{M4-LE}(D) = R_{xy}(D) \cdot R_{yy}^{-1}(D)
\]
(3.573)
\[
= \tilde{e}_x \cdot R_p(D) \cdot \left[\tilde{e}_x \cdot R_p^2(D) + \frac{N_0}{2} \cdot R_p(D) \right]^{-1}
\]
(3.574)
\[
= \frac{\tilde{e}_x \cdot R_p(D)}{\left[\tilde{e}_x \cdot R_p(D) + \frac{N_0}{2} \cdot I \right]} \cdot R_p(D)
\]
(3.575)
\[
= \tilde{e}_x \cdot R_p(D) \cdot R_p^{-1}(D) \cdot \left[\tilde{e}_x \cdot R_p(D) + \frac{N_0}{2} \cdot I \right]^{-1}
\]
(3.576)
\[
= \left[R_p(D) + SNR \right]^{-1}
\]
(3.577)

where \(SNR = \frac{\tilde{e}_x}{N_0} \cdot I \). The corresponding MMSE MIMO (M4-LE) matrix is (with \(B(D) = I \))
\[
S_{M4-LE} = \min_{W(D)} E \{ R_{e_{M4-LE} e_{M4-LE}}(D) \}
\]
(3.578)
\[
= R_{xx}(D) - R_{xy}(D) \cdot R_{yy}(D) \cdot R_{yx}(D)
\]
(3.579)
\[
= \tilde{e}_x \cdot I - \tilde{e}_x \cdot R_p(D) \cdot \left[\tilde{e}_x \cdot R_p^2(D) + \frac{N_0}{2} \cdot R_p(D) \right]^{-1} \cdot R_p(D)
\]
(3.580)
\[
= \tilde{e}_x \cdot \left[I - \left[R_p(D) + SNR^{-1} \right]^{-1} \cdot R_p(D) \right]
\]
(3.581)
\[
= \tilde{e}_x \cdot \left[\left[R_p(D) + SNR^{-1} \right]^{-1} \cdot R_p(D) \right]
\]
(3.582)
\[
= \tilde{e}_x \cdot R_p(D) \cdot \left[R_p(D) + SNR^{-1} \right]^{-1} \cdot \left[R_p(D) + SNR^{-1} - R_p(D) \right]
\]
(3.583)
\[
= \frac{N_0}{2} \cdot \left[R_p(D) + SNR^{-1} \right]^{-1}
\]
(3.584)
\[
\sigma^2_{M4-LE} = \frac{N_0}{2} \cdot \left[R_p(D) + SNR^{-1} \right]^{-1}
\]
(3.585)

A form similar to the scalar MMSE-LE version would define \(Q(D) \) through \(R_p(D) = \| \hat{P} \| \cdot Q(D) \cdot \| \hat{P} \| \), and then
\[
W_{M4-LE}(D) = \| \hat{P} \|^{-1} \cdot \left[Q(D) + SNR^{-1}_{M4B} \right]^{-1} \cdot \| \hat{P} \|^{-1}
\]
(3.586)

where the trailing factor \(\| \hat{P} \|^{-1} \) could be absorbed into the preceding matrix-matched filter to “normalize” it in Figure 3.65, and thus this development would exactly then parallel the scalar result (noting that multiplication by a non-constant diagonal matrix does not in general commute). Similarly,
\[
S_{M4-LE} = \frac{N_0}{2} \cdot \| \hat{P} \|^{-1} \cdot \left[Q(D) + SNR^{-1}_{M4B} \right]^{-1} \cdot \| \hat{P} \|^{-1}
\]
(3.587)
\[
\sigma^2_{M4-LE} = \frac{N_0}{2} \cdot \| \hat{P} \|^{-2} \cdot \left[Q(D) + SNR^{-1} \right]
\]
(3.588)
By linearity of MMSE estimates, then the FF filter matrix for any \(B(D) \) becomes

\[
W(D) = B(D) \cdot R_{xy}(D) \cdot R_{yy}^{-1}(D) \\
= B(D) \cdot [R_p(D) + SNR]^{-1} \\
= B(D) \cdot \|\hat{P}\|^{-1} \cdot [Q(D) + SNR^{-1}_{M4B}]^{-1} \cdot \|\hat{P}\|^{-1},
\]

for any upper triangular, monic, and causal \(B(D) \). Again, since the MMSE estimate is linear then

\[
E(D) = B(D) \cdot E_{M4-LE}(D).
\]

The autocorrelation function for the error sequence with arbitrary monic \(B(D) \) is

\[
Re_{e}(D) = B(D) \cdot Re_{M4-LE} e_{M4-LE}(D) \cdot B^*(D^{-*}) ,
\]

which has a form very similar to the scalar quantity. In the scalar case, a canonical factorization of the scalar \(Q(D) \) was used and was proportional to the (inverse of the) autocorrelation function of the MMSE of the LE, but not exactly equal. Here because matrices do not usually commute, the MIMO canonical factorization will be directly of \(Re_{e M4-LE} e_{M4-LE}(D) \), or via \((3.587)\) of \(\frac{N_0}{2} \|\hat{P}\| \cdot [Q(D) + SNR^{-1}_{M4B}] \|\hat{P}\| \), so

\[
Re_{e M4-LE} e_{M4-LE}(D)^{-1} = G(D) \cdot S_e \cdot G^*(D^{-*}) \quad \text{or}
\]

\[
[Q(D) + SNR^{-1}_{M4B}] = \|\hat{P}\|^{-1} \cdot G(D) \cdot S_e \cdot G^*(D^{-*}) \cdot \|\hat{P}\|^{-1}
\]

where \(G(D) \) is monic (Diag \(\{ G(0) \} = I \)), upper triangular, causal, and minimum-phase (causally invertible); \(S_e \) is diagonal with all positive elements. Substitution of the inverse factorization into \((3.593) \) produces

\[
Re_{e}(D) = \frac{N_0}{2} \cdot B(D) \cdot G(D) \cdot S_e \cdot G^*(D^{-*}) \cdot B^*(D^{-*}).
\]

The determinant \(|Re_{e}(D)| \) is the product of \((\frac{N_0}{2})^{s_x} \) with the determinants of the 5 matrices above, each of which is the product of the elements on the diagonal. Since \(B(D) \) and \(G(D) \) are both upper triangular, their product is also upper triangular (and they are both monic, which means that diagonal with \(D = 0 \) is all ones), and that product \(F = B(D) \cdot G(D) \) has a causal monic form \(I + F_1D + F_2D^2 + \ldots \). The product \(F(D)S_eF^*(D^{-*}) \) will have a weighted sum of positive terms with \(I \) as one of them (time zero-offset term) and will have all other terms as positive weights on \(F_k^2 \) and thus is minimized when when \(F_k = 0 \quad \forall \ k > 0 \), so \(B(D) = G(D) \) is the MMSE solution. Further the minimum value is \(Re_{e}(D) = S_e^{-1} \).

\[
Re_{e}(D) = S_e^{-1}
\]

\[
\sigma^2_{M4-DFE} \overset{\Delta}{=} |S_e^{-1}| \overset{\Delta}{=} S_{e,0}^{-1}.
\]

Lemma 3.10.1 (MMSE-DFE) The MMSE-DFE has feedforward matrix filter

\[
W(D) = W(D) = S_e^{-1} \cdot G^{-*}(D^{-*})
\]

(realed with delay, as it is strictly noncausal) and feedback section

\[
B(D) = G(D)
\]

where \(G(D) \) is the unique canonical factor of the following equation:

\[
\frac{N_0}{2} \cdot \|\hat{P}\| \cdot [Q(D) + SNR^{-1}_{M4B}] \cdot \|\hat{P}\| = G(D) \cdot S_e \cdot G^*(D^{-*}).
\]

This text also calls the joint matched-filter/sampler/W(D) combination in the forward path of the DFE the “MIMO Mean-Square Whitened Matched Filter (M4-WMF)”. These settings for the M4-DFE minimize the MSE as was shown above in \((3.598) \).
The matrix signal to noise ratio is

$$ SNR_{M4-DFE} = \frac{|R_{xx}|}{|S_e^1|} $$

(3.602)

$$ = \frac{(\hat{E}_x)^L_x}{\prod_{l=1}^{L_x} S_e(l)} $$

(3.603)

$$ = \prod_{l=1}^{L_x} SNR_{M4-DFE}(l) $$

(3.604)

and correspondingly each such individual SNR is biased and can be written as

$$ SNR_{M4-DFE}(l) = SNR_{M4-DFE,U}(l) + 1, $$

(3.605)

while also

$$ SNR_{M4-DFE} = SNR_{M4-DFE,U} + I. $$

(3.606)

The overall bits per symbol (with zero-dB gap) is written as (with $\bar{l} = 2$ when the signals are real baseband, and $\bar{l} = 1$ when complex baseband)

$$ b = \frac{1}{\bar{l}} \cdot \log_2 \left\{ \frac{|R_{xx}|}{|S_e|} \right\} $$

(3.607)

$$ b = \frac{1}{\bar{l}} \cdot \sum_{l=1}^{L_x} \cdot \log_2 \left[1 + SNR_{M4-DFE,U}(l) \right] $$

(3.608)

and with non-zero gap,

$$ b = \frac{1}{\bar{l}} \cdot \sum_{l=1}^{L_x} \cdot \log_2 \left[1 + \frac{SNR_{M4-DFE,U}(l)}{\Gamma} \right]. $$

(3.609)

To normalize to the number of dimensions, $\bar{b} = \frac{b}{L_x}.$

The process of current symbol previous-order crosstalk subtraction can be explicitly written by defining the ISI-free (but not current crosstalk-free) output

$$ z'_k = z_k - \sum_{l=1}^{\infty} G_l \cdot \hat{x}_{k-l}. $$

(3.610)

Any coefficient matrix of $G(D)$ can be written G_k with its $(m,n)^{th}$ element counting up and to the left from the bottom right corner where m is the row index and n is the column index, and $m = 0,...,L_x$ and also $n = 0,...,L_x$. Then, the current decisions can be written as (with sbs denoting simple one- (or two- if complex) dimensional slicing detection):

$$ \hat{x}_{0,k} = sbs_0 (z'_{0,k}) $$

(3.611)

$$ \hat{x}_{1,k} = sbs_1 (z'_{1,k} - G_0(1,0) \cdot \hat{x}_{0,k}) $$

(3.612)

$$ \hat{x}_{2,k} = sbs_2 (z'_{2,k} - G_0(2,1) \cdot \hat{x}_{1,k} - G_0(2,0) \cdot \hat{x}_{0,k}) $$

(3.613)

$$ \vdots $$

(3.614)

$$ \hat{x}_{L_x-1,k} = sbs_{L_x-1} \left(z'_{L_x-1,k} - \sum_{l=0}^{L_x-2} G_0(L_x - 1,l) \cdot \hat{x}_{l,k} \right). $$

(3.615)

3.10.4 MIMO Precoding

Tomlinson Precoders follow exactly as they did in the scalar case with the sbs above in Equations (3.611) - (3.615) being replaced by the modulo element in the transmitter. The signal constellation
on each dimension may vary so the modulo device corresponding to that dimension corresponds to the signal constellation used. Similar Laroia/Flexible precoders also operate in the same way with each spatial dimension have the correct constellation. To form these systems, an unbiased feedback matrix filter is necessary, which is found by computing the new unbiased feedback matrix filter

\[G_U(D) = [SNR_{M4-DFE} - I]^{-1} \cdot SNR_{M4-DFE} \left[G(D) - SNR^{-1}_{M4-DFE} \right]. \] (3.616)

\(G_U(D) \) may then replace \(G(D) \) in feedback section with the feedforward matrix-filter output in Figure 3.65 scaled up by \([SNR_{M4-DFE} - I]^{-1} \cdot SNR_{M4-DFE}\). However, the precoder will move the feedback section using \(G_U(D) \) to the transmitter in the same way as the scalar case, just for each dimension.

3.10.5 MIMO Zero-Forcing

The MIMO-ZF equalizers can be found from the M4 Equalizers by letting \(\text{SNR} \to \infty \) in all formulas and figures so far. However, this may lead to infinite noise enhancement for the MIMO-ZFE or to a unfactorable \(R_{ee}(D) \) in the ZF-DFE cases. When these events occur, ZF solutions do not exist as they correspond to channel and/or input singularity. Singularity is otherwise handled more carefully in Chapter 5. In effect the MIMO Channel must be “factorizable” for these solutions to exist, or equivalently the factorization

\[\| \tilde{P} \| \cdot Q(D) \cdot \| \tilde{P} \| = P_c(D) \cdot S_c \cdot P^*_c(D^{-*}) \] ,

exists. This means basically that \(Q(D) \) satisfies the MIMO Paley-Weiner Criterion in Appendix A.3.
3.11 Information Theoretic Approach to Decision Feedback

Subsection 3.2.1’s signal-to-noise ratio and Section 3.6’s filter settings for the MMSE-Decision Feedback Equalizer also follow from some basic information-theoretic results for Gaussian sequences. Chapter 2, and also Appendix A define information measures that this section uses to establish an information-theoretic approach canonical equalization. Subsection 3.11.1 revisits the basic information measures of entropy and mutual information for Gaussian sequences, particularly that MMSE estimation is fundamentally related to conditional entropy for jointly Gaussian stationary sequences.

Combination of the MMSE results with the information measures then simply relate the “CDEF” result of decision feedback equalization in Section 3.11.2, which suggests that good codes in combination with an appropriate (set of) DFE(s) can reliably allow the highest possible transmission rates, even though the receiver is not MAP/ML. Such a result is surprising as equalization methods as originally conceived are decidedly suboptimal, but with care of the input spectrum choice can be made to perform at effectively optimum, or “canonical” levels.

3.11.1 MMSE Estimation and Conditional Entropy

Given two complex jointly Gaussian random variables, \(x \) and \(y \), the conditional probability density \(p_{x/y} \) is also a Gaussian density and has mean \(E[x/y] \) equal to the MMSE estimate of \(x \) given \(y \). (This result is easily proved as an exercise by simply taking the ratio of \(p_{x,y} \) to \(p_y \), which are both Gaussian with the general \(N \)-complex-dimensional \((2N \) real dimensions) form. The (complex) Gaussian vector distribution \(1/(\pi^N|Rx|) \cdot e^{-|x-u_x|Rx^{-1}|x-u_x|} \), where \(Rx \) is the covariance matrix and \(u_x \) is the mean.) The entropy (see Chapter 2) of a complex Gaussian random variable is

\[
H_x = \log_2(\pi e E_x) \quad ,
\]

where \(E_x \) is the mean-square value of \(x \). Thus, the conditional entropy of \(x \) given \(y \) is

\[
H_{x/y} = \log_2(\pi e \sigma^2_{x/y}) \quad ,
\]

where \(\sigma^2_{x/y} \) is the mean-square value of \(x \) given \(y \) because \(p_{x/y} \) is also a Gaussian distribution. Entropy can be normalized to the number of real dimensions, and complex random variables in passband transmission are designed to have the same variance in both real and imaginary dimensions, which is 1/2 the value of the complex variance. Thus, \(H_x = \frac{1}{2} \log_2(2\pi e E_x) \) whether \(x \) is real or complex. These results generalize to jointly \(N \)-complex-dimensional non-singular Gaussian random vectors (so \(N = 2N \) real dimensions) as

\[
H_x = \log_2\{(\pi e)^N |Rx|\}
\]

and

\[
H_{x/y} = \log_2\{(\pi e)^N |Rx/y|\}
\]

respectively, where \(R_{x/y} = Rx - RyRy^{-1}Rx \) is the autocorrelation matrix of the error associated with the vector MMSE estimate of \(x \) from \(y \). As always \(Rx = Rx \) \(= \frac{1}{N} \cdot Rx \). Again, per-dimensional quanties are found by dividing by the number of real dimensions \(N = 2N \): \(H_x = \frac{1}{2} \log_2\{(\pi e)|Rx|^{1/N}\} \). If \(x = x \), i.e., a scalar, then \(Rx = 2E_x \) in the entropy formula with \(N = 1 \) and all per-dimensional results are consistent.\(^{29}\)

\(^{29}\)The Gaussian probability distribution for any singular dimension would essentially be independent with probability 1 and thus eliminate itself from the overall probability density in practical terms [factoring out 1], leaving only those dimensions that are random, so the entropy in the singular case would simply be the entropy of the non-singular dimensions or products of the non-zero eigenvalues of the matrix \(Rx \), which here is simply denoted as \(|Rx| \).

\(^{30}\)For the interested in alternative expressions (that provide the same entropy): If \(x \) is real, then

\[
H_x = \frac{1}{2N} \log_2 \left[(2\pi e)^N \cdot |NR_{x}| \right] \quad , \quad \text{(3.622)}
\]

\[
= \frac{1}{2} \log_2 \left[(2N\pi e) \cdot |Rx|^{1/N} \right] \quad , \quad \text{(3.623)}
\]

288
For stationary Gaussian sequences, the **chain rule** of entropy allows computation of the entropy of a Gaussian sequence. The chain rule for a Gaussian random vector \(\mathbf{x} = [x_k, x_{k-1}, \ldots, x_0] \) is

\[
H_{\mathbf{x}} = H_{x_k/x_{k-1}, \ldots, x_0} + H_{x_{k-1}/x_{k-2}, \ldots, x_0} + \ldots + H_{x_1/x_0} + H_{x_0} = \sum_{n=0}^{k} H_{x_n/x_{n-1}, \ldots, x_0} .
\]

(3.627)

\((H_{x_0})_{-1} \triangleq H_{x_0} \) The first \(k \) terms in the sum above are conditional entropies that each equal the logarithm of \(\pi e \) times the MMSE associated with prediction of a component of \(\mathbf{x} \) based on its past values. The entropy of a stationary Gaussian sequence is defined by the limit of the entropy of the vector \([x_k, \ldots, x_0] \), normalized to the number of dimensions:

\[
H_{X(D)} = \lim_{k \to \infty} \frac{1}{k+1} \sum_{n=0}^{k} H_{x_n/x_{n-1}, \ldots, x_0} \text{ bits/complex dimension.}
\]

(3.628)

For an infinite-length stationary sequence, essentially all the terms in the sum above must be the same, so

\[
H_{X(D)} = \log_2 \left(\frac{\pi e S_x}{S_x} \right)
\]

(3.629)

where \(S_x \) is the MMSE associated with computing \(x_k \) from its past, which MMSE linear prediction can be implemented as a monic causal filter:

\[
V(D) = A(D) \cdot X(D)
\]

(3.630)

so the product corresponds to

\[
v_k = x_k + a_1 \cdot x_{k-1} + a_2 \cdot x_{k-2} + \ldots .
\]

(3.631)

Then, the mean-square prediction error is \(E[\|v_k\|^2] \), which is the time-zero value of the autocorrelation function

\[
R_{vv}(D) = A(D) \cdot R_{xx}(D) \cdot A^*(D^{-*}) .
\]

(3.632)

For Gaussian processes, the MMSE estimate is linear, and is best found by canonical factorization\(^{31} \) of its autocorrelation function:

\[
R_{x}(D) = S_x \cdot G_x(D) \cdot G_x^*(D^{-*}) ,
\]

(3.633)

where \(S_x \) is a positive constant and \(G_x(D) \) is causal, monic, and minimum phase. The time-zero value of \(R_{vv}(D) \) is then found as

\[
E[\|v_k\|^2] = S_x \cdot \|A/G_x\|^2 ,
\]

(3.634)

which is minimized for monic causal choice of \(A \) when \(A(D) = 1/G_x(D) \). This MMSE linear prediction filter is then shown in the lower filter in Figure 3.66. \(S_x \) is the MMSE. The output process \(V(D) \) is generated by linear prediction, and is also Gaussian and sometimes called the **innovations sequence**. This process carries the essential information for the process \(X(D) \), and \(X(D) \) can be generated causally from \(V(D) \) by processing with \(G_x(D) \) to shape the power spectrum, alter the power/energy, but not change the information content of the process, as in Figure 3.66. When \(X(D) \) is white (independent and identically distributed over all time samples \(k \)), it equals its innovations.

\(^{31}\) Presuming Appendix ??'s Paley-Wiener criterion is satisfied for the process.
Figure 3.66: Illustration of Linear Prediction and relation to entropy for stationary Gaussian process.

From Chapter 2, the mutual information between two random variables x and y is

$$I(x;y) \triangleq H_x - H_{x/y}$$

$$= \log_2 \left(\frac{S_x}{\sigma^2_{x/y}} \right) = \log_2 (1 + \text{SNR}_{\text{mmse,u}})$$

$$= H_y - H_{y/x}$$

$$= \log_2 \left(\frac{S_y}{\sigma^2_{y/x}} \right),$$

showing a symmetry between x and y in estimation, related through the common SNR that characterizes MMSE estimation,

$$1 + \text{SNR}_{\text{mmse,u}} = \frac{S_x}{\sigma^2_{x/y}} = \frac{S_y}{\sigma^2_{y/x}}.$$ \hfill (3.639)

Equation 3.636 uses the unbiased SNR. For an AWGN, $y = x + n$, $S_y = E_x + \sigma^2 = E_x + \sigma^2_{y/x}$. Since $\text{SNR} \triangleq \bar{E}_x/\sigma^2$, then Equation 3.639 relates that

$$1 + \text{SNR}_{\text{mmse,u}} = 1 + \text{SNR},$$

and thus

$$\text{SNR}_{\text{mmse,u}} = \text{SNR}.$$ \hfill (3.641)

Thus the unbiased SNR characterizing the forward direction of this AWGN channel is thus also equal to the unbiased SNR ($\text{SNR}_{\text{mmse,u}}$) in estimating the backward channel of x given y, a fact well established in Subsection 3.2.2. The result will extend to random vectors where the variance quantities are replaced by determinants of covariance matrices as in the next subsection.

3.11.2 The relationship of the MMSE-DFE to mutual information

In data transmission, the largest reliably transmitted data rate for a given input sequence covariance/spectrum is the mutual information between the sequence and the channel output sequence (see Chapter 2). This result presumes maximum-likelihood detection after observing the entire output sequence $Y(D)$ for the entire input sequence $X(D)$. For the ISI channel, this mutual information is

$$\tilde{I}(X(D); Y(D)) = \tilde{H}_X(D) - \tilde{H}_{X(D)/Y(D)}.$$ \hfill (3.642)
The entropy of a stationary Gaussian sequence is determined by the innovations process, or equivalently its MMSE estimate given its past, thus (3.642) becomes
\[
\bar{I}(X(D); Y(D)) = \frac{1}{2} \cdot \log_2 \left(\frac{\pi e \sigma^2_{\text{MMSE-DFE}}}{} \right) - \frac{1}{2} \cdot \log_2 \left(\frac{\pi e S_x}{} \right) - 1.
\] (3.643)

The main observation used in the last 3 equations above is that the conditional entropy of \(x_k \), given the entire sequence \(Y(D) \) and the past of the sequence \(x_k \) exactly depends upon the MMSE estimation problem that the MMSE-DFE solves. Thus the variance associated with the conditional entropy is then the MMSE of the MMSE-DFE. This result was originally noted by four authors and is known as the CDEF result (the CDEF result was actually proved by a more circuitous route than in this chapter, with the shorter proof being first shown to the author by Dr. Charles Rohrs of Tellabs Research, Notre Dame, IN).

Lemma 3.11.1 (CDEF Result) The unbiased SNR of a MMSE-DFE is related to mutual information for a linear ISI channel with additive white Gaussian noise in exactly the same formula as the SNR of an ISI-free channel is related to the mutual information of that channel:
\[
\text{SNR}_{\text{MMSE-DFE,U}} = 2^{2I} - 1,
\]
(3.647)

where the mutual information \(I \) is computed assuming jointly Gaussian stationary \(X(D) \) and \(Y(D) \), and only when the MMSE-DFE exists.

Proof: Follows development above in Equations (3.643)-(3.646). QED.

The CDEF result has stunning implications for transmission on the AWGN channel with linear ISI: It essentially states that the suboptimum MMSE-DFE detector, when combined with the same good codes that allow transmission at or near the highest data rates on the ISI-free channel, will attain the

Figure 3.68: CDEF canonical equivalent AWGN channel to MMSE-DFE where codes with gap Γ from capacity on the AWGN channel can be re-used to have the same gap to capacity on the ISI channel.

highest possible data rates reliably. This result will be the same as Shannon’s infinite-dimensional MT result of Subsection 3.12.2. In all cases, the form of the mutual information used depends on Gaussian $X(D)$. Since a Gaussian $X(D)$ never quite occurs in practice, all analysis is approximate to within the constraints of a finite non-zero gap, $\Gamma > 0$ dB as always in this Chapter, and one could write $\bar{b} = \frac{1}{2} \log_2 \left(1 + \frac{\text{SNR}_{\text{MMSE-DFE,U}}}{\Gamma} \right) \leq \bar{I}$ when the DFE exists. The equality holds when the gap is 0 dB.

Figure 3.67 depicts the estimation problem associated with $I(X(D); Y(D))$. This particular interpretation shows that the MMSE-DFE structure, when it exists, can be used to approach capacity with $\Gamma \to 0$ dB with the same codes that are used to approach capacity on the AWGN. This implies the MMSE-DFE could then be canonical, especially if the optimum energy distribution were used by the transmitter to maximize $\bar{I}(X(D); Y(D))$ to capacity.

Definition 3.11.1 (Canonical Performance) The performance of a transmission design is said to be canonical if the signal-to-noise ratio of the equivalent AWGN characterizing the system is $2^{2\bar{I}} - 1$ when the gap is $\Gamma = 0$ dB.

However, there are restrictions on the above CDEF result that were not made explicit to simplify the developments. In particular, the designer must optimize the transmit filter for the MMSE-DFE to get the highest mutual information. This process can, and almost always does, lead to unrealizable filters. Happily, there are solutions, but the resulting structures are not the traditional MMSE-DFE except in special cases. Subsections 3.12.2 and 3.12.3 study the necessary modifications of the DFE structure.

3.11.3 Canonical Channel Models

The symmetry of mutual information between $X(D)$ and $Y(D)$ suggest two interpretations of the relationship between $X(D)$ and $Y(D)$, known as the canonical channel models of Figure 3.69. The channel

误差传播对非零间隙码会导致偏差。

292
autocorrelation is \(r(t) = p(t) * p^*(-t) \) (where any minor transmit and receive analog filtering has been absorbed into the channel impulse/pulse response, while any innovations filtering remains separate), and \(R(D) = \sum_k r(kT) \cdot D^k \). \(Y(D) \) again corresponds to the overall channel shaping at the sampled matched-filter output.

Definition 3.11.2 (Canonical Channel) A *canonical channel* is one in which the linear function or matrix characterizing ISI (or more generally cross-dimensional interference as occurs from Sections 3.11.3 onward) is equal to the autocorrelation function (or matrix) of the additive independent interference. Interference can be Gaussian noise, or some combination of additive Gaussian noise and residual ISI.

Canonical channels can lead to canonical performance with the proper design of receiver. There are two canonical channels of interest in this chapter:

The **forward canonical model** has

\[
Y(D) = R(D) \cdot X(D) + N'(D) \quad (3.648)
\]

where \(N'(D) \) is the Gaussian noise at the output of the matched filter with autocorrelation function \(\frac{N_0^2}{T} R(D) \). Thus the noise power spectral density and the channel filtering have the same shape \(R(e^{-j\omega T}) \). The first term on the right in (3.648) is the MMSE estimate of \(Y(D) \) given \(X(D) \) and \(N'(D) \), the MMSE, and \(X(D) \) are independent. The **backward canonical model** is

\[
X(D) = W(D) \cdot Y(D) + E(D) \quad (3.649)
\]

where (modulo scaling by \(\|p\|^{-1} \)) \(W(D) \) is the MMSE-LE, and where \(E(D) \) is the MMSE error sequence for the MMSE-LE. The first term on the right in (3.649) is the MMSE estimate of \(X(D) \) given \(Y(D) \). The shape of the equalizer and the error-sequence’s power spectral density are both \(\tilde{R}_{ee}(e^{-j\omega T}) \), since \(\tilde{R}_{ee}(D) = \frac{N_0^2}{\|p\|^2 \cdot Q(D) + \frac{N_0^2}{T} \cdot \mathbb{E}[\|p\|^2]} = \frac{N_0^2}{T} \cdot W(D) \). Canonical channels always exhibit a response with the same shaping as the power spectral density of the additive Gaussian noise.

It is relatively simple to construct DFE’s from canonical models: For the forward model, the receiver processes \(Y(D) \) by the inverse of the anticausal spectral factor of \(R(D) = (S_r \cdot G_r(D) \cdot G_r^*(D^{-*}) \) to obtain

\[
\frac{Y(D)}{S_r \cdot G_r^*(D^{-*})} = G_r(D) \cdot X(D) + N''(D) \quad (3.650)
\]

where \(N''(D) \) is white Gaussian noise with energy per dimension \(\frac{N_0^2}{S_r} \). Since \(G_r(D) \) is monic, causal, and minimum-phase, a DFE can be readily implemented. This DFE is the ZF-DFE. A forward canonical channel model is illustrated in Figure 3.69.
model will always produce a ZF-DFE. The receiver is not optimum in general mainly because the DFE is not optimum – furthermore, the suboptimum DFE implied is not of highest SNR because the DFE is based on a model that is for the problem of estimating \(Y(D) \) from \(X(D) \). The DFE from the backward model is the MMSE-DFE. Noting that
\[
R(D) + \frac{1}{\text{SNR}} = \|p\|^2 \cdot \left[Q(D) + \frac{1}{\text{SNR}_{MFB}} \right] = \gamma_0 \cdot \|p\|^2 \cdot G(D) \cdot G^*_r(D^{-*}) ,
\]
with \(S_0 = \gamma_0 \cdot \|p\|^2 \), then
\[
W(D) = \frac{1}{S_0 \cdot G^*_r(D^{-*})} .
\]
Then also the action of the feedforward filter \(W(D) \) on the sampled matched-filter output \(Y(D) \) is
\[
\frac{Y(D)}{S_0 \cdot G^*_r(D^{-*})} = G(D) \cdot X(D) - G(D) \cdot E(D) = G(D) \cdot X(D) - E'(D) .
\]
where \(E'(D) \) is the MMSE sequence associated with the MMSE-DFE and is white (and Gaussian when \(X(D) \) is Gaussian) and has energy per dimension \(\frac{N_0^2}{S_0} \).

The forward and backward canonical channel models have the same mutual information between input and output. In the backward model, \(Y(D) \) is considered the input, and \(X(D) \) is the corresponding output, with \(E(D) \) as the noise. Both channels have the same maximum \(b \) of \(I(X(D); Y(D)) \), and it is the backward channel that describes the MMSE-DFE receiver’s action. The operation of decoding or slicing in an actual receiver that uses previous decisions to remove the effect of the causal monic \(G_r(D) \) or \(G(D) \) through decision feedback in (3.652) or (3.653) is information lossy in general, confirming that DFE’s are not optimum ML detectors. However, for the backward channel only, the SNR\(_{MMSE-DFE,U} \) is equal to \(2^{2I(X(D);Y(D))} - 1 \), which is the maximum SNR value for the additive white noise/distortion channel created by the MMSE-DFE. Thus, the information loss in the MMSE-DFE does not cause a reduction in achievable data rate and indeed a code with a given gap to capacity on the AWGN channel would be just as close to the corresponding capacity for a bandlimited channel, even when the suboptimum-detector MMSE-DFE is used, as long as decisions are correct, which they would be when \(\Gamma = 0 \) dB.
3.12 Construction of the Optimized DFE Input

The CDEF result shows a relationship between mutual information $\bar{I}(X(D);Y(D))$ and $\text{SNR}_{\text{MMSE-DFE,U}}$ for an AWGN equivalent of the ISI-channel that is the same as the relationship between $\bar{I}(x;y)$ and SNR as for the (ISI-free) AWGN channel. Thus, these same good codes that bring performance to within gap Γ of capacity on the AWGN channel can then be applied (ignoring error propagation\(^\text{34}\)) to a MMSE-DFE system to achieve the same gap from the ISI-channel’s capacity since it too looks like an AWGN with the capacity-achieving SNR.

To this point, the MMSE-DFE has used an i.i.d. input sequence x_k, which does not usually maximize $\bar{I}(X(D);Y(D))$. Maximization of $\bar{I}(X(D);Y(D))$ in Subsection 3.12.2 develops a best “water-filling (WF)” spectrum. This WF power spectrum maximizes $\bar{I}(X(D);Y(D))$. A designer might then assume that MMSE-DFE transmit-filter construction with the optimum power-spectral density would then maximize $\text{SNR}_{\text{MMSE-DFE,U}} = 2^{2\bar{I}(X(D);Y(D))} - 1$. This is correct if the measure of the optimum spectrum’s band is equal to the Nyquist bandwidth, i.e. $|\Omega^{\text{opt}}| = 1/T$, or equivalently, all frequencies (except a countable number of infinitessimally narrow notches) must be used by water-filling. This rarely occurs by accident\(^\text{35}\), and so the designer must be careful in selecting the symbol rates and carrier frequencies of a minimum-size set of QAM/MMSE-DFE channels that can be made almost equivalent\(^\text{36}\).

It is important to distinguish coding, which here is restricted to mean the use of codes like trellis codes, block codes, turbo codes, etc. (see Chapters 10 and 11 for detailed coding development) on an AWGN channel from the concept of spectrum design (sometimes often also called “coding” in the literature in a more broad use of the term “coding”). This chapter focuses on spectrum or input design and presumes use of good known codes for the AWGN channel in addition to the designed spectrum. The two effects are here made independent for the infinite-length MMSE-DFE. This section investigates the designed spectra or input to channels. Chapter 2 investigates code use.

This section addresses transmit-signal spectrum optimization, which finds best settings for the transmit filter(s), symbol rate(s), and carrier frequency(les). Subsection 3.12.1 begins with a review of the discrete-time Paley-Wiener (PW) criterion (see Appendix A.2), which is necessary for a canonical factorization to exist for a random sequence’s power spectral density. With this PW criterion in mind, Subsection 3.12.2 maximizes $\text{SNR}_{\text{MMSE-DFE,U}}$ over the transmit filter to find a desired transmit power spectral density, which has a “water-fill shape” when it exists. Subsections 3.12.3 then studies the choice of symbol rates, and possibly carrier frequencies, for a continuous-time channel so that the PW criterion will always be satisfied. Such optimization in these 3 subsections for different increasingly more general cases enables implementation of a countable set realizable transmit filters in each disjoint continuous-time/frequency water-filling band of nonzero measure. Subsection 3.12.5 culminates in the definition of the transmit-optimized MMSE-DFE, as a set of MMSE-DFEs.

3.12.1 The Discrete-Time Paley-Wiener Criterion (PWC) and Filter Synthesis

From Appendix A.2, the discrete-time PWC is\(^\text{37}\)

Theorem 3.12.1 (Discrete-Time Paley Wiener) The canonical factorization

\[R_{xx}(D) = S_x \cdot G_x(D) \cdot G_x^*(D^{-1}) \]

of the power spectral density of a stationary random sequence x_k **exists if and only if**

\[\int_{-\pi/T}^{\pi/T} |\ln R_{xx}(e^{-j\omega T})|d\omega < \infty. \]

\[\text{(3.654)} \]

Proof: The proof appears in Appendix A.2.

\(^{34}\)To ensure avoidance of error-propagation with a code having $\Gamma > 0$ dB, a full maximum-likelihood detector on the entire sequence that would compare the channel-output sequences against all possible noise-free channel-filtered versions of the known possible transmitted codeword sequences. This would ensure the same performance as no error propagation and thus achieve the gap-reduced capacity for this channel at the target P_e.

\(^{35}\)Some designers of single-carrier QAM systems often err in assuming the full-spectrum-measure use does occur by accident only to find their system does not perform as expected.

\(^{36}\)“Almost” because error propagation, or roughly equivalently precoder loss, always reduce even the best-designed DFE systems’ performance slightly.
From Section 3.11, the factor \(G_x(D) \) is monic, causal, and minimum phase, and there exists a white innovations process \(v_k \) with energy per sample \(E_v = S_x \) and autocorrelation function \(R_{vv}(D) = S_x \). The process \(X(D) \) can be constructed from \(V(D) \) according to Figure 3.66 as

\[X(D) = V(D) \cdot G_x(D) \]

(3.655)

Any process so constructed can be inverted to get the innovations process as also shown in Figure 3.66 as (even when \(G_x(D) \) has zeros on the unit circle or equivalently the spectrum has a countable number of “notches”)

\[V(D) = \frac{X(D)}{G_x(D)} \]

(3.656)

as also shown in Figure 3.66. There is a causal and causally invertible relationship between \(X(D) \) and \(V(D) \) that allows realizable synthesis or filter implementation relating the two random sequences. Random sequences with power spectra that do not satisfy the PW criterion can not be so constructed from a white innovations sequence. As shown in Subsection 3.11.1, the innovations sequence determines the information content of the sequence. In data transmission, the innovations sequence is the message sequence to be transmitted.

For the MMSE-DFE in Chapter 3, the sequence \(X(D) \) was white, and so equals its innovations, \(X(D) = V(D) \).

EXAMPLE 3.12.1 (White Sequence) A real random sequence taking equiprobable values \(\pm 1 \) with \(R_{xx}(D) = E_x = 1 \) satisfies the Paley Wiener Criterion trivially and has innovations equal to itself \(X(D) = V(D) \), \(G_x(D) = 1 \). The entropy would also be \(\bar{H}_x = 1 \) for this binary sequence. As in Appendix A, if this sequence is instead selected from a Gaussian distribution, then the factorizations remain the same, but this entropy is \(\bar{H}_x = .5 \log_2(2\pi \cdot e \cdot E_x) \) bits/dimension, and \(H_x = \log_2(\pi \cdot e \cdot E_x) \) bits per symbol if this random sequence is complex. The spectrum is shown in Figure 3.70(a).

EXAMPLE 3.12.2 (AMI Sequence) The AMI sequence was discussed early in Subsection 3.8.3 on partial-response channels. The AMI encoder transmits successive differences of the actual channel inputs (this “encoder” can happen naturally on channels that block DC) so the encoder is in effect the channel prior to the addition of WGN). This action can be described or approximated by the D-transform \(1 - D \). The consequent AMI sequence then has \(R_{xx}(D) = -1D^{-1} + 2 - D \) clearly factors into \(R_{xx}(D) = 1 \cdot (1 - D)(1 - D^{-1}) \) and thus must satisfy the Paley Wiener Criterion. The innovations sequence is \(V(D) = X(D)/(1 - D) \) and has unit energy per sample.\(^{37}\) The energy per sample of \(X(D) \) is \(r_{xx,0} = 2 \). For the binary case, the entropy is that of the input \(v(D) \), which is 1 bit/dimension if \(v_k = \pm 1 \). For the Gaussian case, the entropy is \(\bar{H}_x = .5 \log_2(2\pi \cdot e \cdot E_x) \) bits/dimension – the same entropies as in Example 3.12.1, even though the spectrum in Figure 3.70(b) is different.

The last example illustrates that the innovations never has energy/sample greater than the sequence from which it is derived.

EXAMPLE 3.12.3 (Ideal Lowpass Process) A sequence with \(\zeta < 1 \) is a positive constant)

\[R_{xx}(e^{-j\omega T}) = \begin{cases} 1 & |\omega| < \zeta \frac{\pi}{T} \\ 0 & |\omega| \geq \zeta \frac{\pi}{T} \end{cases} \]

(3.657)

does NOT satisfy the PW criterion and has power-spectral density shown in Figure 3.70(c). This process cannot be realized by passing a white information sequence through a “brickwall lowpass filter” because that filter is always noncausal even with arbitrarily large delay in implementation. An approximation of such a filter with a causal filter, which would lead to a \(^{37}\)This filter is marginally stable in that a pole is on the unit circle - however, the input to it has zero energy at this location (DC).
\[
S_x(e^{-j\omega T}) = E_x
\]

(a) Example 5.2.1

\[
S_x(e^{-j\omega T}) = 2 - 2\cos(\omega T)
\]

(b) Example 5.2.2

\[
S_x(f) = \frac{T}{\xi}
\]

(c) Example 5.2.3

Figure 3.70: Illustration of two spectra that satisfy discrete PW in (a) and (b) while (c) does not satisfy the PW criterion.

slightly different power spectral density, could satisfy the PW criterion. The designer might better consider a new sampling rate of \(\frac{\zeta}{T}\), and the resulting new sampled random sequence would then truly satisfy the PW criterion trivially as in Example 3.12.1, rather than incur the complexity of such a lowpass filter.

When optimizing a transmit complex transmit filter, an adjustment to the real basis function of Chapter 1 needs to occur. The reader may recall that the QAM basis functions from Chapter 1 were of the form:

\[
\varphi_1(t) = \sqrt{\frac{2}{T}} \cdot \varphi(t) \cdot \cos(\omega_c t)
\]

\[
\varphi_2(t) = -\sqrt{\frac{2}{T}} \cdot \varphi(t) \cdot \sin(\omega_c t)
\]

(3.658)

(3.659)

where \(\varphi(t)\) was real. Optimization of the spectrum in this case reduces to optimization of \(|\Phi(e^{-j\omega T})|^2 = \mathcal{F}\{\varphi(t) \ast \varphi^*(-t)|_{t=kT}\}\) and thus insensitive to phase as far as performance is concerned so while complex basis functions with unequal imaginary and real parts could also be found, there is always one basis function with constant amplitude on both inphase and quadrature and has the magnitude of the optimum spectra and any phase desired.

3.12.2 Theoretical multi-tone system tool for transmit optimization

Multi-Tone (MT) transmission systems are discussed at length in Chapter 4, including the heavily used and optimum Discrete Multitone (DMT) for stationary channels and Coded-OFDM methods for statistically model channels (statistically modeled channels being more completely addressed also in Chapter 7). To progress the optimization of transmit filters in equalized system, it is convenient here.
to model a theoretically optimum MT system that was first addressed by Shannon in the extension of his basic information-theoretic bounds to ISI channels. DMT approximates very closely this theoretical system in practical implementations (as in Chapter 4).

The MT system uses a set of $N \to \infty$ infinitesimally narrow QAM channels (and one PAM channel at baseband/DC). The MT system independently excites each tone as if it were its own isolated AWGN channel with the gain being the channel gain

$$H_n \triangleq H(\omega)|_{\omega=2\pi \frac{n}{T}} \quad \forall \ n = -\infty, ... -1, 0, 1... \infty \ ,$$

(3.660)

where T is the symbol rate and n/T is the carrier frequency where $T \to \infty$. The n^{th} QAM system uses the band $f \in \frac{n}{T} + \left[-\frac{1}{2T}, \frac{1}{2T} \right]$. The limit means that the carriers get infinitesimally narrow and the symbol length becomes all time. Also $g(\omega) \triangleq H(\omega)/\sigma^2$. The transmit filter gain at the frequency to be optimized is

$$\Phi_n \triangleq \Phi(\omega)|_{\omega=2\pi \frac{n}{T}} .$$

(3.661)

The noise power spectral density is $\sigma^2 = N_0/2$ at all frequencies (or the equivalently white-noise channel can replace H). The transmit filter is presumed to have no energy outside its band, so

$$\Phi_n(\omega) = \begin{cases}
0 & \omega \notin 2\pi \cdot \left(\frac{n}{T} + \left[-\frac{1}{2T}, \frac{1}{2T} \right] \right) \\
\Phi_n \neq 0 & \omega \in 2\pi \cdot \left(\frac{n}{T} + \left[-\frac{1}{2T}, \frac{1}{2T} \right] \right)
\end{cases} ,$$

(3.662)

so that all the tones’ subchannels are independent.

The interval of non-zero-energized frequencies may be a set of continuous frequencies, or several such sets, and is denoted by Ω. The measure of Ω is the total bandwidth used

$$|\Omega| = \int_{\Omega} d\omega .$$

(3.663)

An optimum bandwidth Ω^{opt} will then be that corresponding to the subchannels used in optimization as $T \to \infty$. The data rate is

$$R = \lim_{T \to \infty} \frac{b}{T} .$$

(3.664)

Continuous frequency can then replace the frequency index n according to

$$\omega = 2\pi \cdot \lim_{T \to \infty} \frac{n}{T} , \quad n = -\infty, ... -1, 0, 1... \infty \ ,$$

(3.665)

and the width of a tone becomes

$$d\omega = \lim_{N \to \infty} \frac{2\pi}{NT} .$$

(3.666)

If $1/T'$ is sufficiently large to be at least twice the highest frequency that could be conceived of for use on any given band-limited channel, then Ω^{opt} becomes the true optimum band for use on the continuous channel. The two-sided power spectral density at frequency ω corresponding to $\frac{n}{T}$ then is

$$S_x(\omega) = \lim_{T \to \infty} \frac{\xi_n}{T} .$$

(3.667)

When using infinite positive and negative time and frequency as here, there is no need for complex baseband equivalents, and thus all dimensions are considered real (and QAM is just then one real dimension at positive frequency and one real dimension at that the negative image of that frequency). The data rate then becomes

$$R = \frac{1}{2\pi} \int_{\Omega^{opt}} \frac{1}{2} \log_2 \left(1 + \frac{S_x(\omega) \cdot g(\omega)}{\Gamma} \right) d\omega .$$

(3.668)

The input power constraint is

$$P_x = \frac{1}{2\pi} \int_{\Omega^{opt}} S_x(\omega) d\omega .$$

(3.669)
Calculus of variations (see Chapter 4) produces Shannon’s famous water-filling equation for continuous frequency with discrete time as:

$$\bar{E}_n + \frac{\Gamma}{g_n} \rightarrow S_x(\omega) + \frac{\Gamma}{g(\omega)} = \lambda \text{ (a constant)} \quad (3.670)$$

where the value λ is chosen to meet the total power constraint in (3.669), recalling that $S_x(\omega) > 0$ for all $\omega \in \Omega_{opt}$ and $S_x(\omega) = 0$ at all other frequencies. The data rate then can be also written

$$R = \frac{1}{2\pi} \int_{\Omega_{opt}} \frac{1}{2} \log_2 \left(\frac{\lambda \cdot g(\omega)}{\Gamma} \right) d\omega \quad , \quad (3.671)$$

These results do extend to MIMO, but require some notational effort that will be facilitated by the developments of Chapter 4.

EXAMPLE 3.12.4 (1 + .9D channel) The channel with impulse response $h(t) = \text{sinc}(t) + .9 \cdot \text{sinc}(t-1)$ has the same performance as the 1 + .9D−1 channel studied throughout this book, if the analog transmit filter (without spectrum shaping included as it will be optimized) is $\sqrt{T} \text{sinc}(t/T)$. A system with optimized MT basis functions of infinite length (as $T \to \infty$) would have an optimum bandwidth $\Omega_{opt} = [-W,W]$ as in Figure 3.71 Then, continuous water-filling with $\Gamma = 1$ produces

$$P_x = \int_{-W}^{W} \left(\lambda' - \frac{.181}{1.81 + 1.8 \cos(\omega)} \right) \frac{d\omega}{2\pi} \quad (3.672)$$

where W is implicitly in radians/second for this example. If $P_x = 1$ with $N_0 = .181$, the integral in (3.672) simplifies to

$$\pi = \int_{-W}^{W} \left(\lambda' - \frac{.181}{1.81 + 1.8 \cos(\omega)} \right) d\omega \quad (3.673)$$

$$= \lambda'W - .181 \left\{ \frac{2}{\sqrt{1.81^2 - 1.8^2}} \arctan \left[\frac{\sqrt{1.81^2 - 1.8^2}}{1.81 + 1.8 \tan \left(\frac{W}{2} \right)} \right] \right\} \quad (3.674)$$

At the bandedge W,

$$\lambda' = \frac{.181}{1.81 + 1.8 \cos(W)} \quad . \quad (3.675)$$

leaving the following transcendental equation to solve by trial and error:

$$\pi = \frac{.181W}{1.81 + 1.8 \cos(W)} - 1.9053 \arctan (.0526 \tan(W/2)) \quad (3.676)$$

299
Figure 3.72: MMSE-DFE system with digital transmit filter.

\[W = 0.88\pi \text{ approximately solves } (3.676), \text{ and the corresponding value of } \lambda \text{ is } \lambda = 1.33. \]

The highest data rate with \(1/T' = 1 \) is then

\[
C = \frac{2}{2\pi} \int_{-\pi/T}^{\pi/T} \log_2 \left(\frac{1.33}{1.81} (1.81 + 1.8 \cos \omega) \right) d\omega
\]

\[
= \frac{1}{2\pi} \int_{0}^{\pi/T} \log_2 7.35 d\omega + \frac{1}{2\pi} \int_{0}^{\pi/T} \log_2 (1.81 + 1.8 \cos \omega) d\omega
\]

\[
= 1.266 + .284
\]

\[
\approx 1.55 \text{ bits/second .}
\]

This exceeds the 1 bit/second transmitted on this channel in this chapter’s earlier examples where \(T = T' = 1 \). The MT system has no error propagation, and is also an ML detector.

3.12.3 Discrete-Time Waterfilling and the Paley-Wiener Criterion

As in Subsection 3.12.1, transmission is often implemented in discrete time. The mutual information \(\tilde{I}(X(D); Y(D)) \) is a function only of the power spectral densities of the discrete time processes \(X(D) \) and \(Y(D) \) if they are Gaussian. Thus maximization of \(\tilde{I}(X(D); Y(D)) \) over the power spectral density of \(X(D) \) will produce a symbol-rate-dependent water-fill spectrum for the transmit filter, which in turn has as input a white (and “near-Gaussian”) message sequence.

Figure 3.72 shows the implementation of a transmitter that includes a digital filter \(\phi_k \) (with transform \(\Phi(D) \)). This filter precedes the modulator that converts the symbols at its output \(x_k \) into the modulated waveform \(x(t) \), typically QAM or PAM. The discrete-time filter input is \(v_k \), which now becomes the message sequence.Recalling that \(q(t) \overset{\Delta}{=} p(t) * p^*(-t)/\|p\|^2 \), the mutual information or maximum data rate from Section 4.4.3 is

\[
\tilde{I}(X(D); Y(D)) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log_2 \left(\frac{\|p\|^2}{\Delta_0} \cdot \frac{\tilde{E}_v}{\|p\|^2} \cdot |\Phi(e^{-j\omega T})|^2 \cdot Q(e^{-j\omega T}) + 1 \right) d\omega .
\]

The transmit energy constraint is the (\(\Gamma = 0 \text{ dB}\))-sum of data rates on an infinite number of infinitesimally small tones:

\[
\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \tilde{E}_v \cdot |\Phi(e^{-j\omega T})|^2 d\omega = \tilde{E}_z .
\]

The maximization of \(\tilde{I}(X(D); Y(D)) \) is then achieved by classic water fill solution in

\[
|\Phi(e^{-j\omega T})|^2 + \frac{\Delta_0}{\tilde{E}_v \cdot \|p\|^2 \cdot Q(e^{-j\omega T})} = K .
\]

As always, energy at any frequency \(\omega \) must be nonnegative, so

\[
|\Phi(e^{-j\omega T})|^2 \geq 0 .
\]
There is a set of frequencies \(\Omega_{\text{opt}} \) for which transmit energy is nonzero and for which the discrete-time transmit filter output energy satisfies water-filling. The corresponding capacity is then

\[
\tilde{C} = \max_{\|\Phi(e^{-j\omega T})\|^2 = 1} I(X(D); Y(D)).
\]

(3.685)

The measure of \(\Omega_{\text{opt}} \) for the discrete-time case is similarly

\[
|\Omega_{\text{opt}}| = \frac{T}{2\pi} \int_{\Omega_{\text{opt}}} d\omega.
\]

(3.686)

If \(|\Omega_{\text{opt}}| = 1 \), then a realizable transmit filter exists by the PW criterion. In this case, \(\text{SNR}_{\text{MMSE-DFE, U}} = 2^{2\tilde{C}} - 1 \) and the MMSE-DFE transmission system with water-fill transmit power spectral density can achieve, with powerful known AWGN-channel codes, the highest possible rates, so the MMSE-DFE in this case only is effectively optimal or “canonical.” If the water-fill band does not have unit measure, the transmitter is not realizable, and the MMSE-DFE is not optimal. The non-unit-measure case is very unlikely to occur unless the sampling rate has been judiciously chosen. This is the single most commonly encountered mistake of QAM/PAM designers who attempt to match the performance of MT systems - only in the rare case of \(|\Omega_{\text{opt}}| = 1 \) can this design work.

3.12.4 The baseband lowpass channel with a single contiguous water-fill band

The baseband lowpass channel has the transfer characteristic of Figure 3.73. The continuous-time waterfill band \(\Omega_{\text{opt}} \) is also shown. Clearly sampling of this channel at any rate exceeding \(1/T_{\text{opt}} = |\Omega_{\text{opt}}| \) should produce a discrete-time channel with capacity in bits/dimension

\[
\tilde{C}(T < T_{\text{opt}}) = C \cdot T,
\]

where the explicit dependency of \(\tilde{C} \) on choice of symbol period \(T \) is shown in the argument \(\tilde{C}(T) \). The capacity in bits/second remains constant while the capacity in bits per symbol decreases with increasing symbol rate to maintain the constant value \(\tilde{C} = C(T)/T \). At symbol rates below \(1/T < 1/T_{\text{opt}} = |\Omega_{\text{opt}}| \), capacity \(\tilde{C} \) may not be (and usually is not) achieved so

\[
\tilde{C}(T > T_{\text{opt}}) \leq C \cdot T.
\]

(3.688)

To achieve the highest data rates on this lowpass channel with good codes, the designer would like to choose \(1/T \geq 1/T_{\text{opt}} \). However, the transmit filter is not realizable unless \(1/T = 1/T_{\text{opt}} \), so there is an optimum symbol rate \(1/T_{\text{opt}} \) for which

\[
\text{SNR}_{\text{MMSE-DFE, U}}(T_{\text{opt}}) = 2^{2\tilde{C}T_{\text{opt}}} - 1.
\]

(3.689)

At this symbol rate only can the MMSE-DFE can achieve the best possible performance for the lowpass channel and indeed canonically achieve the MT performance levels, see also Chapter 4. This example correctly suggests that an ideal symbol rate exists for each channel with “PAM/QAM-like” transmission and a MMSE-DFE receiver.

For rates below capacity where a code with gap \(\Gamma > 1 \) is used, the continuous-time water-filling can be solved with the transmit power \(P_x \) reduced by \(\Gamma \). This would produce a slightly lower optimum symbol rate \(1/T_{\text{opt}}^{\Gamma} \leq 1/T_{\text{opt}} \). This slightly lower symbol rate should then be used for transmission with gap \(\Gamma \), and the bit rate of the MMSE-DFE system would be

\[
R = \frac{\tilde{b}}{T_{\Gamma_{\text{opt}}}} = \frac{1}{2T_{\Gamma_{\text{opt}}}} \log_2 \left(1 + \frac{\text{SNR}_{\text{MMSE-DFE, U}}(T_{\Gamma_{\text{opt}}})}{\Gamma} \right).
\]

(3.690)

Two examples are provided to illustrate the effects and terminology of symbol-rate optimization:

\footnote{Less water to pour means more, or same, narrow water-fill band always.}

301
Figure 3.73: Illustration of water-filling and transmit optimization for real baseband lowpass channel.

Figure 3.74: Block diagram of optimized DFE system for the $1 + .9D^{-1}$ channel.
EXAMPLE 3.12.5 (1 + .9D⁻¹ channel) The 1 + .9D⁻¹ ISI-channel has been revisited often, and is again revisited here with \(\frac{\mathbb{E}_x \| p \| ^2}{N_0} = 10 \text{ dB}. \) This channel corresponds to the real baseband lowpass channel discussed above. The capacity in bits per real sample/dimension has been previously found in Example 4.4.1 to be \(C(T = 1) = 1.55 \text{ bits/dimension}, \) so that \(C = 1.55 \text{ bits/second with } T = 1. \) This capacity corresponds to an overall MM SNR of 8.8 dB, but could not be directly realized with a MMSE-DFE, which instead had an \(\text{SNR}_{MMSE-DFE,U} = 8.4 \text{ dB} \) at the symbol rate of \(1/T = 1. \) The optimum water-fill band has width \(|\Omega| = .88 \pi \) (positive frequencies). Then, the optimum symbol rate is

\[
1/T^{\text{opt}} = .88 .
\]

Thus, the capacity in bits/dimension for the system with optimum symbol rate is

\[
\bar{C}(T^{\text{opt}}) = 1.55 \div .88 = 1.76 \text{ bits/dimension} .
\]

The resultant SNR is then

\[
\text{SNR}_{MMSE-DFE,U}(T^{\text{opt}}) = \text{SNR}_{MMSE-DFE,U}^{\text{opt}} = 10.2 \text{ dB} .
\]

This optimum MMSE-DFE at this new symbol rate is the only MMSE-DFE that can match the MT system in performance (if there is no loss from error propagation or precoding). The \(\text{SNR}_{MB} \) of 10 dB in previous invocations of this example is no longer a bound unless the symbol rate is \(1/T = 1 \) since that bound was derived for \(T = 1 \) and needs rederivation if another symbol rate is used. For verification, the capacity in bits/second is consistently the same at both sampling rates, but only \(1/T^{\text{opt}} = .88 \) can be used with a MMSE-DFE\(^{39} \). The capacity in bits/second remains

\[
C = \frac{.88}{2} \log_2(1 + 10^{.02}) = \frac{1}{2} \log_2(1 + 10^{.88}) = 1.55 \text{ bits/second} .
\]

EXAMPLE 3.12.6 (The “half-band” ideal lowpass channel) A brickwall lowpass channel has cut-off frequency .25 Hz as shown in Figure 3.75. Clearly the water-filling bandwidth is \(\Omega^{\text{opt}} = 2\pi(-.25, .25). \) The capacity is given as \(C = 2 \text{ bits per second for this channel}. \) Thus, at \(T^{\text{opt}} = 2, \) then \(C(T^{\text{opt}}) = 4 \text{ bits/dimension}. \) By the CDEF result, a MMSE-DFE with this symbol rate will have performance given by \(\text{SNR}_{MMSE-DFE,U}(T^{\text{opt}} = 2) = 2^{2.4} - 1 \approx 24 \text{ dB}. \) The MMSE-DFE in this case is clearly trivial and the equalized channel is equivalent to the original ISI-free channel at this symbol rate.

\(^{39} \)At the optimum symbol rate, \(\mathbb{E}_x = 1/.88, \| p \| ^2 = 1.81/.88, \) and the noise per sample increases by 1/.88. Thus, \(\text{SNR}_{MB}^{.88} = 10.6 \text{ dB}. \)
Figure 3.76: Margin difference (improvement) for optimized transmission over unoptimized MMSE-DFE on a “half-band” channel.

Suppose instead, a designer not knowing (or not being able to know for instance in broadcast or one-directional transmission) the channel’s Fourier transform or shape instead used $T=1$ for a DFE with flat transmit energy. While clearly this is a poor choice, one could easily envision situations that approximate this situation in applications with variable channels. An immediate loss that is obvious is the 3 dB loss in received energy that is outside the passband of the channel, which in PAM/QAM is equivalent to roughly .5 bit/dimension loss. This represents an upper bound SNR for the MMSE-DFE performance.\(^{40}\) The mutual information (which is now less than capacity) is approximately then

$$\bar{I}(T=1) \approx \frac{\bar{I}(T^{opt}=2) - .5}{2} = \frac{3.5}{2} = 1.75 \text{ bits/dimension} \ . \quad (3.695)$$

The .5 bit/dimension loss in the numerator $\bar{I}(T^{opt}=2) - .5 = \frac{1}{2} \log_2(1 + \frac{\text{SNR}}{2}) = 3.5$ approximates the 3 dB loss of channel-output energy caused by the channel response. Clearly, the channel has severe ISI when $T=1$, but the CDEF result easily allows the computation of the MMSE-DFE SNR according to

$$\text{SNR}_{MMSE-DFE,U}(T=1) = 2^{2^{1.75}} - 1 = 10.1 \text{ dB} \ . \quad (3.696)$$

The equalized system with $T=1$ is equivalent to an AWGN with $\text{SNR}=10.1$ dB, although not so trivially and with long equalization filters in this $T=1$ case, because ISI will be severe.

The system with $T=1$ then attempts to transmit $\tilde{b}(T=1)$ with an SNR of 10.1 dB, while the optimized system transmits $\tilde{b}(T^{opt}=2) = 2b(T=1)$ with SNR of 24 dB. The margin as

\(^{40}\)In fact, this upper bound can be very closely achieved for very long filters in MMSE-DFE design, which could be verified by DFE design for instance according to the DFE program in Section 3.7.6.
a function of $\tilde{b}(T = 1)$ is then

$$
\gamma_m(T = 1) = 10 \cdot \log_{10}\left(\frac{2^{2 \cdot 1.75} - 1}{2^{2h(T = 1)} - 1}\right) = 10.1 \text{ dB} - 10 \cdot \log_{10}\left[2^{2\tilde{b}(T = 1)} - 1\right]. \tag{3.697}
$$

For $T^{opt} = 2$, the corresponding margin (basically against an increase in the flat noise floor) is

$$
\gamma_m(T^{opt} = 2) = 10 \cdot \log_{10}\left(\frac{2^{2 \cdot 4} - 1}{2^{2h(T^{opt}=2)} - 1}\right) = 24 \text{ dB} - 10 \cdot \log_{10}\left[2^{4\tilde{b}(T = 1)} - 1\right]. \tag{3.698}
$$

The ratio of the margins for $T = 1$ and $T^{opt} = 2$ is then plotted in Figure 3.76 as a function of the number of bits per dimension. The difference decreases as the systems approach capacity, meaning codes with smaller gap are used, but is always nonzero in this case because the system with $T = 1$ essentially "wastes 3 dB (a factor of 2) of bandwidth." Indeed, it is not possible for the $T = 1$ system to transmit beyond 1.75 bits/second and is thus at best 3 dB worse than the $T^{opt} = 2$ system because half the energy is wasted on a channel band that cannot pass signal energy. One could infer that at fixed P_e, the gap decreases with increasing $\tilde{b}(T = 1)$ on the horizontal access until the $\Gamma = 0 \text{ dB}$ limit is reached at 1.75 bps.

Some designers might attempt transmission with a low-pass filter (with gain 3 dB) to correct the situation, thus regaining some of the minimum 3 dB energy loss when $\Gamma = 0 \text{ dB}$. As the transmit filter becomes more tight, it becomes difficult to implement - in the limit, such a filter is not realizable because it does not meet the PW criterion. However, leaving $T = 1$, no matter how complex the transmit filter, forces ISI and makes both transmitter and receiver very complex with respect to using the correct $T^{opt} = 2$. As the gap increases, the performance difference is magnified between $T = 1$ and $T^{opt} = 2$, so even a very good brickwall transmit filter at $T = 1$ loses performance when $\Gamma > 0$. An implementable system must have a non-zero gap. By contrast, the optimum transmit filter is simple flat passband at $T^{opt} = 2$, and the DFE receiver filters are trivial. Also as the capacity/SNR increases, the curve in Figure 3.76 will show larger difference at reasonable data rates, but more rapidly fall to again 3dB at the point where $T = 1$ system achieves capacity with $\Gamma = 0 \text{ dB}$. It is thus very inadvisable design to use the incorrect symbol rate from the perspectives of performance or complexity.

3.12.5 The single-band bandpass case

The channels of the previous subsection (3.12.3) were baseband (i.e., real one-dimensional) lowpass channels. A complex lowpass channel tacitly includes the effect of a carrier frequency. Figure 3.77 illustrates the passband channel and the choice of best carrier (or really "center") frequency f_c and then consequently the best symbol rate $1/T^{opt}$. Clearly, to select the optimum symbol rate, the QAM carrier frequency must be in the center of the water-filling band. Any other choice of carrier frequency results in an asymmetric use of water-filling band frequencies around DC, which means that the PW criterion will not be satisfied.41 Thus, for the MMSE-DFE on a passband channel, the carrier frequency must be centered in the water-filling band and the symbol rate is chosen to be the measure of the resulting (positive-frequency for passband case) continuous-time water-filling band. Again, a gap $\Gamma > 0 \text{ dB}$ causes a slight decrease in the water-fill band’s measure and will also alter the carrier/center frequency slightly (unless the band is conjugate symmetric with respect to the choice of carrier/center frequency).

EXAMPLE 3.12.7 (V.34 Voiceband Modems) The International Telecommunications Standardized v.34 modem, better known as the “28.8 kbps” voiceband modem used optimized decision feedback equalization. These older modems initially trained by using multitone transmission technology, specifically 25 equally spaced tones are sent with fixed amplitude and phase at the frequencies $n(150Hz)$ where $n = 1...25$. The frequencies 900, 1200, 1800,

41 Note Carrierless AMPM (CAP) systems of Chapter 1 do not use a carrier, but have a “center” frequency. The optimum center frequency is computed exactly the same way as the optimum carrier frequency in this subsection.
Figure 3.77: Illustration of water-filling and transmit optimization for (“complex”) passband channel.
Figure 3.78: Illustration of water-filling and transmit optimization for a general channel with more than one passband.

and 2400 are silenced, leaving 21 active tones for which the SNR’s are measured (and interpolated for 900, 1200, 1800, and 2400) Water-filling or other spectrum-setting procedures determine an optimum bandwidth, which is reduced to a choice of symbol rate and carrier frequency for QAM. The v.34 choices for symbol rate and carrier must be from the attached table:

<table>
<thead>
<tr>
<th>$1/T_{\text{opt}}$</th>
<th>f_{c1}</th>
<th>f_{c2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>1600</td>
<td>1800</td>
</tr>
<tr>
<td>2743</td>
<td>1646</td>
<td>1829</td>
</tr>
<tr>
<td>2800</td>
<td>1680</td>
<td>1867</td>
</tr>
<tr>
<td>3000</td>
<td>1800</td>
<td>2000</td>
</tr>
<tr>
<td>3200</td>
<td>1829</td>
<td>1920</td>
</tr>
<tr>
<td>3429</td>
<td>1959</td>
<td>1959</td>
</tr>
</tbody>
</table>

Only the symbol rates in the table may be selected and after one is selected, only two carrier frequencies are then allowed as denoted in the same row. There is never more than one disjoint WF band, and examination of the choices with respect to optimum has revealed a loss of less than 1 dB. (Voiceband modems rarely have $M > 1$, so the issue of multiple band MMSE-DFE is not addressed in v.34, see Section 3.12.5). This special case of a single band being sufficient does not extend to DSL for instance, see Chapter 4. Designers became more aware after voiceband modems became obsolete, so this approach has been abandoned, but remains nevertheless a good example of MMSE-DFE transmit optimization.

3.12.6 The general multiple band case and the Optimum MMSE-DFE

Examples 3.73 and 3.77 were overly simple in that a single continuous transmission band was presumed. On ISI channels that exhibit notches (i.e., multipath fading or bridged-taps, multiple antennas, etc.) and/or band-selective noise (crosstalk, RF noise, etc.), Ω_{opt} may consist of many bands. This subsection addresses these more practical cases to find a minimal set of MMSE-DFEs that can be analyzed as a single system.

Practical ISI-channels often have water-filling solutions that consist of a countable number of band-pass (and perhaps one lowpass) water-fill frequency bands, which have nonzero transmit energy over a continuous set of frequencies within each band. To satisfy the PW criterion, the MMSE-DFE then must become multiple MMSE-DFE’s, each with its own independent water-filling solution. This situation
appears in Figure 3.78 for 3 disjoint water-fill regions. Correspondingly, there would be 3 MMSE-DFE’s each operating at an SNR_{MMSE-DFE,U} for its band and at a data rate \(R_i \) for each band.

An overall SNR can be computed in this case of multiple bands. An overall symbol rate, presuming carriers centered in each band, is defined

\[
\frac{1}{T_{opt}} \triangleq \sum_{i=1}^{M} \frac{1}{T_{i}^{opt}}, \tag{3.699}
\]

where \(T_{i}^{opt} = (1 \text{ or } 2) \cdot T_{i}^{opt} \) for complex passband or real baseband respectively. The SNR in each band is \(\text{SNR}_i(T_{i}^{opt}) \). Each band has data rate

\[
R_i = \frac{1}{T_{i}^{opt}} \cdot \log_2 \left(1 + \frac{\text{SNR}_i(T_{i}^{opt})}{\Gamma} \right). \tag{3.700}
\]

Then, the overall data rate is in bits per second is

\[
R = \sum_{i=1}^{M} R_i \tag{3.701}
\]

\[
= \sum_{i=1}^{M} R_i = \sum_{i=1}^{M} \frac{1}{T_{i}^{opt}} \cdot \log_2 \left(1 + \frac{\text{SNR}_i(T_{i}^{opt})}{\Gamma} \right) \tag{3.702}
\]

\[
= \frac{T_{opt}}{T_{i}^{opt}} \log_2 \prod_{i=1}^{M} \left(1 + \frac{\text{SNR}_i(T_{i}^{opt})}{\Gamma} \right)^{1/T_{i}^{opt}} \tag{3.703}
\]

\[
= \frac{1}{T_{opt}} \log_2 \prod_{i=1}^{M} \left(1 + \frac{\text{SNR}_i(T_{i}^{opt})}{\Gamma} \right)^{T_{opt}/T_{i}^{opt}} \tag{3.704}
\]

\[
= \frac{1}{T_{opt}} \log_2 \left(1 + \frac{\text{SNR}_{opt_{MMSE-DFE,U}}(T_{opt})}{\Gamma} \right) \tag{3.705}
\]

\[
= \frac{1}{T_{opt}} \log_2 \left(1 + \frac{\text{SNR}_{opt_{MMSE-DFE,U}}(T_{opt})}{\Gamma} \right) \tag{3.706}
\]

where

\[
\text{SNR}_{opt_{MMSE-DFE,U}} \triangleq \Gamma \cdot \left\{ \prod_{i=1}^{M} \left(1 + \frac{\text{SNR}_i(T_{i}^{opt})}{\Gamma} \right)^{T_{opt}/T_{i}^{opt}} \right\} - 1 \tag{3.707}
\]

and

\[
\bar{b}_{opt} \triangleq \frac{1}{2} \cdot \log_2 \left(1 + \frac{\text{SNR}_{opt_{MMSE-DFE,U}}(T_{opt})}{\Gamma} \right) \text{ bits/dimension}. \tag{3.708}
\]

When all symbol rates and carrier frequencies are optimized, clearly this SNR is equivalent to the MT system of Subsection 3.12.2 because the rates/capacities for each water-filling band are the same. However, the MMSE-DFE now is often many MMSE-DFE’s, and each has a distinct variable carrier frequency and symbol rate. The reader is cautioned against the statements often encountered by as-yet-uninformed engineers who misinterpret the CDEF result to mean that a “single-carrier system performs the same as a multicarrier system” – misquoting the CDEF result. Such a statement is only true in the simplest cases where a single water-fill band is optimum, and the symbol rate and carrier frequencies have been precisely chosen as a function of the specific channel’s water-filling solution and coding gap. Otherwise, multicarrier will outperform single carrier – and further, single carrier can never outperform multicarrier (with codes of the same gap \(\Gamma \)). More sophisticated DMT systems are developed in Chapter 4 for realistic implementation of MT.
Lemma 3.12.1 (The Optimum MMSE-DFE) The optimum MMSE-DFE is a set of M independent DFE’s with M equal to the number of disjoint water-filling bands. Each of the MMSE-DFE’s must have a symbol rate equal to the measure of a continuous water-fill band $1/T_{\text{opt}}^m = |\Omega_{\text{opt}}^m|$ and a carrier frequency where appropriate set exactly in the middle of this band $(f_{c,m} = [f_{\text{max},m} + f_{\text{min},m}/2] \forall m = 1, ..., M)$. The number of bits per dimension for each such MMSE-DFE is

$$
\bar{b}_m = \frac{1}{2} \cdot \log_2 \left(1 + \frac{\text{SNR}_m(T_{\text{opt}}^m)}{\Gamma} \right).
$$

(3.709)

The overall SNR is provided in (3.707) and the (3.708)

A final simplified VDSL example provided to illustrate both proper design and a performance loss that might be incurred when designers try “to simplify” by only using one fixed band.

EXAMPLE 3.12.8 (Simple Lost “Dead” Bands) Figure 3.79 illustrates equivalent transmitters based on a multitone design of 8 equal bandwidth modulators. All tones are presumed passband uncoded QAM with gap $\Gamma = 8$ dB. This system chooses symbol rates to approximate what might happen certain low pass channel with notched frequency range. The transmit filter for each band is denoted by $H_n(f)$ in set A and $G_n(f)$ in set B. The g_n’s for these example subchannels are given in the table below.

Application of water-filling with 11 units of energy produces channel SNR’s that appear in the following table for a Gap of $\Gamma = 8$ dB and a water-filling constant of $\lambda' = 2$:

<table>
<thead>
<tr>
<th>n</th>
<th>g_n</th>
<th>ξ_n</th>
<th>b_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2</td>
<td>1.50</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>30.3</td>
<td>1.75</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>121.4</td>
<td>1.9375</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>242.7</td>
<td>1.97</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>60.7</td>
<td>1.875</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>242.7</td>
<td>1.97</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Channel characteristics are such in this system that the optimum bandwidth use is only 6 of the 8 subchannels. 4 of the used bands (set A) are adjacent and another 2 of the bands (set B) are also adjacent. Sets A and B, however, are separated by an unused band. That unused band might be for example caused by a radio interference or perhaps notching from a reflected and delayed signals. The corresponding 2-DFE receiver is shown in Figure 3.80.

First Multitone Design with 8 independent tones:
The tones in Set A can carry $(2\bar{b}_n =) 2, 3, 5,$ and 6 bits respectively corresponding to increasing signal-to-noise ratios in the corresponding channel, while the two bands in Set B can carry 4 and 6 bits respectively. The unused bands carry 0 bits. The average number of bits per tone in Set A is 4 while the average number in Set B is 5. If the symbol rate for each subchannel is 1 MHz, then the data rate is $(2+3+5+6+4+6)$ bits transmitted one million times per second for a total data rate of 26 Mbps. Equivalently, from Equation (3.699), the overall symbol rate is $1/T_{\text{opt}}' = 6$ MHz, and there are thus $\bar{b}(1/T_{\text{opt}}' = 6$ MHz) $= \frac{26}{6} \frac{\text{Mbp}}{\text{s}} = \frac{26}{2(6)} = 2.16$ bits/dim or 4.33 bits per equivalent tone. For an uncoded-\(\Gamma = 8$ dB multitone system $\bar{b}(1/T') = 8$ MHz) $= 26/16 = 1.625$. This rate is equivalent to $\bar{b}(1/T_{\text{opt}}' = 6$ MHz) $= 2.16$ since both correspond to the same overall data rate of 26 Mbps. The SNR at a symbol rate of $1/T' = 8$ MHz is

$$
\text{SNR}_\text{mt}(1/T' = 8$ MHz) $= 10 \cdot \log_{10} \left\{ \Gamma \cdot \left[2^{2(1.625)} - 1 \right] \right\} = 18.1$dB
.$$

(3.710)
MT Transmitter

- 2 bits $X_{1,k}$
- 3 bits $X_{2,k}$
- 5 bits $X_{3,k}$
- 6 bits $X_{4,k}$
- 0 bits
- 4 bits $X_{6,k}$
- 6 bits $X_{7,k}$

Symbol rate = 1 MHz
Data rate = 26 Mbps

Correct Equivalent QAM Transmitter

- 4 bits, 4 times \bar{A}_k
- 0 bits
- 5 bits, 2 times \bar{B}_k
- 0 bits

Modulated signal

$\frac{1}{T_{\text{opt}}} = 4$ MHz
$2\bar{f}_1 = 4$ (16 QAM)
$R_1 = 16$ Mbps

$\frac{1}{T_{\text{opt}}} = 2$ MHz
$2\bar{f}_2 = 5$ (32CR QAM)
$R_2 = 10$ Mbps

$\frac{1}{T_{\text{opt}}} = 6$ MHz
$2\bar{f} = 4.33$
$R = 26$ Mbps

Figure 3.79: Simplified VDSL example multitone and equivalent 2-channel transmitters.
The SNR at a symbol rate of $1/T_{\text{opt}} = 6$ MHz is

$$\text{SNR}_{\text{opt}}^{\text{MMSE-DFE,U}}(1/T_{\text{opt}} = 6\text{MHz}) = 10 \cdot \log_{10} \Gamma \cdot \left(2^{4.33} - 1\right) = 21.66\text{dB} \quad (3.711)$$

The two MT SNRs are different because the symbol rates are different, but both correspond to a $P_e = 10^{-6}$ at the data rate of 26 Mbps with gap 8.8 dB (same code) and $P_e = 10^{-6}$.

2nd Design: Equivalent Two-tone QAM Design:

The corresponding best QAM receiver uses the same bands and is actually 2 QAM systems in this example. The first system has a symbol rate of $1/T_{\text{opt}} = 4$ MHz and carries 4 bits per QAM symbol (16 QAM) for a data rate of 16 Mbps. By the CDEF result, the MMSE-DFE receiver has an SNR of $\text{SNR}_{\text{dfe},1}(1/T_{\text{opt}} = 4\text{MHz}) = \Gamma \cdot (2^4 - 1) = 20.6\text{ dB}$. The second system has symbol rate $1/T_{\text{opt}} = 2$ MHz, and 5 bits per QAM symbol, which corresponds to 10 Mbps and $\text{SNR}_{\text{dfe},2}(1/T_{\text{opt}} = 2\text{MHz}) = \Gamma \cdot (2^5 - 1) = 23.7\text{ dB}$. The total data rate of 26 Mbps is the same as the DMT system in the first design. The two systems (DMT or two-tone QAM) carry the same data rate of 26 Mbps with a probability of symbol error of 10^{-6}.

Correct design thus finds a 2-band equivalent of the original 8-tone MT system, but absolutely depends on the use of the 2 separate QAM signals in the lower portions of Figures 3.79 and 3.80.

Figure 3.80: Simplified VDSL example multitone and equivalent 2-channel receivers.
3rd Design - single-tone QAM designer:

Some designers might instead desire to see the loss of the single-band DFE system. The single-band (with $1/T = 8$ MHz) QAM system with MMSE-DFE then uses $2\bar{E}x = 11/8 = 1.375$ at all frequencies and thus has

$$SNR_{df,flat} = \Gamma \cdot \left\{ \prod_{n=1}^{8} \left(1 + \frac{1.375 \cdot \gamma_n}{\Gamma}\right)^{1/8} - 1 \right\}$$

which is about 1.1 dB below the multitone result. If Tomlinson Precoding was used at the $\bar{b} = 1.625$, the loss is another .4 dB, so this is about 1.5 dB below the multitone result in practice. This $1/T = 8$ MHz single-tone QAM does then perform below MT because two separate QAM/DFE systems are required to match MT performance.

As a continued example, this same transmission system is now applied to a more severely attenuated channel for which the upper frequencies are more greatly attenuated and $g_6 = g_7 \leq 2$, essentially zeroing the water-fill energy in band B. The first multitone system might attempt 16 Mbps data rate. Such a system could reload the 1.875+1.97 units of energy on tones 6 and 7 to the lower-frequency tones, and the new SNR_{mt} will be 14.7 dB, which is a margin of 1.2 dB with respect to 16 Mbps ($2\bar{b} = 2$ requires 13.5 dB). A new computation of the single-tone ($1/T = 8$ MHz) SNR according to (3.712), which now has only 4 terms in the product provides $SNR_{DFE}(1/T = 8$ MHz) = 12.8 dB that corresponds for the same data rate of 16 Mbps to a margin of -7 dB ($\gamma = \frac{SNR_{DFE}}{1/2^{\gamma-1}}$). The MT system is 1.9 dB better. Furthermore, precoder loss would be 1.3 dB for a Tomlinson or Laroia precoder, leading to a 3.2 dB difference. Thus there is always a loss when the single-band system is used, and the amount of loss increases with the inaccuracy of the symbol-rate with respect to best symbol rate, and with the gap as in Figure 3.76.

Since the margin of the QAM system is negative on the more severely attenuated channel, the practice in industry is to “design for the worst case” channel, which means a better symbol rate choice would be 4 MHz. In this case, on the channel, both MT and QAM at 16 Mbps would have the SNR of the A band, 20.6 dB, increased by $(1/(11-1.97-1.875) = 1.86$ dB) to 22.5 dB and a margin of 1.86 dB at 10^{-6} probability of error with $\Gamma = 8.8$ dB. However, if the short line with bands A AND ALSO B is now again encountered, the 4 MHz-worst-case-designed QAM system will remain at 1.86 dB margin at 16 Mbps. The MT system margin at 16 Mbps now improves to (Equation 4.7 in Chapter 4)

$$\gamma_{mt} = \frac{2^{2b_{ma}} - 1}{2^{2b} - 1} = \frac{2^3 - 1}{2^2 - 1} = 4.5\ dB$$

or a 2.6 dB improvement in margin over the 1.9 dB margin of the QAM system.

As the used-bandwidth error grows, the loss of a single-band DFE increases, but is hard to illustrate with small numbers of tones. Used bandwidth ratios can easily vary by a factor of 10 on different channels, increasing the deviation (but not easily depicted with a few tones) between MT systems and DFE systems that use a fixed bandwidth (or single tone). For instance, if only tone 4 were able to carry data that the best rate-adaptive solution is about 8.5 Mbps, while the full-band single-QAM DFE would attain only 420 kbps, and performs approximately 7 dB worse.

For real channels, independent test laboratories hosted a “VDSL” Olympics in 2003 for comparing DMT systems with variable-symbol-rate QAM systems. The test laboratories were neutral and wanted to ascertain whether a single-carrier system (so only one contiguous band that could be optimized and placed anywhere) really could “get the same performance as DMT” – an abuse of the CDEF result then misunderstood and promulgated by single-carrier proponents). The results and channels appear in Figures 3.81 and 3.82 respectively.
Clearly these fixed-margin (6 dB) tests for length of copper twisted pair at the data rate shown indicate that over a wider range of difficult channels as in DSL, the differences between DMT and single-carrier can be quite large. Generally speaking, the more difficult the channel, the greater the difference. These MT systems used a discrete multitone or DMT as in Chapter 4.

This section has shown that proper optimization of the MMSE-DFE may lead to several MMSE-DFEs on channels with severe ISI, but that with such a minimum-size set, and properly optimized symbol rate and carrier frequency for the corresponding transmitter of each such MMSE-DFE, determines a canonical transmission system, then matching the MT system.

3.12.7 Relations between Zero-Forcing and MMSE DFE receivers

In some special situations, the ZF-DFE and the MMSE-DFE can induce the same equivalent channel, although the performance will not be the same. Some caution needs to be exercised for equivalent channels. Some authors have made some serious errors in interpreting results like CDEF for the ZF-DFE.

Theorem 3.12.2 (CDEF Derivative) Over any of the continuous bands of water-filling, if the water-fill spectra are used, then the ZF-DFE and MMSE-DFE result in the same channel shaping before bias removal.

proof: This proof uses continuous bands, presuming the condition for choice of optimum sampling rate(s) and carrier frequencies have already been made so that all frequencies are used with non-zero energy (except possibly for countable set of infinitesimally narrow notches) – that is the PW criterion is satisfied. The power spectrum for an ISI channel for which the symbol/sampling rate has been altered for exact match to one (any) water-filling band $1/T_{opt}$ that must satisfy

$$\tilde{E}_x|\Phi(\omega)|^2 + \frac{\sigma^2}{|H(\omega)|^2} = K$$

(3.715)

for all frequencies ω in the band (zeros are only allowed at infinitesimally narrow notch points, so earlier resampling may have necessarily occurred to avoid singularity). \tilde{H} represents the equivalent-white-noise channel $\tilde{H} = \frac{H}{\sqrt{S_n}}$. The MMSE-DFE fundamentally is determined by canonical factorization, which in the frequency domain has magnitudes related by

$$\tilde{E}_x|\Phi(\omega)|^2 \cdot |H(\omega)|^2 + \sigma^2 = \frac{\gamma_0}{|p|^2} \cdot |G(\omega)|^2.$$ (3.716)

Insertion of (3.715) into (3.716) yields

$$K \cdot |H(\omega)|^2 = \frac{\gamma_0}{|p|^2} \cdot |G(\omega)|^2,$$ (3.717)

illustrating a very unusual event that the overall equivalent equalized channel has the same shape as the channel itself. This happens when the input is water-filling. Thus, since the shape of H and G are the same, they differ only by an all-pass (phase-only) filter. Equivalently, the receiver’s MS-WMF is essentially Φ_{opt} times an all-pass filter. Such an all-pass can be implemented at the transmitter without increasing the transmit energy, leaving only the filter $S_n^{-1/2} \cdot \Phi_{opt}$ in the receiver. Such an all-pass phase shift never changes the performance of the DFE (or any infinite-length equalizer). The receiver’s remaining noise whitening filter and matched-filter-to-transmit-water-fill filter constitute the entire MS-WMF, perhaps

42One somewhat incorrectly derived result is due to MIT’s Professor Robert Price in early 70’s where he tacitly assumed zero noise, and then water-filling uses the entire band of transmission. Thus Price accidentally considered only one transmission band that was the entire band. Of course, trivially, ZF and MMSE are the same when there is no noise – this is hardly surprising, and Price erroneously arrived at a result resembling CDFE that is correct only when there is zero noise. This is sometimes referred to as “Price’s result,” but it is clearly Price at the time did not understand his small-equal-zero noise assumption would completely miss the important need for realizable filters.
Variable f_c and $1/T$ single-carrier QAM results

DMT* results – exact same channels as QAM

* DMT is described in Chapter 4

Figure 3.81: Illustration of 2003 VDSL Olympics results.
<table>
<thead>
<tr>
<th>Config</th>
<th>Test</th>
<th>Service (Mbit/s)</th>
<th>Reach (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Down/Up)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10/10</td>
<td>1800</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10/10</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10/10</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10/10</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10/10</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10/10</td>
<td>1950</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>13/13</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13/13</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13/13</td>
<td>1500</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>13/13</td>
<td>1500</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>13/13</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13/13</td>
<td>1500</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>18/1</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>18/1</td>
<td>3300</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>18/1</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18/1</td>
<td>2550</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>22/3</td>
<td>2700</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>22/3</td>
<td>2550</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>22/3</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>22/3</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>22/3</td>
<td>2400</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>22/3</td>
<td>2550</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>22/3</td>
<td>2250</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>22/3</td>
<td>3150</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>22/3</td>
<td>2250</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>22/3</td>
<td>2700</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>22/3</td>
<td>2700</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>22/3</td>
<td>2400</td>
</tr>
<tr>
<td>14</td>
<td>29</td>
<td>6/6</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6/6</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6/6</td>
<td>1800</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>6/6</td>
<td>2100</td>
</tr>
</tbody>
</table>

Figure 3.82: Channel types and speeds for 2003 VDSL Olympics.
resulting in an opportunity to reduce receiver complexity. The MMSE-DFE has slightly non-unity gain through the feed-forward filter and the overall channel gain is \(\frac{\text{SNR}_{\text{MMSE-DFE,U}}}{\text{SNR}_{\text{MMSE-DFE,U}} + 1} \), which is removed by anti-bias scaling. However, ignoring the bias removal and consequent effect on signal and error sequence, water-filling creates an equivalent overall channel that has the same shaping of signal as the original channel would have had. That is the MS-WMF-output signal (ignoring bias in error) has the same minimum-phase equivalent ISI as the original channel would have, or equivalently as a ZF-DFE would have generated. \textbf{QED.}

The MMSE-DFE however does have a lower MMSE and better SNR, even after bias removal. The difference in SNR is solely a function of the error signal and scaling. The ZF-DFE has white noise and no bias. The MMSE-DFE with water-filling has the same minimum-phase shaping, that is achieved by filtering the signal, reducing noise power, but then ensuring that the components of the error (including bias) add in a way that the original channel reappears as a result of all the filtering.

The minimum-phase equivalent of the channel alone \(H \) is equal to \(G \) via Equation (3.717). However \(P_c(D) \), the canonical equivalent of the pulse response \(\Phi \cdot H \) (which includes the water-filling shaping) is not the same unless water-filling shape is the special case of being flat. The precoder settings or equivalently unbiased feedback-section settings are not necessarily determined by \(G \), but by \(G_u \). \(G_u \) differs from the minimum-phase channel equivalent.

Thus, the MMSE-DFE results in same equivalent channel as ZF-DFE under water-filling, but still performs slightly better unless water-filling is flat (essentially meaning the channel is flat). Often water-filling is very close to flat in practical situations or there is very little loss. Thus, it may be convenient to implement directly a ZF-DFE once the exact water-filling band of frequencies is known.

\textbf{Theorem 3.12.3 (Worst-Case Noise Equivalence)} Over any of the continuous bands for which the PW Criterion holds, if the noise power spectral density is the worst possible choice that minimizes mutual information for the channel, then ZF and MMSE are the same even if the noise is not zero.

\textbf{proof:} The minimization of the mutual information

\[
I = \frac{1}{2\pi} \int_{\Omega} \log_2 \left(1 + \frac{S_x(\omega) \cdot |H(\omega)|^2}{S_n(\omega)} \right) d\omega \tag{3.718}
\]

with noise power constrained at

\[
\sigma^2 = \frac{1}{2\pi} \int_{\Omega} S_n(\omega) d\omega \tag{3.719}
\]

leads easily by differentiation with LaGrange (calculus of variations) constraint to the equation/solution

\[
\frac{1}{S_x(\omega) \cdot |H(\omega)|^2 + S_n(\omega)} - \frac{1}{S_n(\omega)} = K \forall \omega \in \Omega. \tag{3.720}
\]

The magnitude of the MS-WMF with noise whitening included is

\[
|FF|^2 = \frac{|H(\omega)|^2 \cdot S_x(\omega)}{S_x^2(\omega) \cdot \gamma_0^2 \cdot |p|^2 |G(\omega)|^2} \tag{3.721}
\]

\[
= \frac{|H(\omega)|^2 \cdot S_x(\omega)}{(S_x(\omega) \cdot |H(\omega)|^2 + S_n(\omega)) \cdot S_n(\omega)} \tag{3.722}
\]

\[
= \frac{1}{S_n(\omega)} - \frac{1}{S_x(\omega) \cdot |H(\omega)|^2 + S_n(\omega)} = -K \tag{3.723}
\]

Thus, the MS-WMF section is exactly an all pass filter, meaning then ZF and MMSE-DFEs (the latter with bias-removal scaling) are the same. \textbf{QED.}
The above result holds for any input spectrum $S_x(\omega)$ (and clearly the worst-case noise may vary with this input spectrum choice). In particular, this result does hold for the water-filling spectrum also. The latter result has broad implications in multi-user optimization of systems as in Chapter 14. It suggests that if the noise is chosen to be the worst possible spectrum (for a given power), receiver processing is unnecessary (as the all-pass could be implemented at the transmitter without loss and a precoder could also be used). Worst-case noise (unlike water-filling transmit spectra) is not good – it means that receiver filtering is essentially useless. The absence of receiver processing enables derivation of the best possible transmit spectra for each of the individual users in what are called “broadcast” multi-user systems (think downlink to many devices in Wi-Fi or downstream to many homes in crosstalking DSL binders) where coordination of receiver dimensions (users) is not physically possible.

3.12.8 Optimized Transmit Filter with Linear Equalization

Linear equalization is suboptimal and not canonical (on all but trivial channels), but an optimized transmit filter can be found nonetheless, and will improve the performance of a MMSE-LE. Thus subsection develops that optimized transmit filter. All the realization concerns with PWC satisfaction still apply to any optimized transmit filter, thus there will also be an associated optimum symbol rate(s) and carrier frequency(ies). For the LE case, the MMSE is revisited without the receiver matched-filter normalization to simplify the mathematical development\(^{43}\). Again calling the data input to the transmit filter v_k with the filter output x_k, this development will assume tacitly that the symbol rate(s) (and carrier frequency(ies) when complex passband) will be set to exactly match the derived optimized transmit filter. This subsumes all the previous development for MMSE-DFE where continuous time was initially assumed to position discrete time. All that will happen together here in one step because the reader can refer if more mathematical precision is desired to the MMSE-DFE development earlier in this section. Thus we will momentarily drop frequency, continuous ω or discrete $e^{-j\omega T}$, from the frequency-transform notation.

The error signal will be

$$E = V - W \cdot Y,$$ \hspace{1cm} (3.724)

where the MMSE-LE (including any matched filter an sampling) W in (3.724) is

$$W = R_{VY} \cdot R_{YY}^{-1}.$$ \hspace{1cm} (3.725)

The channel output is

$$Y = H \cdot \Phi \cdot V + N.$$ \hspace{1cm} (3.726)

The input/output cross-correlation is

$$R_{VY} = \bar{\xi}_x \cdot H \cdot \Phi,$$ \hspace{1cm} (3.727)

while the channel output autocorrelation is

$$R_{YY} = \bar{\xi}_x \cdot |H|^2 \cdot |\Phi|^2 + \frac{N_0}{2}.$$ \hspace{1cm} (3.728)

The MMSE power spectral density is (recalling that $\text{SNR} \triangleq \frac{\bar{\xi}_x}{\sigma^2}$)

$$R_{EE} = \bar{\xi}_x - W \cdot R_{VY}$$

$$= \bar{\xi}_x - \frac{\bar{\xi}_x \cdot |H|^2 \cdot |\Phi|^2}{\bar{\xi}_x \cdot |H|^2 \cdot |\Phi|^2 + \frac{N_0}{2}}$$

$$= \frac{\bar{\xi}_x}{1 + \text{SNR} \cdot |H|^2 \cdot |\Phi|^2 + \frac{N_0}{2}}$$

$$= \frac{\frac{N_0}{2}}{|H|^2 \cdot |\Phi|^2 + \frac{1}{\text{SNR}}}. $$ \hspace{1cm} (3.732)

\(^{43}\)The normalization factor $\|p\|$ depends on the transmit filter to be optimized, so it is simpler to avoid that normalization in the development.
The MMSE in (3.732) can be minimized over the squared magnitude of the input filter $|\Phi|^2 \geq 0$ subject to the energy (basis-function normalization) constraint:

$$\frac{1}{2\pi} \int |\Phi(\omega)|^2 d\omega = 1 . \quad (3.733)$$

Calculus of variations with respect to the squared transmit spectrum $|\Phi|^2$ provides $(\lambda' = \lambda^{-1})$

$$0 = \frac{-N_0}{2} \left(|H|^2 \cdot |\Phi|^2 + \frac{1}{\text{SNR}} \right)^2 + \lambda \quad (3.734)$$

$$\lambda' \cdot \frac{N_0}{2} \cdot |H|^2 = \left(|H|^2 \cdot |\Phi|^2 + \frac{1}{\text{SNR}} \right)^2 \quad (3.735)$$

$$0 = |H|^4 \cdot |\Phi|^4 + \frac{2}{\text{SNR}} \cdot |H|^2 \cdot |\Phi|^2 + \frac{1}{\text{SNR}^2} - \lambda' \cdot \frac{N_0}{2} \cdot |H|^2 \quad (3.736)$$

$$|\Phi|^2 = \frac{1}{|H|^2} \left[\sqrt{\lambda' \cdot \frac{N_0}{2} \cdot |H|^2 - \frac{1}{\text{SNR}}} \right] \quad (3.737)$$

$$= c \cdot |H| - \frac{1}{\text{SNR} \cdot |H|^2} \quad (3.738)$$

where the value of the Lagrange multiplier-related-constant c and the optimum symbol period T^{opt} are found from from the energy constraint in (3.733), along with the need for non-negative power spectral density, as

$$c = \left[\frac{N_0}{2} \cdot \frac{T^{opt}}{2\pi} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)| \cdot d\omega \right]^{-1} \left[1 + \frac{T^{opt}}{2\pi \cdot \text{SNR}} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)|^2 d\omega \right] . \quad (3.739)$$

The optimized transmit filter has some interesting interpretations. Basically the optimum transmit filter shape is the difference between a scaled $1/|H|$ and $\frac{2}{\text{SNR}} \cdot |H|^2$ where the scale constant c is chosen so that the transmit filter has unit norm. There will be again an optimum symbol rate and carrier frequency (exact middle), as illustrated in Figure 3.83.

This joint solution for c and T^{opt} partitions, for a particular initial guess of c, frequency into narrow MT spectra and computing (3.738) for each of these small tones or bands, then retaining and sorting those with non-negative spectra and then summing (computing the integrals) them to test the power constraint. If too much power, then c is reduced and the process repeated until the first situation where c is exactly achieved. If too little power, then c is increased and the process repeated until the power constraint is met. The author has humorously referred to this process as “slush packing” instead of “water-filling” on numerous occasions. The idea being that slush ice (think “icee” for movie/carnival goers) can be molded as shown in Figure 3.83. There can of course be multiple bands when the sorting is undone, but only one band is shown in Figure 3.83. The optimized transmit energy band is clearly not water-filling, although it does tend to favor bands with higher channel gain and to avoid bands with low channel gain (essentially attempting to avoid large noise enhancement by inverting a poor band) in the MMSE-LE.

The corresponding power spectrum is

$$R_{EE} = \frac{N_0}{2} \cdot \frac{T^{opt}}{2\pi} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)| \cdot d\omega \quad (3.740)$$

$$= \frac{N_0}{2} \cdot \frac{T^{opt}}{2\pi} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(\omega)|^2 d\omega \quad (3.741)$$

$$= \frac{N_0}{2} \cdot \frac{T^{opt}}{2\pi} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(e^{-j\omega T})| \quad (3.742)$$

$$\sigma^2_{\text{MMSE-LE}}^{opt} = \frac{T^{opt} \cdot \frac{N_0}{2}}{2\pi c} \int_{\frac{2\pi}{T^{opt}}}^{\frac{2\pi}{T^{opt}}} |H(e^{-j\omega T})| \quad (3.743)$$

318
Figure 3.83: Illustration of optimum transmit filter for MMSE-LE, single-band case (“slush packing”).

\[
\text{SNR}_{\text{MMSE-LE, } U}^{\text{opt}} = \frac{\tilde{\xi}_X}{(\sigma^2_{\text{MMSE-LE}})^{\text{opt}}} - 1, \quad (3.744)
\]

which implies the channel-dependent noise enhancement with optimized transmit spectrum grows only as the square-root of the noise enhancement that occurred with fixed-transmitter MMSE-LE systems. The frequency-dependent SNR can also be found as

\[
\text{SNR}(\omega) = \text{SNR} \cdot |H(\omega)| \cdot c - 1 \quad (3.745)
\]

on those frequencies in the used optimum band (and zero elsewhere). The equalized channel output can be found as

\[
W \cdot Y = \frac{c \cdot \text{SNR} \cdot |H| - 1}{c \cdot \text{SNR} \cdot |H|} \cdot V + W \cdot N \quad , \quad (3.746)
\]

basically showing the input \(V \) with the MMSE bias well known at this point of this chapter and the filtered noise at each frequency going into the SBS detector.

For the zero-forcing case, the equalizer SNR tends to infinity, and the transmit filter becomes a scaled square-root pre-inverse of the channel \(H \), essentially splitting the equalizer’s channel inversion between the transmit filter and the receiver’s MMSE-LE filter that also will be a scaled square-root inverse of the channel \(H \). The symbol rate will be that corresponding to the measure of the frequency band between the two points shown in Figure 3.83 except that the lower curve will be the horizontal axis line (and the symbol rate is chosen to make the transmit basis-function filter unit norm).

Another situation of interest is when the the receiver has no ability to equalize, but the transmitter can alter the transmit filter. This case is readily resolves into the MMSE-LE moving to the transmitter with a scaling constant used to prevent transmit energy constraints being violated (or equivalently the transmit filter has a scaled MMSE-LE shape where the scaling causes the filter to have unit norm).

Chapter 4 continues with a more complete discussion of all forms of transmit optimization, while Chapter 5 develops further the equivalent of finite-length transmit filter optimization in what is called generalized decision feedback equalization (GDFE).
Exercises - Chapter 3

3.1 Single Sideband (SSB) Data Transmission with no ISI - 8 pts
Consider the quadrature modulator shown in Figure 3.84,

![Quadrature modulator diagram]

Figure 3.84: Quadrature modulator.

a. What conditions must be imposed on \(H_1(f) \) and \(H_2(f) \) for the output signal \(s(t) \) to have no spectral components between \(-f_c\) and \(f_c\)? Assume that \(f_c \) is larger than the bandwidth of \(H_1(f) \) and \(H_2(f) \). (2 pts.)

b. With the input signal in the form,
\[
x(t) = \sum_{n=\infty}^{\infty} a_n \cdot \phi(t-nT)
\]
what conditions must be imposed on \(H_1(f) \) and \(H_2(f) \) if the real part of the demodulated signal is to have no ISI. (3 pts.)

c. Find the impulse responses \(h_1(t) \) and \(h_2(t) \) corresponding to the minimum bandwidth \(H_1(f) \) and \(H_2(f) \) that simultaneously satisfy Parts a and b. The answer can be in terms of \(\phi(t) \). (3 pts.)

3.2 Sampling Time and Eye Patterns - 9 pts
The received signal for a binary transmission system is,
\[
y(t) = \sum_{n=\infty}^{\infty} a_n \cdot q(t-nT) + n(t)
\]
where \(a_n \in \{-1, +1\} \) and \(Q(f) \) is a triangular, i.e. \(q(t) = sinc^2(\frac{t}{T}) \). The received signal is sampled at \(t = kT + t_0 \), where \(k \) is an integer and \(t_0 \) is the sampling phase, \(|t_0| < \frac{1}{2}T \).

a. Neglecting the noise for the moment, find the peak distortion as a function of \(t_0 \). \textit{Hint:} Use Parseval’s relation. (3 pts.)

b. For the following four binary sequences \(\{u_n\}_{-\infty}^{\infty}, \{v_n\}_{-\infty}^{\infty}, \{w_n\}_{-\infty}^{\infty}, \{x_n\}_{-\infty}^{\infty} \):
\[
\begin{align*}
 u_n &= -1 \quad \forall n, \\
 v_n &= +1 \quad \forall n, \\
 w_n &= \begin{cases}
 +1, & \text{for } n = 0 \\
 -1, & \text{otherwise}
 \end{cases}, \quad \text{and} \\
 x_n &= \begin{cases}
 -1, & \text{for } n = 0 \\
 +1, & \text{otherwise}
 \end{cases}
\end{align*}
\]
use the result of (a) to find expressions for the 4 outlines of the corresponding binary eye pattern. Sketch the eye pattern for these four sequences over two symbol periods \(-T \leq t \leq T\). (2 pts.)
c. Find the eye pattern’s width (horizontal) at its widest opening. (2 pts.)

d. If the noise variance is σ^2, find a worst case bound (using peak distortion) on the probability of error as a function of t_0. (2 pts.)

3.3 The Stanford EE379 Channel Model - 12 pts

For the ISI-model shown in Figure 3.9 with PAM and symbol period T, $\varphi(t) = \frac{1}{\sqrt{T}} \cdot \text{sinc} \left(\frac{t}{T} \right)$ and $h(t) = \delta(t) - \frac{1}{2} \delta(t - T)$:

a. Determine $p(t)$, the pulse response. (1 pt)

b. Find $||p||$ and $\varphi_p(t)$. (2 pts.)

c. (2 pts.) Find $q(t)$, the function that characterizes how one symbol interferes with other symbols. Confirm that $q(0) = 1$ and that $q(t)$ is hermitian (conjugate symmetric). A useful observation is

$$\text{sinc} \left(\frac{t + mT}{T} \right) \ast \text{sinc} \left(\frac{t + nT}{T} \right) = T \cdot \text{sinc} \left(\frac{t + (m + n)T}{T} \right).$$

d. Use Matlab to plot $q(t)$. This plot may use $T = 10$ and show $q(t)$ for integer values of t. With $y(t)$ sampled at $t = kT$ for some integer k, how many symbols are distorted by a given symbol? How will a given positive symbol affect the distorted symbols? Specifically, will they be increased or decreased? (2 pts.)

e. The remainder of this problem considers 8 PAM with $d = 1$. Determine the peak distortion, D_p. (2 pts.)

f. Determine the MSE distortion, D_{mse} and compare with the peak distortion. (2 pts.)

g. Find an approximation to the probability of error (using the MSE distortion). The answer will be in terms of σ. (1 pt.)

3.4 Bias and SNR - 8 pts

This problem uses the results and specifications of Problem 3.3 with 8 PAM and $d = 1$ and sets

$$\frac{1}{2} N_0 = \sigma^2 = 0.1.$$

The detector first scales the sampled output y_k by α and chooses the closest x to $y_k \cdot \alpha$ as illustrated in Figure 3.15. Please express your SNR’s below both as a ratio of powers and in dB.

a. For which value of α is the receiver unbiased? (1 pt.)

b. For the value of α found in (a), find the receiver signal-to-noise ratio, $SNR(R)$. (2 pts.)

c. Find the value of α that maximizes SNR_R and the corresponding $SNR(R)$. (2 pts.)

d. Show that the receiver found in the previous part is biased. (1 pt.)

e. Find the matched filter bound on signal-to-noise ratio, SNR_{MFB}. (1 pt.)

f. Discuss the ordering of the three SNR’s you have found in this problem. Which inequalities will always be true? (1 pt.)

3.5 Raised Cosine Pulses with Matlab - 8 pts

This problem uses the .m files from the instructors EE379A web page at http://web.stanford.edu/group/cioffi/ee379a/homework.html.
a. The formula for the raised cosine pulse is in Equation (3.79) and repeated here as:

\[q(t) = \text{sinc} \left(\frac{t}{T} \right) \cdot \left[\cos \left(\frac{\alpha \pi t}{T} \right) \right] \]

There are three values of \(t \) that would cause a program, such as Matlab, difficulty because of a division by zero. Identify these trouble spots and evaluate what \(q(t) \) should be for these values. (2 pts)

b. Having identified those three trouble spots, a function to generate raised-cosine pulses is a straightforward implementation of the above equation and is in \texttt{mk_rcpulse.m} from the web site. Executing \(q = \text{mk_rcpulse}(a) \) will generate a raised-cosine pulse with \(\alpha = a \). The pulses generated by \texttt{mk_rcpulse} assume \(T = 10 \) and are truncated to 751 points. (2 pts)

Use \texttt{mk_rcpulse} to generate raised cosine pulses with 0%, 50%, and 100% excess bandwidth and plot them with \texttt{plt_pls_lin}. The syntax is \texttt{plt_pls_lin(q_50, 'title')} where \(q_50 \) is the vector of pulse samples generated by \texttt{mk_rcpulse(0.5)} (50% excess bandwidth). Show results and discuss any deviations from the ideal expected frequency-domain behavior. (3 pts)

c. Use \texttt{plt_pls_dB(q, 'title')} to plot the same three raised cosine pulses as in part (b). Show the results. Which of these three pulses would you provide to the smallest band of frequencies with energy above -40dB? Explain this unexpected result. (3 pts)

d. The function \texttt{plt_qk (q, 'title')} plots \(q(k) \) for sampling at the optimal time and for sampling that is off by 4 samples (i.e., \(q(kT) \) and \(q(kT + 4) \) where \(T = 10 \)). Use \texttt{plt_qk} to plot \(q(k) \) for 0%, 50%, and 100% excess bandwidth raised cosine pulses. Discuss how excess bandwidth affects sensitivity of ISI performance to sampling at the correct instant. (3 pts)

3.6 Noise Enhancement: MMSE-LE vs ZFE - 23 pts

This problem explores the channel with \(\|p\|^2 = 1 + \|a\|^2 \)

\[Q(D) = a^*D^{-1} + \|p\|^2 + aD \]

\[0 \leq |a| < 1 \]

a. (2 pts) Find the zero forcing and minimum mean square error linear equalizers \(W_{ZFE}(D) \) and \(W_{MMSE-LE}(D) \). Use the variable \(b = \|p\|^2 \cdot \left(1 + \frac{1}{\text{SNR}_{MFB}} \right) \) in your expression for \(W_{MMSE-LE}(D) \).

b. (6 pts) By substituting \(e^{-j\omega T} = D \) (with \(T = 1 \)) and using \(\text{SNR}_{MFB} = 10 \cdot \|p\|^2 \), use Matlab to plot (lots of samples of) \(W(e^{j\omega}) \) for both ZFE and MMSE-LE for \(a = .5 \) and \(a = .9 \). Discuss the differences between the plots.

c. (3 pts) Find the roots \(r_1, r_2 \) of the polynomial

\[aD^2 + bD + a^* \]

Show that \(b^2 - 4|a|^2 \) is always a real positive number (for \(|a| \neq 1 \)). \textit{Hint:} Consider the case where \(\frac{1}{\text{SNR}_{MFB}} = 0 \). Let \(r_2 \) be the root for which \(|r_2| < |r_1| \). Show that \(r_1 r_2^* = 1 \).

d. (2 pts) Use the previous results to show that for the MMSE-LE

\[W(D) = \frac{\|p\|}{a} \frac{D}{(D - r_1)(D - r_2)} = \frac{\|p\|}{a(r_1 - r_2)} \left(\frac{r_1}{D - r_1} - \frac{r_2}{D - r_2} \right) \] \hspace{1cm} (3.747)

e. (2 pts) Show that for the MMSE-LE, \(w_0 = \frac{\|p\|}{\sqrt{b^2 - 4|a|^2}} \). By taking \(\frac{1}{\text{SNR}_{MFB}} = 0 \), show that for the ZFE, \(w_0 = \frac{\|p\|}{1 - |a|^2} \).
f. (4 pts) For $E_x = 1$ and $\sigma^2 = 0.1$ find expressions for σ^2_{ZFE}, γ_{ZFE}, and $\gamma_{MMSE-LE}$.

g. (4 pts) Find γ_{ZFE} and $\gamma_{MMSE-LE}$ in terms of the parameter a and calculate for $a = 0, 0.5, 1$. Sketch γ_{ZFE} and $\gamma_{MMSE-LE}$ for $0 \leq a < 1$.

3.7 DFE is Even Better - 8 pts

a. (2 pts) For the channel of Problem 3.6, show that the canonical factorization is

$$Q(D) + \frac{1}{SNR_{MFB}} = \gamma_0 \cdot (1 - r_2 D^{-1})(1 - r_2^* D).$$

What is γ_0 in terms of a and b? Please don’t do this from scratch; use results of Problem 3.6.

b. (2 pts) Find $B(D)$ and $W(D)$ for the MMSE DFE.

c. (4 pts) Give an expression for $\gamma_{MMSE-DFE}$. Compute its values for $a = 0, 0.5, 1$ for the E_x and σ^2 of problem 3.6. Sketch $\gamma_{MMSE-DFE}$ as in problem 3.6. Compare with your sketches from Problem 3.6.

3.8 Noise Predictive DFE - 11 pts

With the equalizer shown in Figure 3.8 with $B(D)$ restricted to be causal and monic and all decisions presumed correct, use a MMSE criterion to choose $U(D)$ and $B(D)$ to minimize $E[|x_k - z_k'|^2]$. (x_k is the channel input.)

a. (5 pts) Show this equalizer is equivalent to a MMSE-DFE and find $U(D)$ and $B(D)$ in terms of $G(D)$, $Q(D)$, $\|p\|$, E_x, SNR_{MFB} and γ_0.

b. (2 pts) Relate $U_{NPDFE}(D)$ to $W_{MMSE-LE}(D)$ and to $W_{MMSE-DFE}(D)$.

c. (1 pt) Without feedback ($B(D) = 1$), what does this equalizer become?

d. (1 pt) Interpret the name “noise-predictive” DFE by explaining what the feedback section is doing.

e. (2 pts) Is the NPDFE biased? If so, show how to remove the bias.

3.9 Receiver SNR Relationships - 11 pts
a. (3 pts) Recall that:

\[Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}} = \gamma_0 G(D)G^*(D^-) \]

Show that:

\[1 + \frac{1}{\text{SNR}_{\text{MFB}}} = \gamma_0 \|g\|^2 \]

b. (3 pts) Show that:

\[\|g\| \geq 1 \]

with equality if and only if \(Q(D) = 1 \) (i.e. if the channel is flat) and therefore:

\[\gamma_0 \leq 1 + \frac{1}{\text{SNR}_{\text{MFB}}} \]

c. (3 pts) Let \(x_0 \) denote the time-zero value of the sequence \(X \). Show that:

\[\left[\frac{1}{Q(D)} \right] \geq \frac{1}{\gamma_0} \]

and therefore:

\[\text{SNR}_{\text{MMSE-LE, U}} \leq \text{SNR}_{\text{MMSE-DFE, U}} \]

(with equality if and only if \(Q(D) = 1 \), that is \(Q(\omega) \) has vestigial symmetry.)

d. (2 pts) Use the results of parts b) and c) to show:

\[\text{SNR}_{\text{MMSE-LE, U}} \leq \text{SNR}_{\text{DFE, U}} \leq \text{SNR}_{\text{MFB}} \]

3.10 Bias and Probability of Error - 7 pts

This problem illustrates that the best unbiased receiver has a lower \(P_e \) than the (biased) MMSE receiver using the 3-point PAM constellation in Figure 3.86.

Figure 3.86: A three point PAM constellation.

The AWGN \(n_k \) has

\[\frac{N_0}{2} = \sigma^2 = 0.1. \]

The inputs are independent and identically distributed uniformly over the three possible values. Also, \(n_k \) has zero mean and is independent of \(x_k \).

a. (1 pt) Find the mean square error between \(y_k = x_k + n_k \) and \(x_k \). (easy)

b. (1 pt) Find the exact \(P_e \) for the ML detector of the unbiased values \(y_k \).
c. (2 pts) Find the scale factor α that will minimize the mean square error

$$E[e_k^2] = E[(x_k - \alpha y_k)^2].$$

Prove that this α does in fact provide a minimum by taking the appropriate second derivative.

d. (2 pts) Find $E[e_k^2]$ and P_e for the scaled output αy_k. When computing P_e, use the decision regions for the unbiased ML detector of Part b. The biased receiver of part (c) has a P_e that is higher than the (unbiased) ML detector of Part b, even though it has a smaller squared error.

e. (1 pt) Where are the optimal decision boundaries for detecting x_k from αy_k (for the MMSE α) in Part c? What is the probability of error for these decision boundaries?

3.11 Bias and the DFE - 4 pts

For the DFE of Problem 3.7, the canonical factorization’s scale factor was found as:

$$\gamma_0 = \frac{b + \sqrt{b^2 - 4|a|^2}}{2(1 + |a|^2)}.$$

a. (2 pts) Find G_u in terms of a, b, and r_2. Use the same SNR_{MFB} as in Prob 3.7.

b. (1 pt) Draw a DFE block diagram with scaling after the feedback summation.

c. (1 pt) Draw a DFE block diagram with scaling before the feedback summation.

3.12 Zero-Forcing DFE - 7 pts

This problem again uses the general channel model of Problems 3.6 and 3.7 with $\bar{E}_x = 1$ and $\sigma^2 = 0.1$.

a. (2 pts) Find η_0 and $P_e(D)$ so that

$$Q(D) = \eta_0 \cdot P_e(D) \cdot P_e^*(D^{-*}).$$

b. (2 pts) Find σ^2_{ZF-DFE} and $W(D)$ for the ZF-DFE.

c. (1 pt) Find σ^2_{ZF-DFE}

d. (2 pts) Find the loss with respect to SNR_{MFB} for $a = 0, .5, 1$. Sketch the loss for $0 \leq a < 1$.

3.13 Complex Baseband Channel - 6 pts

The pulse response of a channel is band-limited to $\frac{\pi}{T}$ and has

$$p_0 = \frac{1}{\sqrt{T}} \cdot (1 + 1.1j)$$
$$p_1 = \frac{1}{\sqrt{T}} \cdot (0.95 + 0.5j)$$
$$p_k = 0 \text{ for } k \neq 0, 1$$

where $p_k = p(kT)$ and $SNR_{MFB} = 15$ dB.

a. (2 pts) Find $\|p\|^2$ and a so that

$$Q(D) = \frac{\alpha^* D^{-1} + \|p\|^2 + aD}{\|p\|^2}$$

b. (2 pts) Find $SNR_{MSE-LE,U}$ and $SNR_{MSE-DFE,U}$ for this channel. Use the results of Problems 3.6 and 3.7 wherever appropriate. Since $\|p\|^2 \neq 1 + |a|^2$, some care should be exercised in using the results of Problems 3.6 and 3.7.

326
c. (2 pts) Use the SNR's from Part b to compute the NNUB on P_e for 4-QAM with the MMSE-LE and the MMSE-DFE.

3.14 Tomlinson Precoding - 13 pts
This problem uses a $1 + 0.9D$ channel (i.e. the $1 + aD$ channel that we have been exploring at length with $a = 0.9$ with $\sigma^2 = 0$ and with the 4-PAM constellation having $x_k \in \{-3, -1, 1, 3\}$.

a. (5 pts) Design a Tomlinson precoder and its associated receiver for this system. This system will be fairly simple. How would your design change if noise were present in the system?

b. (5 points) Implement the precoder and its associated receiver using any method you would like with no noise for the following input sequence:

$$\{3, -3, 1, -1, 3, -3, -1\}$$

Also compute the corresponding output of the receiver, assuming that the symbol $x' = -3$ was sent just prior to the input sequence.

c. (3 pts) Again with zero noise, remove the modulo operations from the precoder and the receiver.
For this modified system, compute the output of the precoder, the output of the channel, and the output of your receiver for the same inputs as in the previous part.
Did the system still work? What changed? What purpose do the modulo operators serve?

3.15 Flexible Precoding - 13 pts
This problem uses a $1 + 0.9D$ channel (i.e. the $1 + aD$ channel that we have been exploring at length with $a = 0.9$ with $\sigma^2 = 0$ and with the 4-PAM constellation having $x_k \in \{-3, -1, 1, 3\}$.

a. (5 pts) Design a Flexible precoder and its associated receiver for this system. This system will be fairly simple. How would your design change if noise were present in the system?

b. (5 points) Implement the precoder and its associated receiver using any method you would like with no noise for the following input sequence:

$$\{3, -3, 1, -1, 3, -3, -1\}$$

Also compute the corresponding output of the receiver, assuming that the symbol $x' = -3$ was sent just prior to the input sequence.

c. (3 pts) Again with zero noise, remove the modulo operations from the precoder and the receiver.
For this modified system, compute the output of the precoder, the output of the channel, and the output of your receiver for the same inputs as in the previous part.
Did the system still work? What changed? What purpose do the modulo operators serve?

3.16 Finite-Length Equalization and Matched Filtering - 5 pts
This problem explores the optimal FIR MMSE-LE without assuming an explicit matched filter. However, there will be a "matched filter" anyway as a result of this problem. This problem uses a system whose pulse response is band limited to $|\omega| < \frac{\pi}{T}$ that is sampled at the symbol rate T after passing through an anti-alias filter with gain \sqrt{T}.

a. (3 pts)
Show that

$$w = R_{xY} R_{YY}^{-1} = (0, \ldots, 0, 1, 0, \ldots, 0) \Phi_p^* \left(\left\| p \right\| \left(\hat{Q} + i \frac{1}{SNR_{MFB}} I \right) \right)^{-1}.$$

where

$$\hat{Q} = \frac{PP^*}{\left\| p \right\|^2}$$

327
b. (2 pts) Which terms in Part a correspond to the matched filter? Which terms correspond to the
infinite length $W_{MMSE-LE}$?

3.17 Finite-Length Equalization and MATLAB - 5 pts
The $1 + 0.25D$ channel with $\sigma^2 = .1$ has an input with $\bar{\xi}_x = 1$.

a. (1 pt) Find $\text{SNR}_{MMSE-LE,U}$ for the infinite-length filter.

b. (2 pts) This problem uses the MATLAB program `mmsele`. This program is interactive, so just
type `mmsele` and answer the questions. When it asks for the pulse response, you can type $[1 0.25]$ or p
if you have defined $p = [1 0.25]$.

Use `mmsele` to find the best Δ and the associated $\text{SNR}_{MMSE-LE,U}$ for a 5-tap linear equalizer.
Compare with the value from Part a. How sensitive is performance to Δ for this system?

c. (2 pts) Plot $|P(e^{jwT})|$ and $|P(e^{jwT})W(e^{jwT})|$ for $w \in [0, \frac{\pi}{T}]$. Discuss the plots briefly.

3.18 Computing Finite-Length equalizers - 11 pts
This problem uses the following system description:

$$\bar{\xi}_x = 1 \quad N_0 = \frac{1}{8} \quad \phi(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right) \quad h(t) = \delta(t) - 0.5\delta(t-T) \quad l = 1$$

Matlab may assist any matrix manipulations in completing this problem. Answers may be validated
with `dfecolor.m`. However, this problem’s objective is to explore the calculations in detail.

a. (2 pts) The anti-alias filter is perfect (flat) with gain \sqrt{T}. Find $\tilde{p}(t) = (\phi(t) * h(t))$ and $\|\tilde{p}\|^2$,
corresponding to the discrete-time channel

$$y_k = x_k - 0.5 \cdot x_{k-1} + n_k \quad \text{(3.748)}$$

Also, find $\|\hat{P}(D)\|^2 = \sum_k |\hat{p}_k|^2$.

b. (1 pt) Compute SNR_{MFB} for this channel.

c. (2 pts) Design a 3 tap FIR MMSE-LE for $\Delta = 0$.

d. (1 pt) Find the σ^2_{LE} for the equalizer of the previous part.

e. (2 pts) Design a 3 tap FIR ZF-LE for $\Delta = 0$.

f. (1 pt) Find the associated σ^2_{ZFE}.

g. (2 pts) Design an MMSE-DFE which has 2 feedforward taps and 1 feedback tap. Again, assume
that $\Delta = 0$.

h. (2 pts) Compute the unbiased SNR’s for the MMSE-LE and MMSE-DFE. Compare these two
SNR’s with each other and the SNR_{MFB}.

3.19 Equalizer for Two-Band Channel with Notch - 10 pts

![Figure 3.87: Channel for Problem 3.19.](image_url)
Figure 3.87 has AWGN channel with pulse response $p(t) = \frac{1}{\sqrt{T}} \cdot [\text{sinc}(\frac{t}{T}) - \text{sinc}(\frac{t-4T}{T})]$. The receiver anti-alias filter has gain \sqrt{T} over the entire Nyquist frequency band, $-1/2T < f < 1/2T$, and zero outside this band. The filter is followed by a $1/T$ rate sampler so that the sampled output has D-Transform

$$y(D) = (1 - D^4) \cdot x(D) + n(D).$$ \hspace{1cm} (3.749)

$x(D)$ is the D-Transform of the sequence of M-ary PAM input symbols, and $n(D)$ is the D-Transform of the Gaussian noise sample sequence. The noise autocorrelation function is $R_{nn}(D) = \frac{N_0}{T}$. Further equalization of $y(D)$ is in discrete time where (in this case) the matched filter and equalizer discrete responses (i.e., D-Transforms) can be combined into a single discrete-time response. The target P_e is 10^{-3}.

Let $\frac{N_0}{T} = -100$ dBm/Hz (0 dBm = 1 milliwatt = .001 Watt) and let $1/T = 2$ MHz.

a. Sketch $|P(e^{-j\omega T})|^2$. (2 pts)

b. What kind of equalizer should be used on this channel? (2 pts)

c. For a ZF-DFE, find the transmit symbol mean-square value (i.e., the transmit energy) necessary to achieve a data rate of 6 Mbps using PAM and assuming a probability of symbol error equal to 10^{-3}. (4 pts)

d. For the transmit energy in Part c, how would a MMSE-DFE perform on this channel? (2 pts)

3.20 FIR Equalizer Design - 14 pts

A symbol-spaced FIR equalizer ($l = 1$) is applied to a stationary sequence y_k at the sampled output of an anti-alias filter, which produces a discrete-time IIR channel with response given by

$$y_k = a \cdot y_{k-1} + b \cdot x_k + n_k,$$ \hspace{1cm} (3.750)

where n_k is white Gaussian noise.

The SNR (ratio of mean square x to mean square n) is $\frac{E_x}{N_0} = 20$ dB. $|a| < 1$, and both a and b are real. For all parts of this question, choose the best Δ where appropriate.

a. Design a 2-tap FIR ZFE. (3 pts)

b. Compute the SNR$_{ZFE}$ for part a. (2 pts)

c. Compare the answer in Part b with that of the infinite-length ZFE. (1 pt)

d. Let $a = .9$ and $b = 1$. Find the 2-tap FIR MMSE-LE. (4 pts)

e. Find the SNR$_{MMSE-LE,U}$ for Part d. (2 pts)

f. Find the SNR$_{ZFE}$ for an infinite-length ZF-DFE. How does the SNR compare to the matched-filter bound if there is no information loss incurred in the symbol-spaced anti-alias filter? Use $a = .9$ and $b = 1$. (2 pts)

3.21 ISI quantification - 8 pts

For the channel $P(\omega) = \sqrt{T}(1 + .9 \cdot e^{j\omega T})$ $\forall|\omega| < \pi/T$ studied repeatedly in this chapter, use binary PAM with $E_x = 1$ and SNR$_{MFB} = 10$ dB. Remember that $g_0 = 1$.

a. Find the peak distortion, D_p. (1 pt)

b. Find the peak-distortion bound on P_e. (2 pts)

c. Find the mean-square distortion, D_{MS}. (1 pt)

d. Approximate P_e using the D_{MS} of Part c. (2 pts)

329
e. ZFE: Compare P_e in part d with the P_e for the ZFE. Compute SNR difference in dB between the SNR based on mean-square distortion implied in Parts c and d and SNR$_{ZFE}$. (hint, see example in this chapter for SNR$_{ZFE}$) (2 pts)

3.22 Precoding - 12 pts

For an ISI channel with

$$Q(D) + \frac{1}{\text{SNR}_{MFB}} = .82 \cdot \left[\frac{1}{2} D^{-1} + 1.25 - \frac{1}{2} D \right],$$

and $\frac{\bar{E}_x}{T} = 100$.

a. Find SNR$_{MFB}$, $\|p^2$, and SNR$_{MMSE-DFE}$. (2 pts)

b. Find $G(D)$ and $G_U(D)$ for the MMSE-DFE. (1 pt)

c. Draw a Tomlinson-Harashima precoder, showing from x_k through the decision device in the receiver in your diagram (any M). (2 pts)

d. Let $M = 4$ in the precoder of Part c. Find P_e. (2 pts)

e. Design (show/draw) a Flexible precoder, showing from x_k through the decision device in the receiver in your diagram (any M). (2 pts)

f. Let $M = 4$ the precoder of Part e. Find P_e. (2 pts)

3.23 Finite-Delay Tree Search - 17 pts

A channel with multipath fading has one reflecting path with gain (voltage) 90% of the main path with binary input. The relative delay on this path is approximately T seconds, but the carrier sees a phase-shift of -60° that is constant on the second path.

Use the model

$$P(\omega) = \begin{cases} \sqrt{T} \left(1 + ae^{-j\omega T} \right) & |\omega| < \pi/T \\ 0 & \text{elsewhere} \end{cases}$$

to approximate this channel with $\frac{\bar{E}_x}{T} = .0181$ and $\bar{E}_x = 1$.

a. Find a. (1 pt)

b. Find SNR$_{MFB}$. (1 pt)

c. Find $W(D)$ and SNR$_{MMSE-LE,U}$ for the MMSE-LE. (3 pts)

d. Find $W(D)$, $B(D)$, and SNR$_{MMSE-DFE,U}$ for the MMSE-DFE. (3 pts)

e. Design a simple method to compute SNR$_{ZF-DFE}$ (2 pts).

f. A finite-delay tree search detector at time k decides \hat{x}_{k-1} is shown in Figure 3.88 and chooses \hat{x}_{k-1} to minimize

$$\min_{\tilde{x}_k, \hat{x}_{k-1}} |z_k - \tilde{x}_k - a\hat{x}_{k-1}|^2 + |\tilde{x}_{k-1} - \hat{x}_{k-1} - a\tilde{x}_{k-2}|^2,$$

where $\tilde{x}_{k-2} = x_{k-2}$ by assumption.
Figure 3.88: Finite-delay tree search.

How does this FDTS compare with the ZF-DFE (better or worse)? (1 pt)

g. Find an SNR_{fdts} for this channel. (3 pts)
h. Could you generalize SNR in part g for FIR channels with ν taps? (3 pts)

3.24 Peak Distortion - 5 pts

Peak Distortion can be generalized to channels without receiver matched filtering (that is \(\varphi_p(-t) \) is a lowpass anti-alias filter). A channel has

\[
y(D) = x(D) \cdot (1 - 0.5D) + N(D)
\]

after sampling, where \(N(D) \) is discrete AWGN. \(P(D) = 1 - 0.5D \).

a. Write \(y_k \) in terms of \(x_k, x_{k-1} \) and \(n_k \). (hint, this is easy. 1 pt)
b. The peak distortion for such a channel is \(D_p \triangleq |x_{max}| \cdot \sum_{m \neq 0} |p_m| \). Find this \(D_p \) for this channel if \(|x_{max}| = 1 \). (2 pts)
c. Suppose \(\frac{N_0}{2} \), the mean-square of the sample noise, is .05 and \(\bar{E}_x = 1 \). What is \(P_e \) for symbol-by-symbol detection on \(y_k \) with PAM and \(M = 2 \)? (2 pts)

3.25 Equalization of Phase Distortion - 13 pts

An ISI channel has \(p(t) = \frac{1}{\sqrt{T}} [\text{sinc}(t/T) - jsinc[(t - T)/T]] \), \(\bar{E}_x = 1 \), and \(\frac{N_0}{2} = .05 \).

a. What is \(\text{SNR}_{MFB} \)? (1 pt)
b. Find the ZFE. (2 pts)
c. Find the MMSE-LE. (2 pts)
d. Find the ZF-DFE. (2 pts)
e. Find the MMSE-DFE. (2 pts)
f. Draw a diagram illustrating the MMSE-DFE implementation with Tomlinson precoding. (2 pts)
g. For \(P_e < 10^{-6} \) and using square or cross QAM, choose a design and find the largest data rate you can transmit using one of the equalizers above. (2 pts)

3.26 Basic QAM Systems Revisited with Equalization Background - 6 pts

An AWGN channel has \(\bar{E}_x = -40 \text{ dBm/Hz} \) and \(\frac{N_0}{2} = -66 \text{ dBm/Hz} \). The symbol rate is initially fixed at 5 MHz, and the desired \(P_e = 10^{-6} \). Only QAM CR or SQ constellations may be used.
a. What is the maximum data rate? (1 pt)

b. What is the maximum data rate if the desired $P_e < 10^{-7}$? (1 pt)

c. What is the maximum data rate if the symbol rate can be varied (but transmit power is fixed at the same level as was used with a 5 MHz symbol rate)? (1 pt)

d. Suppose the pulse response of the channel changes from $p(t) = \frac{1}{\sqrt{T}} \cdot \text{sinc} \left(\frac{t}{T} \right)$ to $\frac{1}{\sqrt{T}} \cdot \text{sinc} \left(\frac{t}{T} \right) + 0.9 \cdot \frac{1}{\sqrt{T}} \cdot \text{sinc} \left(\frac{t+T}{T} \right)$, and Question a is revisited. With respect to your answer in Question a, compare the data rate for a ZF-DFE applied to this channel where $1/T = 5$ MHz. (1 pt)

e. Under the exact same change of Question d, compare the data rate with respect to your answer in Question c. (1 pt)

f. Suppose an optimum ML detector is used (observes all transmissions and makes one large decision on the entire transmitted message) with any pulse response that is a one-to-one transformation on all possible QAM inputs with $\|p\|^2 = 1$. Compare the probability of error with respect to that of the correct response to Question a. (1 pt)

3.27 Expert Understanding - 10 pts

A channel baseband transfer function for PAM transmission is shown in Figure 3.89. PAM transmission with sinc basis function is used on this channel with a transmit power level of 10 mW = E_x/T. The one-sided AWGN psd is -100 dBm/Hz.

a. Let the symbol rate be 20 MHz - find SNR$_{MFB}$. (1 pt)

b. For the same symbol rate as Part a, what is SNR$_{MMSE-LE}$? (1 pt)

c. For the equalizer in Part b, what is the data rate for PAM if $P_e \leq 10^{-6}$? (1 pt)

d. Let the symbol rate be 40 MHz - find the new SNR$_{MFB}$. (2 pts)

e. Draw a the combined shape of the matched-filter and feedforward filter for a ZF-DFE corresponding to the new symbol rate of Part d. (1 pt)
f. Estimate $\text{SNR}_{\text{MMSE-DFE,U}}$ for the new symbol rate, assuming a MMSE-DFE receiver is used. (2 pts) (Hint: the relationship of this transfer function to the channel is often used as an example in Chapter 3).

g. What is the new data rate for this system at the same probability of error as Part c - compare with the data rate of part c. (1 pt)

h. What can you conclude about incurring ISI if the transmitter is allowed to vary its bandwidth? (2 pts)

3.28 Infinite-Length EQ - 10 pts
An ISI channel with PAM transmission has channel correlation function given by

$$Q(D) = \frac{.19}{(1 + .9D)(1 + .9D^{-1})},$$

with $\text{SNR}_{\text{MFB}} = 10$ dB, $\mathcal{E}_x = 1$, and $||p||^2 = \frac{1}{75}$.

a. (3 pts) Find $W_{\text{ZF}}(D)$, σ^2_{ZF}, and SNR_{ZF}.

b. (1 pt) Find $W_{\text{MMSE-LE}}(D)$

c. (3 pts) Find $W_{\text{ZF-DFE}}(D)$, $B_{\text{ZF-DFE}}(D)$, and $\text{SNR}_{\text{ZF-DFE}}$.

d. (3 pts) Find $W_{\text{MMSE-DFE}}(D)$, $B_{\text{MMSE-DFE}}(D)$, and $\text{SNR}_{\text{MMSE-DFE,U}}$.

3.29 Finite-Length EQ - 9 pts
A baseband channel is given by

$$P(f) = \begin{cases} \sqrt{T} \cdot (1 - .7e^{2\pi f/T}) & |f| < \frac{5}{T} \\ 0 & |f| \geq \frac{5}{T} \end{cases}$$

and finite-length equalization is used with anti-alias perfect LPR with gain \sqrt{T} followed by symbol-rate sampling. After the sampling, a maximum complexity of 3 taps TOTAL over a feedforward filter and a feedback filter can be used. $\mathcal{E}_x = 2$ and $\frac{N_0}{2} = .01$ for a symbol rate of $1/T = 100$kHz is used with PAM transmission. Given the complexity constraint, find the highest data rate achievable with PAM transmission when the corresponding probability of symbol error must be less than 10^{-5}.

3.30 Infinite-length Channel and Equalizer - 10 pts
The pulse response on a channel with additive white Gaussian noise is $p(t) = e^{-at} \cdot u(t)$, where $u(t)$ is the unit step response. $a > 0$ and the two symbol inputs per dimension are ± 1. Only QAM CR or SQ constellations allowed.

a. What is the argument to the Q-function in $\bar{P}_e = Q(x)$ at very low symbol rates? (1 pt)

b. For $\bar{P}_e \approx 10^{-6}$, $\frac{N_0}{2} = .05$, and very low symbol period, what is the value of $a =$? (1 pt)

For the remainder of this problem, let $T = 1$.

c. Find $Q(D)$. (1 pt)

d. Find D_{ms}. (1 pt)

e. Find the receiver normalized matched filter prior to any symbol-rate sampling device. (1 pt)

f. Find SNR_{MFB}. Let $\text{SNR} = \mathcal{E}_x / \frac{N_0}{2}$. (1 pt)

g. Find the loss of the ZF-DFE with respect to the MFB. (1 pt)
h. Find $\text{SNR}_{\text{MMSE-DFE,U}}$ for $a = 1$ and $\text{SNR} = 20$ dB. (3 pts)

i. What would an increase in $a > 1$ with respect to Part h do to the gap in performance between the ZF-DFE and the MMSE-DFE? (2 pts)

3.31 Diversity Channel - 6 pts
This problem compares the channel studied throughout this text with the same input energy $\tilde{E}_X = 1$ and noise PSD of $\frac{\tilde{N}_0}{2} = .181$ versus almost the same channel except that two receivers independently receive:

- an undistorted delayed-by-T signal (that is $P(D) = D$), and
- a signal that is not delayed, but reduced to 90% of its amplitude (that is $P(D) = .9$).

On both paths, the channel passes nonzero energy only between zero frequency and the Nyquist frequency.

a. Find $Q(D)$, $\|p\|$, and SNR_{MFB} for the later diversity channel. (3 pts)

b. Find the performance of the MMSE-LE, MMSE-DFE for the later diversity channel and compare to that on the original one-receiver channel and with respect to the matched filter bound. (2 pts)

c. Find the probability of bit error on the diversity channel for the case of 1 bit/dimension transmission. (1 pt)

3.32 Do we understand basic detection - 9 pts
A filtered AWGN channel with $T = 1$ has pulse response $p(t) = \text{sinc}(t) + \text{sinc}(t - 1)$ with $\text{SNR}_{MFB} = 14.2$ dB.

a. Find the probability of error for a ZF-DFE if a binary symbol is transmitted (2 pts).

b. The Tomlinson precoder in this special case of a monic pulse response with all unity coefficients can be replaced by a simpler precoder whose output is

$$x'_k = \begin{cases}
 x'_{k-1} & \text{if } x_k = 1 \\
 -x'_{k-1} & \text{if } x_k = -1
\end{cases}$$

(3.753)

Find the possible (noise-free) channel outputs and determine an SBS decoder rule. What is the performance (probability of error) for this decoder? (2 pts)

c. Suppose this channel (without precoder) is used one time for the transmission of one of the 8 4-dimensional messages that are defined by $[+ \pm \pm \pm]$, which produce 8 possible 5-dimensional outputs. The decoder will use the assumption that the last symbol transmitted before these 4 was -1. ML detection is now used for this multidimensional 1-shot channel. What are the new minimum distance and number of nearest neighbors at this minimum distance, and how do they relate to those for the system in part a? What is the new number of bits per output dimension? (3 pts)

d. Does the probability of error change significantly if the input is extended to arbitrarily long block length N with now the first sample fixed at + and the last sample fixed at -, and all other inputs being equally likely + or - in between? What happens to the number of bits per output dimension in this case? (2 pts).

3.33 Equalization of a 3-tap channel - 10 pts
PAM transmission with $\tilde{E}_X = 1$ is used on a filtered AWGN channel with $\tilde{N}_0 = .01$, $T = 1$, and pulse response $p(t) = \text{sinc}(t) + 1.8\text{sinc}(t - 1) + .81\text{sinc}(t - 2)$. The desired probability of symbol error is 10^{-6}.

a. Find $\|p\|^2$, SNR_{MFB}, AND $Q(D)$ for this channel. (2 pts)
b. Find the MMSE-LE and corresponding unbiased SNR$_{\text{MMSE-LE,U}}$ for this channel. (2 pts)

c. Find the ZF-DFE detection SNR and loss with respect to SNR$_{\text{MFB}}$. (1 pt)

d. Find the MMSE-DFE. Also compute the MMSE-DFE SNR and maximum data rate in bits/dimension using the gap approximation. (3 pts)

e. Draw the flexible (Laroia) precoder for the MMSE-DFE and draw the system from transmit symbol to detector in the receiver using this precoder. Implement this precoder for the largest number of integer bits that can be transmitted according to your answer in Part d. (2 pts)

3.34 Finite-Length Equalizer Design - Lorentzian Pulse Shape- 12 pts

A filtered AWGN channel has the Lorentzian impulse response

$$h(t) = \frac{1}{T} \cdot \frac{1}{1 + \left(\frac{10^7 t}{1}\right)^2},$$

with Fourier Transform

$$H(f) = \frac{3\pi}{10} e^{-6\pi \cdot 10^{-7} |f|}.$$

This channel is used in the transmission system of Figure 3.90. QAM transmission with $1/T = 1$ MHz and carrier frequency $f_c = 600\text{kHz}$ are used on this channel. The AWGN psd is $\frac{N_0}{2} = -86.5 \text{ dBm/Hz}$. The transmit power is $\frac{E_x}{T} = 1 \text{ mW}$. The oversampling factor for the equalizer design is chosen as $l = 2$. Square-root raised cosine filtering with 10% excess bandwidth is applied as a transmit filter, and an ideal filter is used for anti-alias filtering at the receiver. A matlab subroutine at the course website may be useful in computing responses in the frequency domain.

a. Find ν so that an FIR pulse response approximates this pulse response so that less than 5% error in $\|p\|^2$. (3 pts)

\[\text{\footnotesize44 5\% error in approximation does not mean the SNR is limited to 1/20 or 13 dB. 5\% error in modeling a type of pulse response for analysis simply means that the designer is estimating the performance of an eventual adaptive system that will adjust its equalizer parameters to the best MMSE settings for whatever channel. Thus, 5\% modeling error is often sufficient for the analysis step to get basic estimates of the SNR performance and consequent achievable data rates.}\]

\[\text{335}\]
b. Calculate SNR_{MFB}. Determine a reasonable set of parameters and settings for an FIR MMSE-LE and the corresponding data rate at P_e = 10^{-7}. Calculate the data rate using both an integer and a possibly non-integer number of bits/symbol. (4 pts)

c. Repeat Part b for an FIR MMSE-DFE design and draw receiver. Calculate the data rate using both an integer and a possibly non-integer number of bits/symbol. (3 pts)

d. Can you find a way to improve the data rate on this channel by changing the symbol rate and or carrier frequency? (2 pts)

3.35 Telephone-Line Transmission with “T1” - 14 pts

Digital transmission on telephone lines necessarily must pass through two “isolation transformers” as illustrated in Figure 3.91. These transformers prevent large D.C. voltages accidentally placed on the line from unintentionally harming the telephone line or the internet equipment attached to it, and they provide immunity to earth currents, noises, and ground loops. These transformers also introduce ISI.

Figure 3.91: Illustration of a telephone-line data transmission for Problem 3.35.

a. The “derivative taking” combined characteristic of the transformers can be approximately modeled at a sampling rate of 1/T = 1.544 MHz as successive differences between channel input symbols. For sufficiently short transmission lines, the rest of the line can be modeled as distortionless. What is a reasonable partial-response model for the channel H(D)? Sketch the channel transfer function. Is there ISI? (3 pts)

b. How would a zero-forcing decision-feedback equalizer generally perform on this channel with respect to the case where channel output energy was the same but there are no transformers? (2 pts)

c. What are some of the drawbacks of a ZF-DFE on this channel? (2 pts)

d. Suppose a Tomlinson precoder were used on the channel with M = 2, how much is transmit energy increased generally? Can you reduce this increase by good choice of initial condition for the Tomlinson Precoder? (3 pts)

e. Show how a binary precoder and corresponding decoder can significantly simplify the implementation of a detector. What is the loss with respect to optimum MFB performance on this channel with your precoder and detector? (3 pts)

f. Suppose the channel were not exactly a PR channel as in Part a, but were relatively close. Characterize the loss in performance that you would expect to see for your detector. (1 pt)

3.36 Magnetic Recording Channel - 14 pts

Digital magnetic information storage (i.e., disks) and retrieval makes use of the storage of magnetic fluxes on a magnetic disk. The disk spins under a “read head” and by Maxwell’s laws the read-head wire senses flux changes in the moving magnetic field. This read head thus generates a read current that is translated into a voltage through amplifiers succeeding the read head. Change in flux is often encoded to mean a “1” was stored and no change means a “0” was stored. The read head also has finite-band limitations.
a. Pick a partial-response channel with \(\nu = 2 \) that models the read-back channel. Sketch the magnitude characteristic (versus frequency) for your channel and justify its use. (2 pts)

b. How would a zero-forcing decision-feedback equalizer generally perform on this channel with respect to the best case where all read-head channel output energy conveyed either a positive or negative polarity for each pulse? (1 pt)

c. What are some of the drawbacks of a ZF-DFE on this channel? (2 pts)

d. Suppose a Tomlinson Precoder were used on the channel (ignore the practical fact that magnetic saturation might not allow a Tomlinson nor any type of precoder) with \(M = 2 \), how much is transmit energy increased generally? Can you reduce this increase by good choice of initial condition for the Tomlinson Precoder? (2 pts)

e. Show how a binary precoder and corresponding decoder can significantly simplify the implementation of a detector. What is the loss with respect to optimum MFB performance on this channel with your precoder and detector? (3 pts)

f. Suppose the channel were not exactly a PR channel as in part a, but were relatively close. Characterize the loss in performance that you would expect to see for your detector. (1 pt)

g. Suppose the density (bits per linear inch) of a disk is to be increased so one can store more files on it. What new partial response might apply with the same read-channel electronics, but with a correspondingly faster symbol rate? (3 pts)

3.37 Tomlinson Precoding and Simple Precoding - 8 pts

Section 3.8 derives a simple precoder for \(H(D) = 1 + D \).

a. Design the Tomlinson precoder corresponding to a ZF-DFE for this channel with the possible binary inputs to the precoder being \(\pm 1 \). (4 pts)

b. How many distinct outputs are produced by the Tomlinson Precoder assuming an initial state (feedback \(D \) element contents) of zero for the precoder? (1 pt)

c. Compute the average energy of the Tomlinson precoder output. (1 pt)

d. How many possible outputs are produced by the simple precoder with binary inputs? (1 pt)

e. Compute the average energy of the channel input for the simple precoder with the input constellation of Part a. (1 pt)

3.38 Flexible Precoding and Simple Precoding - 8 pts

Section 3.8 derives a simple precoder for \(H(D) = 1 + D \).

a. Design the Flexible precoder corresponding to a ZF-DFE for this channel with the possible binary inputs to the precoder being \(\pm 1 \). (4 pts)

b. How many distinct outputs are produced by the Flexible Precoder assuming an initial state (feedback \(D \) element contents) of zero for the precoder? (1 pt)

c. Compute the average energy of the Flexible precoder output. (1 pt)

d. How many possible outputs are produced by the simple precoder with binary inputs? (1 pt)

e. Compute the average energy of the channel input for the simple precoder with the input constellation of Part a. (1 pt)

3.39 Partial Response Precoding and the ZF-DFE - 10 pts

An AWGN has response \(H(D) = (1 - D)^2 \) with noise variance \(\sigma^2 \) and one-dimensional real input \(x_k = \pm 1 \).
a. Determine a partial-response (PR) precoder for the channel, as well as the decoding rule for the noiseless channel output. (2 pts)

b. What are the possible noiseless outputs and their probabilities? From these, determine the P_e for the precoded channel. (4 pts)

c. If the partial-response precoder is used with symbol-by-symbol detection, what is the loss with respect to the MFB? Ignore nearest neighbor terms for this calculation since the MFB concerns only the argument of the Q-function. (1 pt)

d. If a ZF-DFE is used instead of a precoder for this channel, so that $P_c(D) = 1 - 2D + D^2$, what is η_0? Determine also the SNR loss with respect to the SNR$_{MFB}$ (2 pts)

e. Compare this with the performance of the precoder, ignoring nearest neighbor calculations. (1 pt)

3.40 Error propagation and nearest neighbors - 10 pts
A partial-response channel has $H(D) = 1 - D^2$ channel with AWGN noise variance σ^2 and $d = 2$ and 4-level PAM transmission.

a. State the precoding rule and the noiseless decoding rule. (1 pts)

b. Find the possible noiseless outputs and their probabilities. Find also N_e and P_e with the use of precoding. (4 pts)

c. Suppose a ZF-DFE is used on this system and that at time $k = 0$ an incorrect decision $x_0 - \hat{x}_0 = 2$ occurs. This incorrect decision affects z_k at time $k = 2$. Find the N_e (taking the error at $k = 0$ into account) for the ZF-DFE. From this, determine the P_e with the effect of error propagation included. (4 pts)

d. Compare the P_e in part (c) with that of the use of the precoder in Part a. (1 pt)

3.41 Forcing Partial Response - 6 pts
Consider a $H(D) = 1 + 0.9D$ channel with AWGN noise variance σ^2. The objective is to convert this to a $1 + D$ channel

a. Design an equalizer that will convert the channel to a $1 + D$ channel. (2 pts)

b. The received signal is $y_k = x_k + 0.9 \cdot x_{k-1} + n_k$ where n_k is the AWGN. Find the autocorrelation of the noise after going through the receiver designed in Part a. Evaluate r_0, $r_{\pm 1}$, and $r_{\pm 2}$. Is the noise white? (3 pts)

c. Would the noise terms would be more or less correlated if the conversion were instead of a $1 + 1D$ channel to a $1 + D$ channel? You need only discuss briefly. (1 pt)

3.42 Equalization of a General Single-Pole Channel - 11 pts
PAM transmission on a filtered AWGN channel uses basis function $\varphi(t) = \frac{1}{\sqrt{T}} \cdot \text{sinc} \left(\frac{t}{T}\right)$ with $T = 1$ and undergoes channel impulse response with Fourier transform ($|\alpha| < 1$)

$$H(\omega) = \begin{cases} \frac{1}{1 + e^{-\alpha \omega}} & |\omega| \leq \pi \\ 0 & |\omega| > \pi \end{cases}$$

and SNR = $\frac{E_x}{\sigma^2} = 28$ dB.

a. Find the Fourier Transform of the pulse response, $P(\omega) =$? (1 pt)

b. Find $|p|^2$. (1 pt)

c. Find $Q(D)$, the function characterizing ISI. (2 pts)
d. Find the filters and sketch the block diagram of receiver for the MMSE-DFE on this channel for \(a = .9 \). (3 pts)

e. Estimate the data rate for uncoded PAM transmission and \(P_e < 10^{-6} \) that is achievable with your answer in part d. (2 pts)

f. Draw a diagram of the better precoder’s (Tomlinson or Laroiia), transmitter and receiver, implementations with \(d = 2 \) in the transmitted constellation. (2 pts)

3.43 Finite Equalization of a “causal” complex channel – 15 pts

A channel sampled at symbol rate \(T = 1 \) (after anti-alias filtering) has output samples given by

\[y_k = p_k * x_k + n_k, \]

where \(p_k = \delta_k + (-2 + 0.25j)\delta_{k+1}, E[n_k \cdot n_{k-l}] = \frac{\delta_l}{50} \) and \(ex = 2 \).

a. Compute SNR\(_{MFB}\). (1 pt)

b. For a channel equalizer with 3 feedforward taps and no feedback, write the \(P \) convolution matrix. Is this channel causal? If not, is it somehow equivalent to causal for the use of equalization programs like DFE color? (2 pts)

c. For the re-indexing of time to correspond to your answer in Part b, find the best delay for an MMSE-LE when \(N_f = 3 \). (1 pt)

d. Find \(W_{MMSE-LE} \) for \(N_{ff} = 3 \) for the delay in Part c. (1 pt)

e. Convolve the equalizer for Part d with the channel and show the result. (1 pt).

f. Compute SNR\(_{MMSE-LE,U}\) and the corresponding MMSE. (both per-dimension and per symbol). (2 pts).

g. Compute the loss w.r.t. MFB for the 3-tap linear equalizer. (1 pt).

h. Find a better linear equalizer using up to 10 taps and corresponding SNR\(_{MMSE-LE,U}\) improvement. (2 pts)

i. For your answer in Part h, what is \(\bar{P}_e \) for 16 QAM transmission? (1 pt)

j. Design an MMSE-DFE with no more than 3 total taps that performs better than anything above. (3 pts)

3.44 Diversity Concept and COFDM – 7 pts

An additive white Gaussian noise channel supports QAM transmission with a symbol rate of \(1/T = 100 \) kHz (with 0 % excess bandwidth) anywhere in a total baseband-equivalent bandwidth of 10 MHz transmission. Each 100 kHz wide QAM signal can be nominally received with an SNR of 14.5 dB without equalization. However, this 10 MHz wide channel has a 100 kHz wide band that is attenuated by 20 dB with respect to the rest of the band, but the location of the frequency of this notch is not known in advance to the designer. The transmitters are collocated.

a. What is the data rate sustainable at probability of bit error \(\bar{P}_b \leq 10^{-7} \) in the nominal condition? (1 pt)

b. What is the maximum number of simultaneous QAM users can share this channel at the performance level of Part a if the notch does not exist? (1 pt)

c. What is the worst-case probability of error for the number of users in Part b if the notch does exist? (1 pt)
d. Suppose now (unlike Part b) that the notch does exist, and the designer decides to send each QAM signal in two distinct frequency bands. (This is a simple example of what is often called Coded Orthogonal Frequency Division Modulation or COFDM.) What is the worst-case probability of error for a diversity-equalization system applied to this channel? (1 pt)

e. For the same system as Part c, what is the best SNR that a diversity equalizer system can achieve? (1 pt)

f. For the system of Part c, how many users can now share the band all with probability of bit error less than \(10^{-7}\)? Can you think of a way to improve this number closer to the level of the Part b? (2 pts)

3.45 Hybrid ARQ (HARQ) Diversity - 12 pts

A time-varying wireless channel sends long packets of binary information that are decoded by a receiver that uses a symbol-by-symbol decision device. The channel has pulse response in the familiar form:

\[
P(\omega) = \begin{cases}
\sqrt{T} \cdot (1 + a_i \cdot e^{-\pi \omega T}) & |\omega| \leq \frac{\pi}{T} \\
0 & |\omega| > \frac{\pi}{T}
\end{cases}
\]

(3.757)

where \(a_i\) may vary from packet to packet (but not within a packet). There is also AWGN with constant power spectral density \(\frac{N_0}{2}\) = 1. QPSK (4QAM) is sent on this channel with symbol energy 2.

a. Find the best DFE SNR and corresponding probability of symbol error for the two cases or “states” when \(a_1 = .9\) and \(a_2 = .5\). Which is better and why? (2 pts)

Now, suppose the transmitter can resend the same packet of symbols to the receiver, which can delay the channel output packet from the first transmission until the symbols from the new packet arrive. Further suppose that the second transmission occurs at a time when the channel state is known to have changed. However, a symbol-by-symbol detector is still to be used by the receiver jointly on both outputs. This is a variant of what is called “Automatic Repeat reQuest” or ARQ. (Usually ARQ only resends when it is determined by the receiver that the decision made on the first transmission is unreliable and discarded. Hybrid ARQ uses both channel outputs.) For the remainder of this problem, assume the two \(a_i\) values are equally likely.

b. Explain why this is a diversity situation. What is the approximate cost in data rate for this retransmission in time if the same symbol constellation (same \(b\)) is used for each transmission? (1 pt)

c. Find a new SNR\(_{MFB}\) for this situation with a diversity receiver. (1 pt)

d. Find the new function \(Q(D)\) for this diversity situation. (2 pts)

e. Determine the performance of the best DFE this time (SNR and \(P_e\)) and compare to the earlier single-instance receivers. (2 pts)

f. Compare the \(P_e\) of Part e with the product of the two \(P_e\)'s found in Part a. Does this make sense? Comment. (2 pts)

Draw the receiver with RAKE illustrated as well as DFE, unbiasing, and decision device. (phase splitter can be ignored in diagram and all quantities can be assumed complex.) (2 pts).

3.46 Precoder Diversity - 7 pts

A system with 4 PAM transmits over two discrete-time channels shown with the two independent AWGN channels shown in Figure 3.92. (\(\bar{E}_x = 1\))
3.47 Equalizer Performance and Means - 10 pts

Recall that arithmetic mean, geometric mean, and harmonic mean are of the form \(\frac{1}{n} \sum_{i=1}^{n} x_i \), \(\prod_{i=1}^{n} x_i \), \(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} \), respectively. Furthermore, they satisfy the following inequalities:

\[
\frac{1}{n} \sum_{i=1}^{n} x_i \geq \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \geq \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} \right)^{-1},
\]

with equality when \(x_1 = x_2 = \cdots = x_n \).

a. Express \(SNR_{ZFE} \), \(SNR_{ZF-DFE} \), \(SNR_{MFB} \) in terms of \(SNR_{MFB} \) and frequency response of the autocorrelation function \(q_k \). Prove that \(SNR_{ZFE} \leq SNR_{ZF-DFE} \leq SNR_{MFB} \) using above inequalities. When does equality hold? hint: use \(\int_{a}^{b} x(t)dt = \lim_{n\rightarrow\infty} \sum_{k=1}^{n} x\left(\frac{b-a}{n} k + a\right) \cdot \frac{b-a}{n} \). (4 pts)

b. Similarly, prove that \(SNR_{MMSE-LE,U} \leq SNR_{MMSE-DFE,U} \leq SNR_{MFB} \) using above inequalities. When does equality hold? (4 pts)

c. Compare \(SNR_{ZFE} \) and \(SNR_{MMSE-LE} \). Which scheme has better performance? (2 pts)
Unequal Channels and Basic Loading – Malkin - 26 pts

Use the gap approximation for this problem. A sequence of 16-QAM symbols with in-phase component a_k and quadrature component b_k at time k is transmitted on a passband channel by the modulated signal

$$x(t) = \sqrt{2} \left\{ \sum_k a_k \cdot \varphi(t - kT) \cdot \cos(\omega_c t) - \sum_k b_k \cdot \varphi(t - kT) \cdot \sin(\omega_c t) \right\}, \quad (3.758)$$

where $T = 40$ ns, $f_c = 2.4$ GHz, and the transmit power is 700 μW.

The transmit filter/basic function is

$$\varphi(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right), \quad (3.759)$$

and the baseband channel response is a frequency translation given by $H(f) = e^{-j5\pi fT}$. The received signal is thus

$$y(t) = h(t) \ast x(t) + n(t) \quad (3.760)$$

where $n(t)$ is an additive white Gaussian noise random process with two-sided PSD of -100 dBm/Hz.

a. What is the data rate of this system? (1 pts)
b. What are ε_x, $\bar{\varepsilon}_x$ and d_{min} for this constellation? (2 pts)
c. What is $\hat{x}_{bb}(t)$? (1.5 pts)
d. What is the ISI characterizing function $q(t)$? what is q_k? (1.5 pts)
e. What are P_e and \bar{P}_e for an optimal ML detector? (2 pts)

For the remainder of this problem: The implementation of the baseband demodulator is faulty and the additive Gaussian noise power in the quadrature component is $\alpha = 4$ times what it should be. That is, the noise variance of the quadrature component is $\alpha N_0 = 2N_0$ while the noise variance in the in-phase dimension is $\frac{N_0}{2}$. Answer the following questions for this situation.

f. What is the receiver SNR? Is this SNR meaningful any longer in terms of the gap formula? (2.5 pts)
g. What are P_e and \bar{P}_e? (3 pts)
h. Instead of using QAM modulation as above, two independent 4-PAM constellations (with half the total energy allocated for each constellation) are now transmitted on the in-phase and quadrature channels, respectively. What is P_e averaged over both of the PAM constellations? (1.5 pts)
i. The system design may allocate different energies for the in-phase and quadrature channels (but this design still uses QAM modulation with the same number of bits on each of the in-phase and quadrature channels, and the transmit power remains at 700 μW). Use different inphase and quadrature energies to improve the \bar{P}_e performance from Part (g). What is the best energy allocation for the in-phase and quadrature channels? For the given $P_e = 10^{-6}$, what is b and the achievable data rate? (3 pts)
j. Using the results from part (i) find the minimal increase in transmit power needed to guarantee $P_e = 10^{-6}$ for 16-QAM transmission? (2.5 pts)

The design may now reduce losses. Given this increased noise in the quadrature dimension, the design may use only the in-phase dimension for transmission (but subject to the original transmit power constraint of 700 μW).
k. What data rate can be then supported that gives $P_e = 10^{-6}$? (2.5 pts)

l. Using a fair comparison, compare the QAM transmission system from part (i) to the single-dimensional scheme ($N = 1$) from part (k). Which scheme is better? (3 pts)

m. Design a new transmission scheme that uses both the in-phase and quadrature channels to get a higher data rate than part (i), subject to the same $P_e = 10^{-6}$, and original symbol rate and power constraint of 700 μW. (3 pts)

3.49 A Specific One-Pole Channel (9 pts)

A transmission system uses the basis function $\phi(t) = \text{sinc}(t)$ with $\frac{1}{T} = 1$ Hz. The Fourier transform of the channel impulse response is:

$$H(f) = \begin{cases} 1 & \text{for } |f| \leq \frac{1}{T} \\ 0 & \text{for } |f| > \frac{1}{T} \end{cases}$$

and $\text{SNR} = \frac{\bar{E}_x}{\sigma^2} = 10$ dB.

a. Find $||p||^2$ and $Q(D)$. (1 pt)

b. Find $W_{ZF,E}(D)$ and $W_{MMSE-LE}(D)$. (1 pt)

c. Find $W(D)$ and $B(D)$ for ZF-DFE. (1 pt)

d. Find $W(D)$ and $B(D)$ for MMSE-DFE. (2 pts)

e. What is SNR_{ZF-DFE}? (0.5 pt)

f. Design a Tomlinson precoder based on the ZF-DFE. Show both the precoder and the corresponding receiver (for any M). (1.5 pts)

g. Design a Laroia precoder based on the ZF-DFE. Assume the system uses 4-QAM modulation. Show both the precoder and the corresponding receiver. The kind of constellation used at each SBS detector should be shown. (2 pts)

3.50 Infinite Diversity - Malkin (7 pts)

A receiver has access to an infinite number of diversity channels where the output of channel i at time k is

$$y_{k,i} = x_k + 0.9 \cdot x_{k+1} + n_{k,i}, \quad i = 0, 1, 2, \ldots$$

where $n_{k,i}$ is a Gaussian noise process independent across time and across all the channels, and with variance $\sigma_i^2 = 1.2^i \cdot 0.181$. Also, $\bar{E}_x = 1$.

a. Find $\text{SNR}_{MFB,i}$, the SNR_{MFB} for channel i. (1 pt)

b. What is the matched filter for each diversity channel? (2 pts)

c. What is the resulting $Q(D)$ for this diversity system? (1.5 pts)

d. What is the detector SNR for this system for a MMSE-DFE receiver? (2.5 pts)

3.51 Infinite Feedforward and Finite Feedback - Malkin (9 pts)

A symbol-rate sampled MMSE-DFE structure, where the received signal is filtered by a continuous time matched filter, uses an infinite-length feedforward filter. However, the MMSE-DFE feedback filter has finite length N_b.

343
a. Formulate the optimization problem that solves to find the optimal feedforward and feedback coefficients to minimize the mean squared error (hint: don’t approach this as a finite-length equalization problem as in Section 3.7).

Assume that $\frac{N_0}{2} = .181$, $E_x = 1$, and $P(D) = 1 + .9 \cdot D^{-1}$. (and $\text{SNR}_{MFB} = 10 \text{ dB}$). (2 pts)

b. Using only 1 feedback tap ($N_b = 1$), determine the optimal feedforward and feedback filters (hint: this is easy - you have already seen the solution before). (2 pts)

c. Now consider the ZF-DFE version of this problem. State the optimization problem for this situation (analogous to Part a). (2 pts)

Now, change the channel to the infinite-impulse response of $P(D) = \frac{1}{1+0.9D^{-1}}$. (and $\|p\|^2 = 1.19$).

d. Determine the optimal feedforward and feedback filters for the ZF-DFE formulation using only 1 feedback tap ($N_b = 1$). (3 pts)

3.52 Packet Processing - Malkin (10 pts)

Suppose that in a packet-based transmission system, a receiver makes a decision from the set of transmit symbols x_1, x_2, x_3 based on the channel outputs y_1, y_2, y_3, where

$$
\begin{bmatrix}
 y_3 \\
 y_2 \\
 y_1
\end{bmatrix} =
\begin{bmatrix}
 p_{11} & p_{12} & p_{13} \\
 0 & p_{22} & p_{23} \\
 0 & 0 & p_{33}
\end{bmatrix}
\begin{bmatrix}
 x_3 \\
 x_2 \\
 x_1
\end{bmatrix} +
\begin{bmatrix}
 n_3 \\
 n_2 \\
 n_1
\end{bmatrix} =
\begin{bmatrix}
 0.6 & 1.9 & -3.86 \\
 0 & 1.8 & 3.3 \\
 0 & 0 & 1.2
\end{bmatrix}
\begin{bmatrix}
 x_3 \\
 x_2 \\
 x_1
\end{bmatrix} +
\begin{bmatrix}
 n_3 \\
 n_2 \\
 n_1
\end{bmatrix}
$$

(3.762)

and where the noise autocorrelation matrix is given by

$$
R_n = E\left(\begin{bmatrix}
 n_3 \\
 n_2 \\
 n_1
\end{bmatrix} \begin{bmatrix}
 n_3^* \\
 n_2^* \\
 n_1^*
\end{bmatrix}\right) =
\begin{bmatrix}
 0.3 & 0 & 0 \\
 0 & 0.5 & 0 \\
 0 & 0 & 0.1
\end{bmatrix}
.$$

(3.763)

The inverse of the channel matrix is given by

$$
\begin{bmatrix}
 0.6 & 1.9 & -3.86 \\
 0 & 1.8 & 3.3 \\
 0 & 0 & 1.2
\end{bmatrix}^{-1} =
\begin{bmatrix}
 1.67 & -1.76 & 10.19 \\
 0 & 0.56 & -1.52 \\
 0 & 0 & 0.83
\end{bmatrix}
.$$

(3.764)

The transmit symbols are i.i.d with $E_{x_1} = E_{x_2} = E_{x_3} = 20$.

a. What is the 3-tap zero-forcing equalizer for x_1 based on the observation y_1, y_2, y_3? Repeat for x_2 and x_3. (1.5 pts)

b. What is the matrix ZFE for detecting x_1, x_2, and x_3? (hint: this is easy - all the work occurred in the previous part) (1 pt)

c. What is the detection SNR for x_1 using a ZFE? Answer the same for x_2 and x_3. (1.5 pts)

d. An engineer now realizes that the performance could be improved through the use of previous decisions when detecting the current symbol. If the receiver starts by detecting x_1, then x_2, and finally x_3, describe how this modified ZF detector would work? (1 pt)

e. Assuming previous decisions are correct, what is now the detection SNR for each symbol? (1.5 pts)

f. The approach above does not necessarily minimize the MMSE. How would a packet MMSE-DFE work? How would you describe the feedback structure? (Don’t solve for the optimal matrices - just describe the signal processing that would take place). (1 pt)
g. Can the THP also be implemented for this packet based system? Describe how this would be done (a description is sufficient response). (1 pt)

3.53 DFECOLOR Program with Nontrivial Complex Channel – 9 pts

Use of the dfecolor.m program in Matlab produces:

```matlab
>> p = [0, -0.2500i, 0.5000 + 0.5000i, 1.0000 + 0.1250i, 0.3000 - 0.2500i]
>> [snr,w]=dfecolor(1,p,7,3,6,1,.03*[1 zeros(1,6)])
```

```
snr = 15.2754
w = Columns 1 through 5
 0.0006 + 0.0019i -0.0064 + 0.0002i 0.0103 + 0.0198i 0.0249 + 0.0341i 0.2733 - 0.0231i
Columns 6 through 10
0.6038 - 0.6340i -0.0000 + 0.2402i -0.6392 + 0.5137i 0.0074 + 0.1009i -0.0601 - 0.0721i
```

a. What is equalizer output (before bias removal), \(E[z_k/x_{k-\Delta}] \), for the equalizer as output above? (1 pt)

b. If the noise vector in the matlab command above becomes .02*[1.5 -.5+.5*i], what will happen to DFE performance (improve/degrade)? (1 pt)

c. Find \(B_L(D) \) for the original (white) noise. (1 pt)

d. What is the maximum data rate if the symbol rate is 100 MHz and \(\bar{P}_e = 10^{-6} \)? (Assume no error propagation and arbitrary constellations with SBS decisions in the MMSE-DFE.) (1 pt)

e. What is the maximum data rate that can be achieved if a Tomlinson precoder is used? (1 pt)

f. If the carrier frequency is 75 MHz, what are possible pulse-response samples for the actual channel? (1 pt)

g. Assuming the channel has the minimum bandwidth for the pulse response given, what is the loss with respect to the matched filter bound? (1 pt)

h. When bias is absorbed into the feedforward equalizer, what is the magnitude of the “center” tap? (1 pt)

i. For a flexible precoder in the transmitter, what is the maximum number of points in the first two-dimensional decision device used in the receiver? (1 pt)

3.54 Finite-Length Equalizer Design with Diversity – 17 pts

A receiver designer has two options for the two-path channel described below. The designer may use only a single antenna (Parts a to c) that receives both paths’ outputs added together with a single AWGN power spectral density of -110 dBm/Hz. Or as this problem progresses in Parts d and beyond, the designer may instead use two antennas that are directional with one receiver only on the first path with AWGN at -113 dBm/Hz and the second receiver only on the second path with AWGN also at -113 dBm/Hz (the noise that was present on the channel is presumably split evenly in this case). The transmit power is \(P_x = \frac{\mathcal{E}_x}{T} \leq 20 \text{ dBm} \). The symbol rate is 1 MHz. The target probability of error is \(10^{-6} \) and only integer number of bits/symbol are allowed. The system is sampled at instants \(kT/2 = kt' \) for integer \(k \geq 0 \).

The two paths’ sampled (at pulse responses are:

\[
p_1(t') = e^{-0.5t'} \cdot u(t)
\]

\[
p_2(t) = e^{-0.5 \cdot 10^6 \cdot (t-0.5\mu s)} \cdot u(t-0.5\mu s)
\]

where \(\mu s = 10^{-6} \text{s} \).
a. Is there aliasing even with a sampling rate of $2/T$? Find by continuous integration $\|p_1\|^2$, $\|p_2\|^2$, and $\|p_1 + p_2\|^2$ and comment on the latter with respect to the sum of the former. Repeat this exercise for $\|p_1(kT')\|^2$, $\|p_2(kT')\|^2$ and $\|p(kT') + p_2(kT')\|^2$, and comment on their size relative to the true norms found by continuous integration relative to the choice of symbol rate (and thus also sampling rate). (4 pts)

b. Find ν and the FIR pulse response that approximates the actual response so that less than .25 dB error in $\|p\|^2$ (that is, the norm square of the difference between the actual p and the truncated p is less than $(10^{-0.25} - 1) \cdot \|p\|^2$).

Now find the Ex input for the dfecolor program, the vector p input that would be input to the DFE COLOR matlab program, and the CORRESPONDING noise vector that would be input. Please find these presuming that the anti-alias filter for $1/T'$ sampling is normalized. (3 pts)

c. Design an FIR DFE that achieves within .1 dB of the infinite-length performance for Part b’s inputs. Record the smallest numbers of feedforward and feedback taps for which the equalizer can achieve this performance and the corresponding delay Δ. An acceptable response is the equalizer coefficient vector from Matlab decomposed separately into feedforward and feedback taps. Find the SNR and corresponding data rate for your design. (3 pts).

d. Continue Part b except now find the two FIR pulse responses that approximates the pulse response so that less than .25 dB error in the overall $\|p\|^2$ occurs, and provide the larger value of ν. (2 pts)

e. Now find the Ex input for the dfecolor program, the vector (rows) of p input that would be input to the DFERAKE matlab program, and the CORRESPONDING noise vector that would be input. Please find these presuming that the anti-alias filter for $1/T'$ sampling is normalized on both antennas. (2 pts)

f. Design an FIR DFE that achieves within .1 dB of the infinite-length performance for Part d’s pulse responses. Record the smallest numbers of feedforward and feedback taps that can achieve this performance and the corresponding delay Δ. An acceptable response is the equalizer coefficient vector from Matlab. Find the SNR and corresponding data rate for your design. (3 pts).

3.55 Optimizing the DFE Transmit Filter – 3 pts

A discrete-time channel is described by $y(D) = H(D) \cdot X(D) + N(D)$, where $X(D)$ is the transmit symbol sequence, $E[.]$ and $N(D)$ is AWGN with variance $\frac{\sigma^2}{2}$. These notes so far have always assumed that the transmit sequence x_k s white (messages are independent). Suppose the transmitter could filter the symbol sequence before transmission, though the filtered symbol sequence must have the same power E_x. Call the magnitude squared of the transmit filter $\|Ph(e^{-j\omega T})\|^2$.

a. Given a MMSE-DFE receiver, find the transmit filter (squared magnitude) that maximizes the MMSE-DFE detection SNR. (2 pts)

b. Find the best transmit filter (squared magnitude) for the ZF-DFE (1 pt).

3.56 Multi-User Scenario – 22 pts

A single receiver receives transmissions from two independent users with symbol sequences $X_1(D)$ and $X_2(D)$, respectively. The two received signals are (with a and b real).

- $Y_1(D) = (1 + a \cdot D) \cdot X_1(D) - X_2(D) + N_1(D)$
- $Y_2(D) = X_1(D) + (1 - b \cdot D^2) \cdot X_2(D) + (1 - b \cdot D^2) \cdot N_2(D) + b \cdot D^2 \cdot Y_2(D)$

45 Readers should note that .25 dB accuracy is only about 6% of the energy; however, this is close enough to estimate equalizer behavior of the actual system. In practice, an adaptive implementation would tune the equalizer to get roughly the same performance as is derived here for the truncated approximation to the response $p(kT/2)$ over all time.
where $N_1(D)$ is AWGN with variance $\frac{N_0}{2}$, and similarly $N_2(D)$ is AWGN with variance $\frac{N_0}{2}$. The quantities a and b are real. The following are the energies

$$E[X_1(D)X_1(D^*)] = \mathcal{E}_1$$
$$E[X_2(D)X_2(D^*)] = \mathcal{E}_2.$$

The noises $N_1(D)$ and $N_2(D)$ are independent of one another and all mutually independent of the two transmitted data sequences $X_1(D)$ and $X_2(D)$. For this problem treat all ISI and "crosstalk" interference as if it came from a normal distribution, unless specifically treated otherwise as in Parts f and beyond. Matlab may be useful in this problem, particularly the routines "conv" "roots," and "integral."

The receiver will use both $Y_1(D)$ and $Y_2(D)$ for detection in all parts.

a. The receiver here will use both $Y_1(D)$ and $Y_2(D)$ for optimum detection of user 1 ($X_1(D)$), but treat $X_2(D)$ as noise. Find the noise-equivalent channel $P(D)$ and the resulting $Q(D)$ for the case when $\mathcal{E}_2 = \frac{N_0}{2}$. The Matlab Function "chol" may be useful in finding a noise-whitening filter. (3 pts)

b. For $\mathcal{E}_1 = 10$, $\mathcal{E}_2 = 1$, $\frac{N_0}{2} = 1$, $a = 1$, and $b = 0.7$, find $Q(D)$, SNR_{MFB}, $\tilde{Q}(D)$, and the feed-forward and feedback filters for an infinite length MMSE-DFE for Part a’s. The “integral function” may be convenient to compute the norm of channel elements. The “roots” and “conv” commands may also reduce labor to solve. (5 pts)

c. Show a Tomlinson precoder implementation of the structure in part b if M-PAM is transmitted. (1 pt)

d. Suppose, instead, the receiver instead first detects user 2’s signal $X_2(D)$ based on both $Y_1(D)$ and $y_2(D)$ by using a ZF-DFE receiver. Please specify all the filters and the SNR_{ZF-DFE}, given that $\mathcal{E}_1 = 1$, $\mathcal{E}_2 = 30$, $\frac{N_0}{2} = 1$, $a = 1$, and $b = 7$. Noise whitening may need to presume a triangular form as in Part a except that now the elements are functions of D - just solve it, 3 equations in 3 unknown functions of D - not that hard for first two elements, 3rd is ratio of 3rd order polynomials. The integral and conv Matlab functions are again useful. (4 pts)

e. Show a Laroia implementation of the structure in Part d if M-PAM is transmitted. (2 pts)

f. This sub question investigates the system in Part b if $x_{2,k}$ is known and its effects removed at the receiver? Suppose a structure like that found in Parts b and c to detect $x_{2,k}$ reliably. (Since $\mathcal{E}_1 = 10$ is large, the data rate for the channel from $x_{2,k}$ to the receiver may be very low relative to the correct response for Part b.) Show a receiver for $x_{1,k}$ that makes use of a known $x_{2,k}$. Does this receiver look familiar in some way? What is roughly the new gap-based data rate achievable for x_1? (3 pts)

g. Repeat Part f for the numbers in Part d except that $x_{1,k}$ is detected and its affects removed. (2 pts)

h. Suppose time-sharing of the two systems ($\mathcal{E}_1 = 10$ or $\mathcal{E}_2 = 30$) is allowed (long blocks are assumed so any beginning or end effects are negligible). What data rate pairs for x_1 and x_2 might be possible (think of plot in two dimensions)? (2 pts)

3.57 Mutual Information and Parallel Independent AWGN Channels (3 pts)

This problem considers a set of parallel, independent, and one-real-dimensional AWGN channels of the form:

$$y_k = h_k \cdot x_k + n_k ,$$

where the noises all have variance σ^2 with zero mean.

a. (1 pt) Use probability densities factoring to show that this channel set’s mutual information is the sum of the set’s individual mutual information quantities.
b. (1 pt) If the set of parallel channels has a total energy constraint that is equal to the sum of the energy constraints, what energy E_k, $k = 1, \ldots, N$ should be allocated to each of the channels to maximize the mutual information. The answer may use the definition that the subchannel gains are given as $g_n = \frac{|h_k|^2}{\sigma^2}$ (so that the individual SNRs would then be $SNR_n = E_k \cdot g_k$).

c. (1 pt) Find the overall $SNR_{overall}$ for a single AWGN that is equivalent to this problem’s set of parallel channels in terms of mutual information.

3.58 Innovations (6 pts)

Find the innovations variance per real dimension, entropy per dimension, and linear prediction filter for the following Gaussian processes (let $T = 1$):

a. (2 pts) A real process with autocorrelation $R_{xx}(D) = 0.619 \cdot D^{-2} + 0.4691 \cdot D^{-1} + 1 + 0.4691 \cdot D + 0.0619 \cdot D^2$.

b. (2 pts) A complex discrete-time process with power spectral density $10 \cdot [1.65 + 1.6 \cdot \cos(\omega)]$.

c. (2 pts) A complex process that has a maximum of only 3 nonzero terms in its autocorrelation function and a notch exactly in the middle of its band (i.e., at normalized frequency 1/4) and total power 2.

3.59 Multibands (14 pts)

Three bands of transmission result from infinite-length water-filling as shown below with a gap of 5.8 dB at $P_e = 10^{-6}$. The lowest band uses baseband PAM transmission, and the other two bands use QAM transmission. Each band has an MMSE-DFE receiver with the SNR shown in Figure 3.93.

![Figure 3.93: Multiband transmission for Problem 3.59](image)

a. (3 pts) Find the optimum symbol rates $1/T_i^*$, $1/\bar{T}_i^*$, and the optimum carrier frequencies $f_{c,i}^*$ for each of the 3 bands shown in Figure 3.93.

b. (3 pts) Find \bar{b}_1, \bar{b}_2, and \bar{b}_3, as well as b_1, b_2, and b_3 for each of these 3 bands. Also find the data rate R for the entire 3-band system.

c. (1 pt) Find $1/T^*$.

d. (2 pts) Find the overall best SNR and \bar{b} for a single AWGN that is equivalent to the set of channels in terms of mutual information.

e. (2 pts) The noise is such that $\tilde{E}_x = -70$ dBm/Hz in all used bands. Find the total energy per symbol period T^* that is used and the power used. The answers can be specified in terms of dBm/Hz and dBm.

Suppose baseband PAM with a symbol rate of $1/T = 200$ MHz is used instead with the same power, and energy equally divided on all dimensions (i.e., successive PAM symbols are independent).

f. (1 pts) What is $\tilde{E}_{x,PAM} =$?
g. (2 pts) Find approximate SNR_{mmse-dfe,PAM,u} and new data rate for this alternative single-band PAM design.

3.60 CDEF (10 pts)

An AWGN with intersymbol interference sustains successful transmission using a MMSE-DFE receiver with 256 QAM with Gap of $\Gamma = 8.8$ dB with a margin of 1.2 dB at $\hat{P}_e = 10^{-6}$.

a. (2 pts) What is the mutual information in bits per symbol for this channel? In bits per dimension?

b. (2 pts) Suppose optimization of the transmit filter increased the margin to 2.5 dB. What is the capacity (bits/dimension) of this new transmit-optimized channel at this symbol rate?

Returning (for the remainder of this problem) to the well-known $1 + .9D^{-1}$ channel with SNR_{MFB} = 10 dB with $T = 1$ and PAM transmission:

c. (2 pts) What is the capacity of this system if energy increases such that $T^* = 1$ becomes the optimum symbol rate?

d. (3 pts) What would be the new (smallest) symbol energy per dimension for the situation in Part c?

e. (1 pt) Suppose this optimized system transmits with code with gap of 6 dB for probability of error 10^{-6} at $b = 1$. What is margin at this data rate? (fractional bits per symbol are ok for inclusion in results and use of all formulas.)
Appendix A

Useful Results in Linear Minimum Mean-Square Estimation, Linear Algebra, and Filter Realization

Generally, the MMSE estimate of one random variable or process x based on another set of random variables or processes Y is some function $f(Y)$ that minimizes

$$
\arg \min_{f(Y)} E \left[(x - f(Y))^2 \right], \quad (A.1)
$$

This mean square error can be written then as

$$
\text{MMSE} = E \left[(x - f(Y))^2 \right] \quad (A.2)
$$

$$
= E \left[(x - E(x/Y) + E(x/Y) - f(Y))^2 \right] \quad (A.3)
$$

$$
= E \left[(x - E(x/Y))^2 + 2 \cdot x - E(x/Y) \cdot (E(x/Y) - f(Y)) + (E(x/Y) - f(Y))^2 \right] \quad (A.4)
$$

where the first term on the left is a constant, and the second terms are zero when $f(Y) = E(x/Y)$, and thus the MMSE estimate is $E(x/Y)$ in general for any distribution(s). For jointly Gaussian random variables and processes, this MMSE estimate is also linear in Y. The joint distribution of a Gaussian random variable with another random variables is defined through the cross-correlation vector between the first Gaussian x and the rest $R_{xY} = E[xY^*]$ and the autocorrelation R_{YY}. Either of the marginal distributions of one given the other is also Gaussian as shown by simple division and regrouping. The mean in the marginal distribution can be written in many ways, a common version of which is (replace inverse with pseudoinverse when R_{YY} is singular)

$$
E[x/Y] = R_{xY} \cdot R_{YY}^{-1} \cdot Y, \quad (A.5)
$$

which is linear in Y with conditional variance (which is also the MMSE)

$$
\sigma_{x/Y}^2 = E_x - R_{xY} \cdot R_{YY}^{-1} \cdot R_{xY}^* . \quad (A.6)
$$

This motivates strongly exploration of linear MMSE estimation further in this chapter because often a channel has Gaussian noise and indeed the best input distributions for codes on such a channel are also Gaussian, meaning linear estimators will have canonical properties and may allow simplified decoding in some cases.

This appendix derives and/or lists some key results from linear Minimum Mean-Square-Error estimation. Section A.1 is on the Orthogonality Principal that this text uses throughout to minimize mean square errors, both for scalar and vector processes. Section A.2 addresses scalar spectrum factorization and filter realization that is very important in solving many MSE problems also, especially for data transmission and noise whitening. The famed (scalar) Paley-Weiner Criterion is explained and derived.
in this Section. Section A.3 address a vector/matrix generalization of Paley Wiener Theory that this text calls MIMO Paley-Weiner, and which provides elegant solution generalizations to many MIMO situations of increasing interest. Section A.4 is temporarily here until the new Chapter 2 is completed. Section A.5 is short and lists the well known matrix inversion lemma.

A linear MMSE estimate of some random variable x, given observations of some other random sequences $\{y_k\}$, chooses a set of parameters w_k (with the index k having one distinct value for each observation of y_k that is used) to minimize

$$E \left[|e|^2 \right]$$

(A.7)

where

$$e \triangleq x - \sum_{k=0}^{N-1} w_k \cdot y_k .$$

(A.8)

$N \to \infty$ without difficulty. The term linear MMSE estimate is derived from the linear combination of the random variables y_k in (A.8). More generally, it can be shown that the MMSE estimate is $E [x/\{y_k\}]$, the conditional expectation of x, given $y_0, ..., y_{N-1}$, which will be linear for jointly Gaussian $^1 x$ and $\{y_k\}$. This text is interested only in linear MMSE estimates. In this text’s developments, y_i will usually be successive samples of some channel output sequence, and x will be the current channel-input symbol that the receiver attempts to estimate.

When the quantity being estimated is an L_x-dimensional vector x, Equation (A.7) generalizes to

$$E \left[\|e\|^2 \right] ,$$

(A.9)

where

$$e \triangleq x - \sum_{k=0}^{N-1} w_k \cdot y_k .$$

(A.10)

This sum of L_x mean squared errors in (A.9) has each squared error within looking like (A.7), while the set of parameters generalizes also to an L_x-dimensional vector w_k, each component of which multiplies the same input y_k. This problem is variables separable in each of the L_x dimensions, and thus minimizing the norm in (A.9) is the same as minimizing each of the individual dimensions’ MSE. Further generalization in the same way allows the input y to become an L_y-dimensional vector y_k. In this case, each w_k becomes an $L_x \times L_y$ matrix W_k.

The vector-case MSE’s remains variables separable into individual scalar MMSE problems that can each be solved separately and the corresponding filter values stacked into the solution w or W (the latter of which may be a tensor or sequence of matrices). Minimizing the MSE in (A.9) is also equivalent to minimizing the trace of the $L_x \times L_x$ matrix

$$R_{ee} = E \left[e_k e_k^* \right] ,$$

(A.11)

or equivalently minimizing the sum of the eigenvalues of $R_{ee} = Q \Lambda_e Q^*$ where Λ_e is a diagonal matrix of non-negative real eigenvalues (see Matlab eig command) and $QQ^* = Q^*Q = I$. Since multiplication by a Q matrix (unitary) does not change the length of a vector, then the MMSE problem could be also solved by minimizing the mean square of $\tilde{e} = Qe$ and so the solution then would be

$$\tilde{W} = QW ,$$

(A.12)

which is now separable in the \tilde{e} components. Given the separability, then the product, as well as the sum, of the eigenvalues has been minimized also. This means the determinant $|R_{ee}|$ has also been minimized because the product of the eigenvalues is the determinant (as should be obvious from observing $|Q| = 1$). Thus, often MMSE vector problems are written in terms of minimizing the determinant of the error autocorrelation matrix, but this is the same as minimizing the sum of component MSE’s.

1As Chapters 8 and 12 show, the best codes for all single/multi-user AWGNs have Gaussian input codes, so linear will indeed be best for such channels and optimized coded inputs.
A.1 The Orthogonality Principle

While (A.7) can be minimized directly by differentiation in each case or problem of interest, it is often far more convenient to use a well-known principle of linear MMSE estimates - that is that the error signal e must always be uncorrelated with all the observed random variables in order for the MSE to be minimized. This must be true for each error-vector component as well.

Theorem A.1.1 (Orthogonality Principle) The MSE is minimized if and only if the following condition is met

$E[e \cdot y_k^*] = 0 \quad \forall k = 0, ..., N - 1$ \hspace{1cm} (A.13)

Proof: Writing $|e|^2 = |R(e)|^2 + |I(e)|^2$ allows differentiation of the MSE with respect to both the real and imaginary parts of w_k for each k of interest. The pertinent parts of the real and imaginary errors are (realizing that all other $w_i, i \neq k$, will drop from the corresponding derivatives)

$e_r = x_r - w_{r,k} \cdot y_{r,k} + w_{i,k} \cdot y_{i,k}$ \hspace{1cm} (A.14)

$e_i = x_i - w_{i,k} \cdot y_{r,k} - w_{r,k} \cdot y_{i,k}$ \hspace{1cm} (A.15)

where subscripts of r and i denote real and imaginary part in the obvious manner. Then, to optimize over $w_{r,k}$ and $w_{i,k}$,

$\frac{\partial |e|^2}{\partial w_{r,k}} = 2e_r \frac{\partial e_r}{\partial w_{r,k}} + 2e_i \frac{\partial e_i}{\partial w_{r,k}} = -2(e_r y_{r,k} + e_i y_{i,k}) = 0$ \hspace{1cm} (A.16)

$\frac{\partial |e|^2}{\partial w_{i,k}} = 2e_r \frac{\partial e_r}{\partial w_{i,k}} + 2e_i \frac{\partial e_i}{\partial w_{i,k}} = 2(e_r y_{i,k} - e_i y_{r,k}) = 0$. \hspace{1cm} (A.17)

The desired result is found by taking expectations and rewriting the series of results above in vector form. Since the MSE is positive-semi-definite quadratic in the parameters $w_{r,k}$ and $w_{i,k}$, this setting must be a global minimum. If the MSE is strictly positive-definite, then this minimum is unique. QED.

A.2 Spectral Factorization and Scalar Filter Realization

This section provides results on the realization of desired filter-magnitude characteristics. The realized filters will be causal, causally invertible (minimum phase), and monic. Such realization invokes the so-called Paley-Wiener Criterion (PWC) that is constructively developed and proven as part of the realization process, basing the proof on discrete sequences but covering also continuous signals (in both cases applicable to deterministic magnitude-squared functions or to stationary random processes with consequently non-negative real power spectra). Section A.3 generalizes these filters and/or process and Paley Wiener criterion to MIMO (matrix filters and/or processes), which will require understanding Cholesky Factorization of simple matrices first from Subsection A.2.6 that ends this Section A.2 and precedes A.3.

A.2.1 Some Transform Basics: D-Transform and Laplace Transform

This appendix continues use of D-transform notation for sequences:

Definition A.2.1 (D-Transforms) A sequence $x_k \forall$ integer $k \in (-\infty, \infty)$ has D-Transform $X(D) = \sum_{k=-\infty}^{\infty} x_k \cdot D^k$ for all $D \in D_x$, where D_x is the region of convergence of complex

2So readers can insert Z^{-1} for D if they need to relate to other developments where Z transforms are used.
The sequence \(x_k \) can be complex. The symbol rate will be presumed \(T = 1 \) in this appendix\(^3\). The sequence \(x_k \) has a \(D\)-Transform \(X^*(D^{-1}) = \sum_{k=-\infty}^{\infty} x_k^* D^{-k} \). When the region of convergence includes the unit circle, the discrete-time sequence’s Fourier transform exists as \(X(e^{-j\omega}) = X(D)|_{D=e^{-j\omega}} \), and such sequences are considered to be “stable” or “realizable” (non-causal sequences become realizable with sufficient delay, or infinite delay in some limiting situations).

A sufficient condition for the discrete-time sequence’s Fourier transform to exist (the sum \(X(D) \) converges) is that the sequence itself be absolutely summable, meaning

\[
\sum_{k=-\infty}^{\infty} |x_k| < \infty ,
\]

or equivalently the sequence belongs to the space of sequences \(L^1 \). Another sufficient condition is that the sequence belongs to \(L^2 \) or has finite energy according to

\[
\sum_{k=-\infty}^{\infty} |x_k|^2 < \infty .
\]

The similarity of the form of transform and inverse then allows equivalently that the inverse Fourier Transform \(\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega k} \cdot d\omega \right) \) exists if:

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{-j\omega})| \cdot d\omega < \infty ,
\]

or if

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{-j\omega})|^2 \cdot d\omega < \infty .
\]

While \(x_k \in L_1 \) or \(x_k \in L_2 \) are sufficient conditions, this book has already used non-\(L_1 \)-nor-\(L_2 \) functions that can have Fourier transforms. These “generalized” functions include the Dirac Delta function \(\delta(t) \) or \(\delta(\omega) \), so that for instance \(\cos(\omega_0 k) \) has Fourier Transform \(\pi [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \), or the series \(x_k = 1 \) has transform \(2\pi \delta(\omega) \), even though neither of the sums above in Equations (A.18) and (A.19) converge for these functions. These types of generalized-function-assisted Fourier Transforms are “on the stability margin” where values of \(D \) in a region of convergence arbitrarily close to the unit circle (outside, but not on) will converge so the criteria are considered satisfied in a limiting or “generalized” sense.

A continuous-time sequence \(x(t) \) has a Laplace Transform \(X(s) \) defined over a region of convergence \(S_x \) as

Definition A.2.2 (Laplace Transform) A function \(x(t) \) has Laplace-Transform \(X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} \cdot dt \), which converges/exists for all \(s \in S_x \), where \(S_x \) is the region of convergence of complex \(s \) values. The inverse transform is \(\frac{1}{2\pi j} \oint X(s) \cdot e^{st} \cdot ds \) when the closed contour of integration is in \(S_x \).

\(^3\)Analytic here means the function and all its derivatives exist and are bounded - not to be confused with Chapter 2’s “analytic-equivalent” signals.

\(^4\)Typically the inverse transform is implemented by partial fractions, which often arise in communication problems and in most approaches to contour integration anyway, whenever the \(D\)-transform is a rational fraction of polynomials in \(D \).

\(^5\)The generalization for \(T \neq 1 \) is addressed in the specific text sections of this chapter and later chapters when necessary. For instance, see Table 3.1 for the generalization of transforms under sampling for all \(T \). Sampling should not be confused with the bi-linear transform: the former corresponds to conversion of a continuous waveform to discrete samples, while the latter maps filters or functions from/to continuous to/from discrete time and thus allows use of continuous- (discrete-) time filter realizations in the other discrete- (continuous-) time domain.
The time function \(x(t) \) can be complex. The function \(x^*(t) \) has a Laplace Transform \(\int_{-\infty}^{\infty} x^*(t) e^{-st} dt = X^*(s) \). When the region of convergence includes the \(j\omega \) axis, the Fourier transform exists as \(X(\omega) = X(s)|_{s=j\omega} \), and such functions are considered to be “stable” or “realizable” (non-causal functions become realizable with sufficient delay, or infinite delay in some limiting situations).

A sufficient condition for the continuous Fourier transform to exist (the integral converges) is that the function be absolutely integrable, meaning

\[
\int_{-\infty}^{\infty} |x(t)| \cdot dt < \infty , \text{ or equivalently } \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)| \cdot d\omega < \infty ,
\]

or equivalently that the function \(x(t) \) belongs to the space of continuous functions \(L^1 \). Another sufficient condition is that function \(x(t) \) belongs to \(L^2 \) or has finite energy according to

\[
\int_{-\infty}^{\infty} |x(t)|^2 \cdot dt < \infty , \text{ or equivalently } \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 \cdot d\omega < \infty .
\]

Similar to the discrete-time D-Transform, “generalized” functions complete the capability to handle continuous Fourier Transforms that are “on the stability margin” where values of \(s \) in a region of convergence arbitrarily close to the \(j\omega \) axis (left of, but not on this axis) will converge so the criteria are considered satisfied in a limiting or generalized sense.

A.2.2 Autocorrelation and Non-Negative Spectra Magnitudes

Of particular interest in this text, and generally in digital communication, are the autocorrelation functions and associated power spectra for stationary and wide-sense stationary processes. (See also Appendix A of this overall book for continuous time.) These concepts are revisited briefly here for discrete processes before returning to filter realization of a given specified non-negative Fourier Transform magnitude.

Definition A.2.3 (Autocorrelation and Power Spectrum for Sequences) If \(x_k \) is any stationary complex sequence, its **autocorrelation function** is defined as the sequence \(R_{xx}(D) \) whose terms are \(r_{xx,j} = E[x_k x^*_k-j] \); symbolically\(^6\)

\[
R_{xx}(D) \overset{\Delta}{=} E \left[X(D) \cdot X^*(D^{-*}) \right] .
\]

By stationarity, \(r_{xx,j} = r_{xx,-j}^* \) and \(R_{xx}(D) = R_{xx}(D^{-*}) \). The **power spectrum** of a stationary sequence is the Fourier transform of its autocorrelation function, which is written as

\[
R_{xx}(e^{-j\omega}) = R_{xx}(D)|_{D=e^{-j\omega}} , \quad -\pi < \omega \leq \pi ,
\]

which is real and nonnegative for all \(\omega \). Conversely, any function \(R(e^{-j\omega}) \) that is real and nonnegative over the interval \(\{-\pi < \omega \leq \pi \} \) is a power spectrum, and has an autocorrelation function satisfying \(R(D) = R^*(D^{-*}) \).

The quantity \(E \left[|x_k|^2 \right] \) is \(\mathcal{E}_x \), or \(\hat{\mathcal{E}}_x \) per dimension, and can be determined from either the autocorrelation function or the power spectrum as follows:

\[
\mathcal{E}_x = E \left[|x_k|^2 \right] = r_{xx,0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(e^{-j\omega}) d\omega .
\]

\(^6\)The expression \(R_{xx}(D) \overset{\Delta}{=} E \left[X(D)X^*(D^{-1}) \right] \) is used in a symbolic sense, since the terms of \(X(D)X^*(D^{-1}) \) are of the form \(\sum_k x_k x^*_k-j \), implying the additional operation \(\lim_{N \to \infty} \left[1/(2N+1) \right] \sum_{-N \leq k \leq N} \) on the sum in such terms.
If the sequence in question (a fixed filter for instance) is deterministic, then the averages are not necessary above. The power spectra is then essentially the magnitude squared of the Fourier Transform \(R(e^{-j\omega}) \triangleq |X(e^{-j\omega})|^2 \geq 0 \) for discrete time. These Fourier Transforms’ magnitudes can be thought of also as power spectra, and the corresponding inverse transforms as autocorrelation functions in this text.

Definition A.2.4 (Autocorrelation and Power Spectrum for Continuous-time Functions)

If \(x(t) \) is any stationary (or WSS, see this book’s Appendix A) complex function, its autocorrelation function is defined as the Laplace Transform \(R_{x,x}(s) \) whose terms are \(r_{x,x}(t) = E[x_c(u)x_c^*(u-t)] \); symbolically\(^7\)

\[
R_{x,x}(s) \triangleq E[X(s) \cdot X^*(-s^*)] . \tag{A.29}
\]

By stationarity, \(r_{x,x}(t) = r_{x,x}^*(t) \) and \(R_{x,x}(s) = R_{x,x}^*(-s^*) \). The power spectrum of a stationary continuous-time process is the Fourier transform of its autocorrelation function, which is written as

\[
R_{x,x}(\omega_c) = R_{x,x}(s)|_{s=j\omega_c} , \quad -\infty < \omega_c \leq \infty , \tag{A.30}
\]

which is real and nonnegative for all \(\omega_c \). Conversely, any function \(R(\omega) \) that is real and nonnegative over the interval \(\{-\infty < \omega_c \leq \infty\} \) is a power spectrum and has autocorrelation function \(R(s) = R^*(-s^*) \).

The quantity \(E[|x_c(t)|^2] \) is \(P_x \), or the power of the random continuous-time process, and can be determined from either the autocorrelation function or the power spectrum as follows:

\[
P_x = E[|x_c(t)|^2] = r_{x,x}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{x,x}(\omega_c) \cdot d\omega_c . \tag{A.31}
\]

If the sequence in question (a fixed filter for instance) is deterministic, then the averages are not necessary above. The power spectra is then essentially the magnitude squared of the Fourier Transform \(R(\omega_c) \triangleq |X_c(\omega_c)|^2 \geq 0 \) for continuous time. These Fourier Transforms’ magnitudes can be thought of also as power spectra, and the corresponding inverse transforms as autocorrelation functions in this text.

A.2.3 The Bilinear Transform and Spectral Factorization

This section denotes a continuous-time function’s Fourier transform radian frequency by \(\omega_c \) while the discrete-time sequence’s Fourier Transform variable will be \(\omega \) (with no subscript of \(c \)). Similarly all continuous-time quantities will use a subscript of \(c \) to avoid confusion with discrete time. For the transforms, if a transform \(X(D) \) or \(X_c(s) \) exists in their respective regions of convergence, then the transforms \(e^{X(D)} \) and \(e^{X_c(s)} \) also exist in that same region of convergence\(^8\). Similarly then, \(\ln(X(D)) \) and \(\ln(X_c(s)) \) also have the same regions of convergence.

A filter-design technique for discrete-time filters uses what is known as the “bi-linear” transform to map a filter designed in continuous time into a discrete-time filter (or vice versa):

Definition A.2.5 (Bilinear Transforms) The **bilinear transform** maps between discrete-time \(D \) Transforms and continuous-time \(s \) Transforms according to

\[
s = \frac{1 - D}{1 + D} \tag{A.32}
\]

and conversely

\[
D = \frac{1 - s}{1 + s} . \tag{A.33}
\]

\(^7\)The expression \(R_{x,x}(s) \triangleq E[X(s)X^*(-s^*)] \) is used in a symbolic sense, since the terms of \(X(s)X^*(-s^*) \) are of the form \(\int_{-\infty}^{\infty} E[x_c(u)x_c^*(u-t)] du, \) implying the additional operation \(\lim_{T \to \infty} |1/(2T)| \int_{-T}^{T} \) on the integral in such terms.

\(^8\)This follows from the derivative of \(e^{f(x)} \) for any function \(f(x) \) is \(e^{f(x)} \cdot f'(x) \) so if the function existed at \(x \), then \(e^{f(x)} \) also exists at all argument values, and then since \(f'(x) \) also exists, then so does the derivative. This argument can be recursively applied to all successive derivatives that of course exist for \(f(x) \) in its domain of convergence.
The bilinear transform can also relate discrete-time and continuous-time Fourier Transforms by inserting $D = e^{-j\omega}$ and $s = j\omega$. The $j\omega_c$ (complex) axis from 0 to $\pm \infty$ corresponds to mapping $D = e^{-j\omega}$ along the unit circle (centered at origin of D plane) from the (real, imaginary) D-plane point $[1,0]$ of 0 radians to the point of π radians (or $[-1,0]$) clockwise for positive ω_c (counter clockwise for negative ω_c). This bilinear transform scales or compresses the infinite range of frequencies $\omega_c \in (-\infty, \infty)$ for the continuous-time Fourier Transform to the finite range of frequencies $\omega \in [-\pi, \pi]$ for the discrete-time Fourier Transform. The bilinear transform does not correspond to sampling (and why $T = 1$ here to avoid confusion) to go from continuous time to discrete time. The bilinear transform is a filter-design/synthesis method that maps a design from continuous time to/from discrete time. The designer needs to “pre-warp” filter cut-off frequencies with this compression/scaling in mind. A stable design/synthesis method that maps a design from continuous time to discrete time. The bilinear transform is a filter-design/synthesis method that maps a design from continuous time to/from discrete time. The designer needs to “pre-warp” filter cut-off frequencies with this compression/scaling in mind. A stable design in continuous time corresponds to all poles on/in the left-half plane of s (or the region of convergence includes, perhaps in limit, the $j\omega_c$ axis). These poles will map (with the warping of frequency scale) into corresponding points through the bilinear transform in the region outside (or in limiting sense on) the unit circle $|D| = 1$, and vice-versa. Similarly a minimum-phase design (all poles and zeros in LHP) will map to all poles/zeros outside the unit circle, and vice-versa.

For the Fourier Transform, the bilinear transformation maps frequency according to

$$
\omega = \frac{2 \arctan(\omega_c)}{\pi} = \frac{\pi}{2} \frac{\omega_c}{1 + \omega_c^2}.
$$

The spectral factorization of a discrete-time autocorrelation function’s D-Transform is:

Definition A.2.6 (Factorizability for Sequences) An autocorrelation function $R_{xx}(D)$, or equivalently any non-negative real $R_{xx}(e^{j\omega})$ so that $r_k = r^*_{-k}$, will be called factorizable if it can be written in the form

$$
R_{xx}(D) = S_{x,0} \cdot G_x(D) \cdot G^*_x(D^{-*}),
$$

where $S_{x,0}$ is a finite positive real number and $G_x(D)$ is a canonical filter response. A filter response $G_x(D)$ is called canonical if it is causal ($g_{x,k} = 0$ for $k < 0$), monic ($G_x(s = 0) = 1$), and minimum-phase (all of its poles and zeros are outside or on the unit circle). If $G_x(D)$ is canonical, then $G^*_x(D^{-*})$ is anticanonical; i.e., anticausal, monic, and maximum-phase (all poles and zeros inside or on the unit circle).

The region of convergence for factorizable $R_{xx}(D)$ clearly includes the unit circle, as do the regions for both $G_x(D)$ and $G^*_x(D^{-*})$. If $G_x(D)$ is a canonical response, then $\|g_x\|^2 \Delta \leq \sum_j |g_{x,k}|^2 \geq 1$, with equality if and only if $G_x(D) = 1$, since $G_x(D)$ is monic. Further, the inverse also factorizes similarly into

$$
R^{-1}_{xx}(D) = (1/S_{x,0}) \cdot G^{-1}_x(D) \cdot G^{-*}_x(D^{-*}).
$$

Clearly if $R_{xx}(D)$ is a ratio of finite-degree polynomials in D, then it is factorizable (simply group poles/zeros together for inside and outside of the circle - any on unit circle will also appear in conjugate pairs so easily separated). For the situation in which $R_{xx}(D)$ is not already such a polynomial, the next section generalizes through the Paley-Wiener Criterion. Also, if $R_{xx}(D)$ is factorizable, then the corresponding $R_{xx}(s) = R_{xx}(\frac{i\pi s}{1 + s^2})$ is also factorizable into

$$
R_{xx}(s) = S_{x,0} \cdot G_x(s) \cdot G^*_x(-s^*)\).\)

Definition A.2.7 (Factorizability for Continuous Functions) An autocorrelation function $R_{xx}(s)$, or equivalently any non-negative real power spectrum $R_{xx}(\omega)$ so that $r(t) = r^*(-t)$, will be called factorizable if it can be written in the form

$$
R_{xx}(s) = S_{x,0} \cdot G_x(s) \cdot G^*_x(-s^*),
$$

356
where \(S_{x,0} \) is a finite positive real number and \(G_{\omega}(s) \) is a canonical filter response. A filter response \(G_{\omega}(s) \) is called canonical if it is causal \((g_{\omega}(t) = 0 \text{ for } t < 0)\), monic \((g_{\omega}(0) = 1)\), and minimum-phase (all of its poles and zeros are in the left half plane). If \(G_{\omega}(s) \) is canonical, then \(G_{\omega}^{-1}(-s^{*}) \) is anticanonical; i.e., anticausal, monic, and minimum-phase (all poles and zeros inside in the right half plane).

The region of convergence for factorizable \(R_{x\omega x}(s) \) clearly includes the \(j\omega \) axis, as do the regions for both \(G_{x\omega}^{-1}(s) \) and \(G_{x\omega}^{-1}(-s^{*}) \).

If \(G_{x\omega}(s) \) is a canonical response, then \(\|g_{x\omega}\|^{2} \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} |g_{x\omega}(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G_{x\omega}(\omega)|^{2} d\omega \geq 1 \), with equality if and only if \(G_{x\omega}(s) = 1 \) or \(g_{x\omega}(t) = \delta(t) \), since \(G_{x\omega}(s) \) is monic. Further, the inverse also factorizes similarly into

\[
R_{x\omega x}^{-1}(s) = \left(\frac{1}{S_{x,0}} \right) \cdot G_{x\omega}^{-1}(s) \cdot G_{x\omega}^{-1}(-s^{*}) .
\]

Clearly if \(R_{x\omega}(s) \) is a ratio of finite-degree polynomials in \(s \), then it is factorizable (simply group poles/zeros together for left and right half planes - any on imaginary axis will also appear in conjugate pairs, and so are easily separated). When not already such a polynomial, the next section generalizes this situation through the Paley-Wiener Criterion.

A.2.4 The Paley-Wiener Criterion

Minimum-phase signals or filters are of interest in data transmission not only because they are causal and admit causal invertible inverses (one of the reasons for their study more broadly in digital signal processing) but because they allow best results with Decision Feedback as in Section 3.6. These minimum-phase filters are also useful in noise whitening.

Calculation of \(S_{x,0} \) for a factorizable D-Transform follows Equations (3.232) to (3.233) in Section 3.6 as

\[
S_{x,0} = e^{\pm j \frac{1}{2} \int_{-\infty}^{\infty} \ln[R_{x\omega}(e^{j\omega})] \cdot d\omega}
\]

\[
\ln (S_{x,0}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln [R_{xx}(e^{j\omega})] \cdot d\omega ,
\]

which has components corresponding to the last two terms in (A.38) integrating to zero because they are periodic with no constant components and being integrated over one period of the fundamental frequency. The integral in (A.44) must be finite for the exponent in (A.43) to be finite (also, any exponent of a real number is a real positive number, so \(S_{x,0} > 0 \) and real, consistent with the power spectral density). That integral of the natural log of a power-spectral density is fundamental in filter realization and in the Paley Wiener Criterion to follow. Again, \(D_{x} \) is the same for \(R_{xx}(D) \) as for \(\ln [R_{xx}(D)] \) and includes the unit circle; this also means the region of convergence for \(\ln [G_{x}(D)] \) also is the same as for \(G_{x}(D) \) and includes the unit circle. Further the region of convergence for \(G_{x}^{-1}(D) \) also includes the unit circle and is the same as for \(\ln [G_{x}^{-1}(D)] \).

The calculation of \(S_{x,0}^{-1} \) has a very similar form to that of \(S_{x,0} \):

\[
S_{x,0}^{-1} = e^{-\pm j \frac{1}{2} \int_{-\infty}^{\infty} \ln[R_{x\omega}(e^{j\omega})] \cdot d\omega}
\]

\[
\ln (S_{x,0}^{-1}) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln [R_{xx}(e^{j\omega})] \cdot d\omega ,
\]

Because (A.45) and (A.46) are similar, just differing in sign, and because any functions of \(G_{x} \) (including in particular \(\ln \) or \(|\bullet| \)) are all periodic, factorizability also implies

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |\ln [R_{xx}(e^{j\omega})]| \cdot d\omega < \infty
\]

(or the function \(\ln [R_{xx}(D)] \) exists because the autocorrelation in L1 is absolutely integrable). Essentially the finite nature of this integral corresponding to factorizable \(R_{xx}(D) \) means that the sequence’s Fourier

357
Transform has no frequencies (except point frequencies of non-zero measure) at which it can be either zero or infinite. The non-infinite is consistent with the basic criterion (A.18) to be absolutely integrable, but the non-zero portion corresponds intuitively to saying any filter that has some kind of “dead band” is singular. Any energy in these singular bands would be linear combinations of energy at other frequencies. Singular bands thus carry no new information, and can be viewed as useless: A signal with such a dead band is wasting energy on components transmitted already at other frequencies that exactly cancel. A filter with such a dead band would block any information transmitted in that band, making reliable data-detection/communication impossible (kind of an inverse to the reversibility concept and theorem in Chapter 1). Such a filter would not be reversible (causally or otherwise). Both situations should be avoided. Chapter 5 deals with such singularity far more precisely.

The following Paley-Wiener Theorem from discrete-time spectral factorization theory formalizes when an autocorrelation function is “factorizable.” The ensuing development will essentially prove the theorem while developing a way to produce the factors $G_x(D)$ and thus $G_x^*(D^{−*})$ of the previous subsection.

This development also finds a useful way to handle the continuous-time case, which can be useful in noise-whitening. The reader is again reminded that any non-negative (real) spectrum and corresponding inverse transform is a candidate for spectral factorization.

Theorem A.2.1 (MIMO Paley Wiener Criterion) If $R_{xx}(e^{−j\omega})$ is any power spectrum such that both $R_{xx}(e^{−j\omega})$ and $\ln R_{xx}(e^{−j\omega})$ are absolutely integrable over $-\pi < \omega \leq \pi$, and $R_{xx}(D)$ is the corresponding autocorrelation function, then there is a canonical discrete-time response $G_x(D)$ that satisfies the equation

$$R_{xx}(D) = S_{x,0} \cdot G_x(D) \cdot G_x^*(D^{−*}),$$

(A.48)

where the finite constant $S_{x,0}$ is given by

$$\ln S_{x,0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln R_{xx}(e^{−j\omega})d\omega .$$

(A.49)

For $S_{x,0}$ to be finite, $R_{xx}(e^{−j\omega})$ must satisfy the discrete-time Paley-Wiener Criterion (PWC)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |\ln R_{xx}(e^{−j\omega})|d\omega < \infty .$$

(A.50)

The continuous-time equivalent of this PWC is that the Fourier Transform of the continuous-time autocorrelation function is factorizable

$$R_{xx,cc}(s) = S_{x,0} \cdot G_{xx}(s) \cdot G_{xx}^*(-s^*) ,$$

(A.51)

where $G_{xx}(s)$ is minimum phase (all poles and zeros in the left half plane or on axis in limiting sense) and “monic” $g_{xx}(t)|_{t=0} = 1$, whenever

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\ln R_{xx,cc}(\omega_c)|}{1 + \omega_c^2} d\omega_c < \infty .$$

(A.52)

Constructive Proof: The equivalence of the two PW criteria in (A.50) and (A.52) (discrete- and continuous-time) follows directly from Equations (A.34) to (A.37). However, it remains to show that the condition is necessary and sufficient for the factorization to exist. The necessity of the criterion followed previously when it was shown that factorizability lead to the PWC being satisfied. The sufficiency proof will be constructive from the criterion itself. The desired non-negative real in (A.43) and (A.44) frequency has a (positive or zero) real square root $R_{xx}^{1/2}(e^{j\omega})$ at each frequency, and this function in turn has a natural log

$$A(e^{-j\omega}) \triangleq \ln \left[R_{xx}^{1/2}(e^{-j\omega}) \right].$$

(A.53)
\(A(e^{-j\omega}) \) itself is also periodic and real, and by the PWC integral equation, is absolutely integrable and so has a corresponding Fourier representation

\[
A(e^{-j\omega}) = \sum_{k=-\infty}^{\infty} a_k \cdot e^{-j\omega k} \tag{A.54}
\]

\[
a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} A(e^{-j\omega}) \cdot e^{j\omega k} \, d\omega \tag{A.55}
\]

Because this (Fourier Transform) \(A(e^{-j\omega}) \) is purely real, then \(a_k = a_k^* \), and the D-Transform simplifies to

\[
A(D) = a_0 + \sum_{k=1}^{\infty} a_k \cdot D^k + \sum_{l=1}^{\infty} a_l \cdot D^l \tag{A.56}
\]

and then by letting \(k = -l \) in the second sum,

\[
A(D) = a_0 + \sum_{k=1}^{\infty} a_k \cdot D^k + \sum_{k=1}^{\infty} a_{-k} \cdot D^k \tag{A.57}
\]

which defines a causal sequence \(a_k \) that corresponds to \(\ln \left[R_{xx}(D) \right] \). The sequence is causally invertible because \(\ln \left[R_{xx}^{-1/2}(D) \right] \) can be handled in the same way following (A.50). So,

\[
R_{xx}(D) = e^{A(D)} \cdot e^{A^*(D^{-*})} \tag{A.60}
\]

Then, the desired canonical factorization has the factors

\[
S_{x,0} = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln[R_{xx}(e^{-j\omega})] \, d\omega} \tag{A.61}
\]

\[
G_x(D) = \frac{e^{A(D)}}{\sqrt{S_{x,0}}} \tag{A.62}
\]

The corresponding continuous-time spectrum factorization then would be found with \(R_{xxc}(s) = R_{xx} \left(\frac{s}{\omega_c} \right) \) and thus \(A_c(s) = A \left(\frac{s}{\omega_c} \right) \). Then, with \(s \to j\omega_c \)

\[
S_{x,c,0} = e^{\frac{1}{2\pi} \int_{-\infty}^{\infty} \ln[R_{xxc}(e^{-j\omega_c})] \, d\omega_c} \tag{A.63}
\]

\[
G_{xc}(s) = \frac{e^{A_c(s)}}{\sqrt{S_{x,c,0}}} \tag{A.64}
\]

If the original desired spectra were defined in continuous time, then it could be mapped into discrete time through \(\omega_c \to \tan(\frac{\omega_c}{2}) \) and then proceeding with that discrete-time mapped equivalent through the process above, ultimately leading to Equations (A.63) and (A.64). Sufficiency has thus been established in both discrete- and continuous-time. QED.

Minimum-phase functions and sequences have several interesting properties that can help understand their utility. If a “phasor” diagram were drawn from each pole and zero to a point on the unit circle (or imaginary axis for continuous time), the magnitude is the ratio of the zero-phasor-length products to the pole-phasor-length products while the phase is the sum of the zero phases minus the sum of the
pole phases. For the D-Transform the phasor angle is measured from a horizontal line to the left (while for Laplace it is measured from a horizontal line to the right). These phase contributions are always the smallest with respect to the “other choice” of the zero/pole from the maximum-phase factor. Whence the name “minimum phase.” Perhaps more importantly, one can see as frequency increases the rate of change of the angle (the magnitude of delay) is smallest for this same choice. Equivalently, each frequency for the particular magnitude spectrum of interest is delayed the smallest possible amount. With respect to all other pole/zero choices, the energy is maximally concentrated towards zero for any length of time (among all waveforms with the same spectrum). In Section 3.6, the feedback section of the DFE thus has largest ratio of first tap to sum of rest of taps, so smallest loss with respect to matched filter bound. Such minimal-energy delay allows inversion of the function with the also-minimum-phase/delay that is actually the negative of the first delay. In effect, this only occurs when the function is causal and causally invertible.

A.2.5 Linear Prediction

The inverse of $R_{xx}(D)$ is also an autocorrelation function and can be factored when $R_{xx}(D)$ also satisfies the PW criterion with finite $\delta_{x,0}$. In this case, as with the MMSE-DFE in Section 3.6, the inverse autocorrelation factors as

$$R_{xx}^{-1}(D) = S_{x,0}^{-1} \cdot \tilde{G}(D) \cdot \tilde{G}^*(D^{-*}) \quad ,$$

(A.65)

where $\tilde{G}(D) = G_x^{-1}(D)$.

If $A(D)$ is any causal and monic sequence, then $1 - A(D)$ is a strictly causal sequence that may be used as a prediction filter, and the prediction error sequence $E(D)$ is given by

$$E(D) = X(D) - X(D) \cdot [1 - A(D)] = X(D) \cdot A(D) \quad .$$

(A.66)

The autocorrelation function of the prediction error sequence is

$$R_{ee}(D) = R_{xx}(D) \cdot A(D) \cdot A^*(D^{-*}) = \frac{A(D) \cdot A^*(D^{-*})}{S_{x,0}^{-1} \cdot \tilde{G}(D) \cdot \tilde{G}^*(D^{-*})} \quad ,$$

(A.67)

so its average energy satisfies $E_x = S_0 \cdot \|1/g \ast a\|^2 \geq S_0$ (since $A(D)$ is monic), with equality if and only if $A(D)$ is chosen as the whitening filter $A(D) = \tilde{G}(D)$. The process $X(D) \cdot \tilde{G}(D) = \frac{X(D)}{\tilde{G}(D)}$ is often called the innovations of the process $X(D)$, which has mean square value $S_{x,0} = 1/S_0$. Thus, $S_{x,0}$ of the direct spectral factorization is the mean-square value of the innovations process or equivalent of the MMSE in linear prediction. $X(D)$ can be viewed as being generated by inputting a white innovations process $V(D) = \tilde{G}(D) \cdot X(D)$ with mean square value $S_{x,0}$ into a filter $G_s(D)$ so that $X(D) = G_s(D) \cdot V(D)$.

The factorization of the inverse and resultant interpretation of the factor $\tilde{G}(D)$ as a linear-prediction filter helps develop an interest interpretation of the MMSE-DFE in Section 3.6 where the sequence $X(D)$ is replaced by the sequence at the output of the MS-WMF.

A.2.6 Cholesky Factorization - Finite-Length Spectral Factorization

Cholesky factorization is the finite-length equivalent of spectral factorization for a symbol/packet of N samples. In this finite-length case, there are really two factorizations, both of which converge to the infinite-length spectral factorization when the process is stationary and the symbol length becomes large, $N \to \infty$.

Cholesky Form 1 - Forward Prediction

Cholesky factorization of a positive-definite (nonsingular) $N \times N$ matrix $R_{xx}(N)$ produces a unique upper triangular monic (ones along the diagonal) matrix $G_x(N)$ and a unique diagonal positive-semidefinite
matrix $S_x(N)$ of Cholesky factors such that\footnote{Dots are used in this subsection to help notation, even though they here may correspond to matrix multiplication - it just makes it easier to read here.}

$$R_{xx}(N) = G_x(N) \cdot S_x(N) \cdot G_x^*(N) .$$

(A.68)

It is convenient in transmission theory to think of the matrix $R_{xx}(N)$ as an autocorrelation matrix for N samples of some random vector process x_k with ordering

$$X_N = \begin{bmatrix} x_{N-1} \\ \vdots \\ x_0 \end{bmatrix} .$$

(A.69)

A corresponding order of $G_x(N)$’s and $S_x(N)$’s elements is then

$$G_x(N) = \begin{bmatrix} g_{N-1} \\ g_{N-2} \\ \vdots \\ g_0 \end{bmatrix} \quad \text{and} \quad S_x(N) = \begin{bmatrix} s_{N-1} & 0 & \ldots & 0 \\ 0 & s_{N-2} & \ldots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & s_0 \end{bmatrix} .$$

(A.70)

Since $G_x(N)$ is monic, it is convenient to write

$$g_i = \begin{bmatrix} 0^*_{N-1-i} & 1 & \tilde{g}_i \end{bmatrix} ,$$

(A.71)

where 0_j in general is a column vector with j zeros in it, and $\tilde{g}_0 = 0$ or $g_0 = 1$. The determinant of R_N is easily found as

$$S_{x,0} = |R_{xx}(N)| = \prod_{n=0}^{N-1} s_n .$$

(A.72)

(or $\ln S_{x,0} = \ln |R_{xx}(N)|$ for readers taking limits as $N \to \infty$). A convenient recursion description of $R_{xx}(N)$’s components is then (with $r_n = E[|x_N|^2]$ and $r_{N-1} = E[X_n x_N^\ast]$)

$$R_{xx}(N) = \begin{bmatrix} r_N & r_{N-1}^\ast \\ r_{N-1} & R_{xx}(N-1) \end{bmatrix} .$$

(A.73)

The submatrix $R_{xx}(N-1)$ also has a Cholesky Decomposition

$$R_{xx}(N-1) = G_x(N-1) \cdot S_x(N-1) \cdot G_x^*(N-1) ,$$

(A.74)

which because of the 0 entries in the triangular and diagonal matrices shows the recursion inherent in Cholesky decomposition (that is the $G_x(N-1)$ matrix is the lower right $(N-1) \times (N-1)$ submatrix of $G_x(N)$, which is also upper triangular). Thus, the corresponding recursion description for G_x is

$$G_x(N) = \begin{bmatrix} 1 \\ 0_{N-1} \end{bmatrix} \begin{bmatrix} g_{N-1} \\ G_x(N-1) \end{bmatrix} .$$

(A.75)

The inverse of $R_{xx}(N)$ has a Cholesky factorization

$$R_{xx}^{-1}(N) = G_x^{-1}(N) \cdot S_x^{-1}(N) \cdot G_x^{-1}(N) ,$$

(A.76)

where $G_x^{-1}(N)$ is also upper triangular and monic with ordering

$$G_x^{-1}(N) = \begin{bmatrix} \tilde{g}_{N-1} \\ \tilde{g}_{N-2} \\ \vdots \\ \tilde{g}_0 \end{bmatrix} .$$

(A.77)

Also, because it is monic,

$$g_i = \begin{bmatrix} 0^*_{N-1-i} & 1 & \tilde{g}_i \end{bmatrix} .$$

(A.78)
linear prediction:

A straightforward algorithm for computing Cholesky factorization derives from a linear-prediction interpretation. The innovations, V_N, of the N samples of X_N are defined by

$$X_N = G_x(N) \cdot V_N$$

(A.79)

where $E[V_N V_N^*] = S_N$, and the individual innovations are independent (or uncorrelated if not Gaussian), $E[v_i \cdot v_j^*] = S_x(i) \cdot \delta_{ij}$. Then

$$V_N = \begin{bmatrix} v_{N-1} \\ \vdots \\ v_0 \end{bmatrix}.$$

(A.80)

Also,

$$V_N = G_x^{-1}(N) \cdot X_N.$$

(A.81)

The cross-correlation between X_N and V_N is

$$\bar{R}_{xN} = S_x(N) \cdot G_x^*(N),$$

(A.82)

which is lower triangular. Thus,

$$E[v_k \cdot x_{k-1}^*] = 0 \quad \forall i \geq 1.$$

(A.83)

Since $X_{N-1} = G_x(N-1) \cdot V_{N-1}$ shows a reversible mapping from V_{N-1} to X_{N-1}, then (A.83) relates that the sequence v_k is a set of growing-order MMSE prediction errors for x_k in terms of $x_{k-1} \ldots x_0$ (i.e., (A.83) is the orthogonality principle for linear prediction). Thus,

$$v_N = x_N - r_1^* \cdot R_{xx}^{-1}(N-1) \cdot X_{N-1}$$

(A.84)

since r_1 is the cross-correlation between x_N^* and X_{N-1} in (A.73). Equation (A.84), using the top row of (A.79) and (A.70), rewrites as

$$x_N = v_N + r_1^* \cdot R_{xx}^{-1}(N-1) \cdot X_{N-1}$$

(A.85)

$$= v_N + r_1^* \cdot G_x^*(N-1) \cdot S_x^{-1}(N-1) \cdot \frac{G_x^{-1}(N-1) \cdot \bar{\mathbf{g}}_{N-1} \cdot X_{N-1}}{V_{N-1}}$$

(A.86)

$$= g_{N-1} \cdot V_N,$$

(A.87)

so

$$g_{N-1} = [1 \quad r_1^* \cdot \bar{\mathbf{g}}_{N-1} \cdot S_x^{-1}(N-1)]$$

(A.88)

Then, from (A.81), (A.84), and (A.86),

$$g_{N-1} = [1 \quad -\bar{\mathbf{g}}_{N-1} \cdot G_x(N-1)]$$

(A.89)

Finally, the mean-square error recursion is

$$s_N = E[v_{N-1} \cdot v_{N-1}^*]$$

(A.90)

$$= E[x_{N-1} \cdot x_{N-1}^*] - r_{N-1}^* \cdot R_{xx}^{-1}(N-1) \cdot r_{N-1} - g_{N-1} \cdot \bar{\mathbf{g}}_{N-1} \cdot S_x(N-1)$$

(A.91)

$$= r_{N-1} - \bar{\mathbf{g}}_{N-1} \cdot S_x(N-1) \cdot \bar{\mathbf{g}}_{N-1}^*.$$

(A.92)

Forward [Upper Triangular] Cholesky Algorithm:

For nonsingular R_N:
Set $g_0 = G_x(1) = G_x^{-1}(1) = \bar{g}_0 = 1$, $S_x(1) = s_0 = E|x_0|^2$, and r_i^* the last i upper row entries in $R_{xx}(i+1)$ as per (A.73).
For $n = 2 \ldots N$:
a. \(\tilde{g}_n = r_{n-1}^* \cdot G_x^{-s}(n-1) \cdot S_x^{-1}(n-1) \).

b. \(G_x(n) = \begin{bmatrix} 1 & \tilde{g}_{n-1} \\ 0 & G_x(n-1) \end{bmatrix} \).

c. \(G_x^{-1}(n) = \begin{bmatrix} 1 & -\tilde{g}_{n-1} \cdot G_x^{-1}(n-1) \\ 0 & G_x^{-1}(n-1) \end{bmatrix} \).

d. \(S_x(n) = r_n - \tilde{g}_{n-1} \cdot S_x(n-1) \cdot \tilde{g}_{n-1}^* \).

A singular \(R_N \) means that \(s_n = 0 \) for at least one index \(n = i \), which is equivalent to \(v_i = 0 \), meaning that \(x_i \) can be exactly predicted from the samples \(x_{i-1} \ldots x_0 \) or equivalently can be exactly constructed from \(v_{i-1} \ldots v_0 \). Such a singular process has \(\ln |R_N| = 0 \) and would not as \(N \to \infty \) satisfy the PWC. In this case, Cholesky factorization is not unique. Chapter 5 introduces a generalized Cholesky factorization for singular situations that essentially corresponds to doing Cholesky factorization for the nonsingular process, and then generating the deterministic parts that are singular and depend entirely on the nonsingular parts from those nonsingular parts. This will be found equivalent there to independent sampling of each of the remaining nonsingular processes.

Backward [Lower Triangular] Cholesky Algorithm Backward Cholesky essentially corresponds to time-order reversal for the finite group of \(N \) samples (for infinite-length sequences, this corresponds to \(G_x(D^{-s}) \)). Time reversal is achieved simply by \(x_N \leftarrow J_N X_N \) where \(J_N \) is the \(N \times N \) matrix with ones on the anti-diagonal and zeros everywhere else. Note that \(J_N' = J_N \), and \(J_N^2 = I \). For this time reversal, the autocorrelation matrices follow

\[
\tilde{R}_{xx}(N) \leftarrow J_N \cdot R_{xx}(N) \cdot J_N
\]

(A.93)

So the operation in Equation (A.93) is the autocorrelation matrix corresponding to the time reversal of \(x_k \)’s components. This operation reversal basically “flips” the matrix about its antidiagonal.\(^\text{11}\) For a REAL Toeplitz matrix (stationary sequence), this flipping does not change the matrix; however for a complex Toeplitz matrix, the new matrix is the conjugate of the original matrix. Further, the operation \(J_N \cdot G_x(N) \cdot J_N \) converts \(G_x(N) \) from upper triangular to lower triangular, with the ones down the diagonal (monic) retained. The operation

\[
J_N \cdot R_{xx}(N) \cdot J_N = \left[J_N \cdot G_x(N) \cdot J_N \right] \cdot \left[J_N \cdot S_x(N) \cdot J_N \right] \cdot \left[J_N \cdot G_x^*(N) \cdot J_N \right]
\]

(A.94)

which is the desired lower-diagonal-upper or “Backward-Cholesky” factorization. Thus, the backward algorithm can start with the forward algorithm, and then just use the “tilded” quantities defined in (A.94) as the backward Cholesky factorization (including \(G_x^{-1}(N) \) → \(J_N \cdot G_x^{-1}(N) \cdot J_N \)).

Infinite-length convergence

Extension to infinite-length stationary sequences takes the limit as \(N \to \infty \) in either forward or backward Cholesky factorization. In this case, the matrix \(R_{xx} \) (and therefore \(G_x \) and \(S_x \)) must be nonsingular to satisfy the Paley-Weiner Criterion. The equivalence to spectral factorization is evident from the two linear-prediction interpretations for finite-length and infinite length series of samples from random processes earlier in this section.

For the stationary case, the concepts of forward and backward prediction are the same so that the backward predictor is just the time reverse (and conjugated when complex) of the coefficients in the forward predictor (and vice versa). This is the equivalent (with re-index of time 0) of \(G_x^*(D^{-s}) \) being the reverse of \(G_x(D) \) with conjugate coefficients.

Thus, the inverse autocorrelation function factors as

\[
R_{xx}^{-1}(D) = S_{x,0}^{-1} \cdot G_x^{-1}(D) \cdot G_x^{-*}(D^{-*})
\]

(A.95)

\(^{11}\)“Flip” is like transpose but around the anti-diagonal.
where $G^{-1}_x(D)$ is the forward prediction polynomial (and its time reverse specified by $G^*_x(D^{-*})$ is the backward prediction polynomial). The series of matrices $\{R_{xx}(n)\}_{n=1:}\infty$ formed from the coefficients of $R_{xx}(D)$ creates a series of linear predictors $\{G_x(N)\}_{N=1:}\infty$ with D-transforms $G_{x,N}(D)$. In the limit as $N \to \infty$ for a stationary nonsingular series,

$$\lim_{N \to \infty} G_{x,N}(D) = G_x(D) \ .$$

(A.96)

Similarly,

$$\lim_{N \to \infty} G^*_x,N(D) = G^*_x(D^{-*}) \ .$$

(A.97)

As $N \to \infty$, the prediction-error variances S_{N-1}, should tend to a constant, namely $S_{x,0}$. Finally, defining the geometric-average determinants as $S_{x,0}(N) \triangleq |R_{xx}|^{1/N}$ and $S^{-1}_{x,0}(N) = |R^{-1}_{xx}|^{1/N}$

$$\lim_{N \to \infty} S_{x,0}(N) = S_{x,0} = e^{\frac{1}{\pi} \oint_{-\pi}^{\pi} \ln(R_{xx}(e^{-j\omega})) d\omega} \ .$$

(A.98)

$$\lim_{N \to \infty} S^{-1}_{x,0}(N) = S^{-1}_{x,0} = e^{\frac{1}{\pi} \oint_{-\pi}^{\pi} \ln(R_{xx}(e^{-j\omega})) d\omega} \ .$$

(A.99)

The convergence to these limits implies that the series of filters converges or that the bottom row (last column) of the Cholesky factors tends to a constant repeated row/column.

Interestingly, a Generalized Cholesky factorization of a singular process exists only for finite lengths. Using the modifications to Cholesky factorization suggested above with “resampling,” it becomes obvious why such a process cannot converge to a constant limit, and so only nonsingular processes are considered in spectral factorization. Factorization of a singular process at infinite-length involves separating that process into a sum of subprocesses, each of which is resampled at a new sampling rate so that the PW criterion (nonsingular needs PW) is satisfied over each of the subbands associated with these processes. This is equivalent to the multiple Cholesky's for each of the process' nonsingular components at infinite length. For more, see Chapter 5.

A.3 MIMO Spectral Factorization

A.3.1 Transforms

The extension of a D-Transform to an L-dimensional vector sequence x_k is

$$X(D) = \sum_{k=\infty}^{\infty} x_k \cdot D^k \ ,$$

(A.100)

for all scalar complex $D \in D_x$. The inverse D-Transform is given by $x_k = \frac{1}{2\pi} \oint_{D \in D_x} X(D) \cdot D^{1-k} \cdot dD$. (There is not a separate D value for each dimension of the vector x_k - just one scalar D.) When the unit circle is in the region of convergence $D \in D_x$, then a vector Fourier Transform exists and is

$$X(e^{-j\omega}) = \sum_{k=\infty}^{\infty} x_k \cdot e^{-j\omega k} \ .$$

(A.101)

Sufficient conditions for convergence of the Fourier Transform generalize to (with $|x_k|^1 = \max_l |x(l)|$, the maximum absolute value over the L_x components of x_k)

$$\sum_{k=\infty}^{\infty} |x_k|^1 < \infty \ ,$$

(A.102)

or

$$\sum_{k=\infty}^{\infty} \|x_k\|^2 < \infty \ .$$

(A.103)
Vector D-Transforms with poles on the unit circle are handled again in the same limiting sense of approaching arbitrarily closely from outside the circle, which essentially allows generalized functions to be used in the frequency domain, and the vector sequence’s Fourier Transform then also exists. The similarity of the form of transform and inverse then allows equivalently that the inverse Fourier Transform

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \cdot e^{j\omega k} \cdot d\omega < \infty
\]

exists if (where \(|\cdot| \) again means maximum component absolute value):

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{-j\omega})| \cdot d\omega < \infty \quad , \tag{A.104}
\]

or if

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \|X(e^{-j\omega})\|^2 \cdot d\omega < \infty \quad . \tag{A.105}
\]

Rather, than repeat all for a continuous-time vector function’s Laplace Transform, the Vector Laplace Transform for continuous-time vector process \(\mathbf{x}(t) \) is

\[
X(s) = \int_{-\infty}^{\infty} \mathbf{x}(t) \cdot e^{-st} dt \quad , \tag{A.106}
\]

with convergence region \(s \in S_{\mathbf{x}} \). When the imaginary axis is in the convergence region \(S_{\mathbf{x}} \), the Fourier Transform is

\[
X(\omega) = \int_{-\infty}^{\infty} \mathbf{x}(t) \cdot e^{-j\omega t} dt \quad . \tag{A.107}
\]

Convergence conditions on the vector continuous-time process are then

\[
\int_{-\infty}^{\infty} |\mathbf{x}(t)|^1 \cdot dt < \infty \quad , \text{ or equivalently} \tag{A.108}
\]

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^1 \cdot d\omega < \infty \quad , \tag{A.109}
\]

This means that the vector function \(\mathbf{x}(t) \) belongs to the space of continuous functions \(L^1 \). Another sufficient condition is that vector function \(\mathbf{x}(t) \) belongs to \(L^2 \) or has finite energy according to

\[
\int_{-\infty}^{\infty} \|\mathbf{x}(t)\|^2 \cdot dt < \infty \quad , \text{ or equivalently} \tag{A.110}
\]

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \|X(\omega)\|^2 \cdot d\omega < \infty \quad . \tag{A.111}
\]

Similarly “generalized” functions complete the capability to handle continuous Fourier Transforms that are “on the stability margin” where values of \(s \) in a region of convergence arbitrarily close to the \(j\omega \) axis (left of, but not on this axis) will converge so the criteria are considered satisfied in a limiting or generalized sense.

Similarly a matrix can have a D-Transform (Laplace Transform), which is basically the D-Transform (Laplace Transform) of each of the vector rows/columns stacked in a new matrix. There is only one \(D \) variable for all the elements of the matrix. The region of convergence will be the intersection of the individual column vector convergence regions. When that overall region of convergence includes the unit circle (complex axis), the Fourier Transform also exists and the inversion formula are all the obvious extensions. Square matrices can be simplified somewhat in terms of the sufficiency criteria in that the Fourier Transform of a square matrix sequence \(R_k \) exists if

\[
\sum_{k=-\infty}^{\infty} |R_k| < \infty \quad . \tag{A.112}
\]

where the summed entities are the determinants of the sequence’s element matrices (another sufficient condition could use the trace in place of determinant). Basically the sum of the element norms for
A.3.2 Autocorrelation and Power Spectra for vector sequences

This subsection generalizes factorization of scalar D-Transforms to autocorrelation functions and associated power spectra for stationary and wide-sense stationary vector processes.

Definition A.3.1 (Autocorrelation and Power Spectrum for Vector Sequences) If \(\mathbf{x}_k \) is any stationary complex vector sequence, its **autocorrelation matrix** is defined as the sequence \(R_{\mathbf{x},\mathbf{x}}(D) \) whose discrete-time matrix terms are \(r_{\mathbf{x},\mathbf{x},j} = E[\mathbf{x}_k \mathbf{x}_{k-j}^*] \); symbolically

\[
R_{\mathbf{x},\mathbf{x}}(D) \triangleq E \left[\mathbf{X}(D) \cdot \mathbf{X}^*(D^{-*}) \right].
\]

(A.113)

By stationarity, \(r_{\mathbf{x},\mathbf{x},j} = r_{\mathbf{x},\mathbf{x},-j}^* \) and \(R_{\mathbf{x},\mathbf{x}}(D) = R_{\mathbf{x},\mathbf{x}}^*(D^{-1}) \). The **power spectrum matrix** of a stationary vector sequence is the Fourier transform of its autocorrelation function, which is written as

\[
R_{\mathbf{x},\mathbf{x}}(e^{-j\omega}) = R_{\mathbf{x},\mathbf{x}}(D)|_{D=e^{-j\omega}}, \quad -\pi < \omega \leq \pi,
\]

(A.114)

which has real and nonnegative determinant for all \(\omega \), namely

\[
\left| R_{\mathbf{x},\mathbf{x}}(e^{-j\omega}) \right| \geq 0 \quad \forall \omega \in (-\pi, \pi).
\]

(A.115)

\(R_{\mathbf{x},\mathbf{x}}(e^{-j\omega}) \) is real and nonnegative for all \(\omega \). Conversely, any function \(R_{\mathbf{x},\mathbf{x}}(e^{-j\omega}) \) that is real and nonnegative definite over the interval \(\{-\pi < \omega \leq \pi\} \) is a power-spectrum matrix and has corresponding matrix autocorrelation function \(R_{\mathbf{x},\mathbf{x}}(D) = R_{\mathbf{x},\mathbf{x}}(D^{-1}) \).

The quantity \(E \left[|\mathbf{x}_k|^2 \right] \) is \(\mathcal{E}_\mathbf{x} \), and can be determined from either the autocorrelation matrix or the power spectrum matrix as follows:

\[
\mathcal{E}_\mathbf{x} = E \left[|\mathbf{x}_k|^2 \right] = \text{trace} \left\{ r_{\mathbf{x},\mathbf{x},0} \right\} = \frac{1}{2\pi} \text{trace} \left\{ \int_{-\pi}^{\pi} R_{\mathbf{x},\mathbf{x}}(e^{j\omega})d\omega \right\}.
\]

(A.116)

If a matrix sequence \(R_k \) in question is deterministic, then the averages are not necessary above. The power spectra matrix is then the positive semi-definite matrix \(R_k R_k^* \) for discrete time or \(R(t) R^*(t) \) for continuous time. These Fourier Transforms’ magnitudes can be thought of also as power spectra matrices, and the corresponding inverse transforms as autocorrelation functions in this text.

Definition A.3.2 (Autocorrelation & Power Spectra for Continuous-Time Vector Functions)

If \(\mathbf{x}(t) \) is any stationary (or see this book’s Appendix A) complex vector function, its **autocorrelation matrix** is defined as the Laplace Transform \(R_{\mathbf{x},\mathbf{x}}(s) \) whose terms are \(r_{\mathbf{x},\mathbf{x},t} = E[\mathbf{x}(u) \mathbf{x}^*_t(u-t)] \); symbolically

\[
R_{\mathbf{x},\mathbf{x}}(s) \triangleq E \left[\mathbf{X}(s) \cdot \mathbf{X}^*(-s^*) \right].
\]

(A.117)

By stationarity, \(r_{\mathbf{x},\mathbf{x},t} = r_{\mathbf{x},\mathbf{x},-t}^* \) and \(R_{\mathbf{x},\mathbf{x}}(s) = R_{\mathbf{x},\mathbf{x}}^*(-s^*) \). The **power spectrum matrix** of a stationary continuous-time vector process is the Fourier transform of its autocorrelation matrix function, which is written as

\[
R_{\mathbf{x},\mathbf{x}}(\omega_c) = R_{\mathbf{x},\mathbf{x}}(s)|_{s=j\omega_c}, \quad -\infty < \omega_c \leq \infty,
\]

(A.118)

\(^{12}\) A norm assigns a positive (or zero for the zero element) real value to each element in a sequence (function), and satisfies the triangle property \(|x+y| \leq |x| + |y|\) and for scalar \(a\), then \(|ax| = |a||x|\).

\(^{13}\) The expression \(R_{\mathbf{x},\mathbf{x}}(D) \triangleq E \left[\mathbf{X}(D) \mathbf{X}^*(D^{-1}) \right] \) is used in a symbolic sense, since the terms of \(\mathbf{X}(D) \mathbf{X}^*(D^{-1}) \) are of the form \(\sum_k \mathbf{x}_k \mathbf{x}^*_{k-j} \) implying the additional operation \(\lim_{N \to \infty} [1/(2N+1)] \sum_{-N \leq k \leq N} \) on the sum in such terms.

\(^{14}\) The expression \(R_{\mathbf{x},\mathbf{x}}(s) \triangleq E \left[\mathbf{X}(s) \mathbf{X}^*(-s^*) \right] \) is used in a symbolic sense, since the terms of \(\mathbf{X}(s) \mathbf{X}^*(-s) \) are of the form \(\int_{-\infty}^{\infty} E[\mathbf{x}(u) \mathbf{x}^*_t(u-t)]du \), implying the additional operation \(\lim_{T \to \infty} [1/(2T)] \int_{-T}^{T} \) on the integral in such terms.
which is real and nonnegative definite for all \(\omega_c \), namely
\[
| R_{xx}(\omega_c) | \geq 0 \quad -\infty < \omega_c < \infty . \tag{A.119}
\]

Conversely, any function \(R(\omega_c) \) that is real and nonnegative definite over the interval \(\{ -\infty < \omega_c \leq \infty \} \) is a power-spectrum matrix and has autocorrelation matrix function satisfying \(R(s) = R^*(-s^*) \).

The quantity \(E[|x_c(t)|^2] \) is the power \(P_x \) and can be determined from either the autocorrelation function or the power spectrum as follows:
\[
P_x = E[|x_c(t)|^2] = \text{trace} \{ r_{xx}(0) \} = \frac{1}{2\pi} \text{trace} \left\{ \int_{-\infty}^{\infty} R_{xx}(\omega_c) \cdot d\omega_c \right\} . \tag{A.120}
\]

A.3.3 Factorizability for MIMO Processes

Matrix factorizability has some flexibility in terms of definition, but this text will combine Cholesky factorization and infinite-length factorization to create a MIMO theory of factorization with unique factors in a form that are useful elsewhere in this text.

The **spectral factorization** of a discrete-time vector autocorrelation function’s D-Transform is:

Definition A.3.3 (Factorizability for Vector Sequences) An autocorrelation function \(R_{xx}(D) \), or equivalently any non-negative definite real \(R_{xx}(e^{-j\omega}) \) so that \(r_{xx,k} = r_{xx,-k}^* \), will be called factorizable if it can be written in the form
\[
R_{xx}(D) = G_x(D) \cdot S_{x,0} \cdot G_x^*(D^{-*}), \tag{A.121}
\]
where \(S_{x,0} \) is a constant diagonal matrix with all positive entries on the diagonal and where \(G_x(D) \) is a canonical matrix filter response. A matrix-filter response \(G_x(D) \) is called canonical if it is **causal** (\(G_{xx,k} = 0 \) for \(k < 0 \)), **monic** (\(\text{Diag} \{ G_x(0) \} = I \)), **upper triangular**, and **minimum-phase** (all of its poles and zeros are outside or on the unit circle). If \(G_x(D) \) is canonical, then \(G_x^*(D^{-*}) \) is **anticanonical**; i.e., anticausal, monic, **lower triangular**, and maximum-phase (all poles and zeros inside or on the unit circle).

The region of convergence for a factorizable \(R_{xx}(D) \) clearly includes the unit circle, as do the regions for both \(G_x(D) \) and \(G_x^*(D^{-*}) \).

If \(G_x(D) \) is a canonical response, and if the squared matrix norm is defined as the sum of the squared eigenvalue magnitudes, then \(||G_x||^2 \geq N \) with equality if and only if \(G_x(D) = I \), since \(G_x(D) \) is monic.

Further, the inverse also factorizes similarly into
\[
R_{xx}^{-1}(D) = G_{xx}^{-1}(D) \cdot S_{xx}^{-1} \cdot G_{xx}^*(D^{-*}) . \tag{A.122}
\]

The determinant \(|R_{xx}(D)| \) will capture all poles and zeros in any and all terms of the factorization (and hidden cancellations will not be important in practice). If \(|R_{xx}(D)| \) is a ratio of finite-degree polynomials in \(D \), then \(R_{xx}(D) \) is factorizable (group poles/zeros together for inside and outside of the circle - any poles/zeros on the unit circle will also appear in conjugate pairs and so are easily separated). Handling of autocorrelation matrices whose determinant is not already such a polynomial ratio appears in the next section through the MIMO Paley-Wiener Criterion.

Also, if \(R_{xx}(D) \) is factorizable, then the corresponding \(R_{xx}(s) = R_{xx} \left(\frac{1-s}{1+s} \right) \) is also factorizable into
\[
R_{xx}(s) = G_{xx}(s) \cdot S_{xx} \cdot G_{xx}^*(-s^*) . \tag{A.123}
\]

Definition A.3.4 (Factorizability for Continuous Vector Functions) An autocorrelation matrix \(R_{xx}(s) \), or equivalently any non-negative definite \(R_{xx}(\omega) \) so that \(r_{xx}(t) = r_{xx}(-t) \), will be called factorizable if it can be written in the form
\[
R_{xx}(s) = G_{xx}(s) \cdot S_{xx,0} \cdot G_{xx}^*(-s^*) , \tag{A.124}
\]
where $S_{x,0}$ is a finite positive real diagonal matrix and $G_{x_0}(s)$ is a canonical filter response. A filter response $G_{x_0}(s)$ is called canonical if it is causal ($G_{x_0}(t) = 0$ for $t < 0$), monic (Diag $\{G_{x_0}(0)\} = I$), upper triangular, and minimum-phase (all of its poles and zeros are in the left half plane). If $G_{x_0}(s)$ is canonical, then $G_{x_0}^*(-s^*)$ is anticanonical; i.e., anticausal, monic, lower triangular, and maximum-phase (all poles and zeros inside the right half plane). Further, (note use of bold and plain fonts on “x”)

$$S_{x,0} \triangleq |S_{x,0}| . \quad (A.125)$$

The region of convergence for factorizable $R_{xx}(s)$ clearly includes the $j\omega_c$ axis, as do the regions for both $G_{xx}(s)$ and $G_{xx}^*(-s^*)$.

If $G_{xx}(s)$ is a canonical response, then $||G_{xx}||^2 \triangleq \text{trace} \left\{ \int_{-\infty}^{\infty} |g_{xx}(t)|^2 \right\} \geq N$, with equality if and only if $G_{xx}(s) = I$, since $G_{xx}(s)$ is monic. Further, the inverse also factorizes similarly into

$$R_{xx}^{-1}(s) = G_{xx}^{-1}(s) \cdot S_{xx,0}^{-1} \cdot G_{xx}^*(-s^*) . \quad (A.126)$$

The determinant of $|R_{xx}(s)|$ will capture all poles and zeros in any and all terms of the factorization (and hidden cancellations will not be important in practice). Clearly if $|R_{xx}(s)|$ is a ratio of finite-degree polynomials in s, then it is factorizable (simply group poles/zeros together for left and right half planes - any on imaginary axis will also appear in conjugate pairs so easily separated). When not already such a polynomial, the next section generalizes through the Paley-Wiener Criterion.

A.3.4 MIMO Paley Wiener Criterion and Matrix Filter Realization

Minimum-phase vector signals and matrix filters are of interest in data transmission not only because they are causal and triangular and admit causal invertible triangular inverses (one of the reasons for their study more broadly in digital signal processing) but because they allow best results with MIMO Decision Feedback as in Section 3.10. These minimum-phase matrix filters are also useful in noise whitening.

Analytic Functions of Matrices

Analytic functions, like $\ln(x)$ and e^x as used here, have convergent power-series representations like

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + ... \quad (A.127)$$

$$= \sum_{m=0}^{\infty} \frac{x^m}{m} \quad (A.128)$$

$$\ln(x) = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} + ... \quad (A.129)$$

$$= \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \cdot (x - 1)^m}{m} \quad (A.130)$$

for all values of x. When the argument of the function is a square matrix R, the value of the corresponding output matrix of the same dimension can be found by insertion of this matrix into the power series, so\footnote{For non-square matrices, it is usually possible to achieve desired results by forming a square matrix RR^* and applying the power series of the function to that “squared” matrix, and then finding the positive square root through Cholesky Factorization on the result and absorbing the square root of the diagonal matrix of Cholesky factors into each of the triangular matrices.}

$$e^R = \sum_{m=0}^{\infty} \frac{R^m}{m} \quad (A.131)$$

$$\ln(R) = \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \cdot (R - I)^m}{m} . \quad (A.132)$$
With some care on aversion of commuting matrices, the following will hold:

\[
\ln(R_1 \cdot R_2) = \ln(R_1) + \ln(R_2) \quad (A.133)
\]
\[
e^{R_1+R_2} = e^{R_1} \cdot e^{R_2} \quad (A.134)
\]

Necessity and the Sum-Rate Equivalent

Calculation of \(S_{x,0} \) and \(S_{x,0} = |S_{x,0}| \) for a factorizable D-Transform autocorrelation matrix generalizes Equations (3.232) to (3.233) in Section 3.6 as

\[
S_{x,0} = e^{\frac{i}{2} \int_{\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega} \quad (A.135)
\]
\[
\ln(S_{x,0}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega \quad (A.136)
\]
\[
S_{x,0}^{-1} = e^{-\frac{i}{2} \int_{-\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega} \quad (A.137)
\]
\[
\ln(S_{x,0}^{-1}) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega \quad (A.140)
\]

which has components corresponding to the first and last terms of the factorization in (A.121) integrating to zero because they are periodic with zero constant term (see A.129 for \(\ln(x + 1) \)) and being integrated over one period of the fundamental frequency. The integral in (A.138) must be finite for the exponent in (A.137) to be finite (also, any exponent of a real function is a real positive number, so \(S_{x,0} > 0 \) and real, consistent with the power spectral density). That integral of the natural log of a power-spectral density is fundamental in filter realization and in the MIMO Paley Wiener Criterion. Again, \(D_{x} \) is the same for \(R_{xx}(D) \) as for \(\ln[R_{xx}(D)] \) and includes the unit circle; this also means the region of convergence for \(\ln[G_{x}(D)] \) also is the same as for \(G_{x}(D) \) and includes the unit circle. Further, the region of convergence for \(G_{x}^{-1}(D) \) also includes the unit circle and is the same as for \(\ln[G_{x}^{-1}(D)] \).

The calculation of \(S_{x,0}^{-1} \) has a very similar form to that of \(S_{x,0} \):

\[
S_{x,0}^{-1} = e^{-\frac{i}{2} \int_{-\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega} \quad (A.139)
\]
\[
\ln(S_{x,0}^{-1}) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|R_{xx}(e^{j\omega})| \cdot d\omega \quad (A.140)
\]

Because (A.138) and (A.140) are similar, just differing in sign, and because any functions of \(G_{x} \) (including in particular \(\ln \) or \(\cdot \)) are all periodic, factorizability also implies

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |\ln[R_{xx}(e^{j\omega})]| \cdot d\omega < \infty \quad (A.141)
\]

(or the function \(\ln[R_{xx}(D)] \) exists because this log-autocorrelation’s determinant is absolutely integrable). Essentially the finite nature of this integral corresponding to factorizable \(R_{xx}(D) \) means that the sequence’s Fourier Transform has no frequencies (except point frequencies of non-zero measure) at which it can be either zero or infinite. The non-infinite nature is consistent with the basic criterion for the norm to be absolutely integrable, but the the non-zero portion corresponds intuitively to saying any non-satisfying matrix filter has some singular “null components.” Any energy in these null components would be linear combinations of energy of other components. Null components thus carry no new information, and can be viewed as useless: A signal with such a null components is wasting energy on these components that exist elsewhere already. A matrix filter with such a null space would block any information transmitted in that corresponding null space, making reliable data-detection/communication impossible (kind of a MIMO inverse to the reversibility concept and theorem in Chapter 1). Such a filter would not be reversible (causally or otherwise). Both infinite size and singular situations should be avoided. Chapter 5 will deal with such singularity and null spaces far more precisely.

The following MIMO Paley-Wiener Theorem from discrete-time spectral factorization theory formalizes when an autocorrelation function is “factorizable.” The ensuing development will essentially prove
the theorem while developing a way to produce the factors $G(D)$ and thus $G^*(D^{-*})$ of the previous subsection. This development also finds a useful way to handle the continuous-time case, which can be useful in noise-whitening. **The reader is again reminded that any non-negative-definite matrix and corresponding inverse transform is a candidate for spectral factorization.**

Theorem A.3.1 (Paley Wiener Criterion) If $R_{xx}(e^{-j\omega})$ is any power spectrum such that both $|R_{xx}(e^{-j\omega})|$ and $|\ln|R_{xx}(e^{-j\omega})||$ are absolutely integrable over $-\pi < \omega \leq \pi$, and $R_{xx}(D)$ is the corresponding autocorrelation matrix, then there is a canonical discrete-time response $G(D)$ that satisfies the equation

$$R_{xx}(D) = G(D) \cdot S_{x,0} \cdot G^*(D^{-*}),$$ \hspace{1cm} (A.142)

where the diagonal matrix of all positive elements $S_{x,0}$ is given by

$$\ln |S_{x,0}| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln R_{xx}(e^{-j\omega}) d\omega .$$ \hspace{1cm} (A.143)

$$\ln S_{x,0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\ln R_{xx}| (e^{-j\omega}) d\omega .$$ \hspace{1cm} (A.144)

For $S_{x,0}$ to be finite, $R_{xx}(e^{-j\omega})$ must satisfy the **discrete-time MIMO Paley-Wiener Criterion (PWC)**

$$S_{x,0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\ln R_{xx}(e^{-j\omega})| d\omega < \infty .$$ \hspace{1cm} (A.145)

The continuous-time equivalent of this MIMO PWC is that the Fourier Transform of the continuous-time autocorrelation function is factorizable

$$R_{xx}(s) = G_{xx}(s) \cdot S_{x,0} \cdot G^*_{xx}(-s^*) ,$$ \hspace{1cm} (A.146)

where $G_{xx}(s)$ is minimum phase (all poles and zeros in the left half plane or on axis in limiting sense), upper triangular, and “monic” $|G_{xx}(s)|_{s=0} = 1$, whenever

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\ln R_{xx}(\omega_s)|}{1 + \omega_s^2} d\omega_s < \infty .$$ \hspace{1cm} (A.147)

Constructive Proof: The equivalence of the two PW criteria in (A.145) and (A.147) (discrete- and continuous-time) follows directly from Equations (A.34) to (A.37). However, it remains to show that the condition is necessary and sufficient for the factorization to exist. The necessity of the criterion followed previously when it was shown that factorizability lead to the PWC being satisfied. The sufficiency proof will be constructive from the criterion itself.

The desired non-negative positive-definite matrix is an upper-triangular positive-definite square root $R^{1/2}_{xx}(e^{-j\omega})$ that can, for instance, be found by Cholesky Factorization (and absorbing positive diagonal square-root equally into the two upper and lower factors), and this function in turn has a natural-log upper-triangular real matrix

$$A(e^{-j\omega}) \overset{\Delta}{=} \ln \left[R^{1/2}_{xx}(e^{-j\omega}) \right] .$$ \hspace{1cm} (A.148)

$A(e^{-j\omega})$ itself is periodic and by the MIMO PWC integral equation is absolutely integrable and so has a corresponding Fourier representation

$$A(e^{-j\omega}) = \sum_{k=-\infty}^{\infty} A_k \cdot e^{-j\omega k}$$ \hspace{1cm} (A.149)

$$A_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} A(e^{-j\omega}) \cdot e^{j\omega k} \cdot d\omega .$$ \hspace{1cm} (A.150)
Because the Fourier Transform $A(e^{-j\omega})$ is positive real, then $A_k = A_k^*$, and the D-Transform simplifies to
\[
A(D) = A_0 + \sum_{k=1}^{\infty} A_k \cdot D^k + \sum_{l=-\infty}^{-1} A_l \cdot D^l ,
\]
and then by letting $k = -l$ in the second sum,
\[
A(D) = A_0 + \sum_{k=1}^{\infty} [A_k + A_{-k}] \cdot D^k
\]
\[
= a_0 + 2 \sum_{k=1}^{\infty} \Re [A_k] \cdot D^k,
\]
which defines a causal sequence A_k that corresponds to $\ln \left[\frac{R^{1/2}_{xx}(D)}{2} \right]$. $A(D)$ remains upper triangular through the above constructive process. So,
\[
R_{xx}(D) = e^{A(D)} \cdot e^{A^*(D*)} ,
\]
Then, the factorization’s MIMO components are:
\[
S_{x,0} = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln[R_{xx}(e^{-j\omega})] d\omega}
\]
\[
G_x(D) = e^{A(D)} \cdot S_{x,0}^{-1/2}.
\]
The corresponding continuous-time spectrum factorization then would be found with $R_{xx}(s) = R_{xx} \left(\frac{1-s}{1+s} \right)$ and thus $A_c(s) = A \left(\frac{1-s}{1+s} \right)$. Then, with $s \rightarrow j\omega_c$
\[
S_{x,0} = e^{\frac{1}{2\pi} \int_{-\infty}^{\infty} \ln[R_{xx}(e^{j\omega})] d\omega_c}
\]
\[
G_x(s) = e^{A_c(s)} \cdot S_{x,0}^{-1/2}.
\]
If the original desired spectra were defined in continuous time, then it could be mapped into discrete time through $\omega_c \rightarrow \tan(\frac{\omega}{2})$ and then proceeding with that discrete-time mapped equivalent through the process above, ultimately leading to Equations (A.158) and (A.159). Sufficiency has thus been established in both discrete- and continuous-time. QED.

A.4 Information Measures

Chapter 2 generalizes the number of input bits to an encoder, b, is the **entropy**, but is not yet available. Entropy (in this text) is defined for a stationary distribution for x, $p_x(i)$, that exists in N-dimensions.\(^{16}\)

Definition A.4.1 (Entropy) The entropy for an N-dimensional sequential encoder with probability distribution $p_x(i)$ $i = 0, ..., M - 1$ is:
\[
H_x \triangleq - \sum_{i=0}^{M-1} p_x(i) \log_2 [p_x(i)] \text{ bits/symbol}
\]
\[
= E \{ \log_2 [1/p_x] \} ,
\]
\(^{16}\)Information measures in this book use a base-2 logarithm and are measured in bits per symbol. Any other base, p, could be used for the logarithm, and then the measures would be in the pits/symbol!
The entropy H_y of the channel output is also similarly defined for discrete channel-output distributions.

The entropy of a random variable can be interpreted as the “information content” of that random variable, in a sense a measure of its “randomness” or “uncertainty.” It can be easily shown that a discrete uniform distribution has the largest entropy, or information – or uncertainty over all discrete distributions. That is, all values are just as likely to occur. A deterministic quantity ($p_x(i) = 1$ for one value of i and $p_x(j) = 0 \forall j \neq i$) has no information, nor uncertainty. For instance, a uniform distribution on 4 discrete values has entropy $H_x = 2$ bits/symbol. This is the same as b for 4-level PAM or 4 QAM with uniform input distributions. The entropy of a source is the essential bit rate of information coming from that source. If the source distribution is not uniform, the source does not have maximum entropy and more information could have been transmitted (or equivalently transmitted with fewer messages M) with a different representation of the source’s message set. Prior to this chapter, most of the message sets considered were uniform in distribution, so that the information carried was essentially b, the base-2 log of the number of messages. In general, $H_x \leq \log_2(M)$, where M is the number of values in the discrete distribution.

In the case of a continuous distribution, the differential entropy becomes:

$$H_y \triangleq - \int_{-\infty}^{\infty} p_y(u) \log_2 \left[p_y(u) \right] du \quad (A.162)$$

Theorem A.4.1 (Maximum Entropy of a Gaussian Distribution) The distribution with maximum differential entropy for a fixed variance σ^2_y is Gaussian.

Proof: Let us denote the Gaussian distribution as $g_y(v)$, then

$$\log_2 g_y(v) = - \log_2 \left(\sqrt{2\pi\sigma^2_y} \right) - \left(\frac{v}{\sqrt{2\sigma^2_y}} \right)^2 \cdot (\ln(2))^{-1}. \quad (A.163)$$

For any other distribution $p_y(v)$ with mean zero and the same variance,

$$- \int_{-\infty}^{\infty} p_y(v) \log_2 (g_y(v)) \, dv = \log_2 \left(\sqrt{2\pi\sigma^2_y} \right) + \frac{1}{2\ln(2)}, \quad (A.164)$$

which depends only on σ^2_y. Then, letting the distribution for y be an argument for the entropy,

$$H_y(g_y) - H_y(p_y) = - \int_{-\infty}^{\infty} g_y(v) \log_2(g_y(v)) \, dv + \int_{-\infty}^{\infty} p_y(v) \log_2(p_y(v)) \, dv \quad (A.165)$$

$$= - \int_{-\infty}^{\infty} p_y(v) \log_2(g_y(v)) \, dv + \int_{-\infty}^{\infty} p_y(v) \log_2(p_y(v)) \, dv \quad (A.166)$$

$$= - \int_{-\infty}^{\infty} p_y(v) \log_2 \left(\frac{g_y(v)}{p_y(v)} \right) \, dv \quad (A.167)$$

$$\geq \frac{1}{\ln 2} \int_{-\infty}^{\infty} p_y(v) \left(1 - \frac{g_y(v)}{p_y(v)} \right) \, dv \quad (A.168)$$

$$\geq \frac{1}{\ln 2} (1 - 1) = 0, \quad (A.169)$$

or17 $H_y(g_y) \geq H_y(p_y). \quad (A.170)$

QED.

With simple algebra,

$$H_y(g_y) = \frac{1}{2} \log_2 (2\pi e \sigma^2_y). \quad (A.171)$$

17Equation (A.170) uses the bound $\ln(x) \geq x - 1$.

372
For baseband complex signals, \(H_y \), in bits per complex (two-dimensional) symbol is often written \(H_y = \log_2 \left(\pi e \sigma^2_y \right) \) where \(\sigma^2_y \) becomes the variance of the complex random variable (which is twice the variance of the variance of the real part of the complex variable, when real and imaginary parts have the same variance, as is almost always the case in data transmission).

Most of the uses of entropy in this text are associated with either the encoder distribution \(p_x \), or with the channel output distributions \(p_y \) or \(p_{y|x} \). The normalization of the number of bits per dimension to \(b = \frac{H_y}{N} \) tacitly assumes that the successively transmitted dimensions were independent of one another. In the case of independent successive dimensions, \(H_y = N H_x \). \(H_x \) is equal to \(b \), if the distribution on each dimension is also uniform (as well as independent of the other dimensions). Equivalently in \((A.161)\), \(H_y = N \cdot H_x \) if each of the dimensions of \(x \) is independent.

For instance, 16QAM has entropy \(H_y = b = 4 \) bits/symbol and normalized entropy \(\bar{H}_y = b = 2 \) bits/dimension. However, 32CR has entropy \(H_y = b = 5 \) bits/symbol, but since \(p(\pm x = 1) = p(\pm x = 3) = 6/32 \) and \(p(\pm 5) = 4/32 \), the entropy \(H_y = 2.56 \) bits/dimension \(\neq H_y = 2.5 \) bits/dimension. Note also that the number of one-dimensional distribution values is 6, so \(H_y = 2.56 < \log_2(6) = 2.58 \).

The differential entropy of a (real) Gaussian random variable with variance \(\sigma^2 \) is
\[
H_x = \frac{1}{2} \log_2 \left(2\pi e \sigma^2 \right) \text{ bits/symbol.} \tag{A.173}
\]

A complex Gaussian variable with variance \(\sigma^2 \) has differential entropy
\[
H_x = \log_2 \left(\pi e \sigma^2 \right) \text{ bits/symbol.} \tag{A.174}
\]

The conditional entropy of one random variable given another is defined according to
\[
H_{x|y} = \sum_v \sum_{i=0}^{M-1} p_x(i)p_{y|x}(v,i) \log_2 \left(\frac{1}{p_{y|x}(v,i)} \right) \tag{A.175}
\]
\[
H_{y|x} = \sum_v \sum_{i=0}^{M-1} p_x(i)p_{y|x}(v,i) \log_2 \left(\frac{1}{p_{y|x}(v,i)} \right) , \tag{A.176}
\]
with integrals replacing summations when random variables/vectors have continuous distributions. The definition of conditional entropy averages the entropy of the conditional distribution over all possibilities in some given input distribution. Thus, the conditional entropy is a function of both \(p_{y|x} \) and \(p_x \). Conditional entropy measures the residual information or uncertainty in the random variable given the value of another random variable on average. This can never be more than the entropy of the unconditioned random variable, and is only the same when the two random variables are independent. For a communication channel, the conditional entropy, \(H_{y|x} \), is basically the uncertainty or information of the “noise.” If the conditional distribution is Gaussian, as is often the case in transmission, the conditional entropy of a scalar \(x \) becomes
\[
H_{x|y} = \begin{cases}
\frac{1}{2} \log_2 \left(2\pi e \sigma^2_{\text{mse}} \right) & \text{real } x \\
\log_2 \left(\pi e \sigma^2_{\text{mse}} \right) & \text{complex } x
\end{cases} \tag{A.177}
\]
The MMSE in the above equations is that arising from estimation of \(x \), given \(y \). Thus, the conditional entropy then measures the information remaining after the effect of the \(y \) has been removed. That is in some sense measuring useless information that a receiver might not be expected to use successfully in estimating \(x \).

The information of the “noise,” or more generically, the “useless part” of the channel output given a certain input distribution, is not of value to a receiver. Thus, while the entropy of the source is a meaningful measure of the data transmitted, the entropy of the channel output has extra constituents that are caused by the randomness of noise (or other useless effects). Given that it is the output of a channel, \(y \), that a receiver observes, only that part of the output that bears the information of the input is of value in recovering the transmitted messages. Thus, the entropy \(H_y - H_{y|x} \) measures the useful information in the channel output. This information is called the \textbf{mutual information}.

373
Definition A.4.2 (Mutual Information) The mutual information for any N-dimensional signal set with probability distribution $p_x(i) i = 0, ..., M - 1$, and a corresponding channel description $p_y/x(v, i)$, is:

$$ I_{y,x} \triangleq H_y - H_{y/x} \quad . $$ (A.178)

The identity,

$$ I_{y,x} = H_y - H_{y/x} = H_x - H_{x/y} \quad , $$ (A.179)

easily follows from transposing x and y. Using probability distributions directly:

$$ I_{y,x} \triangleq \sum_{v=0}^{M-1} \sum_{i=0}^{M-1} p_x(i)p_y/x(v, i) \log_2 \left[\frac{p_y/x(v, i)}{\sum_{m=0}^{M-1} p_y/x(v, m)p_x(m)} \right] \text{ bits/symbol} \quad (A.180) $$

$$ = E \log_2 \left[\frac{p_y/x}{p_y} \right] \quad (A.181) $$

$$ = E \log_2 \left[\frac{p_y/x}{p_x \cdot p_y} \right] \quad (A.182) $$

$$ = E \log_2 \left[\frac{p_x/y}{p_x} \right] \quad , \quad (A.183) $$

In the case of a continuous distribution on y and/or x, the summation(s) is (are) replaced by the appropriate integral(s).

A.5 The Matrix Inversion Lemma

The matrix inversion lemma:

$$ [A + BCD]^{-1} = A^{-1} - A^{-1}B [C^{-1} + DA^{-1}B]^{-1} DA^{-1} \quad , $$ (A.184)

is often useful in simplifying matrix expressions.

This can be proofed through straightforward matrix multiplication.
Appendix B

Equalization for Partial Response

Just as practical channels are often not free of intersymbol interference, such channels are rarely equal to some desirable partial-response (or even controlled-ISI) polynomial. Thus, an equalizer may be used to adjust the channel’s shape to that of the desired partial-response polynomial. This equalizer then enables the use of a partial-response sequence detector or a symbol-by-symbol detector at its output (with partial-response precoder). The performance of either of these types of detectors is particularly sensitive to errors in estimating the channel, and so the equalizer can be crucial to achieving the highest levels of performance in the partial-response communication channel. There are a variety of ways in which equalization can be used in conjunction with either sequence detection and/or symbol-by-symbol detection. This section introduces some equalization methods for partial-response signaling.

Chapter 9 studies sequence detection so terms related to it like MLSD (maximum likelihood sequence detection) and Viterbi detectors/algorithm are pertinent to readers already familiar with Chapter 9 contents and can be viewed simply as finite-real-time-complexity methods to implement a full maximum-likelihood detector for an ISI channel by other readers of this Appendix.

B.1 Controlled ISI with the DFE

Section 3.8.2 showed that a minimum-phase channel polynomial $H(D)$ can be derived from the feedback section of a DFE. This polynomial is often a good controlled intersymbol interference model of the channel when $H(D)$ has finite degree ν. When $H(D)$ is of larger degree or infinite degree, the first ν coefficients of $H(D)$ form a controlled intersymbol interference channel. Thus, a detector on the output of the feedforward filter of a DFE can be designed using the controlled ISI polynomial $H(D)$ or approximations to it.

B.1.1 ZF-DFE and the Optimum Sequence Detector

Section 3.1 showed that the sampled outputs, y_k, of the receiver matched filter form a sufficient statistic for the underlying symbol sequence. Thus a maximum likelihood (or MAP) detector can be designed that uses the sequence y_k to estimate the input symbol sequence x_k without performance loss. The feedforward filter $1/\eta_0 || p || H^*(D^{-1})$ of the ZF-DFE is invertible when $Q(D)$ is factorizable. The reversibility theorem of Chapter 1 then states that a maximum likelihood detector that observes the output of this invertible ZF-DFE-feedforward filter to estimate x_k also has no performance loss with respect to optimum. The feedforward filter output has D-transform

\[
Z(D) = X(D) \cdot H(D) + N'(D) \quad .
\]

The noise sequence n'_k is exactly white Gaussian for the ZF-DFE, so the ZF-DFE produces an equivalent channel $H(D)$. If $H(D)$ is of finite degree ν, then a maximum-likelihood (full sequence of transmitted signals is considered to be a one-shot transmission, which would nominally require infinite delay and complexity for an infinite-length input, but Chapter 9 shows how to implement such a detector recursively
with finite delay and finite-real-time complexity) detector can be designed based on the controlled-ISI polynomial \(H(D) \) and this detector has minimum probability of error. Figure B.1 shows such an optimum receiver.

![Figure B.1: The partial response ZF equalizer, decomposed as the cascade of the WMF (the feedforward section of the ZF-DFE) and the desired partial response channel \(B(D) \).](image)

When \(H(D) \) has larger degree than some desired \(\nu \) determined by complexity constraints, then the first \(\nu \) feedback taps of \(H(D) \) determine

\[
H'(D) = 1 + h_1 D + \ldots + h_\nu D^\nu,
\]

a controlled-ISI channel. Figure

![Figure B.2: Limiting the number of states with ZF-DFE and MLSD.](image)

B.2 illustrates the use of the ZF-DFE and a sequence detector. The second feedback section contains all the channel coefficients that are not used by the ML (sequence, see Chapter 9) detector. These coefficients have delay greater than \(\nu \). When this second feedback section has zero coefficients, then the configuration shown in Figure B.2 is an optimum detector. When the additional feedback section is not zero, then this structure is intermediate in performance between optimum and the ZF-DFE with symbol-by-symbol detection. The inside feedback section is replaced by a modulo symbol-by-symbol detector when precoding is used.

Increase of \(\nu \) causes the minimum distance to increase, or at worst, remain the same. Thus, the ZF-DFE with sequence detector in Figure B.2 defines a series of increasingly complex receivers whose performance approach optimum as \(\nu \to \infty \). A property of a minimum-phase \(H(D) \) is that

\[
\sum_{i=0}^{\nu'} |h_i|^2 = \|h'\|^2
\]

(B.3)
is maximum for all $\nu' \geq 0$. No other polynomial (that also preserves the AWGN at the feedforward filter output) can have greater energy. Thus the SNR of the signal entering the Viterbi Detector in Figure B.2, $\mathcal{E}_x \frac{\|h'\|^2}{N_0}$, also increases (nondecreasing) with ν. This SNR must be less than or equal to SNR_{MFB}.

B.1.2 MMSE-DFE and sequence detection

Symbol-by-symbol detection’s objective is to maximize SNR in an unbiased detector, and so SNR maximization was applied in Chapter 3 to the DFE to obtain the MMSE-DFE. A bias in symbol-by-symbol detector was removed to minimize probability of error. The monic, causal, minimum-phase, and unbiased feedback polynomial was denoted $G_U(D)$ in Section 3.6. A sequence detector can use the same structures as shown in Figure B.1 and B.2 with $H(D)$ replaced by $G_u(D)$. For instance, Figure B.4 is the same as Figure B.2, with an unbiased MMSE-DFE’s MS-WMF replacing the WMF of the ZF-DFE. A truncated version of $G_U(D)$ corresponding to $H'(D)$ is denoted $G'_U(D)$. The error sequence associated with the unbiased MMSE-DFE is not quite white, nor is it Gaussian. So, a sequence detector based on squared distance is not quite optimum, but it is nevertheless commonly used because the exact optimum detector could be much more complex. As ν increases, the probability of error decreases from the level of the unbiased MMSE-DFE, $\text{SNR}_{\text{MMSE-DFE,U}}$ when $\nu = 0$, to that of the optimum detector when $\nu \rightarrow \infty$. The matched filter bound, as always, remains unchanged and is not necessarily obtained. However, minimum distance does increase with ν in the sequence detectors based on a increasing-degree series of $G_U(D)$.

B.2 Equalization with Fixed Partial Response $B(D)$

The derivations of Section 3.6 on the MMSE-DFE included the case where $B(D) \neq G'(D)$, which this section reuses.

B.2.1 The Partial Response Linear Equalization Case

In the linear equalizer case, the equalization error sequence becomes

$$E_{pr}(D) = B(D) \cdot X(D) - W(D) \cdot Y(D) \ . \tag{B.4}$$

Section 3.6 minimized MSE for any $B(D)$ over the coefficients in $W(D)$. The solution was found by setting $E [E_{pr}(D)y^*(D^{-1})] = 0$, to obtain

$$W(D) = B(D) \frac{R_{xx}(D)}{R_{yy}(D)} = \frac{B(D)}{\|P\|^2 (Q(D) + 1/\text{SNR}_{MFB})} \ , \tag{B.5}$$

which is just the MMSE-LE cascaded with $B(D)$. Figure B.3: Partial-response linear equalization.
B.3, shows the MMSE-PREQ (MMSE - “Partial Response Equalizer”). The designer need only realize the MMSE-LE of Section 3.4 and follow it by a filter of the desired partial-response (or controlled-ISI) polynomial $B(D)$.\(^1\) For this choice of $W(D)$, the error sequence is

$$E_{pr}(D) = B(D)X(D) - B(D)Z(D) = B(D) [E(D)]$$ \hspace{1cm} (B.6)

where $E(D)$ is the error sequence associated with the MMSE-LE. From (B.6),

$$\bar{R}_{e_{pr}e_{pr}}(D) = B(D) \bar{R}_{ee}(D) B^*(D^{-1}) = \frac{B(D) N_0}{\|p\|^2 (Q(D) + 1/\text{SNR}_{MFB})} .$$ \hspace{1cm} (B.7)

Thus, the MMSE for the PREQ can be computed as

$$\sigma_{\text{MMSE-PREQ}}^2 = \frac{T}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} |B(e^{-j\omega T})|^2 \frac{N_0}{\|p\|^2 (Q(e^{-j\omega T}) + 1/\text{SNR}_{MFB})} d\omega .$$ \hspace{1cm} (B.8)

The symbol-by-symbol detector is equivalent to subtracting $(B(D) - 1)X(D)$ before detection based on decision regions determined by x_k. The SNR\(_{\text{MMSE-PREQ}}\) becomes

$$\text{SNR}_{\text{MMSE-PREQ}} = \frac{\bar{\xi}_x}{\sigma_{\text{MMSE-PREQ}}^2} .$$ \hspace{1cm} (B.9)

This performance can be better or worse than the MMSE-LE, depending on the choice of $B(D)$; the designer usually selects $B(D)$ so that $\text{SNR}_{\text{MMSE-PREQ}} > \text{SNR}_{\text{MMSE-LE}}$. This receiver also has a bias, but it is usually ignored because of the integer coefficients in $B(D)$ – any bias removal could cause the coefficients to be noninteger.

While the MMSE-PREQ should be used for the case where symbol-by-symbol and precoding are being used, the error sequence $E_{pr} = B(D)E(D)$ is not a white noise sequence (nor is $E(D)$ for the MMSE-LE), so that a Viterbi Detector designed for AWGN on the channel $B(D)$ would not be the optimum detector for our MMSE-PREQ (with scaling to remove bias). In this case, the ZF-PREQ, obtained by setting $\text{SNR}_{MFB} \to \infty$ in the above formulae, would also not have a white error sequence. Thus a linear equalizer for a partial response channel $B(D)$ that is followed by a Viterbi Detector designed for AWGN may not be very close to an optimum detection combination, unless the channel pulse response were already very close to $B(D)$, so that equalization was not initially necessary. While this is a seemingly simple observation made here, there are a number of systems proposed for use in disk-storage detection that overlook this basic observation, and do equalize to partial response, “color” the noise spectrum, and then use a WGN Viterbi Detector. The means by which to correct this situation is the PR-DFE of the next subsection.

B.2.2 The Partial-Response Decision Feedback Equalizer

If $B(D) \neq G(D)$ and the design of the detector mandates a partial-response channel with polynomial $B(D)$, then the optimal MMSE-PRDFE is shown in Figure

\(^1\)This also follows from the linearity of the MMSE estimator.
Again, using our earlier result that for any feedback section \(G_U(D) = B(D) + \tilde{B}(D) \). The error sequence is the same as that for the MMSE-DFE, and is therefore a white sequence. The signal between the two feedback sections in Figure B.4 is input to the sequence or symbol-by-symbol detector. This signal can be processed on a symbol-by-symbol basis if precoding is used (and also scaling is used to remove the bias - the scaling is again the same scaling as used in the MMSE-DFE), and \(\tilde{B}_U(D) = G_U(D) - B_U(D) \), where

\[
B_U(D) = \frac{\text{SNR}_{\text{MMSE-DFE}}}{\text{SNR}_{\text{MMSE-DFE},U}} \left[B(D) - \frac{1}{\text{SNR}_{\text{MMSE-DFE}}} \right]. \tag{B.10}
\]

However, since the MMSE-PRDFE error sequence is white, and because the bias is usually small so that the error sequence in the unbiased case is also almost white, the designer can reasonably use an ML (Viterbi Sequence Detector) designed for \(B(D) \) with white noise.

If the bias is negligible, then a ZF-PRDFE should be used, which is illustrated in Figure B.2, and the filter settings are obtained by setting \(\text{SNR}_{MFB} \to \infty \) in the above formula.